Theoretical Study on the Transition-Metal Oxoboryl Complex: M–BO Bonding Nature, Mechanism of the Formation Reaction, and Prediction of a New Oxoboryl Complex

The Pt–BO bonding nature and the formation reaction of the experimentally reported platinum(II) oxoboryl complex, simplified to PtBr(BO)(PMe3)2, were theoretically investigated with the density functional theory method. The BO– ligand was quantitatively demonstrated to have extremely strong σ-donati...

Full description

Saved in:
Bibliographic Details
Published inInorganic chemistry Vol. 51; no. 8; pp. 4597 - 4605
Main Authors Zeng, Guixiang, Sakaki, Shigeyoshi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.04.2012
Online AccessGet full text

Cover

Loading…
Abstract The Pt–BO bonding nature and the formation reaction of the experimentally reported platinum(II) oxoboryl complex, simplified to PtBr(BO)(PMe3)2, were theoretically investigated with the density functional theory method. The BO– ligand was quantitatively demonstrated to have extremely strong σ-donation but very weak dπ-electron-accepting abilities. Therefore, it exhibits a strong trans influence. The formation reaction occurs through a four-center transition state, in which the Bδ+–Brδ− polarization and the Br → Si and O pπ → B pπ charge-transfer interactions play key roles. The Gibbs activation energy (ΔG°⧧) and Gibbs reaction energy (ΔG°) of the formation reaction are 32.2 and −6.1 kcal/mol, respectively. The electron-donating bulky phosphine ligand is found to be favorable for lowering both ΔG°⧧ and ΔG°. In addition, the metal effect is examined with the nickel and palladium analogues and MBrCl[BBr(OSiMe3)](CO)(PR3)2 (M = Ir and Rh). By a comparison of the ΔG°⧧ and ΔG° values, the M–BO (M = Ni, Pd, Ir, and Rh) bonding nature, and the interaction energy between [MBrCl(CO)(PR3)2]+ and BO– with those of the platinum system, MBrCl(BO)(CO)(PR3)2 (M = Ir and Rh) is predicted to be a good candidate for a stable oxoboryl complex.
AbstractList The Pt–BO bonding nature and the formation reaction of the experimentally reported platinum(II) oxoboryl complex, simplified to PtBr(BO)(PMe3)2, were theoretically investigated with the density functional theory method. The BO– ligand was quantitatively demonstrated to have extremely strong σ-donation but very weak dπ-electron-accepting abilities. Therefore, it exhibits a strong trans influence. The formation reaction occurs through a four-center transition state, in which the Bδ+–Brδ− polarization and the Br → Si and O pπ → B pπ charge-transfer interactions play key roles. The Gibbs activation energy (ΔG°⧧) and Gibbs reaction energy (ΔG°) of the formation reaction are 32.2 and −6.1 kcal/mol, respectively. The electron-donating bulky phosphine ligand is found to be favorable for lowering both ΔG°⧧ and ΔG°. In addition, the metal effect is examined with the nickel and palladium analogues and MBrCl[BBr(OSiMe3)](CO)(PR3)2 (M = Ir and Rh). By a comparison of the ΔG°⧧ and ΔG° values, the M–BO (M = Ni, Pd, Ir, and Rh) bonding nature, and the interaction energy between [MBrCl(CO)(PR3)2]+ and BO– with those of the platinum system, MBrCl(BO)(CO)(PR3)2 (M = Ir and Rh) is predicted to be a good candidate for a stable oxoboryl complex.
The Pt-BO bonding nature and the formation reaction of the experimentally reported platinum(II) oxoboryl complex, simplified to PtBr(BO)(PMe(3))(2), were theoretically investigated with the density functional theory method. The BO(-) ligand was quantitatively demonstrated to have extremely strong σ-donation but very weak d(π)-electron-accepting abilities. Therefore, it exhibits a strong trans influence. The formation reaction occurs through a four-center transition state, in which the B(δ+)-Br(δ-) polarization and the Br → Si and O p(π) → B p(π) charge-transfer interactions play key roles. The Gibbs activation energy (ΔG°(++)) and Gibbs reaction energy (ΔG°) of the formation reaction are 32.2 and -6.1 kcal/mol, respectively. The electron-donating bulky phosphine ligand is found to be favorable for lowering both ΔG°(++) and ΔG°. In addition, the metal effect is examined with the nickel and palladium analogues and MBrCl[BBr(OSiMe(3))](CO)(PR(3))(2) (M = Ir and Rh). By a comparison of the ΔG°(++) and ΔG° values, the M-BO (M = Ni, Pd, Ir, and Rh) bonding nature, and the interaction energy between [MBrCl(CO)(PR(3))(2)](+) and BO(-) with those of the platinum system, MBrCl(BO)(CO)(PR(3))(2) (M = Ir and Rh) is predicted to be a good candidate for a stable oxoboryl complex.The Pt-BO bonding nature and the formation reaction of the experimentally reported platinum(II) oxoboryl complex, simplified to PtBr(BO)(PMe(3))(2), were theoretically investigated with the density functional theory method. The BO(-) ligand was quantitatively demonstrated to have extremely strong σ-donation but very weak d(π)-electron-accepting abilities. Therefore, it exhibits a strong trans influence. The formation reaction occurs through a four-center transition state, in which the B(δ+)-Br(δ-) polarization and the Br → Si and O p(π) → B p(π) charge-transfer interactions play key roles. The Gibbs activation energy (ΔG°(++)) and Gibbs reaction energy (ΔG°) of the formation reaction are 32.2 and -6.1 kcal/mol, respectively. The electron-donating bulky phosphine ligand is found to be favorable for lowering both ΔG°(++) and ΔG°. In addition, the metal effect is examined with the nickel and palladium analogues and MBrCl[BBr(OSiMe(3))](CO)(PR(3))(2) (M = Ir and Rh). By a comparison of the ΔG°(++) and ΔG° values, the M-BO (M = Ni, Pd, Ir, and Rh) bonding nature, and the interaction energy between [MBrCl(CO)(PR(3))(2)](+) and BO(-) with those of the platinum system, MBrCl(BO)(CO)(PR(3))(2) (M = Ir and Rh) is predicted to be a good candidate for a stable oxoboryl complex.
The Pt-BO bonding nature and the formation reaction of the experimentally reported platinum(II) oxoboryl complex, simplified to PtBr(BO)(PMe(3))(2), were theoretically investigated with the density functional theory method. The BO(-) ligand was quantitatively demonstrated to have extremely strong σ-donation but very weak d(π)-electron-accepting abilities. Therefore, it exhibits a strong trans influence. The formation reaction occurs through a four-center transition state, in which the B(δ+)-Br(δ-) polarization and the Br → Si and O p(π) → B p(π) charge-transfer interactions play key roles. The Gibbs activation energy (ΔG°(++)) and Gibbs reaction energy (ΔG°) of the formation reaction are 32.2 and -6.1 kcal/mol, respectively. The electron-donating bulky phosphine ligand is found to be favorable for lowering both ΔG°(++) and ΔG°. In addition, the metal effect is examined with the nickel and palladium analogues and MBrCl[BBr(OSiMe(3))](CO)(PR(3))(2) (M = Ir and Rh). By a comparison of the ΔG°(++) and ΔG° values, the M-BO (M = Ni, Pd, Ir, and Rh) bonding nature, and the interaction energy between [MBrCl(CO)(PR(3))(2)](+) and BO(-) with those of the platinum system, MBrCl(BO)(CO)(PR(3))(2) (M = Ir and Rh) is predicted to be a good candidate for a stable oxoboryl complex.
Author Zeng, Guixiang
Sakaki, Shigeyoshi
AuthorAffiliation Kyoto University
Fukui Institute for Fundamental Chemistry
AuthorAffiliation_xml – name: Fukui Institute for Fundamental Chemistry
– name: Kyoto University
Author_xml – sequence: 1
  givenname: Guixiang
  surname: Zeng
  fullname: Zeng, Guixiang
– sequence: 2
  givenname: Shigeyoshi
  surname: Sakaki
  fullname: Sakaki, Shigeyoshi
  email: sakaki@moleng.kyoto-u.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22458310$$D View this record in MEDLINE/PubMed
BookMark eNptkcFO3DAQhq0KVJYth75A5UslkAh4kjibcCsrKEgsW5VF4hY59qRrlNhb2xHsjXfgBfpsfZJmd6GHltPMyN98lv7ZJVvGGiTkI7AjYDEcaxmzOC2K7h0ZAI9ZxIHdbZEBY30PWVbskF3v7xljRZJm78lOHKc8T4ANyK_ZHK3DoKVo6E3o1JJaQ8Mc6cwJ43XQ1kQTDP3r9NFW1i0bOrbtosHHEzr5_fR8OqWn1ihtftBrETqHh3SCci6M9i219Vp1bl0rVib6HYVcNYdUGEW_OVR6Pa9IQa_x4b9fPpDtWjQe917qkNyen83GF9HV9Ovl-MtVJJIcQgScIRejEUJSFwpFxdM8HUEKiWJCqpxnfT4KZIY8kwgV41DnkI6quooxr5JkSPY33oWzPzv0oWy1l9g0wqDtfAmMQZHlcW8ckk8vaFe1qMqF061wy_I11R443gDSWe8d1qXUYR1AcEI3vatc3a38e7d-4-CfjVfpW-znDSukL-9t50yfyxvcH28Jpdg
CitedBy_id crossref_primary_10_1021_om501280c
crossref_primary_10_1021_cs401101m
crossref_primary_10_1021_jacs_6b05742
crossref_primary_10_1002_ange_201310557
crossref_primary_10_1016_j_comptc_2017_03_015
crossref_primary_10_1021_acs_inorgchem_7b00096
crossref_primary_10_1021_acs_inorgchem_9b00537
crossref_primary_10_1021_ar400106u
crossref_primary_10_1002_jcc_24752
crossref_primary_10_1021_acs_inorgchem_5b00943
crossref_primary_10_1016_j_cplett_2018_03_015
crossref_primary_10_1021_om5011758
crossref_primary_10_1021_acs_jpca_7b10482
crossref_primary_10_1021_acs_jpca_7b09103
crossref_primary_10_1021_ic502463y
crossref_primary_10_1021_acscatal_5b01642
crossref_primary_10_1016_j_comptc_2018_08_004
crossref_primary_10_1021_ic402059b
crossref_primary_10_1039_D2ME00007E
crossref_primary_10_1002_anie_201306531
crossref_primary_10_1002_qua_25324
crossref_primary_10_1021_acs_inorgchem_5b01597
crossref_primary_10_1039_D3DT02649C
crossref_primary_10_1002_anie_201310557
crossref_primary_10_1021_acs_jpca_8b10446
crossref_primary_10_1021_acs_jpca_1c06828
crossref_primary_10_1002_ange_201306531
crossref_primary_10_1016_j_ica_2013_04_043
crossref_primary_10_1039_C5RA01903F
crossref_primary_10_1021_acs_organomet_9b00182
crossref_primary_10_1021_om4007505
crossref_primary_10_1021_acs_jpca_0c09196
Cites_doi 10.1021/jp902780t
10.1063/1.456010
10.1002/anie.199103611
10.1002/anie.200502825
10.1002/anie.199210821
10.1021/ja00033a054
10.1021/ja8016889
10.1002/anie.200705459
10.1002/(SICI)1099-0682(199911)1999:11<1931::AID-EJIC1931>3.0.CO;2-D
10.1021/ja00405a054
10.1021/cr100133q
10.1063/1.464913
10.1002/anie.201002300
10.1021/jp908465b
10.1002/anie.197502321
10.1016/S0065-3055(08)60472-4
10.1126/science.277.5322.78
10.1016/0009-2614(93)80086-5
10.1021/om200096z
10.1021/ja00354a069
10.1021/ar00072a001
10.1002/anie.197502611
10.1021/jo970944f
10.1016/S0010-8545(98)00123-4
10.1126/science.214.4527.1343
10.1063/1.1671336
10.1002/anie.198103901
10.1103/PhysRevA.38.3098
10.1021/ja01293a005
10.1126/science.1186028
10.1021/j100023a009
10.1021/cr60322a004
10.1016/S0898-8838(08)60223-8
10.1002/anie.198816031
10.1103/PhysRevB.37.785
10.1063/1.438955
10.1021/ja0507564
10.1021/jp202829w
10.1063/1.1681075
10.1039/c0cc01802c
10.1002/(SICI)1096-987X(199608)17:11<1359::AID-JCC9>3.0.CO;2-L
10.1007/BF01114537
10.1021/cr00031a013
10.1016/S0010-8545(98)00130-1
10.1021/ja075932i
10.1002/anie.199010331
10.1016/0009-2614(89)87234-3
10.1021/ja026257+
10.1021/ja071825c
10.1021/ja960876z
10.1021/jp972657l
10.1021/ja973295y
10.1007/978-3-642-85826-0
10.1126/science.1102209
10.1021/ic900285b
10.1016/S0277-5387(00)83067-3
10.1016/S0020-1693(00)92388-0
10.1002/(SICI)1521-3765(19980210)4:2<210::AID-CHEM210>3.0.CO;2-T
10.1021/ic101215v
10.1002/anie.199309851
10.1063/1.448975
10.1021/ic00295a019
10.1021/ic200749w
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
2012 American Chemical Society
Copyright_xml – notice: Copyright © 2012 American Chemical Society
– notice: 2012 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/ic202499u
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-510X
EndPage 4605
ExternalDocumentID 22458310
10_1021_ic202499u
a835514492
Genre Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
ROL
RXW
TAE
TN5
TWZ
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-DZ
-~X
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
~02
NPM
7X8
ID FETCH-LOGICAL-a381t-150e5a77e13f9deab548471413d0acd856499d1c6e56ce1b051f8147bfb2e8b33
IEDL.DBID ACS
ISSN 0020-1669
1520-510X
IngestDate Fri Jul 11 04:54:30 EDT 2025
Mon Jul 21 05:17:23 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Tue Jul 01 03:40:33 EDT 2025
Thu Aug 27 13:42:06 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2012 American Chemical Society
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a381t-150e5a77e13f9deab548471413d0acd856499d1c6e56ce1b051f8147bfb2e8b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22458310
PQID 1001968241
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1001968241
pubmed_primary_22458310
crossref_citationtrail_10_1021_ic202499u
crossref_primary_10_1021_ic202499u
acs_journals_10_1021_ic202499u
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-04-16
PublicationDateYYYYMMDD 2012-04-16
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Inorganic chemistry
PublicationTitleAlternate Inorg. Chem
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Lee C. (ref27/cit27b) 1988; 37
Dapprich S. (ref40/cit40c) 1995; 99
ref37/cit37c
Tomasi J. (ref35/cit35b) 1994; 94
Mammen M. (ref38/cit38) 1998; 63
Fischer R. C. (ref1/cit1) 2010; 110
Scheschkewitz D. (ref7/cit7) 2008; 47
Krishnan R. (ref31/cit31) 1980; 72
Cowley A. H. (ref5/cit5d) 1983; 105
Jutzi P. (ref2/cit2a) 1975; 14
Sekiguchi A. (ref4/cit4) 2004; 105
Berndt A. (ref10/cit10) 1981; 20
Braunschweig H. (ref22/cit22b) 2008; 130
Andrae D. (ref32/cit32) 1990; 77
Ishikawa A. (ref37/cit37a) 2009; 48
Nöth H. (ref9/cit9c) 1988; 27
Power P. P. (ref12/cit12c) 1992; 198
Yoshifuji M. (ref5/cit5a) 1981; 103
Tokitoh N. (ref5/cit5b) 1997; 277
Fleischer R. (ref6/cit6c) 1998; 176
Wang Y. (ref14/cit14) 2007; 129
Ehlers A. W. (ref30/cit30) 1993; 208
Guseln'ikov L. E. (ref2/cit2b) 1979; 79
Petrie M. A. (ref11/cit11) 1990; 29
Ducati L. C. (ref17/cit17) 2009; 113
Eisch J. J. (ref8/cit8a) 1996; 39
Berndt A. (ref8/cit8b) 1993; 32
Kaufmann E. (ref15/cit15) 1988; 27
Moezzi A. (ref12/cit12a) 1992; 31
Vidovic D. (ref19/cit19) 2005; 127
Goldman A. S. (ref43/cit43a) 1996; 118
Braunschweig H. (ref22/cit22a) 2006; 45
Hay P. J. (ref28/cit28) 1985; 82
Ehlers A. W. (ref24/cit24) 1998; 4
West R. (ref3/cit3) 1981; 214
Lupinetti A. J. (ref43/cit43b) 1997; 101
Kuchta M. C. (ref2/cit2c) 1998; 176
Baba H. (ref40/cit40a) 1969; 50
Braunschweig H. (ref21/cit21b) 2010; 49
Ochi N. (ref41/cit41a) 2007; 129
Norman N. C. (ref2/cit2d) 1993; 12
Nöth H. (ref13/cit13) 1999
Zhou M. (ref16/cit16) 2002; 124
Braunschweig H. (ref20/cit20) 2010; 328
Miehlich B. (ref27/cit27c) 1989; 157
Kato S. (ref40/cit40b) 1974; 60
ref39/cit39
Tokitoh N. (ref5/cit5c) 1998; 120
Niedenzu K. (ref9/cit9a) 1965
Seppelt K. (ref6/cit6b) 1991; 30
Sakaba H. (ref41/cit41c) 2011; 30
Gonzalez C. (ref33/cit33) 1989; 90
Tsukamoto S. (ref34/cit34) 2011; 115
Becke A. D. (ref27/cit27a) 1988; 38
Ochi N. (ref41/cit41b) 2010; 114
Pohl S. (ref6/cit6a) 1975; 14
Couty M. (ref29/cit29) 1996; 17
Braunschweig H. (ref21/cit21a) 2010; 46
Zeng G. (ref37/cit37b) 2011; 50
Becke A. D. (ref26/cit26) 1993; 98
Scalmani G. (ref36/cit36) 2009; 238
Gong X. (ref25/cit25) 2010; 49
Moezzi A. (ref12/cit12b) 1992; 114
Paetzold P. (ref9/cit9b) 1987; 31
Kinney C. R. (ref18/cit18) 1936; 58
Fukui K. (ref35/cit35a) 1981; 14
References_xml – volume: 113
  start-page: 11693
  year: 2009
  ident: ref17/cit17
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp902780t
– volume: 90
  start-page: 2154
  year: 1989
  ident: ref33/cit33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456010
– volume: 30
  start-page: 361
  year: 1991
  ident: ref6/cit6b
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199103611
– volume: 45
  start-page: 162
  year: 2006
  ident: ref22/cit22a
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200502825
– volume: 31
  start-page: 8
  year: 1992
  ident: ref12/cit12a
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199210821
– volume: 114
  start-page: 2715
  year: 1992
  ident: ref12/cit12b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00033a054
– volume: 130
  start-page: 7974
  year: 2008
  ident: ref22/cit22b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8016889
– volume: 47
  start-page: 1995
  year: 2008
  ident: ref7/cit7
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200705459
– start-page: 1931
  year: 1999
  ident: ref13/cit13
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/(SICI)1099-0682(199911)1999:11<1931::AID-EJIC1931>3.0.CO;2-D
– volume: 103
  start-page: 4587
  year: 1981
  ident: ref5/cit5a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00405a054
– volume: 110
  start-page: 3877
  year: 2010
  ident: ref1/cit1
  publication-title: Chem. Rev.
  doi: 10.1021/cr100133q
– volume: 98
  start-page: 5648
  year: 1993
  ident: ref26/cit26
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 49
  start-page: 5993
  year: 2010
  ident: ref21/cit21b
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201002300
– volume: 114
  start-page: 659
  year: 2010
  ident: ref41/cit41b
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp908465b
– volume: 14
  start-page: 232
  year: 1975
  ident: ref2/cit2a
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.197502321
– volume: 39
  start-page: 355
  year: 1996
  ident: ref8/cit8a
  publication-title: Adv. Organomet. Chem.
  doi: 10.1016/S0065-3055(08)60472-4
– volume: 277
  start-page: 78
  year: 1997
  ident: ref5/cit5b
  publication-title: Science
  doi: 10.1126/science.277.5322.78
– volume: 208
  start-page: 111
  year: 1993
  ident: ref30/cit30
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)80086-5
– volume: 30
  start-page: 4515
  year: 2011
  ident: ref41/cit41c
  publication-title: Organometallics
  doi: 10.1021/om200096z
– volume: 105
  start-page: 5506
  year: 1983
  ident: ref5/cit5d
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00354a069
– volume: 14
  start-page: 363
  year: 1981
  ident: ref35/cit35a
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00072a001
– volume: 14
  start-page: 261
  year: 1975
  ident: ref6/cit6a
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.197502611
– volume: 63
  start-page: 3821
  year: 1998
  ident: ref38/cit38
  publication-title: J. Org. Chem.
  doi: 10.1021/jo970944f
– volume: 176
  start-page: 323
  year: 1998
  ident: ref2/cit2c
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/S0010-8545(98)00123-4
– volume: 214
  start-page: 1343
  year: 1981
  ident: ref3/cit3
  publication-title: Science
  doi: 10.1126/science.214.4527.1343
– volume: 50
  start-page: 2078
  year: 1969
  ident: ref40/cit40a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1671336
– volume: 20
  start-page: 870
  year: 1981
  ident: ref10/cit10
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.198103901
– volume: 38
  start-page: 3098
  year: 1988
  ident: ref27/cit27a
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.38.3098
– volume: 58
  start-page: 197
  year: 1936
  ident: ref18/cit18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01293a005
– volume: 328
  start-page: 345
  year: 2010
  ident: ref20/cit20
  publication-title: Science
  doi: 10.1126/science.1186028
– volume: 99
  start-page: 9352
  year: 1995
  ident: ref40/cit40c
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100023a009
– volume: 79
  start-page: 529
  year: 1979
  ident: ref2/cit2b
  publication-title: Chem. Rev.
  doi: 10.1021/cr60322a004
– volume: 31
  start-page: 123
  year: 1987
  ident: ref9/cit9b
  publication-title: Adv. Inorg. Chem.
  doi: 10.1016/S0898-8838(08)60223-8
– volume: 27
  start-page: 1603
  year: 1988
  ident: ref9/cit9c
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.198816031
– volume: 37
  start-page: 785
  year: 1988
  ident: ref27/cit27b
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.785
– volume: 72
  start-page: 650
  year: 1980
  ident: ref31/cit31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.438955
– volume: 127
  start-page: 4566
  year: 2005
  ident: ref19/cit19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0507564
– volume: 115
  start-page: 8520
  year: 2011
  ident: ref34/cit34
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp202829w
– volume: 60
  start-page: 572
  year: 1974
  ident: ref40/cit40b
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1681075
– volume: 46
  start-page: 6473
  year: 2010
  ident: ref21/cit21a
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc01802c
– volume: 17
  start-page: 1359
  year: 1996
  ident: ref29/cit29
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(199608)17:11<1359::AID-JCC9>3.0.CO;2-L
– volume: 77
  start-page: 123
  year: 1990
  ident: ref32/cit32
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF01114537
– volume: 94
  start-page: 2027
  year: 1994
  ident: ref35/cit35b
  publication-title: Chem. Rev.
  doi: 10.1021/cr00031a013
– volume: 176
  start-page: 431
  year: 1998
  ident: ref6/cit6c
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/S0010-8545(98)00130-1
– volume: 129
  start-page: 12412
  year: 2007
  ident: ref14/cit14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja075932i
– volume: 29
  start-page: 1033
  year: 1990
  ident: ref11/cit11
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199010331
– ident: ref37/cit37c
– volume: 238
  start-page: 342
  year: 2009
  ident: ref36/cit36
  publication-title: Abs. Pap. Am. Chem. Soc.
– volume: 157
  start-page: 200
  year: 1989
  ident: ref27/cit27c
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(89)87234-3
– volume: 124
  start-page: 12936
  year: 2002
  ident: ref16/cit16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja026257+
– volume: 129
  start-page: 8615
  year: 2007
  ident: ref41/cit41a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja071825c
– volume: 118
  start-page: 12159
  year: 1996
  ident: ref43/cit43a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja960876z
– volume: 101
  start-page: 9551
  year: 1997
  ident: ref43/cit43b
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp972657l
– volume: 120
  start-page: 433
  year: 1998
  ident: ref5/cit5c
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja973295y
– volume-title: Boron–Nitrogen Compounds
  year: 1965
  ident: ref9/cit9a
  doi: 10.1007/978-3-642-85826-0
– volume: 105
  start-page: 1755
  year: 2004
  ident: ref4/cit4
  publication-title: Science
  doi: 10.1126/science.1102209
– ident: ref39/cit39
– volume: 48
  start-page: 8154
  year: 2009
  ident: ref37/cit37a
  publication-title: Inorg. Chem.
  doi: 10.1021/ic900285b
– volume: 12
  start-page: 2431
  year: 1993
  ident: ref2/cit2d
  publication-title: Polyhedron
  doi: 10.1016/S0277-5387(00)83067-3
– volume: 198
  start-page: 443
  year: 1992
  ident: ref12/cit12c
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/S0020-1693(00)92388-0
– volume: 4
  start-page: 210
  year: 1998
  ident: ref24/cit24
  publication-title: Chem.—Eur. J.
  doi: 10.1002/(SICI)1521-3765(19980210)4:2<210::AID-CHEM210>3.0.CO;2-T
– volume: 49
  start-page: 10820
  year: 2010
  ident: ref25/cit25
  publication-title: Inorg. Chem.
  doi: 10.1021/ic101215v
– volume: 32
  start-page: 985
  year: 1993
  ident: ref8/cit8b
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199309851
– volume: 82
  start-page: 299
  year: 1985
  ident: ref28/cit28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448975
– volume: 27
  start-page: 3987
  year: 1988
  ident: ref15/cit15
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00295a019
– volume: 50
  start-page: 5290
  year: 2011
  ident: ref37/cit37b
  publication-title: Inorg. Chem.
  doi: 10.1021/ic200749w
SSID ssj0009346
Score 2.2040849
Snippet The Pt–BO bonding nature and the formation reaction of the experimentally reported platinum(II) oxoboryl complex, simplified to PtBr(BO)(PMe3)2, were...
The Pt-BO bonding nature and the formation reaction of the experimentally reported platinum(II) oxoboryl complex, simplified to PtBr(BO)(PMe(3))(2), were...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4597
Title Theoretical Study on the Transition-Metal Oxoboryl Complex: M–BO Bonding Nature, Mechanism of the Formation Reaction, and Prediction of a New Oxoboryl Complex
URI http://dx.doi.org/10.1021/ic202499u
https://www.ncbi.nlm.nih.gov/pubmed/22458310
https://www.proquest.com/docview/1001968241
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcoAL78fyqIbHgUPTxk7iJNzKwqpC2hZBK_UW2c5YqtgmVXdXajnxH_gD_DZ-CWNnswW1hXMmtuUZ-_useQG8Ni7JBeWOz3eWRqmWJiplrKNCUqlzqsu4DgGyO2p7P_14kB2swKsrPPhSbB5a6cvalfNrcF2qIvcvrK3hl_PKukmXjePfQUKpsi8f9OevHnrs9G_ouYJPBlwZ3Yb3fXZOF07ydWM-Mxv228Vijf9a8h24teCVuNUZwl1YoeYe3Bj27dzuw8-985RF9NGDZ9g2yPQPA1yFyK1oTMzFcfe0Zcs4m6C_LCZ0-hbHv77_eLeLvgcxQx3uhGqg6zgmnzd8OD3C1oWhRn0qJH6mLmNiHXVT46cT7w8KH1hSI1-tF2Z5APujD3vD7WjRniHSDPOziKkkZTrPSSSurEkbfvww1DEq1rG2dZEp3oJaWEWZsiQMH39XiDQ3zkgqTJI8hNWmbegxYCkVkVelzeOU3_plUhtXWCddYmLn0gGssf6qxfGaVsFzLkW13OgBvOlVW9lFcXPfY2NymejLpehxV9HjMqEXvX1UrCfvRNENtXM_ta8oVDDxGcCjznCWwzAdynzjtif_W-5TuMnES3qvlFDPYHV2MqfnTG5mZi0Y92_DHvUB
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB5V5VAuvB_hUQwCiUO3rJ19InEogSilTYoglXpbbO9Yqgi7qJuIhhP_gRsn_gf_hl_C2Lub8CjiVInzWrblGc983pn5BuC-Mt2YY2zofoeBF0ihvFT40ksEpjLGPPVzlyA7igb7wYuD8GAFvrS1MLSJimaqXBB_yS7AHx1qYdnt0lmTQLmD8w_0PKuebD8jWT4Qov983Bt4TQcBT5InmnqEdjCUcYy8a9IcpSJ8TtaYDHfuS50nYUQz5lxHGEYauSINNQkPYmWUwETZn51k3s8Q6BH2YbfVe70k9O3WRUD2-cWjKG1Zi37eqvV4uvrV4_0Fxjp31j8P3xYH4bJY3m7OpmpTf_yNI_L_PKkLcK5B0WyrVvuLsILFJVjrtc3rLsPX8bJAk9lcyTkrC0Zglznn7PLUvCHSy4PtHZd0D-YTZk3jBI8fs-H3T5-f7jHbcZkcOxs57tMNNkRbJX1YvWOlcVP128JP9grr-pANJoucvTyy0S_3gUZKRo7kj1WuwP6pHNBVWC3KAq8DS0WEaDVIx36AigBXrkyijTBd5RsTdGCd5Jo1xqTKXJ6A4NlCsB142GpUphsqd9tRZHLS0HuLoe9r_pKTBt1t1TIjOdmQkSywnNmlLX9SQjCvA9dqfV1MQ-AvtG3qbvxru3dgbTAe7ma726Odm3CWIKew8Tge3YLV6dEMbxOsm6p1d78YvDltNf0BNFpXSQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELaqIgEX3o-lUAwCiUNTYm-eSBzaLauWstsKWqm3YMdjqWJJqmZX7XLiP3BH_BP-C7-kM06y5VHEqRLnWLZlz-NzZuYbxp5o240FxBb1Owy8QEntpdJXXiIhVTGY1DcuQXYYre8Gr_fCvTn2ta2FwU1UOFPlgvik1QfGNgwD4vl-LonhLp00SZSbMD3CJ1r1cmMN7_OplP1XO711r-ki4Cn0RmMPEQ-EKo5BdG1qQGnE6GiR0XgbX-UmCSOc0Yg8gjDKQWiUUpuIINZWS0g0_fBEE3-BwoP0uFvpvTsl9e3WhUD0BBNRlLbMRT9vlbxeXv3q9f4CZZ1L619l32eH4TJZPixPxno5__QbT-T_e1rX2JUGTfOVWvyvszkobrBLvbaJ3U32bee0UJNTzuSUlwVH0Mudk3b5at4A8AXCt45L1IfpiJOJHMHxCz748fnL6hanzsvo4PnQcaAu8QFQtfR-9ZGX1k3VbwtA-Vuo60SWuCoM3z6kKJj7gCMVR4fyxyq32O65HNBtNl-UBdxlPJURAElRHvsBaAReRtskt9J2tW9t0GGLeLdZY1SqzOULSJHNLrbDnrVSleUNpTt1FhmdNfTxbOhBzWNy1qBHrWhmeE8UOlIFlBNamniUEoR7HXanltnZNAgCQ2pXd-9f233ILm6v9bM3G8PNBXYZkaeksJyI7rP58eEEHiC6G-tFp2KcvT9vKT0Bhs1ZzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Study+on+the+Transition-Metal+Oxoboryl+Complex%3A+M%E2%80%93BO+Bonding+Nature%2C+Mechanism+of+the+Formation+Reaction%2C+and+Prediction+of+a+New+Oxoboryl+Complex&rft.jtitle=Inorganic+chemistry&rft.au=Zeng%2C+Guixiang&rft.au=Sakaki%2C+Shigeyoshi&rft.date=2012-04-16&rft.pub=American+Chemical+Society&rft.issn=0020-1669&rft.eissn=1520-510X&rft.volume=51&rft.issue=8&rft.spage=4597&rft.epage=4605&rft_id=info:doi/10.1021%2Fic202499u&rft.externalDocID=a835514492
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon