Theoretical Study on the Transition-Metal Oxoboryl Complex: M–BO Bonding Nature, Mechanism of the Formation Reaction, and Prediction of a New Oxoboryl Complex
The Pt–BO bonding nature and the formation reaction of the experimentally reported platinum(II) oxoboryl complex, simplified to PtBr(BO)(PMe3)2, were theoretically investigated with the density functional theory method. The BO– ligand was quantitatively demonstrated to have extremely strong σ-donati...
Saved in:
Published in | Inorganic chemistry Vol. 51; no. 8; pp. 4597 - 4605 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.04.2012
|
Online Access | Get full text |
Cover
Loading…
Abstract | The Pt–BO bonding nature and the formation reaction of the experimentally reported platinum(II) oxoboryl complex, simplified to PtBr(BO)(PMe3)2, were theoretically investigated with the density functional theory method. The BO– ligand was quantitatively demonstrated to have extremely strong σ-donation but very weak dπ-electron-accepting abilities. Therefore, it exhibits a strong trans influence. The formation reaction occurs through a four-center transition state, in which the Bδ+–Brδ− polarization and the Br → Si and O pπ → B pπ charge-transfer interactions play key roles. The Gibbs activation energy (ΔG°⧧) and Gibbs reaction energy (ΔG°) of the formation reaction are 32.2 and −6.1 kcal/mol, respectively. The electron-donating bulky phosphine ligand is found to be favorable for lowering both ΔG°⧧ and ΔG°. In addition, the metal effect is examined with the nickel and palladium analogues and MBrCl[BBr(OSiMe3)](CO)(PR3)2 (M = Ir and Rh). By a comparison of the ΔG°⧧ and ΔG° values, the M–BO (M = Ni, Pd, Ir, and Rh) bonding nature, and the interaction energy between [MBrCl(CO)(PR3)2]+ and BO– with those of the platinum system, MBrCl(BO)(CO)(PR3)2 (M = Ir and Rh) is predicted to be a good candidate for a stable oxoboryl complex. |
---|---|
AbstractList | The Pt–BO bonding nature and the formation reaction of the experimentally reported platinum(II) oxoboryl complex, simplified to PtBr(BO)(PMe3)2, were theoretically investigated with the density functional theory method. The BO– ligand was quantitatively demonstrated to have extremely strong σ-donation but very weak dπ-electron-accepting abilities. Therefore, it exhibits a strong trans influence. The formation reaction occurs through a four-center transition state, in which the Bδ+–Brδ− polarization and the Br → Si and O pπ → B pπ charge-transfer interactions play key roles. The Gibbs activation energy (ΔG°⧧) and Gibbs reaction energy (ΔG°) of the formation reaction are 32.2 and −6.1 kcal/mol, respectively. The electron-donating bulky phosphine ligand is found to be favorable for lowering both ΔG°⧧ and ΔG°. In addition, the metal effect is examined with the nickel and palladium analogues and MBrCl[BBr(OSiMe3)](CO)(PR3)2 (M = Ir and Rh). By a comparison of the ΔG°⧧ and ΔG° values, the M–BO (M = Ni, Pd, Ir, and Rh) bonding nature, and the interaction energy between [MBrCl(CO)(PR3)2]+ and BO– with those of the platinum system, MBrCl(BO)(CO)(PR3)2 (M = Ir and Rh) is predicted to be a good candidate for a stable oxoboryl complex. The Pt-BO bonding nature and the formation reaction of the experimentally reported platinum(II) oxoboryl complex, simplified to PtBr(BO)(PMe(3))(2), were theoretically investigated with the density functional theory method. The BO(-) ligand was quantitatively demonstrated to have extremely strong σ-donation but very weak d(π)-electron-accepting abilities. Therefore, it exhibits a strong trans influence. The formation reaction occurs through a four-center transition state, in which the B(δ+)-Br(δ-) polarization and the Br → Si and O p(π) → B p(π) charge-transfer interactions play key roles. The Gibbs activation energy (ΔG°(++)) and Gibbs reaction energy (ΔG°) of the formation reaction are 32.2 and -6.1 kcal/mol, respectively. The electron-donating bulky phosphine ligand is found to be favorable for lowering both ΔG°(++) and ΔG°. In addition, the metal effect is examined with the nickel and palladium analogues and MBrCl[BBr(OSiMe(3))](CO)(PR(3))(2) (M = Ir and Rh). By a comparison of the ΔG°(++) and ΔG° values, the M-BO (M = Ni, Pd, Ir, and Rh) bonding nature, and the interaction energy between [MBrCl(CO)(PR(3))(2)](+) and BO(-) with those of the platinum system, MBrCl(BO)(CO)(PR(3))(2) (M = Ir and Rh) is predicted to be a good candidate for a stable oxoboryl complex.The Pt-BO bonding nature and the formation reaction of the experimentally reported platinum(II) oxoboryl complex, simplified to PtBr(BO)(PMe(3))(2), were theoretically investigated with the density functional theory method. The BO(-) ligand was quantitatively demonstrated to have extremely strong σ-donation but very weak d(π)-electron-accepting abilities. Therefore, it exhibits a strong trans influence. The formation reaction occurs through a four-center transition state, in which the B(δ+)-Br(δ-) polarization and the Br → Si and O p(π) → B p(π) charge-transfer interactions play key roles. The Gibbs activation energy (ΔG°(++)) and Gibbs reaction energy (ΔG°) of the formation reaction are 32.2 and -6.1 kcal/mol, respectively. The electron-donating bulky phosphine ligand is found to be favorable for lowering both ΔG°(++) and ΔG°. In addition, the metal effect is examined with the nickel and palladium analogues and MBrCl[BBr(OSiMe(3))](CO)(PR(3))(2) (M = Ir and Rh). By a comparison of the ΔG°(++) and ΔG° values, the M-BO (M = Ni, Pd, Ir, and Rh) bonding nature, and the interaction energy between [MBrCl(CO)(PR(3))(2)](+) and BO(-) with those of the platinum system, MBrCl(BO)(CO)(PR(3))(2) (M = Ir and Rh) is predicted to be a good candidate for a stable oxoboryl complex. The Pt-BO bonding nature and the formation reaction of the experimentally reported platinum(II) oxoboryl complex, simplified to PtBr(BO)(PMe(3))(2), were theoretically investigated with the density functional theory method. The BO(-) ligand was quantitatively demonstrated to have extremely strong σ-donation but very weak d(π)-electron-accepting abilities. Therefore, it exhibits a strong trans influence. The formation reaction occurs through a four-center transition state, in which the B(δ+)-Br(δ-) polarization and the Br → Si and O p(π) → B p(π) charge-transfer interactions play key roles. The Gibbs activation energy (ΔG°(++)) and Gibbs reaction energy (ΔG°) of the formation reaction are 32.2 and -6.1 kcal/mol, respectively. The electron-donating bulky phosphine ligand is found to be favorable for lowering both ΔG°(++) and ΔG°. In addition, the metal effect is examined with the nickel and palladium analogues and MBrCl[BBr(OSiMe(3))](CO)(PR(3))(2) (M = Ir and Rh). By a comparison of the ΔG°(++) and ΔG° values, the M-BO (M = Ni, Pd, Ir, and Rh) bonding nature, and the interaction energy between [MBrCl(CO)(PR(3))(2)](+) and BO(-) with those of the platinum system, MBrCl(BO)(CO)(PR(3))(2) (M = Ir and Rh) is predicted to be a good candidate for a stable oxoboryl complex. |
Author | Zeng, Guixiang Sakaki, Shigeyoshi |
AuthorAffiliation | Kyoto University Fukui Institute for Fundamental Chemistry |
AuthorAffiliation_xml | – name: Fukui Institute for Fundamental Chemistry – name: Kyoto University |
Author_xml | – sequence: 1 givenname: Guixiang surname: Zeng fullname: Zeng, Guixiang – sequence: 2 givenname: Shigeyoshi surname: Sakaki fullname: Sakaki, Shigeyoshi email: sakaki@moleng.kyoto-u.ac.jp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22458310$$D View this record in MEDLINE/PubMed |
BookMark | eNptkcFO3DAQhq0KVJYth75A5UslkAh4kjibcCsrKEgsW5VF4hY59qRrlNhb2xHsjXfgBfpsfZJmd6GHltPMyN98lv7ZJVvGGiTkI7AjYDEcaxmzOC2K7h0ZAI9ZxIHdbZEBY30PWVbskF3v7xljRZJm78lOHKc8T4ANyK_ZHK3DoKVo6E3o1JJaQ8Mc6cwJ43XQ1kQTDP3r9NFW1i0bOrbtosHHEzr5_fR8OqWn1ihtftBrETqHh3SCci6M9i219Vp1bl0rVib6HYVcNYdUGEW_OVR6Pa9IQa_x4b9fPpDtWjQe917qkNyen83GF9HV9Ovl-MtVJJIcQgScIRejEUJSFwpFxdM8HUEKiWJCqpxnfT4KZIY8kwgV41DnkI6quooxr5JkSPY33oWzPzv0oWy1l9g0wqDtfAmMQZHlcW8ckk8vaFe1qMqF061wy_I11R443gDSWe8d1qXUYR1AcEI3vatc3a38e7d-4-CfjVfpW-znDSukL-9t50yfyxvcH28Jpdg |
CitedBy_id | crossref_primary_10_1021_om501280c crossref_primary_10_1021_cs401101m crossref_primary_10_1021_jacs_6b05742 crossref_primary_10_1002_ange_201310557 crossref_primary_10_1016_j_comptc_2017_03_015 crossref_primary_10_1021_acs_inorgchem_7b00096 crossref_primary_10_1021_acs_inorgchem_9b00537 crossref_primary_10_1021_ar400106u crossref_primary_10_1002_jcc_24752 crossref_primary_10_1021_acs_inorgchem_5b00943 crossref_primary_10_1016_j_cplett_2018_03_015 crossref_primary_10_1021_om5011758 crossref_primary_10_1021_acs_jpca_7b10482 crossref_primary_10_1021_acs_jpca_7b09103 crossref_primary_10_1021_ic502463y crossref_primary_10_1021_acscatal_5b01642 crossref_primary_10_1016_j_comptc_2018_08_004 crossref_primary_10_1021_ic402059b crossref_primary_10_1039_D2ME00007E crossref_primary_10_1002_anie_201306531 crossref_primary_10_1002_qua_25324 crossref_primary_10_1021_acs_inorgchem_5b01597 crossref_primary_10_1039_D3DT02649C crossref_primary_10_1002_anie_201310557 crossref_primary_10_1021_acs_jpca_8b10446 crossref_primary_10_1021_acs_jpca_1c06828 crossref_primary_10_1002_ange_201306531 crossref_primary_10_1016_j_ica_2013_04_043 crossref_primary_10_1039_C5RA01903F crossref_primary_10_1021_acs_organomet_9b00182 crossref_primary_10_1021_om4007505 crossref_primary_10_1021_acs_jpca_0c09196 |
Cites_doi | 10.1021/jp902780t 10.1063/1.456010 10.1002/anie.199103611 10.1002/anie.200502825 10.1002/anie.199210821 10.1021/ja00033a054 10.1021/ja8016889 10.1002/anie.200705459 10.1002/(SICI)1099-0682(199911)1999:11<1931::AID-EJIC1931>3.0.CO;2-D 10.1021/ja00405a054 10.1021/cr100133q 10.1063/1.464913 10.1002/anie.201002300 10.1021/jp908465b 10.1002/anie.197502321 10.1016/S0065-3055(08)60472-4 10.1126/science.277.5322.78 10.1016/0009-2614(93)80086-5 10.1021/om200096z 10.1021/ja00354a069 10.1021/ar00072a001 10.1002/anie.197502611 10.1021/jo970944f 10.1016/S0010-8545(98)00123-4 10.1126/science.214.4527.1343 10.1063/1.1671336 10.1002/anie.198103901 10.1103/PhysRevA.38.3098 10.1021/ja01293a005 10.1126/science.1186028 10.1021/j100023a009 10.1021/cr60322a004 10.1016/S0898-8838(08)60223-8 10.1002/anie.198816031 10.1103/PhysRevB.37.785 10.1063/1.438955 10.1021/ja0507564 10.1021/jp202829w 10.1063/1.1681075 10.1039/c0cc01802c 10.1002/(SICI)1096-987X(199608)17:11<1359::AID-JCC9>3.0.CO;2-L 10.1007/BF01114537 10.1021/cr00031a013 10.1016/S0010-8545(98)00130-1 10.1021/ja075932i 10.1002/anie.199010331 10.1016/0009-2614(89)87234-3 10.1021/ja026257+ 10.1021/ja071825c 10.1021/ja960876z 10.1021/jp972657l 10.1021/ja973295y 10.1007/978-3-642-85826-0 10.1126/science.1102209 10.1021/ic900285b 10.1016/S0277-5387(00)83067-3 10.1016/S0020-1693(00)92388-0 10.1002/(SICI)1521-3765(19980210)4:2<210::AID-CHEM210>3.0.CO;2-T 10.1021/ic101215v 10.1002/anie.199309851 10.1063/1.448975 10.1021/ic00295a019 10.1021/ic200749w |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical Society 2012 American Chemical Society |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society – notice: 2012 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/ic202499u |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-510X |
EndPage | 4605 |
ExternalDocumentID | 22458310 10_1021_ic202499u a835514492 |
Genre | Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 ROL RXW TAE TN5 TWZ UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -DZ -~X AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ~02 NPM 7X8 |
ID | FETCH-LOGICAL-a381t-150e5a77e13f9deab548471413d0acd856499d1c6e56ce1b051f8147bfb2e8b33 |
IEDL.DBID | ACS |
ISSN | 0020-1669 1520-510X |
IngestDate | Fri Jul 11 04:54:30 EDT 2025 Mon Jul 21 05:17:23 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Tue Jul 01 03:40:33 EDT 2025 Thu Aug 27 13:42:06 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | 2012 American Chemical Society |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a381t-150e5a77e13f9deab548471413d0acd856499d1c6e56ce1b051f8147bfb2e8b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22458310 |
PQID | 1001968241 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1001968241 pubmed_primary_22458310 crossref_citationtrail_10_1021_ic202499u crossref_primary_10_1021_ic202499u acs_journals_10_1021_ic202499u |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-04-16 |
PublicationDateYYYYMMDD | 2012-04-16 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Inorganic chemistry |
PublicationTitleAlternate | Inorg. Chem |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Lee C. (ref27/cit27b) 1988; 37 Dapprich S. (ref40/cit40c) 1995; 99 ref37/cit37c Tomasi J. (ref35/cit35b) 1994; 94 Mammen M. (ref38/cit38) 1998; 63 Fischer R. C. (ref1/cit1) 2010; 110 Scheschkewitz D. (ref7/cit7) 2008; 47 Krishnan R. (ref31/cit31) 1980; 72 Cowley A. H. (ref5/cit5d) 1983; 105 Jutzi P. (ref2/cit2a) 1975; 14 Sekiguchi A. (ref4/cit4) 2004; 105 Berndt A. (ref10/cit10) 1981; 20 Braunschweig H. (ref22/cit22b) 2008; 130 Andrae D. (ref32/cit32) 1990; 77 Ishikawa A. (ref37/cit37a) 2009; 48 Nöth H. (ref9/cit9c) 1988; 27 Power P. P. (ref12/cit12c) 1992; 198 Yoshifuji M. (ref5/cit5a) 1981; 103 Tokitoh N. (ref5/cit5b) 1997; 277 Fleischer R. (ref6/cit6c) 1998; 176 Wang Y. (ref14/cit14) 2007; 129 Ehlers A. W. (ref30/cit30) 1993; 208 Guseln'ikov L. E. (ref2/cit2b) 1979; 79 Petrie M. A. (ref11/cit11) 1990; 29 Ducati L. C. (ref17/cit17) 2009; 113 Eisch J. J. (ref8/cit8a) 1996; 39 Berndt A. (ref8/cit8b) 1993; 32 Kaufmann E. (ref15/cit15) 1988; 27 Moezzi A. (ref12/cit12a) 1992; 31 Vidovic D. (ref19/cit19) 2005; 127 Goldman A. S. (ref43/cit43a) 1996; 118 Braunschweig H. (ref22/cit22a) 2006; 45 Hay P. J. (ref28/cit28) 1985; 82 Ehlers A. W. (ref24/cit24) 1998; 4 West R. (ref3/cit3) 1981; 214 Lupinetti A. J. (ref43/cit43b) 1997; 101 Kuchta M. C. (ref2/cit2c) 1998; 176 Baba H. (ref40/cit40a) 1969; 50 Braunschweig H. (ref21/cit21b) 2010; 49 Ochi N. (ref41/cit41a) 2007; 129 Norman N. C. (ref2/cit2d) 1993; 12 Nöth H. (ref13/cit13) 1999 Zhou M. (ref16/cit16) 2002; 124 Braunschweig H. (ref20/cit20) 2010; 328 Miehlich B. (ref27/cit27c) 1989; 157 Kato S. (ref40/cit40b) 1974; 60 ref39/cit39 Tokitoh N. (ref5/cit5c) 1998; 120 Niedenzu K. (ref9/cit9a) 1965 Seppelt K. (ref6/cit6b) 1991; 30 Sakaba H. (ref41/cit41c) 2011; 30 Gonzalez C. (ref33/cit33) 1989; 90 Tsukamoto S. (ref34/cit34) 2011; 115 Becke A. D. (ref27/cit27a) 1988; 38 Ochi N. (ref41/cit41b) 2010; 114 Pohl S. (ref6/cit6a) 1975; 14 Couty M. (ref29/cit29) 1996; 17 Braunschweig H. (ref21/cit21a) 2010; 46 Zeng G. (ref37/cit37b) 2011; 50 Becke A. D. (ref26/cit26) 1993; 98 Scalmani G. (ref36/cit36) 2009; 238 Gong X. (ref25/cit25) 2010; 49 Moezzi A. (ref12/cit12b) 1992; 114 Paetzold P. (ref9/cit9b) 1987; 31 Kinney C. R. (ref18/cit18) 1936; 58 Fukui K. (ref35/cit35a) 1981; 14 |
References_xml | – volume: 113 start-page: 11693 year: 2009 ident: ref17/cit17 publication-title: J. Phys. Chem. A doi: 10.1021/jp902780t – volume: 90 start-page: 2154 year: 1989 ident: ref33/cit33 publication-title: J. Chem. Phys. doi: 10.1063/1.456010 – volume: 30 start-page: 361 year: 1991 ident: ref6/cit6b publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199103611 – volume: 45 start-page: 162 year: 2006 ident: ref22/cit22a publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200502825 – volume: 31 start-page: 8 year: 1992 ident: ref12/cit12a publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199210821 – volume: 114 start-page: 2715 year: 1992 ident: ref12/cit12b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00033a054 – volume: 130 start-page: 7974 year: 2008 ident: ref22/cit22b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8016889 – volume: 47 start-page: 1995 year: 2008 ident: ref7/cit7 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200705459 – start-page: 1931 year: 1999 ident: ref13/cit13 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/(SICI)1099-0682(199911)1999:11<1931::AID-EJIC1931>3.0.CO;2-D – volume: 103 start-page: 4587 year: 1981 ident: ref5/cit5a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00405a054 – volume: 110 start-page: 3877 year: 2010 ident: ref1/cit1 publication-title: Chem. Rev. doi: 10.1021/cr100133q – volume: 98 start-page: 5648 year: 1993 ident: ref26/cit26 publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 49 start-page: 5993 year: 2010 ident: ref21/cit21b publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201002300 – volume: 114 start-page: 659 year: 2010 ident: ref41/cit41b publication-title: J. Phys. Chem. A doi: 10.1021/jp908465b – volume: 14 start-page: 232 year: 1975 ident: ref2/cit2a publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.197502321 – volume: 39 start-page: 355 year: 1996 ident: ref8/cit8a publication-title: Adv. Organomet. Chem. doi: 10.1016/S0065-3055(08)60472-4 – volume: 277 start-page: 78 year: 1997 ident: ref5/cit5b publication-title: Science doi: 10.1126/science.277.5322.78 – volume: 208 start-page: 111 year: 1993 ident: ref30/cit30 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)80086-5 – volume: 30 start-page: 4515 year: 2011 ident: ref41/cit41c publication-title: Organometallics doi: 10.1021/om200096z – volume: 105 start-page: 5506 year: 1983 ident: ref5/cit5d publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00354a069 – volume: 14 start-page: 363 year: 1981 ident: ref35/cit35a publication-title: Acc. Chem. Res. doi: 10.1021/ar00072a001 – volume: 14 start-page: 261 year: 1975 ident: ref6/cit6a publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.197502611 – volume: 63 start-page: 3821 year: 1998 ident: ref38/cit38 publication-title: J. Org. Chem. doi: 10.1021/jo970944f – volume: 176 start-page: 323 year: 1998 ident: ref2/cit2c publication-title: Coord. Chem. Rev. doi: 10.1016/S0010-8545(98)00123-4 – volume: 214 start-page: 1343 year: 1981 ident: ref3/cit3 publication-title: Science doi: 10.1126/science.214.4527.1343 – volume: 50 start-page: 2078 year: 1969 ident: ref40/cit40a publication-title: J. Chem. Phys. doi: 10.1063/1.1671336 – volume: 20 start-page: 870 year: 1981 ident: ref10/cit10 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.198103901 – volume: 38 start-page: 3098 year: 1988 ident: ref27/cit27a publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.38.3098 – volume: 58 start-page: 197 year: 1936 ident: ref18/cit18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01293a005 – volume: 328 start-page: 345 year: 2010 ident: ref20/cit20 publication-title: Science doi: 10.1126/science.1186028 – volume: 99 start-page: 9352 year: 1995 ident: ref40/cit40c publication-title: J. Phys. Chem. doi: 10.1021/j100023a009 – volume: 79 start-page: 529 year: 1979 ident: ref2/cit2b publication-title: Chem. Rev. doi: 10.1021/cr60322a004 – volume: 31 start-page: 123 year: 1987 ident: ref9/cit9b publication-title: Adv. Inorg. Chem. doi: 10.1016/S0898-8838(08)60223-8 – volume: 27 start-page: 1603 year: 1988 ident: ref9/cit9c publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.198816031 – volume: 37 start-page: 785 year: 1988 ident: ref27/cit27b publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.785 – volume: 72 start-page: 650 year: 1980 ident: ref31/cit31 publication-title: J. Chem. Phys. doi: 10.1063/1.438955 – volume: 127 start-page: 4566 year: 2005 ident: ref19/cit19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0507564 – volume: 115 start-page: 8520 year: 2011 ident: ref34/cit34 publication-title: J. Phys. Chem. A doi: 10.1021/jp202829w – volume: 60 start-page: 572 year: 1974 ident: ref40/cit40b publication-title: J. Chem. Phys. doi: 10.1063/1.1681075 – volume: 46 start-page: 6473 year: 2010 ident: ref21/cit21a publication-title: Chem. Commun. doi: 10.1039/c0cc01802c – volume: 17 start-page: 1359 year: 1996 ident: ref29/cit29 publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(199608)17:11<1359::AID-JCC9>3.0.CO;2-L – volume: 77 start-page: 123 year: 1990 ident: ref32/cit32 publication-title: Theor. Chim. Acta doi: 10.1007/BF01114537 – volume: 94 start-page: 2027 year: 1994 ident: ref35/cit35b publication-title: Chem. Rev. doi: 10.1021/cr00031a013 – volume: 176 start-page: 431 year: 1998 ident: ref6/cit6c publication-title: Coord. Chem. Rev. doi: 10.1016/S0010-8545(98)00130-1 – volume: 129 start-page: 12412 year: 2007 ident: ref14/cit14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja075932i – volume: 29 start-page: 1033 year: 1990 ident: ref11/cit11 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199010331 – ident: ref37/cit37c – volume: 238 start-page: 342 year: 2009 ident: ref36/cit36 publication-title: Abs. Pap. Am. Chem. Soc. – volume: 157 start-page: 200 year: 1989 ident: ref27/cit27c publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(89)87234-3 – volume: 124 start-page: 12936 year: 2002 ident: ref16/cit16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja026257+ – volume: 129 start-page: 8615 year: 2007 ident: ref41/cit41a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja071825c – volume: 118 start-page: 12159 year: 1996 ident: ref43/cit43a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja960876z – volume: 101 start-page: 9551 year: 1997 ident: ref43/cit43b publication-title: J. Phys. Chem. A doi: 10.1021/jp972657l – volume: 120 start-page: 433 year: 1998 ident: ref5/cit5c publication-title: J. Am. Chem. Soc. doi: 10.1021/ja973295y – volume-title: Boron–Nitrogen Compounds year: 1965 ident: ref9/cit9a doi: 10.1007/978-3-642-85826-0 – volume: 105 start-page: 1755 year: 2004 ident: ref4/cit4 publication-title: Science doi: 10.1126/science.1102209 – ident: ref39/cit39 – volume: 48 start-page: 8154 year: 2009 ident: ref37/cit37a publication-title: Inorg. Chem. doi: 10.1021/ic900285b – volume: 12 start-page: 2431 year: 1993 ident: ref2/cit2d publication-title: Polyhedron doi: 10.1016/S0277-5387(00)83067-3 – volume: 198 start-page: 443 year: 1992 ident: ref12/cit12c publication-title: Inorg. Chim. Acta doi: 10.1016/S0020-1693(00)92388-0 – volume: 4 start-page: 210 year: 1998 ident: ref24/cit24 publication-title: Chem.—Eur. J. doi: 10.1002/(SICI)1521-3765(19980210)4:2<210::AID-CHEM210>3.0.CO;2-T – volume: 49 start-page: 10820 year: 2010 ident: ref25/cit25 publication-title: Inorg. Chem. doi: 10.1021/ic101215v – volume: 32 start-page: 985 year: 1993 ident: ref8/cit8b publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199309851 – volume: 82 start-page: 299 year: 1985 ident: ref28/cit28 publication-title: J. Chem. Phys. doi: 10.1063/1.448975 – volume: 27 start-page: 3987 year: 1988 ident: ref15/cit15 publication-title: Inorg. Chem. doi: 10.1021/ic00295a019 – volume: 50 start-page: 5290 year: 2011 ident: ref37/cit37b publication-title: Inorg. Chem. doi: 10.1021/ic200749w |
SSID | ssj0009346 |
Score | 2.2040849 |
Snippet | The Pt–BO bonding nature and the formation reaction of the experimentally reported platinum(II) oxoboryl complex, simplified to PtBr(BO)(PMe3)2, were... The Pt-BO bonding nature and the formation reaction of the experimentally reported platinum(II) oxoboryl complex, simplified to PtBr(BO)(PMe(3))(2), were... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4597 |
Title | Theoretical Study on the Transition-Metal Oxoboryl Complex: M–BO Bonding Nature, Mechanism of the Formation Reaction, and Prediction of a New Oxoboryl Complex |
URI | http://dx.doi.org/10.1021/ic202499u https://www.ncbi.nlm.nih.gov/pubmed/22458310 https://www.proquest.com/docview/1001968241 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcoAL78fyqIbHgUPTxk7iJNzKwqpC2hZBK_UW2c5YqtgmVXdXajnxH_gD_DZ-CWNnswW1hXMmtuUZ-_useQG8Ni7JBeWOz3eWRqmWJiplrKNCUqlzqsu4DgGyO2p7P_14kB2swKsrPPhSbB5a6cvalfNrcF2qIvcvrK3hl_PKukmXjePfQUKpsi8f9OevHnrs9G_ouYJPBlwZ3Yb3fXZOF07ydWM-Mxv228Vijf9a8h24teCVuNUZwl1YoeYe3Bj27dzuw8-985RF9NGDZ9g2yPQPA1yFyK1oTMzFcfe0Zcs4m6C_LCZ0-hbHv77_eLeLvgcxQx3uhGqg6zgmnzd8OD3C1oWhRn0qJH6mLmNiHXVT46cT7w8KH1hSI1-tF2Z5APujD3vD7WjRniHSDPOziKkkZTrPSSSurEkbfvww1DEq1rG2dZEp3oJaWEWZsiQMH39XiDQ3zkgqTJI8hNWmbegxYCkVkVelzeOU3_plUhtXWCddYmLn0gGssf6qxfGaVsFzLkW13OgBvOlVW9lFcXPfY2NymejLpehxV9HjMqEXvX1UrCfvRNENtXM_ta8oVDDxGcCjznCWwzAdynzjtif_W-5TuMnES3qvlFDPYHV2MqfnTG5mZi0Y92_DHvUB |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB5V5VAuvB_hUQwCiUO3rJ19InEogSilTYoglXpbbO9Yqgi7qJuIhhP_gRsn_gf_hl_C2Lub8CjiVInzWrblGc983pn5BuC-Mt2YY2zofoeBF0ihvFT40ksEpjLGPPVzlyA7igb7wYuD8GAFvrS1MLSJimaqXBB_yS7AHx1qYdnt0lmTQLmD8w_0PKuebD8jWT4Qov983Bt4TQcBT5InmnqEdjCUcYy8a9IcpSJ8TtaYDHfuS50nYUQz5lxHGEYauSINNQkPYmWUwETZn51k3s8Q6BH2YbfVe70k9O3WRUD2-cWjKG1Zi37eqvV4uvrV4_0Fxjp31j8P3xYH4bJY3m7OpmpTf_yNI_L_PKkLcK5B0WyrVvuLsILFJVjrtc3rLsPX8bJAk9lcyTkrC0Zglznn7PLUvCHSy4PtHZd0D-YTZk3jBI8fs-H3T5-f7jHbcZkcOxs57tMNNkRbJX1YvWOlcVP128JP9grr-pANJoucvTyy0S_3gUZKRo7kj1WuwP6pHNBVWC3KAq8DS0WEaDVIx36AigBXrkyijTBd5RsTdGCd5Jo1xqTKXJ6A4NlCsB142GpUphsqd9tRZHLS0HuLoe9r_pKTBt1t1TIjOdmQkSywnNmlLX9SQjCvA9dqfV1MQ-AvtG3qbvxru3dgbTAe7ma726Odm3CWIKew8Tge3YLV6dEMbxOsm6p1d78YvDltNf0BNFpXSQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELaqIgEX3o-lUAwCiUNTYm-eSBzaLauWstsKWqm3YMdjqWJJqmZX7XLiP3BH_BP-C7-kM06y5VHEqRLnWLZlz-NzZuYbxp5o240FxBb1Owy8QEntpdJXXiIhVTGY1DcuQXYYre8Gr_fCvTn2ta2FwU1UOFPlgvik1QfGNgwD4vl-LonhLp00SZSbMD3CJ1r1cmMN7_OplP1XO711r-ki4Cn0RmMPEQ-EKo5BdG1qQGnE6GiR0XgbX-UmCSOc0Yg8gjDKQWiUUpuIINZWS0g0_fBEE3-BwoP0uFvpvTsl9e3WhUD0BBNRlLbMRT9vlbxeXv3q9f4CZZ1L619l32eH4TJZPixPxno5__QbT-T_e1rX2JUGTfOVWvyvszkobrBLvbaJ3U32bee0UJNTzuSUlwVH0Mudk3b5at4A8AXCt45L1IfpiJOJHMHxCz748fnL6hanzsvo4PnQcaAu8QFQtfR-9ZGX1k3VbwtA-Vuo60SWuCoM3z6kKJj7gCMVR4fyxyq32O65HNBtNl-UBdxlPJURAElRHvsBaAReRtskt9J2tW9t0GGLeLdZY1SqzOULSJHNLrbDnrVSleUNpTt1FhmdNfTxbOhBzWNy1qBHrWhmeE8UOlIFlBNamniUEoR7HXanltnZNAgCQ2pXd-9f233ILm6v9bM3G8PNBXYZkaeksJyI7rP58eEEHiC6G-tFp2KcvT9vKT0Bhs1ZzA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Study+on+the+Transition-Metal+Oxoboryl+Complex%3A+M%E2%80%93BO+Bonding+Nature%2C+Mechanism+of+the+Formation+Reaction%2C+and+Prediction+of+a+New+Oxoboryl+Complex&rft.jtitle=Inorganic+chemistry&rft.au=Zeng%2C+Guixiang&rft.au=Sakaki%2C+Shigeyoshi&rft.date=2012-04-16&rft.pub=American+Chemical+Society&rft.issn=0020-1669&rft.eissn=1520-510X&rft.volume=51&rft.issue=8&rft.spage=4597&rft.epage=4605&rft_id=info:doi/10.1021%2Fic202499u&rft.externalDocID=a835514492 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon |