Controllable Coordination-Driven Self-Assembly: From Discrete Metallocages to Infinite Cage-Based Frameworks
Conspectus Nanosized supramolecular metallocages have a unique self-assembly process that allows chemists to both understand and control it. In addition, well-defined cavities of such supramolecular aggregates have various attractive applications including storage, separation, catalysis, recognition...
Saved in:
Published in | Accounts of chemical research Vol. 48; no. 2; pp. 201 - 210 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.02.2015
|
Online Access | Get full text |
Cover
Loading…
Abstract | Conspectus Nanosized supramolecular metallocages have a unique self-assembly process that allows chemists to both understand and control it. In addition, well-defined cavities of such supramolecular aggregates have various attractive applications including storage, separation, catalysis, recognition, drug delivery, and many others. Coordination-driven self-assembly of nanosized supramolecular metallocages is a powerful methodology to construct supramolecular metallocages with considerable size and desirable shapes. In this Account, we summarize our recent research on controllable coordination-driven assembly of supramolecular metallocages and infinite cage-based frameworks. To this end, we have chosen flexible ligands that can adopt various conformations and metal ions with suitable coordination sites for the rational design and assembly of metal–organic supramolecular ensembles. This has resulted in various types of metallocages including M3L2, M6L8, M6L4, and M12L8 with different sizes and shapes. Because the kinds of metal geometries are limited, we have found that we can replace single metal ions with metal clusters to alternatively increase molecular diversity and complexity. There are two clear-cut merits of this strategy. First, metal clusters are much bigger than single metal ions, which helps in the construction and stabilization of large metallocages, especially nanosized cages. Second, metal clusters can generate diverse assembly modes that chemists could not synthesize with single metal ions. This allows us to obtain a series of unprecedented supramolecular metallocages. The large cavities and potential unsaturated coordination sites of these discrete supramolecular cages offer opportunities to construct infinite cage-based frameworks. This in turn can offer us a new avenue to understand self-assembly and realize certain various functionalities. We introduce two types of infinite cage-based frameworks here: cage-based coordination polymers and cage-based polycatenanes, which we can construct through coordination bonds and mechanical bonds, respectively. Through either directly linking the unsaturated coordination sites of metallocages or replacing the labile terminal ligands with bridging ligands, we can produce infinite cage-based frameworks based on coordination bonds. We introduce several interesting cage-based coordination polymers, including a single-crystal-to-single-crystal transformation from a M6L8 cage to an infinite cage-based chain. Compared with discrete metallocages, these kinds of materials can give us higher structural stability and complexity, favoring the applications of metallocages. In addition, we discuss how we can use mechanical bonds, such as interlocking and interpenetrating, to construct extended cage-based frameworks. So far, study in this field has focused on polycatenanes constructed from M6L4 and M12L8 cages, as well as a controllable and dynamic self-assembly based on M6L4 metallocages. We also discuss cage-based polycatenanes, which can give dynamic properties to discrete metallocages. We hope that our investigations will bring new insights to the world of the supramolecular metallocages by enlarging its breadth and encourage us to devote more effort to this blossoming field in the future. |
---|---|
AbstractList | Conspectus Nanosized supramolecular metallocages have a unique self-assembly process that allows chemists to both understand and control it. In addition, well-defined cavities of such supramolecular aggregates have various attractive applications including storage, separation, catalysis, recognition, drug delivery, and many others. Coordination-driven self-assembly of nanosized supramolecular metallocages is a powerful methodology to construct supramolecular metallocages with considerable size and desirable shapes. In this Account, we summarize our recent research on controllable coordination-driven assembly of supramolecular metallocages and infinite cage-based frameworks. To this end, we have chosen flexible ligands that can adopt various conformations and metal ions with suitable coordination sites for the rational design and assembly of metal–organic supramolecular ensembles. This has resulted in various types of metallocages including M3L2, M6L8, M6L4, and M12L8 with different sizes and shapes. Because the kinds of metal geometries are limited, we have found that we can replace single metal ions with metal clusters to alternatively increase molecular diversity and complexity. There are two clear-cut merits of this strategy. First, metal clusters are much bigger than single metal ions, which helps in the construction and stabilization of large metallocages, especially nanosized cages. Second, metal clusters can generate diverse assembly modes that chemists could not synthesize with single metal ions. This allows us to obtain a series of unprecedented supramolecular metallocages. The large cavities and potential unsaturated coordination sites of these discrete supramolecular cages offer opportunities to construct infinite cage-based frameworks. This in turn can offer us a new avenue to understand self-assembly and realize certain various functionalities. We introduce two types of infinite cage-based frameworks here: cage-based coordination polymers and cage-based polycatenanes, which we can construct through coordination bonds and mechanical bonds, respectively. Through either directly linking the unsaturated coordination sites of metallocages or replacing the labile terminal ligands with bridging ligands, we can produce infinite cage-based frameworks based on coordination bonds. We introduce several interesting cage-based coordination polymers, including a single-crystal-to-single-crystal transformation from a M6L8 cage to an infinite cage-based chain. Compared with discrete metallocages, these kinds of materials can give us higher structural stability and complexity, favoring the applications of metallocages. In addition, we discuss how we can use mechanical bonds, such as interlocking and interpenetrating, to construct extended cage-based frameworks. So far, study in this field has focused on polycatenanes constructed from M6L4 and M12L8 cages, as well as a controllable and dynamic self-assembly based on M6L4 metallocages. We also discuss cage-based polycatenanes, which can give dynamic properties to discrete metallocages. We hope that our investigations will bring new insights to the world of the supramolecular metallocages by enlarging its breadth and encourage us to devote more effort to this blossoming field in the future. CONSPECTUS: Nanosized supramolecular metallocages have a unique self-assembly process that allows chemists to both understand and control it. In addition, well-defined cavities of such supramolecular aggregates have various attractive applications including storage, separation, catalysis, recognition, drug delivery, and many others. Coordination-driven self-assembly of nanosized supramolecular metallocages is a powerful methodology to construct supramolecular metallocages with considerable size and desirable shapes. In this Account, we summarize our recent research on controllable coordination-driven assembly of supramolecular metallocages and infinite cage-based frameworks. To this end, we have chosen flexible ligands that can adopt various conformations and metal ions with suitable coordination sites for the rational design and assembly of metal-organic supramolecular ensembles. This has resulted in various types of metallocages including M3L2, M6L8, M6L4, and M12L8 with different sizes and shapes. Because the kinds of metal geometries are limited, we have found that we can replace single metal ions with metal clusters to alternatively increase molecular diversity and complexity. There are two clear-cut merits of this strategy. First, metal clusters are much bigger than single metal ions, which helps in the construction and stabilization of large metallocages, especially nanosized cages. Second, metal clusters can generate diverse assembly modes that chemists could not synthesize with single metal ions. This allows us to obtain a series of unprecedented supramolecular metallocages. The large cavities and potential unsaturated coordination sites of these discrete supramolecular cages offer opportunities to construct infinite cage-based frameworks. This in turn can offer us a new avenue to understand self-assembly and realize certain various functionalities. We introduce two types of infinite cage-based frameworks here: cage-based coordination polymers and cage-based polycatenanes, which we can construct through coordination bonds and mechanical bonds, respectively. Through either directly linking the unsaturated coordination sites of metallocages or replacing the labile terminal ligands with bridging ligands, we can produce infinite cage-based frameworks based on coordination bonds. We introduce several interesting cage-based coordination polymers, including a single-crystal-to-single-crystal transformation from a M6L8 cage to an infinite cage-based chain. Compared with discrete metallocages, these kinds of materials can give us higher structural stability and complexity, favoring the applications of metallocages. In addition, we discuss how we can use mechanical bonds, such as interlocking and interpenetrating, to construct extended cage-based frameworks. So far, study in this field has focused on polycatenanes constructed from M6L4 and M12L8 cages, as well as a controllable and dynamic self-assembly based on M6L4 metallocages. We also discuss cage-based polycatenanes, which can give dynamic properties to discrete metallocages. We hope that our investigations will bring new insights to the world of the supramolecular metallocages by enlarging its breadth and encourage us to devote more effort to this blossoming field in the future.CONSPECTUS: Nanosized supramolecular metallocages have a unique self-assembly process that allows chemists to both understand and control it. In addition, well-defined cavities of such supramolecular aggregates have various attractive applications including storage, separation, catalysis, recognition, drug delivery, and many others. Coordination-driven self-assembly of nanosized supramolecular metallocages is a powerful methodology to construct supramolecular metallocages with considerable size and desirable shapes. In this Account, we summarize our recent research on controllable coordination-driven assembly of supramolecular metallocages and infinite cage-based frameworks. To this end, we have chosen flexible ligands that can adopt various conformations and metal ions with suitable coordination sites for the rational design and assembly of metal-organic supramolecular ensembles. This has resulted in various types of metallocages including M3L2, M6L8, M6L4, and M12L8 with different sizes and shapes. Because the kinds of metal geometries are limited, we have found that we can replace single metal ions with metal clusters to alternatively increase molecular diversity and complexity. There are two clear-cut merits of this strategy. First, metal clusters are much bigger than single metal ions, which helps in the construction and stabilization of large metallocages, especially nanosized cages. Second, metal clusters can generate diverse assembly modes that chemists could not synthesize with single metal ions. This allows us to obtain a series of unprecedented supramolecular metallocages. The large cavities and potential unsaturated coordination sites of these discrete supramolecular cages offer opportunities to construct infinite cage-based frameworks. This in turn can offer us a new avenue to understand self-assembly and realize certain various functionalities. We introduce two types of infinite cage-based frameworks here: cage-based coordination polymers and cage-based polycatenanes, which we can construct through coordination bonds and mechanical bonds, respectively. Through either directly linking the unsaturated coordination sites of metallocages or replacing the labile terminal ligands with bridging ligands, we can produce infinite cage-based frameworks based on coordination bonds. We introduce several interesting cage-based coordination polymers, including a single-crystal-to-single-crystal transformation from a M6L8 cage to an infinite cage-based chain. Compared with discrete metallocages, these kinds of materials can give us higher structural stability and complexity, favoring the applications of metallocages. In addition, we discuss how we can use mechanical bonds, such as interlocking and interpenetrating, to construct extended cage-based frameworks. So far, study in this field has focused on polycatenanes constructed from M6L4 and M12L8 cages, as well as a controllable and dynamic self-assembly based on M6L4 metallocages. We also discuss cage-based polycatenanes, which can give dynamic properties to discrete metallocages. We hope that our investigations will bring new insights to the world of the supramolecular metallocages by enlarging its breadth and encourage us to devote more effort to this blossoming field in the future. |
Author | Wu, Mingyan Chen, Lian Jiang, Feilong Hong, Maochun Chen, Qihui |
AuthorAffiliation | State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences – name: State Key Laboratory of Structure Chemistry |
Author_xml | – sequence: 1 givenname: Lian surname: Chen fullname: Chen, Lian – sequence: 2 givenname: Qihui surname: Chen fullname: Chen, Qihui – sequence: 3 givenname: Mingyan surname: Wu fullname: Wu, Mingyan – sequence: 4 givenname: Feilong surname: Jiang fullname: Jiang, Feilong – sequence: 5 givenname: Maochun surname: Hong fullname: Hong, Maochun email: hmc@fjirsm.ac.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25517043$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU9P3DAQxS1Exf4ph34BlAtSOaTMJLGT5bYEliJR9dBytpxkUhkcG2xvK759XRY4VJw89vzeyO_Ngu1bZ4mxTwhfEAo8VZ4DlFCLPTZHXkBeNatmn80BAFNdFTO2COEuXYtK1AdsVnCONVTlnJnW2eidMaozlLXO-UFbFbWz-YXXv8lmP8iM-ToEmjrzdJZtvJuyCx16T5GybxSVMa5Xvyhk0WXXdtRWp0abXvJzFWhICjXRH-fvw0f2YVQm0OHLuWS3m8uf7df85vvVdbu-yVXZYMyRahQdX3FF2MCAqhCIFfRjUw_J6IhD3ZQdrHgPQqzKXijVJfvNCByQqCuX7PNu7oN3j1sKUU7pw5RMWnLbIFFwARXHRiT06AXddhMN8sHrSfkn-ZpQAk53QO9dCJ5G2ev4HFD0ShuJIP_tQL7tIClO_lO8Dn2PPd6xqg_yzm29Tbm8w_0FmNWREg |
CitedBy_id | crossref_primary_10_1038_s44160_022_00224_z crossref_primary_10_1039_C9DT00654K crossref_primary_10_1021_acs_inorgchem_7b01561 crossref_primary_10_1021_jacs_3c04921 crossref_primary_10_1016_j_ica_2019_119088 crossref_primary_10_3762_bjnano_12_85 crossref_primary_10_1039_C5RA21484J crossref_primary_10_1016_j_cclet_2022_03_092 crossref_primary_10_1002_ejic_202300085 crossref_primary_10_1016_j_ccr_2017_08_022 crossref_primary_10_1039_C6NJ03456J crossref_primary_10_1002_anie_201706756 crossref_primary_10_1021_jacs_5b10815 crossref_primary_10_1039_C6CE01965J crossref_primary_10_1021_jacs_1c03652 crossref_primary_10_1016_j_inoche_2023_110792 crossref_primary_10_1039_C7DT04838F crossref_primary_10_1021_acs_analchem_8b01670 crossref_primary_10_1002_ijch_201800055 crossref_primary_10_1002_chem_202004344 crossref_primary_10_1016_j_poly_2024_117385 crossref_primary_10_1007_s11426_023_1919_2 crossref_primary_10_3390_M1890 crossref_primary_10_1016_j_colsurfb_2019_110373 crossref_primary_10_1002_anie_202108792 crossref_primary_10_1016_j_jssc_2019_01_013 crossref_primary_10_1002_tcr_201402095 crossref_primary_10_1039_C8CC08559E crossref_primary_10_1039_C6DT03041F crossref_primary_10_1002_anie_201900789 crossref_primary_10_1021_jacs_7b09463 crossref_primary_10_1002_anie_201808534 crossref_primary_10_1039_D2QI02742A crossref_primary_10_1002_ange_201501359 crossref_primary_10_1039_C7DT01533J crossref_primary_10_1039_D4TA02951H crossref_primary_10_1021_acs_jcim_0c00519 crossref_primary_10_1002_smll_202003167 crossref_primary_10_1021_acs_inorgchem_7b02516 crossref_primary_10_1002_anie_201806814 crossref_primary_10_1039_C8DT00747K crossref_primary_10_1039_C9SC01892A crossref_primary_10_1039_D3MA00477E crossref_primary_10_1002_aoc_6722 crossref_primary_10_1016_j_catcom_2020_106027 crossref_primary_10_1021_jacs_1c04288 crossref_primary_10_1007_s00604_019_3576_5 crossref_primary_10_1016_j_inoche_2017_10_003 crossref_primary_10_1002_anie_202208376 crossref_primary_10_1039_D1SC00896J crossref_primary_10_1021_acs_inorgchem_3c03899 crossref_primary_10_1002_chem_202302025 crossref_primary_10_1021_acs_cgd_2c00423 crossref_primary_10_1039_D1QO01316E crossref_primary_10_1002_chem_201801134 crossref_primary_10_1021_acs_inorgchem_7b03076 crossref_primary_10_1039_C6CC07452A crossref_primary_10_1126_sciadv_1601414 crossref_primary_10_1039_C8CC08327D crossref_primary_10_1038_s41570_024_00657_4 crossref_primary_10_3390_chemistry4030053 crossref_primary_10_1016_j_inoche_2016_07_009 crossref_primary_10_1039_C5DT04687D crossref_primary_10_1039_D2FD00179A crossref_primary_10_1002_chem_201604540 crossref_primary_10_1021_acs_inorgchem_7b00037 crossref_primary_10_1002_anie_201914629 crossref_primary_10_1016_j_inoche_2018_03_026 crossref_primary_10_1039_D4QI01342E crossref_primary_10_1021_acs_cgd_5b01050 crossref_primary_10_1021_jacs_9b12693 crossref_primary_10_3390_ijms25031503 crossref_primary_10_1080_10610278_2015_1122196 crossref_primary_10_1016_j_molstruc_2017_05_075 crossref_primary_10_1002_chem_201702125 crossref_primary_10_1002_anie_202314481 crossref_primary_10_1021_jacs_0c11703 crossref_primary_10_1002_chem_202001602 crossref_primary_10_1039_D3CC00137G crossref_primary_10_1021_jacs_8b03517 crossref_primary_10_1002_1873_3468_14535 crossref_primary_10_1002_ange_202100914 crossref_primary_10_1039_C8CS00688A crossref_primary_10_1021_jacs_0c00754 crossref_primary_10_1002_cjoc_201900101 crossref_primary_10_1021_acsomega_9b01344 crossref_primary_10_20517_cs_2024_01 crossref_primary_10_1016_j_ccr_2018_03_016 crossref_primary_10_1021_jacs_7b03169 crossref_primary_10_1002_anie_201602327 crossref_primary_10_1039_C5CC00698H crossref_primary_10_1039_C5DT02957K crossref_primary_10_1021_jacs_0c11162 crossref_primary_10_1070_RCR5011 crossref_primary_10_1002_anie_202100914 crossref_primary_10_1021_jacs_3c00024 crossref_primary_10_1021_jacs_7b10707 crossref_primary_10_1039_C7DT00107J crossref_primary_10_1039_C8CC04870C crossref_primary_10_1021_jacs_3c11398 crossref_primary_10_1039_D0CC08303H crossref_primary_10_1007_s41745_017_0029_1 crossref_primary_10_1002_ange_202108792 crossref_primary_10_1016_j_trac_2020_115808 crossref_primary_10_1021_acs_inorgchem_5b01844 crossref_primary_10_1021_jacs_7b02764 crossref_primary_10_1021_acs_inorgchem_5b00987 crossref_primary_10_5059_yukigoseikyokaishi_82_1063 crossref_primary_10_1039_C6CC04130B crossref_primary_10_1039_D0CC00157K crossref_primary_10_1021_jacs_9b01541 crossref_primary_10_1021_acs_inorgchem_2c01290 crossref_primary_10_1021_acsomega_9b02779 crossref_primary_10_1039_D1CE00440A crossref_primary_10_1002_ange_201808534 crossref_primary_10_1016_j_poly_2019_114176 crossref_primary_10_1021_acs_inorgchem_5b01156 crossref_primary_10_1021_acs_inorgchem_5b02367 crossref_primary_10_1002_zaac_202000374 crossref_primary_10_1002_chem_201705173 crossref_primary_10_1021_acs_inorgchem_5b02801 crossref_primary_10_1039_C7CC09223G crossref_primary_10_1007_s41061_019_0271_2 crossref_primary_10_1039_C5RA22694E crossref_primary_10_1002_chem_201502394 crossref_primary_10_1039_D2DT02186B crossref_primary_10_1021_acs_cgd_5b00614 crossref_primary_10_1039_D3SC06076D crossref_primary_10_3390_inorganics8010001 crossref_primary_10_1039_C9DT01947B crossref_primary_10_1021_acs_inorgchem_2c02492 crossref_primary_10_1021_acs_inorgchem_1c01297 crossref_primary_10_1039_C8CS00978C crossref_primary_10_1039_C6SC00972G crossref_primary_10_1016_j_cej_2023_144334 crossref_primary_10_1039_D1QI00409C crossref_primary_10_1016_j_ica_2016_09_023 crossref_primary_10_1039_D0DT00353K crossref_primary_10_1007_s10904_016_0337_3 crossref_primary_10_1016_j_ica_2019_119240 crossref_primary_10_1002_ange_201704359 crossref_primary_10_1039_C9CC03336J crossref_primary_10_1007_s11243_019_00366_8 crossref_primary_10_1016_j_cclet_2018_10_035 crossref_primary_10_1039_D1CC02806E crossref_primary_10_1039_C5RA10459A crossref_primary_10_1039_C6SC04732G crossref_primary_10_1002_ange_201602327 crossref_primary_10_1002_chem_201603923 crossref_primary_10_1002_anie_201915401 crossref_primary_10_1002_ange_201806814 crossref_primary_10_1038_s41570_022_00380_y crossref_primary_10_1039_C7SC03847J crossref_primary_10_1002_aoc_4814 crossref_primary_10_1039_D2QI00513A crossref_primary_10_1039_C6DT03498E crossref_primary_10_1039_C6CS00907G crossref_primary_10_1002_ange_201914629 crossref_primary_10_1016_j_xcrp_2020_100303 crossref_primary_10_1021_acs_cgd_7b01303 crossref_primary_10_1002_asia_201901682 crossref_primary_10_1016_j_snb_2017_10_123 crossref_primary_10_1002_marc_201800501 crossref_primary_10_1021_acs_chemrev_0c00321 crossref_primary_10_1039_C5CC09569G crossref_primary_10_1021_acsami_9b02068 crossref_primary_10_1039_D2NJ04116B crossref_primary_10_1002_ijch_201800102 crossref_primary_10_1021_acs_chemrev_1c00503 crossref_primary_10_1021_jacs_7b05157 crossref_primary_10_1021_acs_inorgchem_7b01187 crossref_primary_10_1007_s10904_016_0375_x crossref_primary_10_1016_j_chempr_2018_08_025 crossref_primary_10_1039_D1SC01226F crossref_primary_10_1021_acs_macromol_4c01380 crossref_primary_10_1039_D1DT01693H crossref_primary_10_1038_srep43448 crossref_primary_10_1007_s10870_016_0652_0 crossref_primary_10_1002_ange_201900789 crossref_primary_10_1016_j_ccr_2019_02_010 crossref_primary_10_1021_acs_inorgchem_5c00084 crossref_primary_10_1016_j_poly_2023_116717 crossref_primary_10_1002_chem_201604598 crossref_primary_10_1021_acs_inorgchem_1c00033 crossref_primary_10_1002_anie_201501359 crossref_primary_10_1246_cl_190731 crossref_primary_10_1039_C5SC03526K crossref_primary_10_3762_bjoc_16_220 crossref_primary_10_1002_chem_201801653 crossref_primary_10_1002_chem_201802502 crossref_primary_10_1021_jacs_1c01161 crossref_primary_10_1016_j_dyepig_2017_10_036 crossref_primary_10_1021_acs_cgd_9b00565 crossref_primary_10_1021_jacs_6b10080 crossref_primary_10_1038_s41467_020_14831_x crossref_primary_10_1039_C7CE01042G crossref_primary_10_3389_fchem_2018_00087 crossref_primary_10_1002_ange_202314481 crossref_primary_10_1007_s12274_023_5607_0 crossref_primary_10_1021_acs_cgd_7b01440 crossref_primary_10_1021_acs_chemrev_2c00759 crossref_primary_10_26599_POM_2024_9140059 crossref_primary_10_1021_acs_cgd_6b00213 crossref_primary_10_1038_s41598_023_32661_x crossref_primary_10_1016_j_inoche_2018_01_015 crossref_primary_10_1021_acs_cgd_0c01204 crossref_primary_10_1039_D2SC03093D crossref_primary_10_3390_molecules24091840 crossref_primary_10_1021_jacs_8b04452 crossref_primary_10_1016_j_ccr_2017_10_032 crossref_primary_10_1039_C9CC09063K crossref_primary_10_1039_D2CC01824A crossref_primary_10_1016_j_ccr_2022_214649 crossref_primary_10_1021_acsmacrolett_9b00169 crossref_primary_10_1039_C7CE00046D crossref_primary_10_1021_acs_inorgchem_8b03249 crossref_primary_10_1002_chem_201605241 crossref_primary_10_1021_acs_inorgchem_0c02308 crossref_primary_10_1039_C7NR07308A crossref_primary_10_1039_D1CC02990H crossref_primary_10_1039_C5DT04094A crossref_primary_10_3390_chemistry4020036 crossref_primary_10_1021_acs_cgd_6b00467 crossref_primary_10_1039_D3CC05337G crossref_primary_10_1039_D0SC01176B crossref_primary_10_1021_acs_inorgchem_5b02786 crossref_primary_10_1039_D2DT00436D crossref_primary_10_1002_anie_201704359 crossref_primary_10_3390_chemistry4020038 crossref_primary_10_1039_C5CC04854K crossref_primary_10_1002_ange_202208376 crossref_primary_10_1039_C6CC07377H crossref_primary_10_1002_marc_202200004 crossref_primary_10_1039_C7CE00033B crossref_primary_10_1021_acscentsci_7b00127 crossref_primary_10_1107_S2052252523002385 crossref_primary_10_1021_acs_cgd_2c00803 crossref_primary_10_1016_j_inoche_2017_03_021 crossref_primary_10_1002_ange_201915401 crossref_primary_10_1021_acs_inorgchem_8b00668 crossref_primary_10_1039_C9NJ02573A crossref_primary_10_1016_j_tetlet_2019_151202 crossref_primary_10_1080_24701556_2018_1555169 crossref_primary_10_1002_ange_201706756 crossref_primary_10_1016_j_coelec_2017_11_011 crossref_primary_10_1016_j_inoche_2018_05_019 crossref_primary_10_1016_j_ica_2018_09_009 crossref_primary_10_1002_zaac_201500585 crossref_primary_10_1039_D1CC05581J crossref_primary_10_1039_D0SC03191G crossref_primary_10_1039_D2SC03156F crossref_primary_10_1002_ijch_201800150 crossref_primary_10_1039_C7CE00654C crossref_primary_10_1021_jacs_4c14123 crossref_primary_10_1039_C5CE00417A crossref_primary_10_1039_D2NJ02269A crossref_primary_10_1021_acs_inorgchem_1c03747 crossref_primary_10_1039_C5NJ02144H crossref_primary_10_1039_D4DT01040J crossref_primary_10_1002_anie_201709483 crossref_primary_10_1021_acs_cgd_9b00999 crossref_primary_10_1021_acs_inorgchem_8b03388 crossref_primary_10_1021_acs_cgd_5b00210 crossref_primary_10_1002_cctc_201701063 crossref_primary_10_1016_j_inoche_2019_03_037 crossref_primary_10_1016_j_jssc_2024_124974 crossref_primary_10_1016_j_molstruc_2016_05_013 crossref_primary_10_1021_acs_inorgchem_6b00574 crossref_primary_10_1021_acs_cgd_8b00891 crossref_primary_10_1039_C5DT02058A crossref_primary_10_1002_asia_201800837 crossref_primary_10_1016_j_aca_2019_10_002 crossref_primary_10_1039_C5CY01882J crossref_primary_10_1071_CH19279 crossref_primary_10_3390_chemistry5010019 crossref_primary_10_1007_s11426_022_1211_5 crossref_primary_10_1002_asia_201800835 crossref_primary_10_1002_ange_201709483 crossref_primary_10_1016_j_tchem_2022_100006 |
Cites_doi | 10.1039/C2CS35123D 10.1039/B821019P 10.1002/anie.201106732 10.1021/ja2030273 10.1021/ar800025w 10.1038/nchem.618 10.1021/ic4024184 10.1021/ic202373a 10.1039/c3ta12391j 10.1039/c3ta13242k 10.1021/ar040153h 10.1021/ja105986b 10.1021/ic402428m 10.1039/C4SC01973C 10.1039/C3SC52442F 10.1021/cr3002824 10.1039/C2CS35218D 10.1021/cr200345v 10.1021/ja901731z 10.1038/21861 10.1002/chem.201200125 10.1039/C3CS60315F 10.1039/C3CS60473J 10.1021/ar5000924 10.1039/c3cc48381a 10.1002/anie.200462394 10.1021/ja306150x 10.1021/ar900077c 10.1039/c3cs60098j 10.1039/c1cc11932j 10.1039/C3CC48556K 10.1021/cg300483c 10.1021/ja0104352 10.1039/C2CC36921D 10.1021/ar010142d 10.1021/ar970224v 10.1038/srep00668 10.1021/ja000247w 10.1021/ja042802q 10.1039/C3CS60343A 10.1039/c2sc20264f 10.1002/1521-3773(20000717)39:14<2468::AID-ANIE2468>3.0.CO;2-I 10.1039/b606632c 10.1039/C0CC04601A 10.1039/c1cc12858b |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/ar5003076 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 210 |
ExternalDocumentID | 25517043 10_1021_ar5003076 a380998034 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 6P2 7~N 85S 8W4 AABXI ABFLS ABFRP ABMVS ABPTK ABQRX ABUCX ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AETEA AFEFF AFXLT AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L EBS ED~ EJD F5P GGK GNL IH2 IH9 JG~ LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 XSW YZZ ZCA ~02 AAYXX ABBLG ABJNI ABLBI AGXLV CITATION CUPRZ NPM 7X8 |
ID | FETCH-LOGICAL-a381t-1e716b595ae180d1a261140cf87d500f1d783b095c06693c6aab0308f0501eeb3 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Fri Jul 11 10:55:24 EDT 2025 Mon Jul 21 05:59:54 EDT 2025 Tue Jul 01 04:04:09 EDT 2025 Thu Apr 24 22:59:45 EDT 2025 Mon Feb 06 12:14:59 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a381t-1e716b595ae180d1a261140cf87d500f1d783b095c06693c6aab0308f0501eeb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25517043 |
PQID | 1656045186 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1656045186 pubmed_primary_25517043 crossref_citationtrail_10_1021_ar5003076 crossref_primary_10_1021_ar5003076 acs_journals_10_1021_ar5003076 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-17 |
PublicationDateYYYYMMDD | 2015-02-17 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Saha M. L. (ref12/cit12) 2013; 42 Yoshizawa M. (ref9/cit9) 2014; 43 Liu M. (ref31/cit31) 2012; 51 Li X. J. (ref21/cit21) 2012; 51 Hiraoka S. (ref8/cit8) 2005; 44 Pang J. D. (ref32/cit32) 2014; 5 Qian J. J. (ref36/cit36) 2013; 1 Wang H. N. (ref39/cit39) 2011; 47 Seidel S. R. (ref1/cit1) 2002; 35 Severin K. (ref14/cit14) 2006 Li N. (ref20/cit20) 2011; 47 Zheng S. T. (ref26/cit26) 2010; 132 Hardie M. J. (ref6/cit6) 2010; 39 Chen Q. H. (ref45/cit45) 2014; 5 Han D. (ref37/cit37) 2011; 47 Wang H. N. (ref40/cit40) 2013; 1 Lindoy L. F. (ref5/cit5) 2013; 42 Han Y. F. (ref17/cit17) 2014; 43 Eddaoudi M. (ref23/cit23) 2001; 123 Ward M. D. (ref4/cit4) 2013; 42 Sudik A. C. (ref24/cit24) 2005; 127 Li J. R. (ref38/cit38) 2009; 131 Xiong K. C. (ref30/cit30) 2012; 18 Xiong K. C. (ref28/cit28) 2012; 12 Caulder D. L. (ref10/cit10) 1999; 32 Hong M. C. (ref19/cit19) 2000; 39 Han M. (ref15/cit15) 2014; 43 Su K. Z. (ref29/cit29) 2014; 53 Northrop B. H. (ref2/cit2) 2009; 42 Oliveri C. G. (ref16/cit16) 2008; 41 Liu T. F. (ref33/cit33) 2012; 134 Amouri H. (ref11/cit11) 2012; 112 Castilla A. M. (ref13/cit13) 2014; 47 Hong M. C. (ref18/cit18) 2000; 122 Qian J. J. (ref34/cit34) 2014; 50 Xiong K. C. (ref27/cit27) 2012; 3 Kuang X. F. (ref42/cit42) 2010; 2 Fujita M. (ref3/cit3) 2005; 38 Liu G. L. (ref25/cit25) 2013; 52 Heine J. (ref43/cit43) 2011; 133 Fujita M. (ref41/cit41) 1999; 400 Cook T. R. (ref7/cit7) 2013; 113 Chen Q. H. (ref22/cit22) 2013; 49 Pang J. D. (ref35/cit35) 2014; 50 Jiang L. (ref44/cit44) 2012; 2 |
References_xml | – volume: 42 start-page: 1619 year: 2013 ident: ref4/cit4 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35123D – volume: 39 start-page: 516 year: 2010 ident: ref6/cit6 publication-title: Chem. Soc. Rev. doi: 10.1039/B821019P – volume: 51 start-page: 1585 year: 2012 ident: ref31/cit31 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201106732 – volume: 133 start-page: 10018 year: 2011 ident: ref43/cit43 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2030273 – volume: 41 start-page: 1618 year: 2008 ident: ref16/cit16 publication-title: Acc. Chem. Res. doi: 10.1021/ar800025w – volume: 2 start-page: 461 year: 2010 ident: ref42/cit42 publication-title: Nat. Chem. doi: 10.1038/nchem.618 – volume: 53 start-page: 18 year: 2014 ident: ref29/cit29 publication-title: Inorg. Chem. doi: 10.1021/ic4024184 – volume: 51 start-page: 4116 year: 2012 ident: ref21/cit21 publication-title: Inorg. Chem. doi: 10.1021/ic202373a – volume: 1 start-page: 10631 year: 2013 ident: ref36/cit36 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12391j – volume: 1 start-page: 13060 year: 2013 ident: ref40/cit40 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta13242k – volume: 38 start-page: 369 year: 2005 ident: ref3/cit3 publication-title: Acc. Chem. Res. doi: 10.1021/ar040153h – volume: 132 start-page: 15102 year: 2010 ident: ref26/cit26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105986b – volume: 52 start-page: 13815 year: 2013 ident: ref25/cit25 publication-title: Inorg. Chem. doi: 10.1021/ic402428m – volume: 5 start-page: 4163 year: 2014 ident: ref32/cit32 publication-title: Chem. Sci. doi: 10.1039/C4SC01973C – volume: 5 start-page: 483 year: 2014 ident: ref45/cit45 publication-title: Chem. Sci. doi: 10.1039/C3SC52442F – volume: 113 start-page: 734 year: 2013 ident: ref7/cit7 publication-title: Chem. Rev. doi: 10.1021/cr3002824 – volume: 42 start-page: 1713 year: 2013 ident: ref5/cit5 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35218D – volume: 112 start-page: 2015 year: 2012 ident: ref11/cit11 publication-title: Chem. Rev. doi: 10.1021/cr200345v – volume: 131 start-page: 6368 year: 2009 ident: ref38/cit38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja901731z – volume: 400 start-page: 52 year: 1999 ident: ref41/cit41 publication-title: Nature doi: 10.1038/21861 – volume: 18 start-page: 5536 year: 2012 ident: ref30/cit30 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201200125 – volume: 43 start-page: 1885 year: 2014 ident: ref9/cit9 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60315F – volume: 43 start-page: 1848 year: 2014 ident: ref15/cit15 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60473J – volume: 47 start-page: 2063 year: 2014 ident: ref13/cit13 publication-title: Acc. Chem. Res. doi: 10.1021/ar5000924 – volume: 50 start-page: 2834 year: 2014 ident: ref35/cit35 publication-title: Chem. Commun. doi: 10.1039/c3cc48381a – volume: 44 start-page: 2727 year: 2005 ident: ref8/cit8 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200462394 – volume: 134 start-page: 17358 year: 2012 ident: ref33/cit33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja306150x – volume: 42 start-page: 1554 year: 2009 ident: ref2/cit2 publication-title: Acc. Chem. Res. doi: 10.1021/ar900077c – volume: 42 start-page: 6860 year: 2013 ident: ref12/cit12 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60098j – volume: 47 start-page: 7128 year: 2011 ident: ref39/cit39 publication-title: Chem. Commun. doi: 10.1039/c1cc11932j – volume: 50 start-page: 1678 year: 2014 ident: ref34/cit34 publication-title: Chem. Commun. doi: 10.1039/C3CC48556K – volume: 12 start-page: 3335 year: 2012 ident: ref28/cit28 publication-title: Cryst. Growth. Des. doi: 10.1021/cg300483c – volume: 123 start-page: 4368 year: 2001 ident: ref23/cit23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0104352 – volume: 49 start-page: 719 year: 2013 ident: ref22/cit22 publication-title: Chem. Commun. doi: 10.1039/C2CC36921D – volume: 35 start-page: 972 year: 2002 ident: ref1/cit1 publication-title: Acc. Chem. Res. doi: 10.1021/ar010142d – volume: 32 start-page: 975 year: 1999 ident: ref10/cit10 publication-title: Acc. Chem. Res. doi: 10.1021/ar970224v – volume: 2 start-page: 668 year: 2012 ident: ref44/cit44 publication-title: Sci. Rep. doi: 10.1038/srep00668 – volume: 122 start-page: 4819 year: 2000 ident: ref18/cit18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja000247w – volume: 127 start-page: 7110 year: 2005 ident: ref24/cit24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja042802q – volume: 43 start-page: 2799 year: 2014 ident: ref17/cit17 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60343A – volume: 3 start-page: 2321 year: 2012 ident: ref27/cit27 publication-title: Chem. Sci. doi: 10.1039/c2sc20264f – volume: 39 start-page: 2468 year: 2000 ident: ref19/cit19 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20000717)39:14<2468::AID-ANIE2468>3.0.CO;2-I – start-page: 3859 year: 2006 ident: ref14/cit14 publication-title: Chem. Commun. doi: 10.1039/b606632c – volume: 47 start-page: 2327 year: 2011 ident: ref20/cit20 publication-title: Chem. Commun. doi: 10.1039/C0CC04601A – volume: 47 start-page: 9861 year: 2011 ident: ref37/cit37 publication-title: Chem. Commun. doi: 10.1039/c1cc12858b |
SSID | ssj0002467 |
Score | 2.5876584 |
Snippet | Conspectus Nanosized supramolecular metallocages have a unique self-assembly process that allows chemists to both understand and control it. In addition,... CONSPECTUS: Nanosized supramolecular metallocages have a unique self-assembly process that allows chemists to both understand and control it. In addition,... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 201 |
Title | Controllable Coordination-Driven Self-Assembly: From Discrete Metallocages to Infinite Cage-Based Frameworks |
URI | http://dx.doi.org/10.1021/ar5003076 https://www.ncbi.nlm.nih.gov/pubmed/25517043 https://www.proquest.com/docview/1656045186 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JT8QgFCYuB72470twOXhBSwst4007TtREL2rirQEKycROa2Y6B_31PrpMNG7X5tFSoO99Xx_vA6Fjzm2YQugjTEcegYjPibARI4oFWghmOsJ3xcl39-H1E7t95s9T6OiXDL5Pz-SQVysxnEazfigix7Au4oeJu_VZWAtjAi9mgvmtfNDnpi706NHX0PMLnqziSm8RddvqnHo7ycvpuFSn-v27WONfXV5CCw2uxBf1QlhGUyZfQXNxe5zbKsrielN65mqlcFwA6ezXfwJJd-hcHn4wmSUuCTxQ2ds57g2LAe72wa0ArsZ3pnQpeg3uZ4TLAt_ktu_gKo7hCrmEWJhCi2aj12gNPfWuHuNr0hy1QCSE7JJQA7xJ8Q6XhgovpRKIFVAvbUWUwrtYmkYiUADHNECUTqBDKZVTurEe96gBQr6OZvIiN5sIc-lZFiqnHB8yqgMhqLbMEzoNJFOe2EL7MBdJ86mMkioL7tNkMmhb6KSdpkQ3QuXuvIzsJ9PDielrrc7xk9FBO9cJjLlLiMjcFGN4tFMeYpwKsNmoF8HkNkC1aOSxYPu_7u6geQBRVZk7jXbRTDkcmz0AKqXarxbqB89q3gI |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T-QwELZ4FNDwuDvecAZdcY0hTuzESweB1fJYGkCii2zHllaEBG2yBfx6xkl2eQgEbTRxJvZk5puM_Q1C_zi3YQqhjzAdeQQiPifCRowoFmghmOkI3x1O7l-FvVt2fsfvWpocdxYGlChhpLIu4r-yC9ADOeS1QYbTaBZAiO8SraP4euJ1fRY2_JiQHjPB_DGL0NtbXQTS5fsI9AWsrMNLd7HpU1QrVu8qud8fVWpfP3_gbPyZ5ktooUWZ-Kgxi2U0ZfJfaC4eN3f7jbK42aKeuZNTOC4gBR00_wXJydA5QHxtMktcSfhBZU-HuDssHvDJAJwMoGzcN5Ur2GtwRiWuCnyW24EDrziGK-QYImMKd7Tbvso_6LZ7ehP3SNt4gUgI4BWhBrIoxTtcGiq8lEpIsyAR01ZEKbyLpWkkAgXgTANg6QQ6lFI53hvrcY8aSM9X0Exe5GYNYS49y0LleORDRnUgBNWWeUKngWTKE-toB-YsaT-cMqlr4j5NJpO2jv6PVyvRLW25656RfSa6NxF9bLg6PhPaHS95AnPuyiMyN8UIHu14iBinAmRWG1uYDAOJF408Fmx8p-5fNNe76V8ml2dXF5toHuBVfQCeRltophqOzDZAmErt1Lb7Ak7O5mM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKlYALlEcLpQWDOHAxxBs78fYGWVZAuwsSIHGLbMeWVmST1SZ7aH99x0k2AgRqr9HYmfgxM1_G8xmhI85tkIDrI0yHHgGPz4mwISOK-VoIZrqi44qTB8Pg8oFdP_LHBii6WhhQooCeiiqJ73b1JLENwwA9lVNeLcpgAX106ToHts6iu9bydlhQc2QCRGaCdeZMQs-bOi-ki5de6J3QsnIx_TV00ypXnSx5OpmV6kT_ecXb-P_af0KrTbSJz-rlsY4-mGwDLUfzS942URrVR9VTV0GFoxyg6Kj-P0h6U2cI8Z1JLXGp4bFKf__A_Wk-xr0RGBuItvHAlC5xr8EoFbjM8VVmRy6IxRE8IefgIRNo0Rz_KrbQQ__iProkzQUMRIIjLwk1gKYU73JpqPASKgFuASDTVoQJfIulSSh8BUGahsCl6-tASuX4b6zHPWoApn9Gi1memW2EufQsC5Tjkw8Y1b4QVFvmCZ34kilP7KA9GLe42UBFXOXGOzRuB20HHc9nLNYNfbm7RSN9S_SwFZ3UnB1vCR3Mpz2GMXdpEpmZfAavdnxEjFMBMl_q9dB2AwCMhh7zv_5L3X20dNvrx7-uhj930QpEWVUdPA2_ocVyOjPfIZIp1V61fP8C_YXo5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controllable+Coordination-Driven+Self-Assembly%3A+From+Discrete+Metallocages+to+Infinite+Cage-Based+Frameworks&rft.jtitle=Accounts+of+chemical+research&rft.au=Chen%2C+Lian&rft.au=Chen%2C+Qihui&rft.au=Wu%2C+Mingyan&rft.au=Jiang%2C+Feilong&rft.date=2015-02-17&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=48&rft.issue=2&rft.spage=201&rft.epage=210&rft_id=info:doi/10.1021%2Far5003076&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ar5003076 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |