Controllable Coordination-Driven Self-Assembly: From Discrete Metallocages to Infinite Cage-Based Frameworks

Conspectus Nanosized supramolecular metallocages have a unique self-assembly process that allows chemists to both understand and control it. In addition, well-defined cavities of such supramolecular aggregates have various attractive applications including storage, separation, catalysis, recognition...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 48; no. 2; pp. 201 - 210
Main Authors Chen, Lian, Chen, Qihui, Wu, Mingyan, Jiang, Feilong, Hong, Maochun
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.02.2015
Online AccessGet full text

Cover

Loading…
Abstract Conspectus Nanosized supramolecular metallocages have a unique self-assembly process that allows chemists to both understand and control it. In addition, well-defined cavities of such supramolecular aggregates have various attractive applications including storage, separation, catalysis, recognition, drug delivery, and many others. Coordination-driven self-assembly of nanosized supramolecular metallocages is a powerful methodology to construct supramolecular metallocages with considerable size and desirable shapes. In this Account, we summarize our recent research on controllable coordination-driven assembly of supramolecular metallocages and infinite cage-based frameworks. To this end, we have chosen flexible ligands that can adopt various conformations and metal ions with suitable coordination sites for the rational design and assembly of metal–organic supramolecular ensembles. This has resulted in various types of metallocages including M3L2, M6L8, M6L4, and M12L8 with different sizes and shapes. Because the kinds of metal geometries are limited, we have found that we can replace single metal ions with metal clusters to alternatively increase molecular diversity and complexity. There are two clear-cut merits of this strategy. First, metal clusters are much bigger than single metal ions, which helps in the construction and stabilization of large metallocages, especially nanosized cages. Second, metal clusters can generate diverse assembly modes that chemists could not synthesize with single metal ions. This allows us to obtain a series of unprecedented supramolecular metallocages. The large cavities and potential unsaturated coordination sites of these discrete supramolecular cages offer opportunities to construct infinite cage-based frameworks. This in turn can offer us a new avenue to understand self-assembly and realize certain various functionalities. We introduce two types of infinite cage-based frameworks here: cage-based coordination polymers and cage-based polycatenanes, which we can construct through coordination bonds and mechanical bonds, respectively. Through either directly linking the unsaturated coordination sites of metallocages or replacing the labile terminal ligands with bridging ligands, we can produce infinite cage-based frameworks based on coordination bonds. We introduce several interesting cage-based coordination polymers, including a single-crystal-to-single-crystal transformation from a M6L8 cage to an infinite cage-based chain. Compared with discrete metallocages, these kinds of materials can give us higher structural stability and complexity, favoring the applications of metallocages. In addition, we discuss how we can use mechanical bonds, such as interlocking and interpenetrating, to construct extended cage-based frameworks. So far, study in this field has focused on polycatenanes constructed from M6L4 and M12L8 cages, as well as a controllable and dynamic self-assembly based on M6L4 metallocages. We also discuss cage-based polycatenanes, which can give dynamic properties to discrete metallocages. We hope that our investigations will bring new insights to the world of the supramolecular metallocages by enlarging its breadth and encourage us to devote more effort to this blossoming field in the future.
AbstractList Conspectus Nanosized supramolecular metallocages have a unique self-assembly process that allows chemists to both understand and control it. In addition, well-defined cavities of such supramolecular aggregates have various attractive applications including storage, separation, catalysis, recognition, drug delivery, and many others. Coordination-driven self-assembly of nanosized supramolecular metallocages is a powerful methodology to construct supramolecular metallocages with considerable size and desirable shapes. In this Account, we summarize our recent research on controllable coordination-driven assembly of supramolecular metallocages and infinite cage-based frameworks. To this end, we have chosen flexible ligands that can adopt various conformations and metal ions with suitable coordination sites for the rational design and assembly of metal–organic supramolecular ensembles. This has resulted in various types of metallocages including M3L2, M6L8, M6L4, and M12L8 with different sizes and shapes. Because the kinds of metal geometries are limited, we have found that we can replace single metal ions with metal clusters to alternatively increase molecular diversity and complexity. There are two clear-cut merits of this strategy. First, metal clusters are much bigger than single metal ions, which helps in the construction and stabilization of large metallocages, especially nanosized cages. Second, metal clusters can generate diverse assembly modes that chemists could not synthesize with single metal ions. This allows us to obtain a series of unprecedented supramolecular metallocages. The large cavities and potential unsaturated coordination sites of these discrete supramolecular cages offer opportunities to construct infinite cage-based frameworks. This in turn can offer us a new avenue to understand self-assembly and realize certain various functionalities. We introduce two types of infinite cage-based frameworks here: cage-based coordination polymers and cage-based polycatenanes, which we can construct through coordination bonds and mechanical bonds, respectively. Through either directly linking the unsaturated coordination sites of metallocages or replacing the labile terminal ligands with bridging ligands, we can produce infinite cage-based frameworks based on coordination bonds. We introduce several interesting cage-based coordination polymers, including a single-crystal-to-single-crystal transformation from a M6L8 cage to an infinite cage-based chain. Compared with discrete metallocages, these kinds of materials can give us higher structural stability and complexity, favoring the applications of metallocages. In addition, we discuss how we can use mechanical bonds, such as interlocking and interpenetrating, to construct extended cage-based frameworks. So far, study in this field has focused on polycatenanes constructed from M6L4 and M12L8 cages, as well as a controllable and dynamic self-assembly based on M6L4 metallocages. We also discuss cage-based polycatenanes, which can give dynamic properties to discrete metallocages. We hope that our investigations will bring new insights to the world of the supramolecular metallocages by enlarging its breadth and encourage us to devote more effort to this blossoming field in the future.
CONSPECTUS: Nanosized supramolecular metallocages have a unique self-assembly process that allows chemists to both understand and control it. In addition, well-defined cavities of such supramolecular aggregates have various attractive applications including storage, separation, catalysis, recognition, drug delivery, and many others. Coordination-driven self-assembly of nanosized supramolecular metallocages is a powerful methodology to construct supramolecular metallocages with considerable size and desirable shapes. In this Account, we summarize our recent research on controllable coordination-driven assembly of supramolecular metallocages and infinite cage-based frameworks. To this end, we have chosen flexible ligands that can adopt various conformations and metal ions with suitable coordination sites for the rational design and assembly of metal-organic supramolecular ensembles. This has resulted in various types of metallocages including M3L2, M6L8, M6L4, and M12L8 with different sizes and shapes. Because the kinds of metal geometries are limited, we have found that we can replace single metal ions with metal clusters to alternatively increase molecular diversity and complexity. There are two clear-cut merits of this strategy. First, metal clusters are much bigger than single metal ions, which helps in the construction and stabilization of large metallocages, especially nanosized cages. Second, metal clusters can generate diverse assembly modes that chemists could not synthesize with single metal ions. This allows us to obtain a series of unprecedented supramolecular metallocages. The large cavities and potential unsaturated coordination sites of these discrete supramolecular cages offer opportunities to construct infinite cage-based frameworks. This in turn can offer us a new avenue to understand self-assembly and realize certain various functionalities. We introduce two types of infinite cage-based frameworks here: cage-based coordination polymers and cage-based polycatenanes, which we can construct through coordination bonds and mechanical bonds, respectively. Through either directly linking the unsaturated coordination sites of metallocages or replacing the labile terminal ligands with bridging ligands, we can produce infinite cage-based frameworks based on coordination bonds. We introduce several interesting cage-based coordination polymers, including a single-crystal-to-single-crystal transformation from a M6L8 cage to an infinite cage-based chain. Compared with discrete metallocages, these kinds of materials can give us higher structural stability and complexity, favoring the applications of metallocages. In addition, we discuss how we can use mechanical bonds, such as interlocking and interpenetrating, to construct extended cage-based frameworks. So far, study in this field has focused on polycatenanes constructed from M6L4 and M12L8 cages, as well as a controllable and dynamic self-assembly based on M6L4 metallocages. We also discuss cage-based polycatenanes, which can give dynamic properties to discrete metallocages. We hope that our investigations will bring new insights to the world of the supramolecular metallocages by enlarging its breadth and encourage us to devote more effort to this blossoming field in the future.CONSPECTUS: Nanosized supramolecular metallocages have a unique self-assembly process that allows chemists to both understand and control it. In addition, well-defined cavities of such supramolecular aggregates have various attractive applications including storage, separation, catalysis, recognition, drug delivery, and many others. Coordination-driven self-assembly of nanosized supramolecular metallocages is a powerful methodology to construct supramolecular metallocages with considerable size and desirable shapes. In this Account, we summarize our recent research on controllable coordination-driven assembly of supramolecular metallocages and infinite cage-based frameworks. To this end, we have chosen flexible ligands that can adopt various conformations and metal ions with suitable coordination sites for the rational design and assembly of metal-organic supramolecular ensembles. This has resulted in various types of metallocages including M3L2, M6L8, M6L4, and M12L8 with different sizes and shapes. Because the kinds of metal geometries are limited, we have found that we can replace single metal ions with metal clusters to alternatively increase molecular diversity and complexity. There are two clear-cut merits of this strategy. First, metal clusters are much bigger than single metal ions, which helps in the construction and stabilization of large metallocages, especially nanosized cages. Second, metal clusters can generate diverse assembly modes that chemists could not synthesize with single metal ions. This allows us to obtain a series of unprecedented supramolecular metallocages. The large cavities and potential unsaturated coordination sites of these discrete supramolecular cages offer opportunities to construct infinite cage-based frameworks. This in turn can offer us a new avenue to understand self-assembly and realize certain various functionalities. We introduce two types of infinite cage-based frameworks here: cage-based coordination polymers and cage-based polycatenanes, which we can construct through coordination bonds and mechanical bonds, respectively. Through either directly linking the unsaturated coordination sites of metallocages or replacing the labile terminal ligands with bridging ligands, we can produce infinite cage-based frameworks based on coordination bonds. We introduce several interesting cage-based coordination polymers, including a single-crystal-to-single-crystal transformation from a M6L8 cage to an infinite cage-based chain. Compared with discrete metallocages, these kinds of materials can give us higher structural stability and complexity, favoring the applications of metallocages. In addition, we discuss how we can use mechanical bonds, such as interlocking and interpenetrating, to construct extended cage-based frameworks. So far, study in this field has focused on polycatenanes constructed from M6L4 and M12L8 cages, as well as a controllable and dynamic self-assembly based on M6L4 metallocages. We also discuss cage-based polycatenanes, which can give dynamic properties to discrete metallocages. We hope that our investigations will bring new insights to the world of the supramolecular metallocages by enlarging its breadth and encourage us to devote more effort to this blossoming field in the future.
Author Wu, Mingyan
Chen, Lian
Jiang, Feilong
Hong, Maochun
Chen, Qihui
AuthorAffiliation State Key Laboratory of Structure Chemistry
Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
AuthorAffiliation_xml – name: Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
– name: State Key Laboratory of Structure Chemistry
Author_xml – sequence: 1
  givenname: Lian
  surname: Chen
  fullname: Chen, Lian
– sequence: 2
  givenname: Qihui
  surname: Chen
  fullname: Chen, Qihui
– sequence: 3
  givenname: Mingyan
  surname: Wu
  fullname: Wu, Mingyan
– sequence: 4
  givenname: Feilong
  surname: Jiang
  fullname: Jiang, Feilong
– sequence: 5
  givenname: Maochun
  surname: Hong
  fullname: Hong, Maochun
  email: hmc@fjirsm.ac.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25517043$$D View this record in MEDLINE/PubMed
BookMark eNptkU9P3DAQxS1Exf4ph34BlAtSOaTMJLGT5bYEliJR9dBytpxkUhkcG2xvK759XRY4VJw89vzeyO_Ngu1bZ4mxTwhfEAo8VZ4DlFCLPTZHXkBeNatmn80BAFNdFTO2COEuXYtK1AdsVnCONVTlnJnW2eidMaozlLXO-UFbFbWz-YXXv8lmP8iM-ToEmjrzdJZtvJuyCx16T5GybxSVMa5Xvyhk0WXXdtRWp0abXvJzFWhICjXRH-fvw0f2YVQm0OHLuWS3m8uf7df85vvVdbu-yVXZYMyRahQdX3FF2MCAqhCIFfRjUw_J6IhD3ZQdrHgPQqzKXijVJfvNCByQqCuX7PNu7oN3j1sKUU7pw5RMWnLbIFFwARXHRiT06AXddhMN8sHrSfkn-ZpQAk53QO9dCJ5G2ev4HFD0ShuJIP_tQL7tIClO_lO8Dn2PPd6xqg_yzm29Tbm8w_0FmNWREg
CitedBy_id crossref_primary_10_1038_s44160_022_00224_z
crossref_primary_10_1039_C9DT00654K
crossref_primary_10_1021_acs_inorgchem_7b01561
crossref_primary_10_1021_jacs_3c04921
crossref_primary_10_1016_j_ica_2019_119088
crossref_primary_10_3762_bjnano_12_85
crossref_primary_10_1039_C5RA21484J
crossref_primary_10_1016_j_cclet_2022_03_092
crossref_primary_10_1002_ejic_202300085
crossref_primary_10_1016_j_ccr_2017_08_022
crossref_primary_10_1039_C6NJ03456J
crossref_primary_10_1002_anie_201706756
crossref_primary_10_1021_jacs_5b10815
crossref_primary_10_1039_C6CE01965J
crossref_primary_10_1021_jacs_1c03652
crossref_primary_10_1016_j_inoche_2023_110792
crossref_primary_10_1039_C7DT04838F
crossref_primary_10_1021_acs_analchem_8b01670
crossref_primary_10_1002_ijch_201800055
crossref_primary_10_1002_chem_202004344
crossref_primary_10_1016_j_poly_2024_117385
crossref_primary_10_1007_s11426_023_1919_2
crossref_primary_10_3390_M1890
crossref_primary_10_1016_j_colsurfb_2019_110373
crossref_primary_10_1002_anie_202108792
crossref_primary_10_1016_j_jssc_2019_01_013
crossref_primary_10_1002_tcr_201402095
crossref_primary_10_1039_C8CC08559E
crossref_primary_10_1039_C6DT03041F
crossref_primary_10_1002_anie_201900789
crossref_primary_10_1021_jacs_7b09463
crossref_primary_10_1002_anie_201808534
crossref_primary_10_1039_D2QI02742A
crossref_primary_10_1002_ange_201501359
crossref_primary_10_1039_C7DT01533J
crossref_primary_10_1039_D4TA02951H
crossref_primary_10_1021_acs_jcim_0c00519
crossref_primary_10_1002_smll_202003167
crossref_primary_10_1021_acs_inorgchem_7b02516
crossref_primary_10_1002_anie_201806814
crossref_primary_10_1039_C8DT00747K
crossref_primary_10_1039_C9SC01892A
crossref_primary_10_1039_D3MA00477E
crossref_primary_10_1002_aoc_6722
crossref_primary_10_1016_j_catcom_2020_106027
crossref_primary_10_1021_jacs_1c04288
crossref_primary_10_1007_s00604_019_3576_5
crossref_primary_10_1016_j_inoche_2017_10_003
crossref_primary_10_1002_anie_202208376
crossref_primary_10_1039_D1SC00896J
crossref_primary_10_1021_acs_inorgchem_3c03899
crossref_primary_10_1002_chem_202302025
crossref_primary_10_1021_acs_cgd_2c00423
crossref_primary_10_1039_D1QO01316E
crossref_primary_10_1002_chem_201801134
crossref_primary_10_1021_acs_inorgchem_7b03076
crossref_primary_10_1039_C6CC07452A
crossref_primary_10_1126_sciadv_1601414
crossref_primary_10_1039_C8CC08327D
crossref_primary_10_1038_s41570_024_00657_4
crossref_primary_10_3390_chemistry4030053
crossref_primary_10_1016_j_inoche_2016_07_009
crossref_primary_10_1039_C5DT04687D
crossref_primary_10_1039_D2FD00179A
crossref_primary_10_1002_chem_201604540
crossref_primary_10_1021_acs_inorgchem_7b00037
crossref_primary_10_1002_anie_201914629
crossref_primary_10_1016_j_inoche_2018_03_026
crossref_primary_10_1039_D4QI01342E
crossref_primary_10_1021_acs_cgd_5b01050
crossref_primary_10_1021_jacs_9b12693
crossref_primary_10_3390_ijms25031503
crossref_primary_10_1080_10610278_2015_1122196
crossref_primary_10_1016_j_molstruc_2017_05_075
crossref_primary_10_1002_chem_201702125
crossref_primary_10_1002_anie_202314481
crossref_primary_10_1021_jacs_0c11703
crossref_primary_10_1002_chem_202001602
crossref_primary_10_1039_D3CC00137G
crossref_primary_10_1021_jacs_8b03517
crossref_primary_10_1002_1873_3468_14535
crossref_primary_10_1002_ange_202100914
crossref_primary_10_1039_C8CS00688A
crossref_primary_10_1021_jacs_0c00754
crossref_primary_10_1002_cjoc_201900101
crossref_primary_10_1021_acsomega_9b01344
crossref_primary_10_20517_cs_2024_01
crossref_primary_10_1016_j_ccr_2018_03_016
crossref_primary_10_1021_jacs_7b03169
crossref_primary_10_1002_anie_201602327
crossref_primary_10_1039_C5CC00698H
crossref_primary_10_1039_C5DT02957K
crossref_primary_10_1021_jacs_0c11162
crossref_primary_10_1070_RCR5011
crossref_primary_10_1002_anie_202100914
crossref_primary_10_1021_jacs_3c00024
crossref_primary_10_1021_jacs_7b10707
crossref_primary_10_1039_C7DT00107J
crossref_primary_10_1039_C8CC04870C
crossref_primary_10_1021_jacs_3c11398
crossref_primary_10_1039_D0CC08303H
crossref_primary_10_1007_s41745_017_0029_1
crossref_primary_10_1002_ange_202108792
crossref_primary_10_1016_j_trac_2020_115808
crossref_primary_10_1021_acs_inorgchem_5b01844
crossref_primary_10_1021_jacs_7b02764
crossref_primary_10_1021_acs_inorgchem_5b00987
crossref_primary_10_5059_yukigoseikyokaishi_82_1063
crossref_primary_10_1039_C6CC04130B
crossref_primary_10_1039_D0CC00157K
crossref_primary_10_1021_jacs_9b01541
crossref_primary_10_1021_acs_inorgchem_2c01290
crossref_primary_10_1021_acsomega_9b02779
crossref_primary_10_1039_D1CE00440A
crossref_primary_10_1002_ange_201808534
crossref_primary_10_1016_j_poly_2019_114176
crossref_primary_10_1021_acs_inorgchem_5b01156
crossref_primary_10_1021_acs_inorgchem_5b02367
crossref_primary_10_1002_zaac_202000374
crossref_primary_10_1002_chem_201705173
crossref_primary_10_1021_acs_inorgchem_5b02801
crossref_primary_10_1039_C7CC09223G
crossref_primary_10_1007_s41061_019_0271_2
crossref_primary_10_1039_C5RA22694E
crossref_primary_10_1002_chem_201502394
crossref_primary_10_1039_D2DT02186B
crossref_primary_10_1021_acs_cgd_5b00614
crossref_primary_10_1039_D3SC06076D
crossref_primary_10_3390_inorganics8010001
crossref_primary_10_1039_C9DT01947B
crossref_primary_10_1021_acs_inorgchem_2c02492
crossref_primary_10_1021_acs_inorgchem_1c01297
crossref_primary_10_1039_C8CS00978C
crossref_primary_10_1039_C6SC00972G
crossref_primary_10_1016_j_cej_2023_144334
crossref_primary_10_1039_D1QI00409C
crossref_primary_10_1016_j_ica_2016_09_023
crossref_primary_10_1039_D0DT00353K
crossref_primary_10_1007_s10904_016_0337_3
crossref_primary_10_1016_j_ica_2019_119240
crossref_primary_10_1002_ange_201704359
crossref_primary_10_1039_C9CC03336J
crossref_primary_10_1007_s11243_019_00366_8
crossref_primary_10_1016_j_cclet_2018_10_035
crossref_primary_10_1039_D1CC02806E
crossref_primary_10_1039_C5RA10459A
crossref_primary_10_1039_C6SC04732G
crossref_primary_10_1002_ange_201602327
crossref_primary_10_1002_chem_201603923
crossref_primary_10_1002_anie_201915401
crossref_primary_10_1002_ange_201806814
crossref_primary_10_1038_s41570_022_00380_y
crossref_primary_10_1039_C7SC03847J
crossref_primary_10_1002_aoc_4814
crossref_primary_10_1039_D2QI00513A
crossref_primary_10_1039_C6DT03498E
crossref_primary_10_1039_C6CS00907G
crossref_primary_10_1002_ange_201914629
crossref_primary_10_1016_j_xcrp_2020_100303
crossref_primary_10_1021_acs_cgd_7b01303
crossref_primary_10_1002_asia_201901682
crossref_primary_10_1016_j_snb_2017_10_123
crossref_primary_10_1002_marc_201800501
crossref_primary_10_1021_acs_chemrev_0c00321
crossref_primary_10_1039_C5CC09569G
crossref_primary_10_1021_acsami_9b02068
crossref_primary_10_1039_D2NJ04116B
crossref_primary_10_1002_ijch_201800102
crossref_primary_10_1021_acs_chemrev_1c00503
crossref_primary_10_1021_jacs_7b05157
crossref_primary_10_1021_acs_inorgchem_7b01187
crossref_primary_10_1007_s10904_016_0375_x
crossref_primary_10_1016_j_chempr_2018_08_025
crossref_primary_10_1039_D1SC01226F
crossref_primary_10_1021_acs_macromol_4c01380
crossref_primary_10_1039_D1DT01693H
crossref_primary_10_1038_srep43448
crossref_primary_10_1007_s10870_016_0652_0
crossref_primary_10_1002_ange_201900789
crossref_primary_10_1016_j_ccr_2019_02_010
crossref_primary_10_1021_acs_inorgchem_5c00084
crossref_primary_10_1016_j_poly_2023_116717
crossref_primary_10_1002_chem_201604598
crossref_primary_10_1021_acs_inorgchem_1c00033
crossref_primary_10_1002_anie_201501359
crossref_primary_10_1246_cl_190731
crossref_primary_10_1039_C5SC03526K
crossref_primary_10_3762_bjoc_16_220
crossref_primary_10_1002_chem_201801653
crossref_primary_10_1002_chem_201802502
crossref_primary_10_1021_jacs_1c01161
crossref_primary_10_1016_j_dyepig_2017_10_036
crossref_primary_10_1021_acs_cgd_9b00565
crossref_primary_10_1021_jacs_6b10080
crossref_primary_10_1038_s41467_020_14831_x
crossref_primary_10_1039_C7CE01042G
crossref_primary_10_3389_fchem_2018_00087
crossref_primary_10_1002_ange_202314481
crossref_primary_10_1007_s12274_023_5607_0
crossref_primary_10_1021_acs_cgd_7b01440
crossref_primary_10_1021_acs_chemrev_2c00759
crossref_primary_10_26599_POM_2024_9140059
crossref_primary_10_1021_acs_cgd_6b00213
crossref_primary_10_1038_s41598_023_32661_x
crossref_primary_10_1016_j_inoche_2018_01_015
crossref_primary_10_1021_acs_cgd_0c01204
crossref_primary_10_1039_D2SC03093D
crossref_primary_10_3390_molecules24091840
crossref_primary_10_1021_jacs_8b04452
crossref_primary_10_1016_j_ccr_2017_10_032
crossref_primary_10_1039_C9CC09063K
crossref_primary_10_1039_D2CC01824A
crossref_primary_10_1016_j_ccr_2022_214649
crossref_primary_10_1021_acsmacrolett_9b00169
crossref_primary_10_1039_C7CE00046D
crossref_primary_10_1021_acs_inorgchem_8b03249
crossref_primary_10_1002_chem_201605241
crossref_primary_10_1021_acs_inorgchem_0c02308
crossref_primary_10_1039_C7NR07308A
crossref_primary_10_1039_D1CC02990H
crossref_primary_10_1039_C5DT04094A
crossref_primary_10_3390_chemistry4020036
crossref_primary_10_1021_acs_cgd_6b00467
crossref_primary_10_1039_D3CC05337G
crossref_primary_10_1039_D0SC01176B
crossref_primary_10_1021_acs_inorgchem_5b02786
crossref_primary_10_1039_D2DT00436D
crossref_primary_10_1002_anie_201704359
crossref_primary_10_3390_chemistry4020038
crossref_primary_10_1039_C5CC04854K
crossref_primary_10_1002_ange_202208376
crossref_primary_10_1039_C6CC07377H
crossref_primary_10_1002_marc_202200004
crossref_primary_10_1039_C7CE00033B
crossref_primary_10_1021_acscentsci_7b00127
crossref_primary_10_1107_S2052252523002385
crossref_primary_10_1021_acs_cgd_2c00803
crossref_primary_10_1016_j_inoche_2017_03_021
crossref_primary_10_1002_ange_201915401
crossref_primary_10_1021_acs_inorgchem_8b00668
crossref_primary_10_1039_C9NJ02573A
crossref_primary_10_1016_j_tetlet_2019_151202
crossref_primary_10_1080_24701556_2018_1555169
crossref_primary_10_1002_ange_201706756
crossref_primary_10_1016_j_coelec_2017_11_011
crossref_primary_10_1016_j_inoche_2018_05_019
crossref_primary_10_1016_j_ica_2018_09_009
crossref_primary_10_1002_zaac_201500585
crossref_primary_10_1039_D1CC05581J
crossref_primary_10_1039_D0SC03191G
crossref_primary_10_1039_D2SC03156F
crossref_primary_10_1002_ijch_201800150
crossref_primary_10_1039_C7CE00654C
crossref_primary_10_1021_jacs_4c14123
crossref_primary_10_1039_C5CE00417A
crossref_primary_10_1039_D2NJ02269A
crossref_primary_10_1021_acs_inorgchem_1c03747
crossref_primary_10_1039_C5NJ02144H
crossref_primary_10_1039_D4DT01040J
crossref_primary_10_1002_anie_201709483
crossref_primary_10_1021_acs_cgd_9b00999
crossref_primary_10_1021_acs_inorgchem_8b03388
crossref_primary_10_1021_acs_cgd_5b00210
crossref_primary_10_1002_cctc_201701063
crossref_primary_10_1016_j_inoche_2019_03_037
crossref_primary_10_1016_j_jssc_2024_124974
crossref_primary_10_1016_j_molstruc_2016_05_013
crossref_primary_10_1021_acs_inorgchem_6b00574
crossref_primary_10_1021_acs_cgd_8b00891
crossref_primary_10_1039_C5DT02058A
crossref_primary_10_1002_asia_201800837
crossref_primary_10_1016_j_aca_2019_10_002
crossref_primary_10_1039_C5CY01882J
crossref_primary_10_1071_CH19279
crossref_primary_10_3390_chemistry5010019
crossref_primary_10_1007_s11426_022_1211_5
crossref_primary_10_1002_asia_201800835
crossref_primary_10_1002_ange_201709483
crossref_primary_10_1016_j_tchem_2022_100006
Cites_doi 10.1039/C2CS35123D
10.1039/B821019P
10.1002/anie.201106732
10.1021/ja2030273
10.1021/ar800025w
10.1038/nchem.618
10.1021/ic4024184
10.1021/ic202373a
10.1039/c3ta12391j
10.1039/c3ta13242k
10.1021/ar040153h
10.1021/ja105986b
10.1021/ic402428m
10.1039/C4SC01973C
10.1039/C3SC52442F
10.1021/cr3002824
10.1039/C2CS35218D
10.1021/cr200345v
10.1021/ja901731z
10.1038/21861
10.1002/chem.201200125
10.1039/C3CS60315F
10.1039/C3CS60473J
10.1021/ar5000924
10.1039/c3cc48381a
10.1002/anie.200462394
10.1021/ja306150x
10.1021/ar900077c
10.1039/c3cs60098j
10.1039/c1cc11932j
10.1039/C3CC48556K
10.1021/cg300483c
10.1021/ja0104352
10.1039/C2CC36921D
10.1021/ar010142d
10.1021/ar970224v
10.1038/srep00668
10.1021/ja000247w
10.1021/ja042802q
10.1039/C3CS60343A
10.1039/c2sc20264f
10.1002/1521-3773(20000717)39:14<2468::AID-ANIE2468>3.0.CO;2-I
10.1039/b606632c
10.1039/C0CC04601A
10.1039/c1cc12858b
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/ar5003076
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 210
ExternalDocumentID 25517043
10_1021_ar5003076
a380998034
Genre Journal Article
GroupedDBID ---
-DZ
-~X
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
6P2
7~N
85S
8W4
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AETEA
AFEFF
AFXLT
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
EBS
ED~
EJD
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
XSW
YZZ
ZCA
~02
AAYXX
ABBLG
ABJNI
ABLBI
AGXLV
CITATION
CUPRZ
NPM
7X8
ID FETCH-LOGICAL-a381t-1e716b595ae180d1a261140cf87d500f1d783b095c06693c6aab0308f0501eeb3
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Fri Jul 11 10:55:24 EDT 2025
Mon Jul 21 05:59:54 EDT 2025
Tue Jul 01 04:04:09 EDT 2025
Thu Apr 24 22:59:45 EDT 2025
Mon Feb 06 12:14:59 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a381t-1e716b595ae180d1a261140cf87d500f1d783b095c06693c6aab0308f0501eeb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25517043
PQID 1656045186
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1656045186
pubmed_primary_25517043
crossref_citationtrail_10_1021_ar5003076
crossref_primary_10_1021_ar5003076
acs_journals_10_1021_ar5003076
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-17
PublicationDateYYYYMMDD 2015-02-17
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Saha M. L. (ref12/cit12) 2013; 42
Yoshizawa M. (ref9/cit9) 2014; 43
Liu M. (ref31/cit31) 2012; 51
Li X. J. (ref21/cit21) 2012; 51
Hiraoka S. (ref8/cit8) 2005; 44
Pang J. D. (ref32/cit32) 2014; 5
Qian J. J. (ref36/cit36) 2013; 1
Wang H. N. (ref39/cit39) 2011; 47
Seidel S. R. (ref1/cit1) 2002; 35
Severin K. (ref14/cit14) 2006
Li N. (ref20/cit20) 2011; 47
Zheng S. T. (ref26/cit26) 2010; 132
Hardie M. J. (ref6/cit6) 2010; 39
Chen Q. H. (ref45/cit45) 2014; 5
Han D. (ref37/cit37) 2011; 47
Wang H. N. (ref40/cit40) 2013; 1
Lindoy L. F. (ref5/cit5) 2013; 42
Han Y. F. (ref17/cit17) 2014; 43
Eddaoudi M. (ref23/cit23) 2001; 123
Ward M. D. (ref4/cit4) 2013; 42
Sudik A. C. (ref24/cit24) 2005; 127
Li J. R. (ref38/cit38) 2009; 131
Xiong K. C. (ref30/cit30) 2012; 18
Xiong K. C. (ref28/cit28) 2012; 12
Caulder D. L. (ref10/cit10) 1999; 32
Hong M. C. (ref19/cit19) 2000; 39
Han M. (ref15/cit15) 2014; 43
Su K. Z. (ref29/cit29) 2014; 53
Northrop B. H. (ref2/cit2) 2009; 42
Oliveri C. G. (ref16/cit16) 2008; 41
Liu T. F. (ref33/cit33) 2012; 134
Amouri H. (ref11/cit11) 2012; 112
Castilla A. M. (ref13/cit13) 2014; 47
Hong M. C. (ref18/cit18) 2000; 122
Qian J. J. (ref34/cit34) 2014; 50
Xiong K. C. (ref27/cit27) 2012; 3
Kuang X. F. (ref42/cit42) 2010; 2
Fujita M. (ref3/cit3) 2005; 38
Liu G. L. (ref25/cit25) 2013; 52
Heine J. (ref43/cit43) 2011; 133
Fujita M. (ref41/cit41) 1999; 400
Cook T. R. (ref7/cit7) 2013; 113
Chen Q. H. (ref22/cit22) 2013; 49
Pang J. D. (ref35/cit35) 2014; 50
Jiang L. (ref44/cit44) 2012; 2
References_xml – volume: 42
  start-page: 1619
  year: 2013
  ident: ref4/cit4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35123D
– volume: 39
  start-page: 516
  year: 2010
  ident: ref6/cit6
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B821019P
– volume: 51
  start-page: 1585
  year: 2012
  ident: ref31/cit31
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201106732
– volume: 133
  start-page: 10018
  year: 2011
  ident: ref43/cit43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2030273
– volume: 41
  start-page: 1618
  year: 2008
  ident: ref16/cit16
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar800025w
– volume: 2
  start-page: 461
  year: 2010
  ident: ref42/cit42
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.618
– volume: 53
  start-page: 18
  year: 2014
  ident: ref29/cit29
  publication-title: Inorg. Chem.
  doi: 10.1021/ic4024184
– volume: 51
  start-page: 4116
  year: 2012
  ident: ref21/cit21
  publication-title: Inorg. Chem.
  doi: 10.1021/ic202373a
– volume: 1
  start-page: 10631
  year: 2013
  ident: ref36/cit36
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta12391j
– volume: 1
  start-page: 13060
  year: 2013
  ident: ref40/cit40
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta13242k
– volume: 38
  start-page: 369
  year: 2005
  ident: ref3/cit3
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar040153h
– volume: 132
  start-page: 15102
  year: 2010
  ident: ref26/cit26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105986b
– volume: 52
  start-page: 13815
  year: 2013
  ident: ref25/cit25
  publication-title: Inorg. Chem.
  doi: 10.1021/ic402428m
– volume: 5
  start-page: 4163
  year: 2014
  ident: ref32/cit32
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC01973C
– volume: 5
  start-page: 483
  year: 2014
  ident: ref45/cit45
  publication-title: Chem. Sci.
  doi: 10.1039/C3SC52442F
– volume: 113
  start-page: 734
  year: 2013
  ident: ref7/cit7
  publication-title: Chem. Rev.
  doi: 10.1021/cr3002824
– volume: 42
  start-page: 1713
  year: 2013
  ident: ref5/cit5
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35218D
– volume: 112
  start-page: 2015
  year: 2012
  ident: ref11/cit11
  publication-title: Chem. Rev.
  doi: 10.1021/cr200345v
– volume: 131
  start-page: 6368
  year: 2009
  ident: ref38/cit38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja901731z
– volume: 400
  start-page: 52
  year: 1999
  ident: ref41/cit41
  publication-title: Nature
  doi: 10.1038/21861
– volume: 18
  start-page: 5536
  year: 2012
  ident: ref30/cit30
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201200125
– volume: 43
  start-page: 1885
  year: 2014
  ident: ref9/cit9
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60315F
– volume: 43
  start-page: 1848
  year: 2014
  ident: ref15/cit15
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60473J
– volume: 47
  start-page: 2063
  year: 2014
  ident: ref13/cit13
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar5000924
– volume: 50
  start-page: 2834
  year: 2014
  ident: ref35/cit35
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc48381a
– volume: 44
  start-page: 2727
  year: 2005
  ident: ref8/cit8
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200462394
– volume: 134
  start-page: 17358
  year: 2012
  ident: ref33/cit33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja306150x
– volume: 42
  start-page: 1554
  year: 2009
  ident: ref2/cit2
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar900077c
– volume: 42
  start-page: 6860
  year: 2013
  ident: ref12/cit12
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60098j
– volume: 47
  start-page: 7128
  year: 2011
  ident: ref39/cit39
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc11932j
– volume: 50
  start-page: 1678
  year: 2014
  ident: ref34/cit34
  publication-title: Chem. Commun.
  doi: 10.1039/C3CC48556K
– volume: 12
  start-page: 3335
  year: 2012
  ident: ref28/cit28
  publication-title: Cryst. Growth. Des.
  doi: 10.1021/cg300483c
– volume: 123
  start-page: 4368
  year: 2001
  ident: ref23/cit23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0104352
– volume: 49
  start-page: 719
  year: 2013
  ident: ref22/cit22
  publication-title: Chem. Commun.
  doi: 10.1039/C2CC36921D
– volume: 35
  start-page: 972
  year: 2002
  ident: ref1/cit1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar010142d
– volume: 32
  start-page: 975
  year: 1999
  ident: ref10/cit10
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar970224v
– volume: 2
  start-page: 668
  year: 2012
  ident: ref44/cit44
  publication-title: Sci. Rep.
  doi: 10.1038/srep00668
– volume: 122
  start-page: 4819
  year: 2000
  ident: ref18/cit18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja000247w
– volume: 127
  start-page: 7110
  year: 2005
  ident: ref24/cit24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja042802q
– volume: 43
  start-page: 2799
  year: 2014
  ident: ref17/cit17
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60343A
– volume: 3
  start-page: 2321
  year: 2012
  ident: ref27/cit27
  publication-title: Chem. Sci.
  doi: 10.1039/c2sc20264f
– volume: 39
  start-page: 2468
  year: 2000
  ident: ref19/cit19
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20000717)39:14<2468::AID-ANIE2468>3.0.CO;2-I
– start-page: 3859
  year: 2006
  ident: ref14/cit14
  publication-title: Chem. Commun.
  doi: 10.1039/b606632c
– volume: 47
  start-page: 2327
  year: 2011
  ident: ref20/cit20
  publication-title: Chem. Commun.
  doi: 10.1039/C0CC04601A
– volume: 47
  start-page: 9861
  year: 2011
  ident: ref37/cit37
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc12858b
SSID ssj0002467
Score 2.5876584
Snippet Conspectus Nanosized supramolecular metallocages have a unique self-assembly process that allows chemists to both understand and control it. In addition,...
CONSPECTUS: Nanosized supramolecular metallocages have a unique self-assembly process that allows chemists to both understand and control it. In addition,...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 201
Title Controllable Coordination-Driven Self-Assembly: From Discrete Metallocages to Infinite Cage-Based Frameworks
URI http://dx.doi.org/10.1021/ar5003076
https://www.ncbi.nlm.nih.gov/pubmed/25517043
https://www.proquest.com/docview/1656045186
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JT8QgFCYuB72470twOXhBSwst4007TtREL2rirQEKycROa2Y6B_31PrpMNG7X5tFSoO99Xx_vA6Fjzm2YQugjTEcegYjPibARI4oFWghmOsJ3xcl39-H1E7t95s9T6OiXDL5Pz-SQVysxnEazfigix7Au4oeJu_VZWAtjAi9mgvmtfNDnpi706NHX0PMLnqziSm8RddvqnHo7ycvpuFSn-v27WONfXV5CCw2uxBf1QlhGUyZfQXNxe5zbKsrielN65mqlcFwA6ezXfwJJd-hcHn4wmSUuCTxQ2ds57g2LAe72wa0ArsZ3pnQpeg3uZ4TLAt_ktu_gKo7hCrmEWJhCi2aj12gNPfWuHuNr0hy1QCSE7JJQA7xJ8Q6XhgovpRKIFVAvbUWUwrtYmkYiUADHNECUTqBDKZVTurEe96gBQr6OZvIiN5sIc-lZFiqnHB8yqgMhqLbMEzoNJFOe2EL7MBdJ86mMkioL7tNkMmhb6KSdpkQ3QuXuvIzsJ9PDielrrc7xk9FBO9cJjLlLiMjcFGN4tFMeYpwKsNmoF8HkNkC1aOSxYPu_7u6geQBRVZk7jXbRTDkcmz0AKqXarxbqB89q3gI
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T-QwELZ4FNDwuDvecAZdcY0hTuzESweB1fJYGkCii2zHllaEBG2yBfx6xkl2eQgEbTRxJvZk5puM_Q1C_zi3YQqhjzAdeQQiPifCRowoFmghmOkI3x1O7l-FvVt2fsfvWpocdxYGlChhpLIu4r-yC9ADOeS1QYbTaBZAiO8SraP4euJ1fRY2_JiQHjPB_DGL0NtbXQTS5fsI9AWsrMNLd7HpU1QrVu8qud8fVWpfP3_gbPyZ5ktooUWZ-Kgxi2U0ZfJfaC4eN3f7jbK42aKeuZNTOC4gBR00_wXJydA5QHxtMktcSfhBZU-HuDssHvDJAJwMoGzcN5Ur2GtwRiWuCnyW24EDrziGK-QYImMKd7Tbvso_6LZ7ehP3SNt4gUgI4BWhBrIoxTtcGiq8lEpIsyAR01ZEKbyLpWkkAgXgTANg6QQ6lFI53hvrcY8aSM9X0Exe5GYNYS49y0LleORDRnUgBNWWeUKngWTKE-toB-YsaT-cMqlr4j5NJpO2jv6PVyvRLW25656RfSa6NxF9bLg6PhPaHS95AnPuyiMyN8UIHu14iBinAmRWG1uYDAOJF408Fmx8p-5fNNe76V8ml2dXF5toHuBVfQCeRltophqOzDZAmErt1Lb7Ak7O5mM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKlYALlEcLpQWDOHAxxBs78fYGWVZAuwsSIHGLbMeWVmST1SZ7aH99x0k2AgRqr9HYmfgxM1_G8xmhI85tkIDrI0yHHgGPz4mwISOK-VoIZrqi44qTB8Pg8oFdP_LHBii6WhhQooCeiiqJ73b1JLENwwA9lVNeLcpgAX106ToHts6iu9bydlhQc2QCRGaCdeZMQs-bOi-ki5de6J3QsnIx_TV00ypXnSx5OpmV6kT_ecXb-P_af0KrTbSJz-rlsY4-mGwDLUfzS942URrVR9VTV0GFoxyg6Kj-P0h6U2cI8Z1JLXGp4bFKf__A_Wk-xr0RGBuItvHAlC5xr8EoFbjM8VVmRy6IxRE8IefgIRNo0Rz_KrbQQ__iProkzQUMRIIjLwk1gKYU73JpqPASKgFuASDTVoQJfIulSSh8BUGahsCl6-tASuX4b6zHPWoApn9Gi1memW2EufQsC5Tjkw8Y1b4QVFvmCZ34kilP7KA9GLe42UBFXOXGOzRuB20HHc9nLNYNfbm7RSN9S_SwFZ3UnB1vCR3Mpz2GMXdpEpmZfAavdnxEjFMBMl_q9dB2AwCMhh7zv_5L3X20dNvrx7-uhj930QpEWVUdPA2_ocVyOjPfIZIp1V61fP8C_YXo5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controllable+Coordination-Driven+Self-Assembly%3A+From+Discrete+Metallocages+to+Infinite+Cage-Based+Frameworks&rft.jtitle=Accounts+of+chemical+research&rft.au=Chen%2C+Lian&rft.au=Chen%2C+Qihui&rft.au=Wu%2C+Mingyan&rft.au=Jiang%2C+Feilong&rft.date=2015-02-17&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=48&rft.issue=2&rft.spage=201&rft.epage=210&rft_id=info:doi/10.1021%2Far5003076&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ar5003076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon