Covalent Organic Framework as a Metal-Free Photocatalyst for Dye Degradation and Radioactive Iodine Adsorption
Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C6-TRZ-TPA COF, via se...
Saved in:
Published in | Langmuir Vol. 39; no. 11; pp. 4071 - 4081 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
21.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C6-TRZ-TPA COF, via segregation of donor–acceptor moieties through the extended Schiff base condensation between tris(4-formylphenyl)amine and 4,4′,4″-(1,3,5-triazine-2,4,6-triyl)trianiline. This COF displayed a Brunauer–Emmett–Teller (BET) surface area of 1058 m2 g–1 with a pore volume of 0.73 cc g–1. Again, extended π-conjugation, the presence of heteroatoms throughout the framework, and a narrow band gap of 2.2 eV, all these features collectively work for the environmental remediation in two different perspectives: it could harness solar energy for environmental clean-up, where the COF has been explored as a robust metal-free photocatalyst for wastewater treatment and as an adsorbent for iodine capture. In our endeavor of wastewater treatment, we have conducted the photodegradation of rose bengal (RB) and methylene blue (MB) as model pollutants since these are extremely toxic, are health hazard, and bioaccumulative in nature. The catalyst C6-TRZ-TPA COF showed a very high catalytic efficiency of 99% towards the degradation of 250 parts per million (ppm) of RB solution in 80 min under visible light irradiation with the rate constant of 0.05 min–1. Further, C6-TRZ-TPA COF is found to be an excellent adsorbent as it efficiently adsorbed radioactive iodine from its solution as well as from the vapor phase. The material exhibits a very rapid iodine capturing tendency with an outstanding iodine vapor uptake capacity of 4832 mg g–1. |
---|---|
AbstractList | Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C
-TRZ-TPA COF, via segregation of donor-acceptor moieties through the extended Schiff base condensation between tris(4-formylphenyl)amine and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline. This COF displayed a Brunauer-Emmett-Teller (BET) surface area of 1058 m
g
with a pore volume of 0.73 cc g
. Again, extended π-conjugation, the presence of heteroatoms throughout the framework, and a narrow band gap of 2.2 eV, all these features collectively work for the environmental remediation in two different perspectives: it could harness solar energy for environmental clean-up, where the COF has been explored as a robust metal-free photocatalyst for wastewater treatment and as an adsorbent for iodine capture. In our endeavor of wastewater treatment, we have conducted the photodegradation of rose bengal (RB) and methylene blue (MB) as model pollutants since these are extremely toxic, are health hazard, and bioaccumulative in nature. The catalyst C
-TRZ-TPA COF showed a very high catalytic efficiency of 99% towards the degradation of 250 parts per million (ppm) of RB solution in 80 min under visible light irradiation with the rate constant of 0.05 min
. Further, C
-TRZ-TPA COF is found to be an excellent adsorbent as it efficiently adsorbed radioactive iodine from its solution as well as from the vapor phase. The material exhibits a very rapid iodine capturing tendency with an outstanding iodine vapor uptake capacity of 4832 mg g
. Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C6-TRZ-TPA COF, via segregation of donor-acceptor moieties through the extended Schiff base condensation between tris(4-formylphenyl)amine and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline. This COF displayed a Brunauer-Emmett-Teller (BET) surface area of 1058 m2 g-1 with a pore volume of 0.73 cc g-1. Again, extended π-conjugation, the presence of heteroatoms throughout the framework, and a narrow band gap of 2.2 eV, all these features collectively work for the environmental remediation in two different perspectives: it could harness solar energy for environmental clean-up, where the COF has been explored as a robust metal-free photocatalyst for wastewater treatment and as an adsorbent for iodine capture. In our endeavor of wastewater treatment, we have conducted the photodegradation of rose bengal (RB) and methylene blue (MB) as model pollutants since these are extremely toxic, are health hazard, and bioaccumulative in nature. The catalyst C6-TRZ-TPA COF showed a very high catalytic efficiency of 99% towards the degradation of 250 parts per million (ppm) of RB solution in 80 min under visible light irradiation with the rate constant of 0.05 min-1. Further, C6-TRZ-TPA COF is found to be an excellent adsorbent as it efficiently adsorbed radioactive iodine from its solution as well as from the vapor phase. The material exhibits a very rapid iodine capturing tendency with an outstanding iodine vapor uptake capacity of 4832 mg g-1.Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C6-TRZ-TPA COF, via segregation of donor-acceptor moieties through the extended Schiff base condensation between tris(4-formylphenyl)amine and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline. This COF displayed a Brunauer-Emmett-Teller (BET) surface area of 1058 m2 g-1 with a pore volume of 0.73 cc g-1. Again, extended π-conjugation, the presence of heteroatoms throughout the framework, and a narrow band gap of 2.2 eV, all these features collectively work for the environmental remediation in two different perspectives: it could harness solar energy for environmental clean-up, where the COF has been explored as a robust metal-free photocatalyst for wastewater treatment and as an adsorbent for iodine capture. In our endeavor of wastewater treatment, we have conducted the photodegradation of rose bengal (RB) and methylene blue (MB) as model pollutants since these are extremely toxic, are health hazard, and bioaccumulative in nature. The catalyst C6-TRZ-TPA COF showed a very high catalytic efficiency of 99% towards the degradation of 250 parts per million (ppm) of RB solution in 80 min under visible light irradiation with the rate constant of 0.05 min-1. Further, C6-TRZ-TPA COF is found to be an excellent adsorbent as it efficiently adsorbed radioactive iodine from its solution as well as from the vapor phase. The material exhibits a very rapid iodine capturing tendency with an outstanding iodine vapor uptake capacity of 4832 mg g-1. Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C₆-TRZ-TPA COF, via segregation of donor–acceptor moieties through the extended Schiff base condensation between tris(4-formylphenyl)amine and 4,4′,4″-(1,3,5-triazine-2,4,6-triyl)trianiline. This COF displayed a Brunauer–Emmett–Teller (BET) surface area of 1058 m² g–¹ with a pore volume of 0.73 cc g–¹. Again, extended π-conjugation, the presence of heteroatoms throughout the framework, and a narrow band gap of 2.2 eV, all these features collectively work for the environmental remediation in two different perspectives: it could harness solar energy for environmental clean-up, where the COF has been explored as a robust metal-free photocatalyst for wastewater treatment and as an adsorbent for iodine capture. In our endeavor of wastewater treatment, we have conducted the photodegradation of rose bengal (RB) and methylene blue (MB) as model pollutants since these are extremely toxic, are health hazard, and bioaccumulative in nature. The catalyst C₆-TRZ-TPA COF showed a very high catalytic efficiency of 99% towards the degradation of 250 parts per million (ppm) of RB solution in 80 min under visible light irradiation with the rate constant of 0.05 min–¹. Further, C₆-TRZ-TPA COF is found to be an excellent adsorbent as it efficiently adsorbed radioactive iodine from its solution as well as from the vapor phase. The material exhibits a very rapid iodine capturing tendency with an outstanding iodine vapor uptake capacity of 4832 mg g–¹. Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C6-TRZ-TPA COF, via segregation of donor–acceptor moieties through the extended Schiff base condensation between tris(4-formylphenyl)amine and 4,4′,4″-(1,3,5-triazine-2,4,6-triyl)trianiline. This COF displayed a Brunauer–Emmett–Teller (BET) surface area of 1058 m2 g–1 with a pore volume of 0.73 cc g–1. Again, extended π-conjugation, the presence of heteroatoms throughout the framework, and a narrow band gap of 2.2 eV, all these features collectively work for the environmental remediation in two different perspectives: it could harness solar energy for environmental clean-up, where the COF has been explored as a robust metal-free photocatalyst for wastewater treatment and as an adsorbent for iodine capture. In our endeavor of wastewater treatment, we have conducted the photodegradation of rose bengal (RB) and methylene blue (MB) as model pollutants since these are extremely toxic, are health hazard, and bioaccumulative in nature. The catalyst C6-TRZ-TPA COF showed a very high catalytic efficiency of 99% towards the degradation of 250 parts per million (ppm) of RB solution in 80 min under visible light irradiation with the rate constant of 0.05 min–1. Further, C6-TRZ-TPA COF is found to be an excellent adsorbent as it efficiently adsorbed radioactive iodine from its solution as well as from the vapor phase. The material exhibits a very rapid iodine capturing tendency with an outstanding iodine vapor uptake capacity of 4832 mg g–1. |
Author | Bhaumik, Asim Ghosh, Anirban Ruidas, Santu Das, Abhijit Kumar Ghosh, Avik Mondal, Sujan Chowdhury, Avik Addicoat, Matthew Wonanke, A. D. Dinga Modak, Arindam |
AuthorAffiliation | School of Mathematical & Computational Sciences School of Science and Technology Amity Institute of Applied Sciences School of Materials Sciences Amity University, Noida |
AuthorAffiliation_xml | – name: Amity University, Noida – name: Amity Institute of Applied Sciences – name: School of Science and Technology – name: School of Materials Sciences – name: School of Mathematical & Computational Sciences |
Author_xml | – sequence: 1 givenname: Santu surname: Ruidas fullname: Ruidas, Santu organization: School of Materials Sciences – sequence: 2 givenname: Avik orcidid: 0000-0001-6772-6058 surname: Chowdhury fullname: Chowdhury, Avik organization: School of Materials Sciences – sequence: 3 givenname: Anirban surname: Ghosh fullname: Ghosh, Anirban organization: School of Materials Sciences – sequence: 4 givenname: Avik surname: Ghosh fullname: Ghosh, Avik organization: School of Mathematical & Computational Sciences – sequence: 5 givenname: Sujan surname: Mondal fullname: Mondal, Sujan organization: School of Materials Sciences – sequence: 6 givenname: A. D. Dinga surname: Wonanke fullname: Wonanke, A. D. Dinga organization: School of Science and Technology – sequence: 7 givenname: Matthew orcidid: 0000-0002-5406-7927 surname: Addicoat fullname: Addicoat, Matthew organization: School of Science and Technology – sequence: 8 givenname: Abhijit Kumar orcidid: 0000-0003-3295-0281 surname: Das fullname: Das, Abhijit Kumar organization: School of Mathematical & Computational Sciences – sequence: 9 givenname: Arindam surname: Modak fullname: Modak, Arindam organization: Amity University, Noida – sequence: 10 givenname: Asim orcidid: 0000-0002-4907-7418 surname: Bhaumik fullname: Bhaumik, Asim email: msab@iacs.res.in organization: School of Materials Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36905363$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi1URNPCP0DIRy6b-mN3vcutSklbqahVBWdr1p4El1072N6i_PtuSHLhQE_WyM8zGr3vGTnxwSMhHzmbcyb4BZg078Gvh9HFuTBMStW-ITNeCVZUjVAnZMZUKQtV1vKUnKX0xBhrZdm-I6eyblklazkjfhGeoUef6X1cg3eGLiMM-CfEXxQSBfoNM_TFMiLSh58hBwPTvE2ZrkKkV1ukV7iOYCG74Cl4Sx_BugAmu2ekt8E6j_TSphA3O-I9ebuCPuGHw3tOfiy_fl_cFHf317eLy7sCZMNzwY1tbS1qzmqFFjrBK9atOi45qroybWdFV0uBssVSYdVNA7dN2zWdqlXDlTwnn_d7NzH8HjFlPbhksJ8CwzAmLVnJSiUEY6-iQjXTHbxsqgn9dEDHbkCrN9ENELf6GOcEfNkDJoaUIq60cflvNDmC6zVnetednrrTx-70obtJLv-Rj_tf0dhe2_0-hTH6Kdj_Ky-zObJ- |
CitedBy_id | crossref_primary_10_1016_j_jece_2025_115660 crossref_primary_10_1016_j_molliq_2025_126869 crossref_primary_10_1016_j_chemosphere_2023_141028 crossref_primary_10_1002_cssc_202301916 crossref_primary_10_1016_j_mtsust_2023_100429 crossref_primary_10_1002_smll_202406723 crossref_primary_10_1016_j_molstruc_2025_142067 crossref_primary_10_1016_j_jssc_2023_124080 crossref_primary_10_1016_j_seppur_2024_129950 crossref_primary_10_1021_acsapm_4c03535 crossref_primary_10_1039_D3TA07691A crossref_primary_10_3390_w16111588 crossref_primary_10_1016_j_jece_2024_114193 crossref_primary_10_1021_acsanm_5c00570 crossref_primary_10_1039_D4NR03204G crossref_primary_10_1021_acs_langmuir_3c02041 crossref_primary_10_1016_j_chemosphere_2024_143354 crossref_primary_10_1016_j_mcat_2024_114127 crossref_primary_10_1016_j_jece_2024_114763 crossref_primary_10_1002_adma_202413118 crossref_primary_10_1039_D4QI01480D crossref_primary_10_1021_acsomega_3c09869 crossref_primary_10_1039_D3RA04177H crossref_primary_10_1002_cctc_202400920 crossref_primary_10_1021_acs_cgd_4c00701 crossref_primary_10_1021_acs_langmuir_4c03158 crossref_primary_10_1021_acs_langmuir_3c02215 crossref_primary_10_1016_j_polymer_2023_126592 crossref_primary_10_1021_acs_langmuir_3c03249 crossref_primary_10_1021_acs_jpcc_4c04602 crossref_primary_10_1016_j_molstruc_2024_140895 crossref_primary_10_1021_acs_langmuir_3c03961 crossref_primary_10_1021_acs_langmuir_4c01727 crossref_primary_10_1002_smll_202411199 crossref_primary_10_1021_acs_langmuir_4c01709 crossref_primary_10_1016_j_reactfunctpolym_2024_105844 crossref_primary_10_1016_j_jpcs_2024_112548 crossref_primary_10_3390_polym15234515 crossref_primary_10_1039_D3SC06004G |
Cites_doi | 10.1039/D0TA02582H 10.1021/acsmaterialslett.0c00065 10.1039/b921692h 10.1039/D2EN00135G 10.1002/adma.202101857 10.1016/j.mcat.2021.111835 10.1016/j.chempr.2020.11.024 10.1007/s13738-020-02057-z 10.1021/acsmaterialslett.0c00119 10.1002/slct.202003873 10.1021/acsami.9b07779 10.1016/j.ijhydene.2011.12.045 10.1039/D0TA00556H 10.1021/acs.langmuir.2c01442 10.1021/acs.est.0c05592 10.1038/s41598-022-06671-0 10.1002/cctc.201900486 10.1016/j.seppur.2020.116542 10.1039/C8TA05329D 10.1021/acs.cgd.0c01015 10.1021/acsami.0c13094 10.1007/s10854-020-04043-w 10.1016/j.cis.2019.102009 10.1021/acsami.8b03772 10.1039/D1SC01742J 10.1021/acs.chemrev.9b00550 10.1021/acsami.7b06968 10.1021/acs.langmuir.1c02873 10.1021/acs.chemrev.9b00797 10.1002/slct.202100540 10.1016/j.cej.2009.10.029 10.1038/s41598-020-72697-x 10.1021/acsnano.5b06373 10.1016/j.scitotenv.2010.08.061 10.1049/mnl.2018.5775 10.1039/D0TA04383D 10.1039/C9EE01935A 10.1039/C7CC09866A 10.1021/acs.langmuir.1c00823 10.1021/acsapm.1c00139 10.31635/ccschem.022.202201966 10.1039/D1RA00598G 10.1021/ja900612g 10.1021/acs.langmuir.1c01801 10.1039/C5CS00878F 10.1016/j.mcat.2021.112058 10.1021/acs.jpclett.8b02892 10.1016/j.ceja.2021.100150 10.1021/acsmaterialslett.1c00002 10.1021/acscatal.9b05470 10.1002/aenm.202003990 10.1002/cctc.201802024 10.1016/j.micromeso.2021.110929 10.1039/C7RA03855K 10.1021/jacs.0c00555 10.1039/C8CC07289B 10.1002/ejoc.202100173 10.1021/acsapm.9b00926 10.1007/s40242-022-1417-2 10.1016/j.mtchem.2022.100869 10.1021/acs.inorgchem.2c01939 10.1038/s41467-022-30663-3 10.3390/molecules27249045 10.1021/acsenergylett.7b01123 10.1039/C5CC02147B 10.1021/acs.inorgchem.1c03159 10.1021/acsami.9b07679 10.1021/acs.est.2c01682 10.1016/j.ccr.2021.214117 10.1021/acs.chemmater.8b04683 10.1039/C8TA10046B 10.1016/S0032-9592(98)00112-5 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.langmuir.2c03379 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 4081 |
ExternalDocumentID | 36905363 10_1021_acs_langmuir_2c03379 d127846451 |
Genre | Journal Article |
GroupedDBID | --- -~X .K2 4.4 55A 5GY 5VS 7~N AABXI ABFLS ABFRP ABMVS ABPTK ABQRX ABUCX ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS ROL TN5 UI2 UPT VF5 VG9 W1F YQT ~02 53G AAHBH AAYXX ABBLG ABJNI ABLBI CITATION CUPRZ NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a381t-1cd9d6261067edab2150bfb131e765c9bd2b632e39e47e5bb631d89b8b7678173 |
IEDL.DBID | ACS |
ISSN | 0743-7463 1520-5827 |
IngestDate | Fri Jul 11 01:50:17 EDT 2025 Fri Jul 11 09:49:01 EDT 2025 Mon Jul 21 05:31:40 EDT 2025 Tue Jul 01 03:28:22 EDT 2025 Thu Apr 24 23:02:15 EDT 2025 Thu Mar 23 04:15:36 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a381t-1cd9d6261067edab2150bfb131e765c9bd2b632e39e47e5bb631d89b8b7678173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6772-6058 0000-0002-5406-7927 0000-0002-4907-7418 0000-0003-3295-0281 |
PMID | 36905363 |
PQID | 2786101485 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3040472200 proquest_miscellaneous_2786101485 pubmed_primary_36905363 crossref_citationtrail_10_1021_acs_langmuir_2c03379 crossref_primary_10_1021_acs_langmuir_2c03379 acs_journals_10_1021_acs_langmuir_2c03379 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-21 |
PublicationDateYYYYMMDD | 2023-03-21 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 Pirooz M. (ref64/cit64) 2021; 8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref10/cit10 doi: 10.1039/D0TA02582H – ident: ref18/cit18 doi: 10.1021/acsmaterialslett.0c00065 – ident: ref19/cit19 doi: 10.1039/b921692h – ident: ref17/cit17 doi: 10.1039/D2EN00135G – ident: ref51/cit51 doi: 10.1002/adma.202101857 – ident: ref11/cit11 doi: 10.1016/j.mcat.2021.111835 – ident: ref31/cit31 doi: 10.1016/j.chempr.2020.11.024 – ident: ref3/cit3 doi: 10.1007/s13738-020-02057-z – ident: ref35/cit35 doi: 10.1021/acsmaterialslett.0c00119 – ident: ref1/cit1 doi: 10.1002/slct.202003873 – ident: ref39/cit39 doi: 10.1021/acsami.9b07779 – ident: ref45/cit45 doi: 10.1016/j.ijhydene.2011.12.045 – ident: ref15/cit15 doi: 10.1039/D0TA00556H – ident: ref42/cit42 doi: 10.1021/acs.langmuir.2c01442 – ident: ref21/cit21 doi: 10.1021/acs.est.0c05592 – ident: ref61/cit61 doi: 10.1038/s41598-022-06671-0 – ident: ref9/cit9 doi: 10.1002/cctc.201900486 – ident: ref8/cit8 doi: 10.1016/j.seppur.2020.116542 – ident: ref48/cit48 doi: 10.1039/C8TA05329D – ident: ref26/cit26 doi: 10.1021/acs.cgd.0c01015 – ident: ref25/cit25 doi: 10.1021/acsami.0c13094 – ident: ref57/cit57 doi: 10.1007/s10854-020-04043-w – ident: ref20/cit20 doi: 10.1016/j.cis.2019.102009 – ident: ref72/cit72 doi: 10.1021/acsami.8b03772 – ident: ref6/cit6 doi: 10.1039/D1SC01742J – ident: ref36/cit36 doi: 10.1021/acs.chemrev.9b00550 – ident: ref46/cit46 doi: 10.1021/acsami.7b06968 – ident: ref14/cit14 doi: 10.1021/acs.langmuir.1c02873 – ident: ref13/cit13 doi: 10.1021/acs.chemrev.9b00797 – ident: ref4/cit4 doi: 10.1002/slct.202100540 – ident: ref7/cit7 doi: 10.1016/j.cej.2009.10.029 – ident: ref59/cit59 doi: 10.1038/s41598-020-72697-x – ident: ref66/cit66 doi: 10.1021/acsnano.5b06373 – ident: ref5/cit5 doi: 10.1016/j.scitotenv.2010.08.061 – ident: ref2/cit2 doi: 10.1049/mnl.2018.5775 – ident: ref23/cit23 doi: 10.1039/D0TA04383D – ident: ref16/cit16 doi: 10.1039/C9EE01935A – ident: ref53/cit53 doi: 10.1039/C7CC09866A – ident: ref56/cit56 doi: 10.1021/acs.langmuir.1c00823 – ident: ref71/cit71 doi: 10.1021/acsapm.1c00139 – ident: ref68/cit68 doi: 10.31635/ccschem.022.202201966 – ident: ref62/cit62 doi: 10.1039/D1RA00598G – ident: ref44/cit44 doi: 10.1021/ja900612g – ident: ref40/cit40 doi: 10.1021/acs.langmuir.1c01801 – ident: ref50/cit50 doi: 10.1039/C5CS00878F – ident: ref30/cit30 doi: 10.1016/j.mcat.2021.112058 – ident: ref55/cit55 doi: 10.1021/acs.jpclett.8b02892 – volume: 8 start-page: 100150 year: 2021 ident: ref64/cit64 publication-title: Chem. Eng. J. Adv. doi: 10.1016/j.ceja.2021.100150 – ident: ref47/cit47 doi: 10.1021/acsmaterialslett.1c00002 – ident: ref38/cit38 doi: 10.1021/acscatal.9b05470 – ident: ref24/cit24 doi: 10.1002/aenm.202003990 – ident: ref22/cit22 doi: 10.1002/cctc.201802024 – ident: ref27/cit27 doi: 10.1016/j.micromeso.2021.110929 – ident: ref58/cit58 doi: 10.1039/C7RA03855K – ident: ref37/cit37 doi: 10.1021/jacs.0c00555 – ident: ref49/cit49 doi: 10.1039/C8CC07289B – ident: ref54/cit54 doi: 10.1002/ejoc.202100173 – ident: ref65/cit65 doi: 10.1021/acsapm.9b00926 – ident: ref67/cit67 doi: 10.1007/s40242-022-1417-2 – ident: ref41/cit41 doi: 10.1016/j.mtchem.2022.100869 – ident: ref12/cit12 doi: 10.1021/acs.inorgchem.2c01939 – ident: ref32/cit32 doi: 10.1038/s41467-022-30663-3 – ident: ref63/cit63 doi: 10.3390/molecules27249045 – ident: ref33/cit33 doi: 10.1021/acsenergylett.7b01123 – ident: ref52/cit52 doi: 10.1039/C5CC02147B – ident: ref70/cit70 doi: 10.1021/acs.inorgchem.1c03159 – ident: ref69/cit69 doi: 10.1021/acsami.9b07679 – ident: ref28/cit28 doi: 10.1021/acs.est.2c01682 – ident: ref29/cit29 doi: 10.1016/j.ccr.2021.214117 – ident: ref34/cit34 doi: 10.1021/acs.chemmater.8b04683 – ident: ref43/cit43 doi: 10.1039/C8TA10046B – ident: ref60/cit60 doi: 10.1016/S0032-9592(98)00112-5 |
SSID | ssj0009349 |
Score | 2.574243 |
Snippet | Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4071 |
SubjectTerms | adsorbents adsorption catalytic activity green chemistry health hazards iodine irradiation light methylene blue photocatalysts photolysis remediation schiff bases solar energy surface area toxicity vapors wastewater treatment water pollution |
Title | Covalent Organic Framework as a Metal-Free Photocatalyst for Dye Degradation and Radioactive Iodine Adsorption |
URI | http://dx.doi.org/10.1021/acs.langmuir.2c03379 https://www.ncbi.nlm.nih.gov/pubmed/36905363 https://www.proquest.com/docview/2786101485 https://www.proquest.com/docview/3040472200 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgOdBLKdDShRYZiQsHb9eexHaO1ZZVQWqLKCvtLfJr1QpI0CZ7WH494zxaUbRqOSayE9kez_f5Md8Q8h5XGBb4ImOGQ8oS0JJZkQDT3ideBSmNi9HIZ-fydJZ8nqfz24Xi3RN8wY-Mq0Zx7-7n6no5Em4MoLLH5ImQOI8jFZpc3orsQkt3o-ymSiT0oXIbvhIByVV_A9IGltmgzfQZuehjdtpLJt9Hq9qO3O9_JRwf2JAdst0RT3rcWspz8igUL8jTSZ_v7SUpJiVaHWIQbeMzHZ32F7eoqaihZwGJOpsuQ6Bfrsq6bHZ-1lVNkffSk3WgJ1F4os3RRE3h6Vfjr0vTOFT6qUSQDPTYV-Wy8VK7ZDb9-G1yyrpsDMwgqteMO595XP5EzbngjUWuMLYLy4EHJVOXWS-sBBEgC4kKqcUH7nVmtVUIiFzBHhkUZRH2CdWw4EqDWzRygBwL2ZBoZ0G7KE6jh-QDdlbezaYqbw7KBc_jy74H864HhwT64ctdJ2ses2v8uKcWu6n1q5X1uKf8u94ychyWeKhiilCuqlwoLWO-Y51uLgPoKaMo53g8JK9as7r5K8gM_aCE1__R5jdkK2a9j1fhBD8gg3q5CofIjWr7tpkQfwAFgAue |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZKOZRLy7OE8jASFw4OsWfX9h6jlCiFpkLQot5WfkVU0F2U3RzaX9_xPlKBFFU9rmV7_RjPfH7MN4R8wB2GBb7ImOGQsgS0ZFYkwLT3iVdBSuOiN_L8RM7Oki_n6fkWSXtfGGxEhTVVzSX-LbsA_xTT4hHe5epiORRuBKCyB-Qh4hERBXs8-XHLtQst6o3smyqR0HvMbagl2iVX_WuXNoDNxuhM98jPdXObtya_h6vaDt31f0yO9-7PY7LbwVA6buXmCdkKxVOyM-mjvz0jxaREGUSLRFtvTUen_TMuaipq6DwgbGfTZQj026-yLptzoKuqpoiC6eFVoIeRhqKN2ERN4el34y9K06hXelSiyQx07Kty2eis5-Rs-vl0MmNdbAZm0MbXjDufedwMRQa64I1F5DCyC8uBByVTl1kvrAQRIAuJCqnFD-51ZrVVaB65ghdkuyiL8JJQDQuuNLhFQw7IMZMNiXYWtItUNXpAPuJg5d3aqvLm2lzwPCb2I5h3Izgg0M9i7jqS8xhr488dpdi61N-W5OOO_O97AclxWuIViylCuapyobSM0Y91ujkPoN6MFJ2j0YDst9K1_ivIDLWihFf36PM7sjM7nR_nx0cnXw_II4EoLD6SE_w12a6Xq_AGUVNt3zZr5AYlmhP_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSNALb8ryNBIXDl7WmcR2jqtdohZoVQGVKi6RXxEVkFSb7KH8esZOsjykVQXHWLbjx3jms8f-hpCXuMMwwKucaQ4ZS0EJZpIUmHIuddILoW14jXx4JPZP0ren2elvob6wES3W1EYnfljV564aGAb465AejvG-r89W08TOAGR-lVwLnrsg3PPFx198u9Aj38DAKVMB46u5LbUE22TbP23TFsAZDU9xi3zeNDneN_k6XXdman_8xeb4X326TW4OcJTOe_m5Q674-i65sRijwN0j9aJBWUTLRPtXm5YW43Uuqluq6aFH-M6Klff0-EvTNfE86KLtKKJhurzwdBnoKPrITVTXjn7Q7qzRUc3SgwZNp6dz1zarqLvuk5PizafFPhtiNDCNtr5j3Lrc4aYoMNF5pw0iiJmpDAfupchsblxiBCQecp9Knxn84E7lRhmJZpJLeEB26qb2DwlVUHGpwFaRJJBjJuNTZQ0oGyhr1IS8wsEqhzXWltF9nvAyJI4jWA4jOCEwzmRpB7LzEHPj2yWl2KbUeU_2cUn-F6OQlDgtwdWia9-s2zKRSoQoyCrbngdQfwaqztlsQvZ6Cdv8FUSO2lHAo3_o83Ny_XhZlO8Pjt49JrsJgrFwVy7hT8hOt1r7pwieOvMsLpOf-P4Wgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+Organic+Framework+as+a+Metal-Free+Photocatalyst+for+Dye+Degradation+and+Radioactive+Iodine+Adsorption&rft.jtitle=Langmuir&rft.au=Ruidas%2C+Santu&rft.au=Chowdhury%2C+Avik&rft.au=Ghosh%2C+Anirban&rft.au=Ghosh%2C+Avik&rft.date=2023-03-21&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=39&rft.issue=11&rft.spage=4071&rft.epage=4081&rft_id=info:doi/10.1021%2Facs.langmuir.2c03379&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_langmuir_2c03379 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |