Covalent Organic Framework as a Metal-Free Photocatalyst for Dye Degradation and Radioactive Iodine Adsorption

Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C6-TRZ-TPA COF, via se...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 39; no. 11; pp. 4071 - 4081
Main Authors Ruidas, Santu, Chowdhury, Avik, Ghosh, Anirban, Ghosh, Avik, Mondal, Sujan, Wonanke, A. D. Dinga, Addicoat, Matthew, Das, Abhijit Kumar, Modak, Arindam, Bhaumik, Asim
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C6-TRZ-TPA COF, via segregation of donor–acceptor moieties through the extended Schiff base condensation between tris­(4-formylphenyl)­amine and 4,4′,4″-(1,3,5-triazine-2,4,6-triyl)­trianiline. This COF displayed a Brunauer–Emmett–Teller (BET) surface area of 1058 m2 g–1 with a pore volume of 0.73 cc g–1. Again, extended π-conjugation, the presence of heteroatoms throughout the framework, and a narrow band gap of 2.2 eV, all these features collectively work for the environmental remediation in two different perspectives: it could harness solar energy for environmental clean-up, where the COF has been explored as a robust metal-free photocatalyst for wastewater treatment and as an adsorbent for iodine capture. In our endeavor of wastewater treatment, we have conducted the photodegradation of rose bengal (RB) and methylene blue (MB) as model pollutants since these are extremely toxic, are health hazard, and bioaccumulative in nature. The catalyst C6-TRZ-TPA COF showed a very high catalytic efficiency of 99% towards the degradation of 250 parts per million (ppm) of RB solution in 80 min under visible light irradiation with the rate constant of 0.05 min–1. Further, C6-TRZ-TPA COF is found to be an excellent adsorbent as it efficiently adsorbed radioactive iodine from its solution as well as from the vapor phase. The material exhibits a very rapid iodine capturing tendency with an outstanding iodine vapor uptake capacity of 4832 mg g–1.
AbstractList Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C -TRZ-TPA COF, via segregation of donor-acceptor moieties through the extended Schiff base condensation between tris(4-formylphenyl)amine and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline. This COF displayed a Brunauer-Emmett-Teller (BET) surface area of 1058 m g with a pore volume of 0.73 cc g . Again, extended π-conjugation, the presence of heteroatoms throughout the framework, and a narrow band gap of 2.2 eV, all these features collectively work for the environmental remediation in two different perspectives: it could harness solar energy for environmental clean-up, where the COF has been explored as a robust metal-free photocatalyst for wastewater treatment and as an adsorbent for iodine capture. In our endeavor of wastewater treatment, we have conducted the photodegradation of rose bengal (RB) and methylene blue (MB) as model pollutants since these are extremely toxic, are health hazard, and bioaccumulative in nature. The catalyst C -TRZ-TPA COF showed a very high catalytic efficiency of 99% towards the degradation of 250 parts per million (ppm) of RB solution in 80 min under visible light irradiation with the rate constant of 0.05 min . Further, C -TRZ-TPA COF is found to be an excellent adsorbent as it efficiently adsorbed radioactive iodine from its solution as well as from the vapor phase. The material exhibits a very rapid iodine capturing tendency with an outstanding iodine vapor uptake capacity of 4832 mg g .
Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C6-TRZ-TPA COF, via segregation of donor-acceptor moieties through the extended Schiff base condensation between tris(4-formylphenyl)amine and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline. This COF displayed a Brunauer-Emmett-Teller (BET) surface area of 1058 m2 g-1 with a pore volume of 0.73 cc g-1. Again, extended π-conjugation, the presence of heteroatoms throughout the framework, and a narrow band gap of 2.2 eV, all these features collectively work for the environmental remediation in two different perspectives: it could harness solar energy for environmental clean-up, where the COF has been explored as a robust metal-free photocatalyst for wastewater treatment and as an adsorbent for iodine capture. In our endeavor of wastewater treatment, we have conducted the photodegradation of rose bengal (RB) and methylene blue (MB) as model pollutants since these are extremely toxic, are health hazard, and bioaccumulative in nature. The catalyst C6-TRZ-TPA COF showed a very high catalytic efficiency of 99% towards the degradation of 250 parts per million (ppm) of RB solution in 80 min under visible light irradiation with the rate constant of 0.05 min-1. Further, C6-TRZ-TPA COF is found to be an excellent adsorbent as it efficiently adsorbed radioactive iodine from its solution as well as from the vapor phase. The material exhibits a very rapid iodine capturing tendency with an outstanding iodine vapor uptake capacity of 4832 mg g-1.Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C6-TRZ-TPA COF, via segregation of donor-acceptor moieties through the extended Schiff base condensation between tris(4-formylphenyl)amine and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline. This COF displayed a Brunauer-Emmett-Teller (BET) surface area of 1058 m2 g-1 with a pore volume of 0.73 cc g-1. Again, extended π-conjugation, the presence of heteroatoms throughout the framework, and a narrow band gap of 2.2 eV, all these features collectively work for the environmental remediation in two different perspectives: it could harness solar energy for environmental clean-up, where the COF has been explored as a robust metal-free photocatalyst for wastewater treatment and as an adsorbent for iodine capture. In our endeavor of wastewater treatment, we have conducted the photodegradation of rose bengal (RB) and methylene blue (MB) as model pollutants since these are extremely toxic, are health hazard, and bioaccumulative in nature. The catalyst C6-TRZ-TPA COF showed a very high catalytic efficiency of 99% towards the degradation of 250 parts per million (ppm) of RB solution in 80 min under visible light irradiation with the rate constant of 0.05 min-1. Further, C6-TRZ-TPA COF is found to be an excellent adsorbent as it efficiently adsorbed radioactive iodine from its solution as well as from the vapor phase. The material exhibits a very rapid iodine capturing tendency with an outstanding iodine vapor uptake capacity of 4832 mg g-1.
Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C₆-TRZ-TPA COF, via segregation of donor–acceptor moieties through the extended Schiff base condensation between tris­(4-formylphenyl)­amine and 4,4′,4″-(1,3,5-triazine-2,4,6-triyl)­trianiline. This COF displayed a Brunauer–Emmett–Teller (BET) surface area of 1058 m² g–¹ with a pore volume of 0.73 cc g–¹. Again, extended π-conjugation, the presence of heteroatoms throughout the framework, and a narrow band gap of 2.2 eV, all these features collectively work for the environmental remediation in two different perspectives: it could harness solar energy for environmental clean-up, where the COF has been explored as a robust metal-free photocatalyst for wastewater treatment and as an adsorbent for iodine capture. In our endeavor of wastewater treatment, we have conducted the photodegradation of rose bengal (RB) and methylene blue (MB) as model pollutants since these are extremely toxic, are health hazard, and bioaccumulative in nature. The catalyst C₆-TRZ-TPA COF showed a very high catalytic efficiency of 99% towards the degradation of 250 parts per million (ppm) of RB solution in 80 min under visible light irradiation with the rate constant of 0.05 min–¹. Further, C₆-TRZ-TPA COF is found to be an excellent adsorbent as it efficiently adsorbed radioactive iodine from its solution as well as from the vapor phase. The material exhibits a very rapid iodine capturing tendency with an outstanding iodine vapor uptake capacity of 4832 mg g–¹.
Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C6-TRZ-TPA COF, via segregation of donor–acceptor moieties through the extended Schiff base condensation between tris­(4-formylphenyl)­amine and 4,4′,4″-(1,3,5-triazine-2,4,6-triyl)­trianiline. This COF displayed a Brunauer–Emmett–Teller (BET) surface area of 1058 m2 g–1 with a pore volume of 0.73 cc g–1. Again, extended π-conjugation, the presence of heteroatoms throughout the framework, and a narrow band gap of 2.2 eV, all these features collectively work for the environmental remediation in two different perspectives: it could harness solar energy for environmental clean-up, where the COF has been explored as a robust metal-free photocatalyst for wastewater treatment and as an adsorbent for iodine capture. In our endeavor of wastewater treatment, we have conducted the photodegradation of rose bengal (RB) and methylene blue (MB) as model pollutants since these are extremely toxic, are health hazard, and bioaccumulative in nature. The catalyst C6-TRZ-TPA COF showed a very high catalytic efficiency of 99% towards the degradation of 250 parts per million (ppm) of RB solution in 80 min under visible light irradiation with the rate constant of 0.05 min–1. Further, C6-TRZ-TPA COF is found to be an excellent adsorbent as it efficiently adsorbed radioactive iodine from its solution as well as from the vapor phase. The material exhibits a very rapid iodine capturing tendency with an outstanding iodine vapor uptake capacity of 4832 mg g–1.
Author Bhaumik, Asim
Ghosh, Anirban
Ruidas, Santu
Das, Abhijit Kumar
Ghosh, Avik
Mondal, Sujan
Chowdhury, Avik
Addicoat, Matthew
Wonanke, A. D. Dinga
Modak, Arindam
AuthorAffiliation School of Mathematical & Computational Sciences
School of Science and Technology
Amity Institute of Applied Sciences
School of Materials Sciences
Amity University, Noida
AuthorAffiliation_xml – name: Amity University, Noida
– name: Amity Institute of Applied Sciences
– name: School of Science and Technology
– name: School of Materials Sciences
– name: School of Mathematical & Computational Sciences
Author_xml – sequence: 1
  givenname: Santu
  surname: Ruidas
  fullname: Ruidas, Santu
  organization: School of Materials Sciences
– sequence: 2
  givenname: Avik
  orcidid: 0000-0001-6772-6058
  surname: Chowdhury
  fullname: Chowdhury, Avik
  organization: School of Materials Sciences
– sequence: 3
  givenname: Anirban
  surname: Ghosh
  fullname: Ghosh, Anirban
  organization: School of Materials Sciences
– sequence: 4
  givenname: Avik
  surname: Ghosh
  fullname: Ghosh, Avik
  organization: School of Mathematical & Computational Sciences
– sequence: 5
  givenname: Sujan
  surname: Mondal
  fullname: Mondal, Sujan
  organization: School of Materials Sciences
– sequence: 6
  givenname: A. D. Dinga
  surname: Wonanke
  fullname: Wonanke, A. D. Dinga
  organization: School of Science and Technology
– sequence: 7
  givenname: Matthew
  orcidid: 0000-0002-5406-7927
  surname: Addicoat
  fullname: Addicoat, Matthew
  organization: School of Science and Technology
– sequence: 8
  givenname: Abhijit Kumar
  orcidid: 0000-0003-3295-0281
  surname: Das
  fullname: Das, Abhijit Kumar
  organization: School of Mathematical & Computational Sciences
– sequence: 9
  givenname: Arindam
  surname: Modak
  fullname: Modak, Arindam
  organization: Amity University, Noida
– sequence: 10
  givenname: Asim
  orcidid: 0000-0002-4907-7418
  surname: Bhaumik
  fullname: Bhaumik, Asim
  email: msab@iacs.res.in
  organization: School of Materials Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36905363$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URNPCP0DIRy6b-mN3vcutSklbqahVBWdr1p4El1072N6i_PtuSHLhQE_WyM8zGr3vGTnxwSMhHzmbcyb4BZg078Gvh9HFuTBMStW-ITNeCVZUjVAnZMZUKQtV1vKUnKX0xBhrZdm-I6eyblklazkjfhGeoUef6X1cg3eGLiMM-CfEXxQSBfoNM_TFMiLSh58hBwPTvE2ZrkKkV1ukV7iOYCG74Cl4Sx_BugAmu2ekt8E6j_TSphA3O-I9ebuCPuGHw3tOfiy_fl_cFHf317eLy7sCZMNzwY1tbS1qzmqFFjrBK9atOi45qroybWdFV0uBssVSYdVNA7dN2zWdqlXDlTwnn_d7NzH8HjFlPbhksJ8CwzAmLVnJSiUEY6-iQjXTHbxsqgn9dEDHbkCrN9ENELf6GOcEfNkDJoaUIq60cflvNDmC6zVnetednrrTx-70obtJLv-Rj_tf0dhe2_0-hTH6Kdj_Ky-zObJ-
CitedBy_id crossref_primary_10_1016_j_jece_2025_115660
crossref_primary_10_1016_j_molliq_2025_126869
crossref_primary_10_1016_j_chemosphere_2023_141028
crossref_primary_10_1002_cssc_202301916
crossref_primary_10_1016_j_mtsust_2023_100429
crossref_primary_10_1002_smll_202406723
crossref_primary_10_1016_j_molstruc_2025_142067
crossref_primary_10_1016_j_jssc_2023_124080
crossref_primary_10_1016_j_seppur_2024_129950
crossref_primary_10_1021_acsapm_4c03535
crossref_primary_10_1039_D3TA07691A
crossref_primary_10_3390_w16111588
crossref_primary_10_1016_j_jece_2024_114193
crossref_primary_10_1021_acsanm_5c00570
crossref_primary_10_1039_D4NR03204G
crossref_primary_10_1021_acs_langmuir_3c02041
crossref_primary_10_1016_j_chemosphere_2024_143354
crossref_primary_10_1016_j_mcat_2024_114127
crossref_primary_10_1016_j_jece_2024_114763
crossref_primary_10_1002_adma_202413118
crossref_primary_10_1039_D4QI01480D
crossref_primary_10_1021_acsomega_3c09869
crossref_primary_10_1039_D3RA04177H
crossref_primary_10_1002_cctc_202400920
crossref_primary_10_1021_acs_cgd_4c00701
crossref_primary_10_1021_acs_langmuir_4c03158
crossref_primary_10_1021_acs_langmuir_3c02215
crossref_primary_10_1016_j_polymer_2023_126592
crossref_primary_10_1021_acs_langmuir_3c03249
crossref_primary_10_1021_acs_jpcc_4c04602
crossref_primary_10_1016_j_molstruc_2024_140895
crossref_primary_10_1021_acs_langmuir_3c03961
crossref_primary_10_1021_acs_langmuir_4c01727
crossref_primary_10_1002_smll_202411199
crossref_primary_10_1021_acs_langmuir_4c01709
crossref_primary_10_1016_j_reactfunctpolym_2024_105844
crossref_primary_10_1016_j_jpcs_2024_112548
crossref_primary_10_3390_polym15234515
crossref_primary_10_1039_D3SC06004G
Cites_doi 10.1039/D0TA02582H
10.1021/acsmaterialslett.0c00065
10.1039/b921692h
10.1039/D2EN00135G
10.1002/adma.202101857
10.1016/j.mcat.2021.111835
10.1016/j.chempr.2020.11.024
10.1007/s13738-020-02057-z
10.1021/acsmaterialslett.0c00119
10.1002/slct.202003873
10.1021/acsami.9b07779
10.1016/j.ijhydene.2011.12.045
10.1039/D0TA00556H
10.1021/acs.langmuir.2c01442
10.1021/acs.est.0c05592
10.1038/s41598-022-06671-0
10.1002/cctc.201900486
10.1016/j.seppur.2020.116542
10.1039/C8TA05329D
10.1021/acs.cgd.0c01015
10.1021/acsami.0c13094
10.1007/s10854-020-04043-w
10.1016/j.cis.2019.102009
10.1021/acsami.8b03772
10.1039/D1SC01742J
10.1021/acs.chemrev.9b00550
10.1021/acsami.7b06968
10.1021/acs.langmuir.1c02873
10.1021/acs.chemrev.9b00797
10.1002/slct.202100540
10.1016/j.cej.2009.10.029
10.1038/s41598-020-72697-x
10.1021/acsnano.5b06373
10.1016/j.scitotenv.2010.08.061
10.1049/mnl.2018.5775
10.1039/D0TA04383D
10.1039/C9EE01935A
10.1039/C7CC09866A
10.1021/acs.langmuir.1c00823
10.1021/acsapm.1c00139
10.31635/ccschem.022.202201966
10.1039/D1RA00598G
10.1021/ja900612g
10.1021/acs.langmuir.1c01801
10.1039/C5CS00878F
10.1016/j.mcat.2021.112058
10.1021/acs.jpclett.8b02892
10.1016/j.ceja.2021.100150
10.1021/acsmaterialslett.1c00002
10.1021/acscatal.9b05470
10.1002/aenm.202003990
10.1002/cctc.201802024
10.1016/j.micromeso.2021.110929
10.1039/C7RA03855K
10.1021/jacs.0c00555
10.1039/C8CC07289B
10.1002/ejoc.202100173
10.1021/acsapm.9b00926
10.1007/s40242-022-1417-2
10.1016/j.mtchem.2022.100869
10.1021/acs.inorgchem.2c01939
10.1038/s41467-022-30663-3
10.3390/molecules27249045
10.1021/acsenergylett.7b01123
10.1039/C5CC02147B
10.1021/acs.inorgchem.1c03159
10.1021/acsami.9b07679
10.1021/acs.est.2c01682
10.1016/j.ccr.2021.214117
10.1021/acs.chemmater.8b04683
10.1039/C8TA10046B
10.1016/S0032-9592(98)00112-5
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acs.langmuir.2c03379
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 4081
ExternalDocumentID 36905363
10_1021_acs_langmuir_2c03379
d127846451
Genre Journal Article
GroupedDBID ---
-~X
.K2
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABQRX
ABUCX
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
YQT
~02
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
CITATION
CUPRZ
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a381t-1cd9d6261067edab2150bfb131e765c9bd2b632e39e47e5bb631d89b8b7678173
IEDL.DBID ACS
ISSN 0743-7463
1520-5827
IngestDate Fri Jul 11 01:50:17 EDT 2025
Fri Jul 11 09:49:01 EDT 2025
Mon Jul 21 05:31:40 EDT 2025
Tue Jul 01 03:28:22 EDT 2025
Thu Apr 24 23:02:15 EDT 2025
Thu Mar 23 04:15:36 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a381t-1cd9d6261067edab2150bfb131e765c9bd2b632e39e47e5bb631d89b8b7678173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6772-6058
0000-0002-5406-7927
0000-0002-4907-7418
0000-0003-3295-0281
PMID 36905363
PQID 2786101485
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_3040472200
proquest_miscellaneous_2786101485
pubmed_primary_36905363
crossref_citationtrail_10_1021_acs_langmuir_2c03379
crossref_primary_10_1021_acs_langmuir_2c03379
acs_journals_10_1021_acs_langmuir_2c03379
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-21
PublicationDateYYYYMMDD 2023-03-21
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
Pirooz M. (ref64/cit64) 2021; 8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref10/cit10
  doi: 10.1039/D0TA02582H
– ident: ref18/cit18
  doi: 10.1021/acsmaterialslett.0c00065
– ident: ref19/cit19
  doi: 10.1039/b921692h
– ident: ref17/cit17
  doi: 10.1039/D2EN00135G
– ident: ref51/cit51
  doi: 10.1002/adma.202101857
– ident: ref11/cit11
  doi: 10.1016/j.mcat.2021.111835
– ident: ref31/cit31
  doi: 10.1016/j.chempr.2020.11.024
– ident: ref3/cit3
  doi: 10.1007/s13738-020-02057-z
– ident: ref35/cit35
  doi: 10.1021/acsmaterialslett.0c00119
– ident: ref1/cit1
  doi: 10.1002/slct.202003873
– ident: ref39/cit39
  doi: 10.1021/acsami.9b07779
– ident: ref45/cit45
  doi: 10.1016/j.ijhydene.2011.12.045
– ident: ref15/cit15
  doi: 10.1039/D0TA00556H
– ident: ref42/cit42
  doi: 10.1021/acs.langmuir.2c01442
– ident: ref21/cit21
  doi: 10.1021/acs.est.0c05592
– ident: ref61/cit61
  doi: 10.1038/s41598-022-06671-0
– ident: ref9/cit9
  doi: 10.1002/cctc.201900486
– ident: ref8/cit8
  doi: 10.1016/j.seppur.2020.116542
– ident: ref48/cit48
  doi: 10.1039/C8TA05329D
– ident: ref26/cit26
  doi: 10.1021/acs.cgd.0c01015
– ident: ref25/cit25
  doi: 10.1021/acsami.0c13094
– ident: ref57/cit57
  doi: 10.1007/s10854-020-04043-w
– ident: ref20/cit20
  doi: 10.1016/j.cis.2019.102009
– ident: ref72/cit72
  doi: 10.1021/acsami.8b03772
– ident: ref6/cit6
  doi: 10.1039/D1SC01742J
– ident: ref36/cit36
  doi: 10.1021/acs.chemrev.9b00550
– ident: ref46/cit46
  doi: 10.1021/acsami.7b06968
– ident: ref14/cit14
  doi: 10.1021/acs.langmuir.1c02873
– ident: ref13/cit13
  doi: 10.1021/acs.chemrev.9b00797
– ident: ref4/cit4
  doi: 10.1002/slct.202100540
– ident: ref7/cit7
  doi: 10.1016/j.cej.2009.10.029
– ident: ref59/cit59
  doi: 10.1038/s41598-020-72697-x
– ident: ref66/cit66
  doi: 10.1021/acsnano.5b06373
– ident: ref5/cit5
  doi: 10.1016/j.scitotenv.2010.08.061
– ident: ref2/cit2
  doi: 10.1049/mnl.2018.5775
– ident: ref23/cit23
  doi: 10.1039/D0TA04383D
– ident: ref16/cit16
  doi: 10.1039/C9EE01935A
– ident: ref53/cit53
  doi: 10.1039/C7CC09866A
– ident: ref56/cit56
  doi: 10.1021/acs.langmuir.1c00823
– ident: ref71/cit71
  doi: 10.1021/acsapm.1c00139
– ident: ref68/cit68
  doi: 10.31635/ccschem.022.202201966
– ident: ref62/cit62
  doi: 10.1039/D1RA00598G
– ident: ref44/cit44
  doi: 10.1021/ja900612g
– ident: ref40/cit40
  doi: 10.1021/acs.langmuir.1c01801
– ident: ref50/cit50
  doi: 10.1039/C5CS00878F
– ident: ref30/cit30
  doi: 10.1016/j.mcat.2021.112058
– ident: ref55/cit55
  doi: 10.1021/acs.jpclett.8b02892
– volume: 8
  start-page: 100150
  year: 2021
  ident: ref64/cit64
  publication-title: Chem. Eng. J. Adv.
  doi: 10.1016/j.ceja.2021.100150
– ident: ref47/cit47
  doi: 10.1021/acsmaterialslett.1c00002
– ident: ref38/cit38
  doi: 10.1021/acscatal.9b05470
– ident: ref24/cit24
  doi: 10.1002/aenm.202003990
– ident: ref22/cit22
  doi: 10.1002/cctc.201802024
– ident: ref27/cit27
  doi: 10.1016/j.micromeso.2021.110929
– ident: ref58/cit58
  doi: 10.1039/C7RA03855K
– ident: ref37/cit37
  doi: 10.1021/jacs.0c00555
– ident: ref49/cit49
  doi: 10.1039/C8CC07289B
– ident: ref54/cit54
  doi: 10.1002/ejoc.202100173
– ident: ref65/cit65
  doi: 10.1021/acsapm.9b00926
– ident: ref67/cit67
  doi: 10.1007/s40242-022-1417-2
– ident: ref41/cit41
  doi: 10.1016/j.mtchem.2022.100869
– ident: ref12/cit12
  doi: 10.1021/acs.inorgchem.2c01939
– ident: ref32/cit32
  doi: 10.1038/s41467-022-30663-3
– ident: ref63/cit63
  doi: 10.3390/molecules27249045
– ident: ref33/cit33
  doi: 10.1021/acsenergylett.7b01123
– ident: ref52/cit52
  doi: 10.1039/C5CC02147B
– ident: ref70/cit70
  doi: 10.1021/acs.inorgchem.1c03159
– ident: ref69/cit69
  doi: 10.1021/acsami.9b07679
– ident: ref28/cit28
  doi: 10.1021/acs.est.2c01682
– ident: ref29/cit29
  doi: 10.1016/j.ccr.2021.214117
– ident: ref34/cit34
  doi: 10.1021/acs.chemmater.8b04683
– ident: ref43/cit43
  doi: 10.1039/C8TA10046B
– ident: ref60/cit60
  doi: 10.1016/S0032-9592(98)00112-5
SSID ssj0009349
Score 2.574243
Snippet Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4071
SubjectTerms adsorbents
adsorption
catalytic activity
green chemistry
health hazards
iodine
irradiation
light
methylene blue
photocatalysts
photolysis
remediation
schiff bases
solar energy
surface area
toxicity
vapors
wastewater treatment
water pollution
Title Covalent Organic Framework as a Metal-Free Photocatalyst for Dye Degradation and Radioactive Iodine Adsorption
URI http://dx.doi.org/10.1021/acs.langmuir.2c03379
https://www.ncbi.nlm.nih.gov/pubmed/36905363
https://www.proquest.com/docview/2786101485
https://www.proquest.com/docview/3040472200
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgOdBLKdDShRYZiQsHb9eexHaO1ZZVQWqLKCvtLfJr1QpI0CZ7WH494zxaUbRqOSayE9kez_f5Md8Q8h5XGBb4ImOGQ8oS0JJZkQDT3ideBSmNi9HIZ-fydJZ8nqfz24Xi3RN8wY-Mq0Zx7-7n6no5Em4MoLLH5ImQOI8jFZpc3orsQkt3o-ymSiT0oXIbvhIByVV_A9IGltmgzfQZuehjdtpLJt9Hq9qO3O9_JRwf2JAdst0RT3rcWspz8igUL8jTSZ_v7SUpJiVaHWIQbeMzHZ32F7eoqaihZwGJOpsuQ6Bfrsq6bHZ-1lVNkffSk3WgJ1F4os3RRE3h6Vfjr0vTOFT6qUSQDPTYV-Wy8VK7ZDb9-G1yyrpsDMwgqteMO595XP5EzbngjUWuMLYLy4EHJVOXWS-sBBEgC4kKqcUH7nVmtVUIiFzBHhkUZRH2CdWw4EqDWzRygBwL2ZBoZ0G7KE6jh-QDdlbezaYqbw7KBc_jy74H864HhwT64ctdJ2ses2v8uKcWu6n1q5X1uKf8u94ychyWeKhiilCuqlwoLWO-Y51uLgPoKaMo53g8JK9as7r5K8gM_aCE1__R5jdkK2a9j1fhBD8gg3q5CofIjWr7tpkQfwAFgAue
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZKOZRLy7OE8jASFw4OsWfX9h6jlCiFpkLQot5WfkVU0F2U3RzaX9_xPlKBFFU9rmV7_RjPfH7MN4R8wB2GBb7ImOGQsgS0ZFYkwLT3iVdBSuOiN_L8RM7Oki_n6fkWSXtfGGxEhTVVzSX-LbsA_xTT4hHe5epiORRuBKCyB-Qh4hERBXs8-XHLtQst6o3smyqR0HvMbagl2iVX_WuXNoDNxuhM98jPdXObtya_h6vaDt31f0yO9-7PY7LbwVA6buXmCdkKxVOyM-mjvz0jxaREGUSLRFtvTUen_TMuaipq6DwgbGfTZQj026-yLptzoKuqpoiC6eFVoIeRhqKN2ERN4el34y9K06hXelSiyQx07Kty2eis5-Rs-vl0MmNdbAZm0MbXjDufedwMRQa64I1F5DCyC8uBByVTl1kvrAQRIAuJCqnFD-51ZrVVaB65ghdkuyiL8JJQDQuuNLhFQw7IMZMNiXYWtItUNXpAPuJg5d3aqvLm2lzwPCb2I5h3Izgg0M9i7jqS8xhr488dpdi61N-W5OOO_O97AclxWuIViylCuapyobSM0Y91ujkPoN6MFJ2j0YDst9K1_ivIDLWihFf36PM7sjM7nR_nx0cnXw_II4EoLD6SE_w12a6Xq_AGUVNt3zZr5AYlmhP_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSNALb8ryNBIXDl7WmcR2jqtdohZoVQGVKi6RXxEVkFSb7KH8esZOsjykVQXHWLbjx3jms8f-hpCXuMMwwKucaQ4ZS0EJZpIUmHIuddILoW14jXx4JPZP0ren2elvob6wES3W1EYnfljV564aGAb465AejvG-r89W08TOAGR-lVwLnrsg3PPFx198u9Aj38DAKVMB46u5LbUE22TbP23TFsAZDU9xi3zeNDneN_k6XXdman_8xeb4X326TW4OcJTOe_m5Q674-i65sRijwN0j9aJBWUTLRPtXm5YW43Uuqluq6aFH-M6Klff0-EvTNfE86KLtKKJhurzwdBnoKPrITVTXjn7Q7qzRUc3SgwZNp6dz1zarqLvuk5PizafFPhtiNDCNtr5j3Lrc4aYoMNF5pw0iiJmpDAfupchsblxiBCQecp9Knxn84E7lRhmJZpJLeEB26qb2DwlVUHGpwFaRJJBjJuNTZQ0oGyhr1IS8wsEqhzXWltF9nvAyJI4jWA4jOCEwzmRpB7LzEHPj2yWl2KbUeU_2cUn-F6OQlDgtwdWia9-s2zKRSoQoyCrbngdQfwaqztlsQvZ6Cdv8FUSO2lHAo3_o83Ny_XhZlO8Pjt49JrsJgrFwVy7hT8hOt1r7pwieOvMsLpOf-P4Wgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+Organic+Framework+as+a+Metal-Free+Photocatalyst+for+Dye+Degradation+and+Radioactive+Iodine+Adsorption&rft.jtitle=Langmuir&rft.au=Ruidas%2C+Santu&rft.au=Chowdhury%2C+Avik&rft.au=Ghosh%2C+Anirban&rft.au=Ghosh%2C+Avik&rft.date=2023-03-21&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=39&rft.issue=11&rft.spage=4071&rft.epage=4081&rft_id=info:doi/10.1021%2Facs.langmuir.2c03379&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_langmuir_2c03379
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon