Infiltrating monocytes drive cardiac dysfunction in a cardiomyocyte-restricted mouse model of SARS-CoV-2 infection

Heart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in coronavirus disease 2019 (COVID-19) patients. It remains unclear if cardiac disease is driven by primary infection of the heart or immune re...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 98; no. 9; p. e0117924
Main Authors Dmytrenko, Oleksandr, Das, Shibali, Kovacs, Attila, Cicka, Markus, Liu, Meizi, Scheaffer, Suzanne M., Bredemeyer, Andrea, Mack, Matthias, Diamond, Michael S., Lavine, Kory J.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 17.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in coronavirus disease 2019 (COVID-19) patients. It remains unclear if cardiac disease is driven by primary infection of the heart or immune response to the virus. SARS-CoV-2 is capable of entering contractile cells of the heart in a culture dish. However, it remains unclear how such infection affects the function of the heart in the body. Here, we designed a mouse in which only heart muscle cells can be infected with a SARS-CoV-2 strain to study cardiac infection in isolation from other organ systems. In our model, infected mice show viral infection, worse function, and accumulation of immune cells in the heart. A subset of immune cells facilitates such worsening heart function. As this model shows features similar to those observed in patients, it may be useful for understanding the heart disease that occurs as a part of COVID-19.
AbstractList Cardiovascular manifestations of coronavirus disease 2019 (COVID-19) include myocardial injury, heart failure, and myocarditis and are associated with long-term disability and mortality. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antigens are found in the myocardium of COVID-19 patients, and human cardiomyocytes are susceptible to infection in cell or organoid cultures. While these observations raise the possibility that cardiomyocyte infection may contribute to the cardiac sequelae of COVID-19, a causal relationship between cardiomyocyte infection and myocardial dysfunction and pathology has not been established. Here, we generated a mouse model of cardiomyocyte-restricted infection by selectively expressing human angiotensin-converting enzyme 2 (hACE2), the SARS-CoV-2 receptor, in cardiomyocytes. Inoculation of mice with an ancestral, non-mouse-adapted strain of SARS-CoV-2 resulted in viral replication within the heart, accumulation of macrophages, and moderate left ventricular (LV) systolic dysfunction. Cardiac pathology in this model was transient and resolved with viral clearance. Blockade of monocyte trafficking reduced macrophage accumulation, suppressed the development of LV systolic dysfunction, and promoted viral clearance in the heart. These findings establish a mouse model of SARS-CoV-2 cardiomyocyte infection that recapitulates features of cardiac dysfunctions of COVID-19 and suggests that both viral replication and resultant innate immune responses contribute to cardiac pathology.IMPORTANCEHeart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in coronavirus disease 2019 (COVID-19) patients. It remains unclear if cardiac disease is driven by primary infection of the heart or immune response to the virus. SARS-CoV-2 is capable of entering contractile cells of the heart in a culture dish. However, it remains unclear how such infection affects the function of the heart in the body. Here, we designed a mouse in which only heart muscle cells can be infected with a SARS-CoV-2 strain to study cardiac infection in isolation from other organ systems. In our model, infected mice show viral infection, worse function, and accumulation of immune cells in the heart. A subset of immune cells facilitates such worsening heart function. As this model shows features similar to those observed in patients, it may be useful for understanding the heart disease that occurs as a part of COVID-19.
Cardiovascular manifestations of coronavirus disease 2019 (COVID-19) include myocardial injury, heart failure, and myocarditis and are associated with long-term disability and mortality. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antigens are found in the myocardium of COVID-19 patients, and human cardiomyocytes are susceptible to infection in cell or organoid cultures. While these observations raise the possibility that cardiomyocyte infection may contribute to the cardiac sequelae of COVID-19, a causal relationship between cardiomyocyte infection and myocardial dysfunction and pathology has not been established. Here, we generated a mouse model of cardiomyocyte-restricted infection by selectively expressing human angiotensin-converting enzyme 2 (hACE2), the SARS-CoV-2 receptor, in cardiomyocytes. Inoculation of Myh6-Cre Rosa26loxP-STOP-loxP-hACE2 mice with an ancestral, non-mouse-adapted strain of SARS-CoV-2 resulted in viral replication within the heart, accumulation of macrophages, and moderate left ventricular (LV) systolic dysfunction. Cardiac pathology in this model was transient and resolved with viral clearance. Blockade of monocyte trafficking reduced macrophage accumulation, suppressed the development of LV systolic dysfunction, and promoted viral clearance in the heart. These findings establish a mouse model of SARS-CoV-2 cardiomyocyte infection that recapitulates features of cardiac dysfunctions of COVID-19 and suggests that both viral replication and resultant innate immune responses contribute to cardiac pathology.IMPORTANCEHeart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in coronavirus disease 2019 (COVID-19) patients. It remains unclear if cardiac disease is driven by primary infection of the heart or immune response to the virus. SARS-CoV-2 is capable of entering contractile cells of the heart in a culture dish. However, it remains unclear how such infection affects the function of the heart in the body. Here, we designed a mouse in which only heart muscle cells can be infected with a SARS-CoV-2 strain to study cardiac infection in isolation from other organ systems. In our model, infected mice show viral infection, worse function, and accumulation of immune cells in the heart. A subset of immune cells facilitates such worsening heart function. As this model shows features similar to those observed in patients, it may be useful for understanding the heart disease that occurs as a part of COVID-19.
Heart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in coronavirus disease 2019 (COVID-19) patients. It remains unclear if cardiac disease is driven by primary infection of the heart or immune response to the virus. SARS-CoV-2 is capable of entering contractile cells of the heart in a culture dish. However, it remains unclear how such infection affects the function of the heart in the body. Here, we designed a mouse in which only heart muscle cells can be infected with a SARS-CoV-2 strain to study cardiac infection in isolation from other organ systems. In our model, infected mice show viral infection, worse function, and accumulation of immune cells in the heart. A subset of immune cells facilitates such worsening heart function. As this model shows features similar to those observed in patients, it may be useful for understanding the heart disease that occurs as a part of COVID-19.
Cardiovascular manifestations of coronavirus disease 2019 (COVID-19) include myocardial injury, heart failure, and myocarditis and are associated with long-term disability and mortality. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antigens are found in the myocardium of COVID-19 patients, and human cardiomyocytes are susceptible to infection in cell or organoid cultures. While these observations raise the possibility that cardiomyocyte infection may contribute to the cardiac sequelae of COVID-19, a causal relationship between cardiomyocyte infection and myocardial dysfunction and pathology has not been established. Here, we generated a mouse model of cardiomyocyte-restricted infection by selectively expressing human angiotensin-converting enzyme 2 (hACE2), the SARS-CoV-2 receptor, in cardiomyocytes. Inoculation of Myh6-Cre Rosa26 loxP-STOP-loxP-hACE2 mice with an ancestral, non-mouse-adapted strain of SARS-CoV-2 resulted in viral replication within the heart, accumulation of macrophages, and moderate left ventricular (LV) systolic dysfunction. Cardiac pathology in this model was transient and resolved with viral clearance. Blockade of monocyte trafficking reduced macrophage accumulation, suppressed the development of LV systolic dysfunction, and promoted viral clearance in the heart. These findings establish a mouse model of SARS-CoV-2 cardiomyocyte infection that recapitulates features of cardiac dysfunctions of COVID-19 and suggests that both viral replication and resultant innate immune responses contribute to cardiac pathology.
Cardiovascular manifestations of coronavirus disease 2019 (COVID-19) include myocardial injury, heart failure, and myocarditis and are associated with long-term disability and mortality. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antigens are found in the myocardium of COVID-19 patients, and human cardiomyocytes are susceptible to infection in cell or organoid cultures. While these observations raise the possibility that cardiomyocyte infection may contribute to the cardiac sequelae of COVID-19, a causal relationship between cardiomyocyte infection and myocardial dysfunction and pathology has not been established. Here, we generated a mouse model of cardiomyocyte-restricted infection by selectively expressing human angiotensin-converting enzyme 2 (hACE2), the SARS-CoV-2 receptor, in cardiomyocytes. Inoculation of Myh6-Cre Rosa26loxP-STOP-loxP-hACE2 mice with an ancestral, non-mouse-adapted strain of SARS-CoV-2 resulted in viral replication within the heart, accumulation of macrophages, and moderate left ventricular (LV) systolic dysfunction. Cardiac pathology in this model was transient and resolved with viral clearance. Blockade of monocyte trafficking reduced macrophage accumulation, suppressed the development of LV systolic dysfunction, and promoted viral clearance in the heart. These findings establish a mouse model of SARS-CoV-2 cardiomyocyte infection that recapitulates features of cardiac dysfunctions of COVID-19 and suggests that both viral replication and resultant innate immune responses contribute to cardiac pathology.IMPORTANCEHeart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in coronavirus disease 2019 (COVID-19) patients. It remains unclear if cardiac disease is driven by primary infection of the heart or immune response to the virus. SARS-CoV-2 is capable of entering contractile cells of the heart in a culture dish. However, it remains unclear how such infection affects the function of the heart in the body. Here, we designed a mouse in which only heart muscle cells can be infected with a SARS-CoV-2 strain to study cardiac infection in isolation from other organ systems. In our model, infected mice show viral infection, worse function, and accumulation of immune cells in the heart. A subset of immune cells facilitates such worsening heart function. As this model shows features similar to those observed in patients, it may be useful for understanding the heart disease that occurs as a part of COVID-19.Cardiovascular manifestations of coronavirus disease 2019 (COVID-19) include myocardial injury, heart failure, and myocarditis and are associated with long-term disability and mortality. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antigens are found in the myocardium of COVID-19 patients, and human cardiomyocytes are susceptible to infection in cell or organoid cultures. While these observations raise the possibility that cardiomyocyte infection may contribute to the cardiac sequelae of COVID-19, a causal relationship between cardiomyocyte infection and myocardial dysfunction and pathology has not been established. Here, we generated a mouse model of cardiomyocyte-restricted infection by selectively expressing human angiotensin-converting enzyme 2 (hACE2), the SARS-CoV-2 receptor, in cardiomyocytes. Inoculation of Myh6-Cre Rosa26loxP-STOP-loxP-hACE2 mice with an ancestral, non-mouse-adapted strain of SARS-CoV-2 resulted in viral replication within the heart, accumulation of macrophages, and moderate left ventricular (LV) systolic dysfunction. Cardiac pathology in this model was transient and resolved with viral clearance. Blockade of monocyte trafficking reduced macrophage accumulation, suppressed the development of LV systolic dysfunction, and promoted viral clearance in the heart. These findings establish a mouse model of SARS-CoV-2 cardiomyocyte infection that recapitulates features of cardiac dysfunctions of COVID-19 and suggests that both viral replication and resultant innate immune responses contribute to cardiac pathology.IMPORTANCEHeart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in coronavirus disease 2019 (COVID-19) patients. It remains unclear if cardiac disease is driven by primary infection of the heart or immune response to the virus. SARS-CoV-2 is capable of entering contractile cells of the heart in a culture dish. However, it remains unclear how such infection affects the function of the heart in the body. Here, we designed a mouse in which only heart muscle cells can be infected with a SARS-CoV-2 strain to study cardiac infection in isolation from other organ systems. In our model, infected mice show viral infection, worse function, and accumulation of immune cells in the heart. A subset of immune cells facilitates such worsening heart function. As this model shows features similar to those observed in patients, it may be useful for understanding the heart disease that occurs as a part of COVID-19.
Author Bredemeyer, Andrea
Diamond, Michael S.
Dmytrenko, Oleksandr
Liu, Meizi
Das, Shibali
Kovacs, Attila
Cicka, Markus
Lavine, Kory J.
Mack, Matthias
Scheaffer, Suzanne M.
Author_xml – sequence: 1
  givenname: Oleksandr
  orcidid: 0000-0003-2659-2086
  surname: Dmytrenko
  fullname: Dmytrenko, Oleksandr
– sequence: 2
  givenname: Shibali
  surname: Das
  fullname: Das, Shibali
– sequence: 3
  givenname: Attila
  surname: Kovacs
  fullname: Kovacs, Attila
– sequence: 4
  givenname: Markus
  surname: Cicka
  fullname: Cicka, Markus
– sequence: 5
  givenname: Meizi
  surname: Liu
  fullname: Liu, Meizi
– sequence: 6
  givenname: Suzanne M.
  surname: Scheaffer
  fullname: Scheaffer, Suzanne M.
– sequence: 7
  givenname: Andrea
  surname: Bredemeyer
  fullname: Bredemeyer, Andrea
– sequence: 8
  givenname: Matthias
  surname: Mack
  fullname: Mack, Matthias
– sequence: 9
  givenname: Michael S.
  orcidid: 0000-0002-8791-3165
  surname: Diamond
  fullname: Diamond, Michael S.
– sequence: 10
  givenname: Kory J.
  orcidid: 0000-0003-1948-9945
  surname: Lavine
  fullname: Lavine, Kory J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39207134$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9rFDEYhoNU7LZ68yxztODUfElmZ3KSsvijUCi0WnoLmeRLzTKT1GRmYf97091aVPSSHPJ8D9-b94gchBiQkNdATwFY93698acUoJU1E8_IAqjs6qYBcUAWlDJWN7y7PSRHOa8pBSGW4gU55JLRFrhYkHQenB-mpCcf7qoxhmi2E-bKJr_ByuhkvTaV3WY3BzP5GCofKr1_iON2R9cJ85S8mdAWw5yxnBaHKrrq-uzqul7Fm5qVOYc7w0vy3Okh46vH-5h8-_Tx6-pLfXH5-Xx1dlFr3sFUA8W-73hDl92S2bI6h4Zzx51oaGtNSzXtBEKjNWsNd1abXkrhJPLeIDeWH5MPe-_93I9oDYYSc1D3yY86bVXUXv35Evx3dRc3CkDQpWSiGN4-GlL8MZeQavTZ4DDogCWn4lTKVnbAoKAne1Tnkal1nFMo2RRQ9VCSKiWpXUlqp33z-2JPG_1qpQDv9oBJMeeE7gn5j4_9hRs_6YevLrH88O-hnw5lsQs
CitedBy_id crossref_primary_10_1007_s11936_025_01079_1
crossref_primary_10_1080_15476286_2024_2432729
crossref_primary_10_3390_v17010098
Cites_doi 10.1161/CIRCRESAHA.122.321050
10.1016/j.jacbts.2021.01.002
10.1016/j.cell.2022.03.037
10.1038/s41392-021-00704-2
10.1093/eurheartj/ehaa190
10.1001/jamacardio.2020.3557
10.1038/s41385-020-00340-z
10.1016/j.cell.2020.08.026
10.1016/S0140-6736(20)30912-0
10.1016/j.ijantimicag.2020.106024
10.1038/s41591-021-01283-z
10.1016/j.cell.2020.09.050
10.1073/pnas.2009799117
10.1111/bph.15143
10.1016/j.cell.2020.05.027
10.1038/s41586-022-04630-3
10.1038/s41586-020-2342-5
10.1001/jamacardio.2020.1286
10.1038/s41379-021-00790-1
10.1093/cvr/cvab322
10.1161/CIRCRESAHA.118.314028
10.1093/nar/gkv007
10.4049/jimmunol.166.7.4697
10.1001/jamacardio.2021.2065
10.3390/ijms22168889
10.1093/eurheartj/ehaa664
10.1038/s42003-021-02453-y
10.1016/j.carpath.2021.107361
10.1016/j.cell.2020.06.011
10.1038/s41586-021-03720-y
10.1038/s41586-022-04702-4
10.1089/vim.2006.19.133
10.1093/ehjacc/zuab009
10.1016/j.jacc.2018.08.2149
10.1371/journal.pgen.0030161
10.1001/jamacardio.2020.3551
10.1093/bioinformatics/btt656
10.1042/BSR20200833
10.3791/60015
10.1101/2022.09.20.508614
10.1016/j.xcrm.2020.100052
10.1093/infdis/jiaa753
10.1093/nar/gkv412
10.1093/cvr/cvaa267
10.1128/JVI.01511-21
10.1007/s15010-020-01424-5
10.1038/s41586-020-2708-8
10.1016/B978-0-12-801364-9.00025-0
10.1016/j.stemcr.2021.02.008
10.1016/0378-1119(89)90209-6
10.1093/bioinformatics/bts356
10.1016/j.cell.2020.02.052
10.1016/j.immuni.2013.11.019
10.1038/s41579-020-00459-7
10.1038/s41586-022-04802-1
10.1186/1471-2105-10-161
10.1038/s41590-020-0778-2
10.1161/CIRCULATIONAHA.120.047971
10.1038/nmeth.4197
10.1016/j.jacbts.2022.09.001
10.1038/nm.2354
10.1093/cvr/cvac113
10.1128/JVI.01368-21
10.1126/science.abd4585
10.7554/eLife.73522
10.1093/bioinformatics/bts635
10.1126/science.368.6489.356
10.1038/s41591-018-0059-x
10.1016/j.virol.2020.05.015
ContentType Journal Article
Copyright Copyright © 2024 American Society for Microbiology.
Copyright © 2024 American Society for Microbiology. 2024 American Society for Microbiology.
Copyright_xml – notice: Copyright © 2024 American Society for Microbiology.
– notice: Copyright © 2024 American Society for Microbiology. 2024 American Society for Microbiology.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1128/jvi.01179-24
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
Editor Liu, Shan-Lu
Editor_xml – sequence: 1
  givenname: Shan-Lu
  surname: Liu
  fullname: Liu, Shan-Lu
ExternalDocumentID PMC11406924
jvi01179-24
39207134
10_1128_jvi_01179_24
Genre Journal Article
GrantInformation_xml – fundername: Burroughs Wellcome Fund (BWF)
  grantid: 1014782
– fundername: NIH HHS
  grantid: S10 OD028597
– fundername: HHS | National Institutes of Health (NIH)
  grantid: AI157155
– fundername: Children's Discovery Institute (CDI)
  grantid: PM-LI-2019-829
– fundername: NHLBI NIH HHS
  grantid: R35 HL161185
– fundername: NIAID NIH HHS
  grantid: R01 AI157155
– fundername: Fondation Leducq (Leducq Foundation)
  grantid: 20CVD02
– fundername: NHLBI NIH HHS
  grantid: R01 HL151078
– fundername: NHLBI NIH HHS
  grantid: R01 HL150891
– fundername: HHS | National Institutes of Health (NIH)
  grantid: HL161185, HL150891, HL151078
– fundername: ;
  grantid: PM-LI-2019-829
– fundername: ;
  grantid: 20CVD02
– fundername: ;
  grantid: HL161185, HL150891, HL151078
– fundername: ;
  grantid: 1014782
– fundername: ;
  grantid: AI157155
GroupedDBID ---
-~X
0R~
18M
29L
2WC
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAGFI
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
E3Z
EBS
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
N9A
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-a381t-10ebb83506862d01431533f3f4507dc70a084e15aa27c3fdacb994f9e3bce3cd3
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 18:37:05 EDT 2025
Thu Jul 10 22:38:32 EDT 2025
Thu Mar 20 01:45:58 EDT 2025
Mon Jul 21 05:43:51 EDT 2025
Thu Apr 24 22:52:16 EDT 2025
Tue Aug 05 12:00:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords ACE2
SARS-CoV-2
murine model
myocarditis
heart
cardiomyocyte
Language English
License All Rights Reserved. https://doi.org/10.1128/ASMCopyrightv2
All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a381t-10ebb83506862d01431533f3f4507dc70a084e15aa27c3fdacb994f9e3bce3cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
M.S.D. is a consultant for the Advisory Board for Inbios, Vir Biotechnology, IntegerBio, GlaxoSmithKline, Akagera Medicines, Merck, and Moderna. The Diamond laboratory has received unrelated funding support in sponsored research agreements from Vir Biotechnology, Emergent BioSolutions, IntegerBio, and Moderna. K.J.L. is a consultant for Implicit Biosciences and Flame Biosciences, is a member of the Medtronic: DT-PAS/APOGEE trial advisory board, and has received funding and unrelated sponsored research agreements from Amgen and Novartis. All other authors have reported that they have no funding and connections relevant to the subject of the manuscript to disclose.
Michael S. Diamond and Kory J. Lavine are joint senior authors.
ORCID 0000-0003-2659-2086
0000-0002-8791-3165
0000-0003-1948-9945
PMID 39207134
PQID 3099798121
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11406924
proquest_miscellaneous_3099798121
asm2_journals_10_1128_jvi_01179_24
pubmed_primary_39207134
crossref_primary_10_1128_jvi_01179_24
crossref_citationtrail_10_1128_jvi_01179_24
PublicationCentury 2000
PublicationDate 2024-09-17
PublicationDateYYYYMMDD 2024-09-17
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAbbrev J Virol
PublicationTitleAlternate J Virol
PublicationYear 2024
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_5_27_2
e_1_3_5_25_2
e_1_3_5_23_2
e_1_3_5_21_2
e_1_3_5_44_2
e_1_3_5_65_2
e_1_3_5_46_2
e_1_3_5_67_2
e_1_3_5_48_2
e_1_3_5_69_2
e_1_3_5_29_2
e_1_3_5_40_2
e_1_3_5_61_2
e_1_3_5_42_2
e_1_3_5_63_2
e_1_3_5_7_2
e_1_3_5_9_2
e_1_3_5_3_2
e_1_3_5_5_2
e_1_3_5_39_2
e_1_3_5_16_2
e_1_3_5_37_2
e_1_3_5_14_2
e_1_3_5_12_2
e_1_3_5_35_2
e_1_3_5_10_2
e_1_3_5_33_2
e_1_3_5_54_2
e_1_3_5_56_2
e_1_3_5_58_2
e_1_3_5_18_2
e_1_3_5_50_2
e_1_3_5_52_2
e_1_3_5_31_2
e_1_3_5_28_2
e_1_3_5_26_2
e_1_3_5_24_2
e_1_3_5_22_2
e_1_3_5_43_2
e_1_3_5_66_2
e_1_3_5_45_2
e_1_3_5_68_2
e_1_3_5_47_2
e_1_3_5_49_2
e_1_3_5_2_2
e_1_3_5_60_2
e_1_3_5_62_2
e_1_3_5_41_2
e_1_3_5_64_2
e_1_3_5_8_2
e_1_3_5_20_2
e_1_3_5_4_2
e_1_3_5_6_2
e_1_3_5_17_2
e_1_3_5_38_2
e_1_3_5_15_2
e_1_3_5_36_2
e_1_3_5_13_2
e_1_3_5_34_2
e_1_3_5_11_2
e_1_3_5_32_2
e_1_3_5_55_2
e_1_3_5_57_2
e_1_3_5_59_2
e_1_3_5_19_2
e_1_3_5_70_2
e_1_3_5_51_2
e_1_3_5_53_2
e_1_3_5_30_2
Bailey, AL, Dmytrenko, O, Greenberg, L, Bredemeyer, AL, Ma, P, Liu, J, Penna, V, Winkler, ES, Sviben, S, Brooks, E (B14) 2021; 6
Rochette, L, Dogon, G, Zeller, M, Cottin, Y, Vergely, C (B40) 2021; 22
Bräuninger, H, Stoffers, B, Fitzek, ADE, Meißner, K, Aleshcheva, G, Schweizer, M, Weimann, J, Rotter, B, Warnke, S, Edler, C, Braun, F, Roedl, K, Scherschel, K, Escher, F, Kluge, S, Huber, TB, Ondruschka, B, Schultheiss, H-P, Kirchhof, P, Blankenberg, S, Püschel, K, Westermann, D, Lindner, D (B37) 2022; 118
Ritchie, ME, Phipson, B, Wu, D, Hu, Y, Law, CW, Shi, W, Smyth, GK (B66) 2015; 43
Zeng, J-H, Liu, Y-X, Yuan, J, Wang, F-X, Wu, W-B, Li, J-X, Wang, L-F, Gao, H, Wang, Y, Dong, C-F, Li, Y-J, Xie, X-J, Feng, C, Liu, L (B11) 2020; 48
Bojkova, D, Wagner, JUG, Shumliakivska, M, Aslan, GS, Saleem, U, Hansen, A, Luxán, G, Günther, S, Pham, MD, Krishnan, J, Harter, PN, Ermel, UH, Frangakis, AS, Milting, H, Zeiher, AM, Klingel, K, Cinatl, J, Dendorfer, A, Eschenhagen, T, Tschöpe, C, Ciesek, S, Dimmeler, S (B16) 2020; 116
Brumback, BD, Dmytrenko, O, Robinson, AN, Bailey, AL, Ma, P, Liu, J, Hicks, SC, Ng, S, Li, G, Zhang, DM, Lipovsky, CE, Lin, C-Y, Diamond, MS, Lavine, KJ, Rentschler, SL (B59) 2023; 8
Hu, B, Guo, H, Zhou, P, Shi, Z-L (B1) 2021; 19
Imai, M, Iwatsuki-Horimoto, K, Hatta, M, Loeber, S, Halfmann, PJ, Nakajima, N, Watanabe, T, Ujie, M, Takahashi, K, Ito, M (B34) 2020; 117
Doyen, D, Moceri, P, Ducreux, D, Dellamonica, J (B12) 2020; 395
Marchiano, S, Hsiang, T-Y, Khanna, A, Higashi, T, Whitmore, LS, Bargehr, J, Davaapil, H, Chang, J, Smith, E, Ong, LP, Colzani, M, Reinecke, H, Yang, X, Pabon, L, Sinha, S, Najafian, B, Sniadecki, NJ, Bertero, A, Gale, M, Murry, CE (B21) 2021; 16
Junqueira, C, Crespo, Â, Ranjbar, S, de Lacerda, LB, Lewandrowski, M, Ingber, J, Parry, B, Ravid, S, Clark, S, Schrimpf, MR (B54) 2022; 606
Kempf, T, Zarbock, A, Widera, C, Butz, S, Stadtmann, A, Rossaint, J, Bolomini-Vittori, M, Korf-Klingebiel, M, Napp, LC, Hansen, B, Kanwischer, A, Bavendiek, U, Beutel, G, Hapke, M, Sauer, MG, Laudanna, C, Hogg, N, Vestweber, D, Wollert, KC (B42) 2011; 17
Daniels, CJ, Rajpal, S, Greenshields, JT, Rosenthal, GL, Chung, EH, Terrin, M, Jeudy, J, Mattson, SE, Law, IH, Borchers, J (B50) 2021; 6
Fox, SE, Falgout, L, Vander Heide, RS (B52) 2021; 54
Leek, JT, Storey, JD (B68) 2007; 3
Sefik, E, Qu, R, Junqueira, C, Kaffe, E, Mirza, H, Zhao, J, Brewer, JR, Han, A, Steach, HR, Israelow, B, Blackburn, HN, Velazquez, SE, Chen, YG, Halene, S, Iwasaki, A, Meffre, E, Nussenzweig, M, Lieberman, J, Wilen, CB, Kluger, Y, Flavell, RA (B53) 2022; 606
Jun-ichi, M, Satoshi, T, Kimi, A, Fumi, T, Akira, T, Kiyoshi, T, Ken-ichi, Y (B57) 1989; 79
Wong, L-YR, Zheng, J, Wilhelmsen, K, Li, K, Ortiz, ME, Schnicker, NJ, Thurman, A, Pezzulo, AA, Szachowicz, PJ, Li, P, Pan, R, Klumpp, K, Aswad, F, Rebo, J, Narumiya, S, Murakami, M, Zuniga, S, Sola, I, Enjuanes, L, Meyerholz, DK, Fortney, K, McCray, PB, Perlman, S (B32) 2022; 605
Wadman, M, Couzin-Frankel, J, Kaiser, J, Matacic, C (B4) 2020; 368
Bastard, P, Rosen, LB, Zhang, Q, Michailidis, E, Hoffmann, H-H, Zhang, Y, Dorgham, K, Philippot, Q, Rosain, J, Béziat, V (B44) 2020; 370
Leist, SR, Dinnon, KH, Schäfer, A, Tse, LV, Okuda, K, Hou, YJ, West, A, Edwards, CE, Sanders, W, Fritch, EJ, Gully, KL, Scobey, T, Brown, AJ, Sheahan, TP, Moorman, NJ, Boucher, RC, Gralinski, LE, Montgomery, SA, Baric, RS (B30) 2020; 183
Luo, W, Friedman, MS, Shedden, K, Hankenson, KD, Woolf, PJ (B69) 2009; 10
Epelman, S, Lavine, KJ, Beaudin, AE, Sojka, DK, Carrero, JA, Calderon, B, Brija, T, Gautier, EL, Ivanov, S, Satpathy, AT, Schilling, JD, Schwendener, R, Sergin, I, Razani, B, Forsberg, EC, Yokoyama, WM, Unanue, ER, Colonna, M, Randolph, GJ, Mann, DL (B45) 2014; 40
Navaratnarajah, CK, Pease, DR, Halfmann, PJ, Taye, B, Barkhymer, A, Howell, KG, Charlesworth, JE, Christensen, TA, Kawaoka, Y, Cattaneo, R, Schneider, JW (B20) 2021; 95
Ying, B, Scheaffer, SM, Whitener, B, Liang, C-Y, Dmytrenko, O, Mackin, S, Wu, K, Lee, D, Avena, LE, Chong, Z (B27) 2022; 185
Hu, H, Ma, F, Wei, X, Fang, Y (B49) 2021; 42
Bajpai, G, Bredemeyer, A, Li, W, Zaitsev, K, Koenig, AL, Lokshina, I, Mohan, J, Ivey, B, Hsiao, H-M, Weinheimer, C, Kovacs, A, Epelman, S, Artyomov, M, Kreisel, D, Lavine, KJ (B47) 2019; 124
Madjid, M, Safavi-Naeini, P, Solomon, SD, Vardeny, O (B9) 2020; 5
Turner, AJ (B58) 2015
Bajpai, G, Schneider, C, Wong, N, Bredemeyer, A, Hulsmans, M, Nahrendorf, M, Epelman, S, Kreisel, D, Liu, Y, Itoh, A, Shankar, TS, Selzman, CH, Drakos, SG, Lavine, KJ (B46) 2018; 24
Winkler, ES, Chen, RE, Alam, F, Yildiz, S, Case, JB, Uccellini, MB, Holtzman, MJ, Garcia-Sastre, A, Schotsaert, M, Diamond, MS (B29) 2022; 96
Bearse, M, Hung, YP, Krauson, AJ, Bonanno, L, Boyraz, B, Harris, CK, Helland, TL, Hilburn, CF, Hutchison, B, Jobbagy, S, Marshall, MS, Shepherd, DJ, Villalba, JA, Delfino, I, Mendez-Pena, J, Chebib, I, Newton-Cheh, C, Stone, JR (B6) 2021; 34
Basso, C, Leone, O, Rizzo, S, De Gaspari, M, van der Wal, AC, Aubry, M-C, Bois, MC, Lin, PT, Maleszewski, JJ, Stone, JR (B5) 2020; 41
Wu, P, Deng, G, Sai, X, Guo, H, Huang, H, Zhu, P (B56) 2021; 41
Nalbandian, A, Sehgal, K, Gupta, A, Madhavan, MV, McGroder, C, Stevens, JS, Cook, JR, Nordvig, AS, Shalev, D, Sehrawat, TS (B13) 2021; 27
Dinnon, KH, Leist, SR, Schäfer, A, Edwards, CE, Martinez, DR, Montgomery, SA, West, A, Yount, BL, Hou, YJ, Adams, LE, Gully, KL, Brown, AJ, Huang, E, Bryant, MD, Choong, IC, Glenn, JS, Gralinski, LE, Sheahan, TP, Baric, RS (B31) 2020; 586
Winkler, ES, Bailey, AL, Kafai, NM, Nair, S, McCune, BT, Yu, J, Fox, JM, Chen, RE, Earnest, JT, Keeler, SP, Ritter, JH, Kang, L-I, Dort, S, Robichaud, A, Head, R, Holtzman, MJ, Diamond, MS (B38) 2020; 21
Hassan, AO, Case, JB, Winkler, ES, Thackray, LB, Kafai, NM, Bailey, AL, McCune, BT, Fox, JM, Chen, RE, Alsoussi, WB, Turner, JS, Schmitz, AJ, Lei, T, Shrihari, S, Keeler, SP, Fremont, DH, Greco, S, McCray, PB, Perlman, S, Holtzman, MJ, Ellebedy, AH, Diamond, MS (B24) 2020; 182
Rizzo, G, Gropper, J, Piollet, M, Vafadarnejad, E, Rizakou, A, Bandi, SR, Arampatzi, P, Krammer, T, DiFabion, N, Dietrich, O, Arias-Loza, A-P, Prinz, M, Mack, M, Schlepckow, K, Haass, C, Silvestre, J-S, Zernecke, A, Saliba, A-E, Cochain, C (B41) 2023; 119
Tam, PE (B51) 2006; 19
Szekely, Y, Lichter, Y, Taieb, P, Banai, A, Hochstadt, A, Merdler, I, Gal Oz, A, Rothschild, E, Baruch, G, Peri, Y, Arbel, Y, Topilsky, Y (B3) 2020; 142
Hassan, AO, Kafai, NM, Dmitriev, IP, Fox, JM, Smith, BK, Harvey, IB, Chen, RE, Winkler, ES, Wessel, AW, Case, JB (B25) 2020; 183
Lavine, KJ, Pinto, AR, Epelman, S, Kopecky, BJ, Clemente-Casares, X, Godwin, J, Rosenthal, N, Kovacic, JC (B39) 2018; 72
Puntmann, VO, Carerj, ML, Wieters, I, Fahim, M, Arendt, C, Hoffmann, J, Shchendrygina, A, Escher, F, Vasa-Nicotera, M, Zeiher, AM, Vehreschild, M, Nagel, E (B10) 2020; 5
Rizvi, ZA, Dalal, R, Sadhu, S, Binayke, A, Dandotiya, J, Kumar, Y, Shrivastava, T, Gupta, SK, Aggarwal, S, Tripathy, MR, Rathore, DK, Yadav, AK, Medigeshi, GR, Pandey, AK, Samal, S, Asthana, S, Awasthi, A (B36) 2022; 11
Patro, R, Duggal, G, Love, MI, Irizarry, RA, Kingsford, C (B64) 2017; 14
Chen, RE, Winkler, ES, Case, JB, Aziati, ID, Bricker, TL, Joshi, A, Darling, TL, Ying, B, Errico, JM, Shrihari, S (B26) 2021; 596
Zheng, J, Wang, Y, Li, K, Meyerholz, DK, Allamargot, C, Perlman, S (B55) 2021; 223
Niu, Z, Zhang, Z, Gao, X, Du, P, Lu, J, Yan, B, Wang, C, Zheng, Y, Huang, H, Sun, Q (B33) 2021; 6
Case, JB, Bailey, AL, Kim, AS, Chen, RE, Diamond, MS (B60) 2020; 548
Cleary, SJ, Pitchford, SC, Amison, RT, Carrington, R, Robaina Cabrera, CL, Magnen, M, Looney, MR, Gray, E, Page, CP (B22) 2020; 177
Wang, L, Wang, S, Li, W (B65) 2012; 28
Lai, C-C, Ko, W-C, Lee, P-I, Jean, S-S, Hsueh, P-R (B2) 2020; 56
Jiang, R-D, Liu, M-Q, Chen, Y, Shan, C, Zhou, Y-W, Shen, X-R, Li, Q, Zhang, L, Zhu, Y, Si, H-R, Wang, Q, Min, J, Wang, X, Zhang, W, Li, B, Zhang, H-J, Baric, RS, Zhou, P, Yang, X-L, Shi, Z-L (B28) 2020; 182
B18
Wang, X, Zhang, G, Dasgupta, S, Niewold, EL, Li, C, Li, Q, Luo, X, Tan, L, Ferdous, A, Lorenzi, PL, Rothermel, BA, Gillette, TG, Adams, CM, Scherer, PE, Hill, JA, Wang, ZV (B43) 2022; 131
Mack, M, Cihak, J, Simonis, C, Luckow, B, Proudfoot, AE, Plachý, J, Brühl, H, Frink, M, Anders, HJ, Vielhauer, V, Pfirstinger, J, Stangassinger, M, Schlöndorff, D (B48) 2001; 166
Liao, Y, Smyth, GK, Shi, W (B63) 2014; 30
Sharma, A, Garcia, G, Wang, Y, Plummer, JT, Morizono, K, Arumugaswami, V, Svendsen, CN (B15) 2020; 1
Williams, TL, Colzani, MT, Macrae, RGC, Robinson, EL, Bloor, S, Greenwood, EJD, Zhan, JR, Strachan, G, Kuc, RE, Nyimanu, D, Maguire, JJ, Lehner, PJ, Sinha, S, Davenport, AP (B17) 2021; 4
Hoffmann, M, Kleine-Weber, H, Schroeder, S, Krüger, N, Herrler, T, Erichsen, S, Schiergens, TS, Herrler, G, Wu, N-H, Nitsche, A, Müller, MA, Drosten, C, Pöhlmann, S (B19) 2020; 181
Dobin, A, Davis, CA, Schlesinger, F, Drenkow, J, Zaleski, C, Jha, S, Batut, P, Chaisson, M, Gingeras, TR (B62) 2013; 29
Mueller, C, Giannitsis, E, Jaffe, AS, Huber, K, Mair, J, Cullen, L, Hammarsten, O, Mills, NL, Möckel, M, Krychtiuk, K, Thygesen, K, Lindahl, B (B7) 2021; 10
Lindner, D, Fitzek, A, Bräuninger, H, Aleshcheva, G, Edler, C, Meissner, K, Scherschel, K, Kirchhof, P, Escher, F, Schultheiss, H-P, Blankenberg, S, Püschel, K, Westermann, D (B8) 2020; 5
Sia, SF, Yan, L-M, Chin, AWH, Fung, K, Choy, K-T, Wong, AYL, Kaewpreedee, P, Perera, RAPM, Poon, LLM, Nicholls, JM, Peiris, M, Yen, H-L (B35) 2020; 583
Bajpai, G, Lavine, KJ (B61) 2019; e60015
Johansen, MD, Irving, A, Montagutelli, X, Tate, MD, Rudloff, I, Nold, MF, Hansbro, NG, Kim, RY, Donovan, C, Liu, G (B23) 2020; 13
Liu, R, Holik, AZ, Su, S, Jansz, N, Chen, K, Leong, HS, Blewitt, ME, Asselin-Labat, M-L, Smyth, GK, Ritchie, ME (B67) 2015; 43
References_xml – ident: e_1_3_5_44_2
  doi: 10.1161/CIRCRESAHA.122.321050
– ident: e_1_3_5_15_2
  doi: 10.1016/j.jacbts.2021.01.002
– ident: e_1_3_5_28_2
  doi: 10.1016/j.cell.2022.03.037
– ident: e_1_3_5_34_2
  doi: 10.1038/s41392-021-00704-2
– ident: e_1_3_5_50_2
  doi: 10.1093/eurheartj/ehaa190
– ident: e_1_3_5_11_2
  doi: 10.1001/jamacardio.2020.3557
– ident: e_1_3_5_24_2
  doi: 10.1038/s41385-020-00340-z
– ident: e_1_3_5_26_2
  doi: 10.1016/j.cell.2020.08.026
– ident: e_1_3_5_13_2
  doi: 10.1016/S0140-6736(20)30912-0
– ident: e_1_3_5_3_2
  doi: 10.1016/j.ijantimicag.2020.106024
– ident: e_1_3_5_14_2
  doi: 10.1038/s41591-021-01283-z
– ident: e_1_3_5_31_2
  doi: 10.1016/j.cell.2020.09.050
– ident: e_1_3_5_35_2
  doi: 10.1073/pnas.2009799117
– ident: e_1_3_5_23_2
  doi: 10.1111/bph.15143
– ident: e_1_3_5_29_2
  doi: 10.1016/j.cell.2020.05.027
– ident: e_1_3_5_33_2
  doi: 10.1038/s41586-022-04630-3
– ident: e_1_3_5_36_2
  doi: 10.1038/s41586-020-2342-5
– ident: e_1_3_5_10_2
  doi: 10.1001/jamacardio.2020.1286
– ident: e_1_3_5_7_2
  doi: 10.1038/s41379-021-00790-1
– ident: e_1_3_5_38_2
  doi: 10.1093/cvr/cvab322
– ident: e_1_3_5_48_2
  doi: 10.1161/CIRCRESAHA.118.314028
– ident: e_1_3_5_67_2
  doi: 10.1093/nar/gkv007
– ident: e_1_3_5_49_2
  doi: 10.4049/jimmunol.166.7.4697
– ident: e_1_3_5_51_2
  doi: 10.1001/jamacardio.2021.2065
– ident: e_1_3_5_41_2
  doi: 10.3390/ijms22168889
– ident: e_1_3_5_6_2
  doi: 10.1093/eurheartj/ehaa664
– ident: e_1_3_5_18_2
  doi: 10.1038/s42003-021-02453-y
– ident: e_1_3_5_53_2
  doi: 10.1016/j.carpath.2021.107361
– ident: e_1_3_5_25_2
  doi: 10.1016/j.cell.2020.06.011
– ident: e_1_3_5_27_2
  doi: 10.1038/s41586-021-03720-y
– ident: e_1_3_5_55_2
  doi: 10.1038/s41586-022-04702-4
– ident: e_1_3_5_52_2
  doi: 10.1089/vim.2006.19.133
– ident: e_1_3_5_8_2
  doi: 10.1093/ehjacc/zuab009
– ident: e_1_3_5_40_2
  doi: 10.1016/j.jacc.2018.08.2149
– ident: e_1_3_5_69_2
  doi: 10.1371/journal.pgen.0030161
– ident: e_1_3_5_9_2
  doi: 10.1001/jamacardio.2020.3551
– ident: e_1_3_5_64_2
  doi: 10.1093/bioinformatics/btt656
– ident: e_1_3_5_57_2
  doi: 10.1042/BSR20200833
– ident: e_1_3_5_62_2
  doi: 10.3791/60015
– ident: e_1_3_5_19_2
  doi: 10.1101/2022.09.20.508614
– ident: e_1_3_5_16_2
  doi: 10.1016/j.xcrm.2020.100052
– ident: e_1_3_5_56_2
  doi: 10.1093/infdis/jiaa753
– ident: e_1_3_5_68_2
  doi: 10.1093/nar/gkv412
– ident: e_1_3_5_17_2
  doi: 10.1093/cvr/cvaa267
– ident: e_1_3_5_30_2
  doi: 10.1128/JVI.01511-21
– ident: e_1_3_5_12_2
  doi: 10.1007/s15010-020-01424-5
– ident: e_1_3_5_32_2
  doi: 10.1038/s41586-020-2708-8
– ident: e_1_3_5_59_2
  doi: 10.1016/B978-0-12-801364-9.00025-0
– ident: e_1_3_5_22_2
  doi: 10.1016/j.stemcr.2021.02.008
– ident: e_1_3_5_58_2
  doi: 10.1016/0378-1119(89)90209-6
– ident: e_1_3_5_66_2
  doi: 10.1093/bioinformatics/bts356
– ident: e_1_3_5_20_2
  doi: 10.1016/j.cell.2020.02.052
– ident: e_1_3_5_46_2
  doi: 10.1016/j.immuni.2013.11.019
– ident: e_1_3_5_2_2
  doi: 10.1038/s41579-020-00459-7
– ident: e_1_3_5_54_2
  doi: 10.1038/s41586-022-04802-1
– ident: e_1_3_5_70_2
  doi: 10.1186/1471-2105-10-161
– ident: e_1_3_5_39_2
  doi: 10.1038/s41590-020-0778-2
– ident: e_1_3_5_4_2
  doi: 10.1161/CIRCULATIONAHA.120.047971
– ident: e_1_3_5_65_2
  doi: 10.1038/nmeth.4197
– ident: e_1_3_5_60_2
  doi: 10.1016/j.jacbts.2022.09.001
– ident: e_1_3_5_43_2
  doi: 10.1038/nm.2354
– ident: e_1_3_5_42_2
  doi: 10.1093/cvr/cvac113
– ident: e_1_3_5_21_2
  doi: 10.1128/JVI.01368-21
– ident: e_1_3_5_45_2
  doi: 10.1126/science.abd4585
– ident: e_1_3_5_37_2
  doi: 10.7554/eLife.73522
– ident: e_1_3_5_63_2
  doi: 10.1093/bioinformatics/bts635
– ident: e_1_3_5_5_2
  doi: 10.1126/science.368.6489.356
– ident: e_1_3_5_47_2
  doi: 10.1038/s41591-018-0059-x
– ident: e_1_3_5_61_2
  doi: 10.1016/j.virol.2020.05.015
– volume: 5
  start-page: 1281
  year: 2020
  end-page: 1285
  ident: B8
  article-title: Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2020.3551
– volume: 41
  start-page: 3827
  year: 2020
  end-page: 3835
  ident: B5
  article-title: Pathological features of COVID-19-associated myocardial injury: a multicentre cardiovascular pathology study
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehaa664
– volume: 368
  start-page: 356
  year: 2020
  end-page: 360
  ident: B4
  article-title: A rampage through the body
  publication-title: Science
  doi: 10.1126/science.368.6489.356
– volume: 116
  start-page: 2207
  year: 2020
  end-page: 2215
  ident: B16
  article-title: SARS-CoV-2 infects and induces cytotoxic effects in human cardiomyocytes
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvaa267
– volume: 41
  year: 2021
  ident: B56
  article-title: Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes
  publication-title: Biosci Rep
  doi: 10.1042/BSR20200833
– volume: 30
  start-page: 923
  year: 2014
  end-page: 930
  ident: B63
  article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 79
  start-page: 269
  year: 1989
  end-page: 277
  ident: B57
  article-title: Expression vector system based on the chicken β-actin promoter directs efficient production of interleukin-5
  publication-title: Gene
  doi: 10.1016/0378-1119(89)90209-6
– volume: 96
  year: 2022
  ident: B29
  article-title: SARS-CoV-2 causes lung infection without severe disease in human ACE2 knock-in mice
  publication-title: J Virol
  doi: 10.1128/JVI.01511-21
– volume: 142
  start-page: 342
  year: 2020
  end-page: 353
  ident: B3
  article-title: Spectrum of cardiac manifestations in COVID-19
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.120.047971
– volume: 6
  start-page: 331
  year: 2021
  end-page: 345
  ident: B14
  article-title: SARS-CoV-2 infects human engineeredheart tissues and models COVID-19 myocarditis
  publication-title: JACC Basic Transl Sci
  doi: 10.1016/j.jacbts.2021.01.002
– volume: 56
  start-page: 106024
  year: 2020
  ident: B2
  article-title: Extra-respiratory manifestations of COVID-19
  publication-title: Int J Antimicrob Agents
  doi: 10.1016/j.ijantimicag.2020.106024
– volume: 28
  start-page: 2184
  year: 2012
  end-page: 2185
  ident: B65
  article-title: RSeQC: quality control of RNA-seq experiments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts356
– volume: 395
  start-page: 1516
  year: 2020
  ident: B12
  article-title: Myocarditis in a patient with COVID-19: a cause of raised troponin and ECG changes
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30912-0
– volume: 596
  start-page: 103
  year: 2021
  end-page: 108
  ident: B26
  article-title: In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains
  publication-title: Nature New Biol
  doi: 10.1038/s41586-021-03720-y
– volume: 54
  start-page: 107361
  year: 2021
  ident: B52
  article-title: COVID-19 myocarditis: quantitative analysis of the inflammatory infiltrate and a proposed mechanism
  publication-title: Cardiovasc Pathol
  doi: 10.1016/j.carpath.2021.107361
– volume: 5
  start-page: 1265
  year: 2020
  end-page: 1273
  ident: B10
  article-title: Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19)
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2020.3557
– volume: 605
  start-page: 146
  year: 2022
  end-page: 151
  ident: B32
  article-title: Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19
  publication-title: Nature New Biol
  doi: 10.1038/s41586-022-04630-3
– volume: 40
  start-page: 91
  year: 2014
  end-page: 104
  ident: B45
  article-title: Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.11.019
– volume: 182
  start-page: 50
  year: 2020
  end-page: 58
  ident: B28
  article-title: Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.027
– volume: 586
  start-page: 560
  year: 2020
  end-page: 566
  ident: B31
  article-title: A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures
  publication-title: Nature New Biol
  doi: 10.1038/s41586-020-2708-8
– volume: 606
  start-page: 576
  year: 2022
  end-page: 584
  ident: B54
  article-title: FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation
  publication-title: Nature New Biol
  doi: 10.1038/s41586-022-04702-4
– volume: 181
  start-page: 271
  year: 2020
  end-page: 280
  ident: B19
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 19
  start-page: 133
  year: 2006
  end-page: 146
  ident: B51
  article-title: Coxsackievirus myocarditis: interplay between virus and host in the pathogenesis of heart disease
  publication-title: Viral Immunol
  doi: 10.1089/vim.2006.19.133
– volume: 34
  start-page: 1345
  year: 2021
  end-page: 1357
  ident: B6
  article-title: Factors associated with myocardial SARS-CoV-2 infection, myocarditis, and cardiac inflammation in patients with COVID-19
  publication-title: Mod Pathol
  doi: 10.1038/s41379-021-00790-1
– volume: 183
  start-page: 1070
  year: 2020
  end-page: 1085
  ident: B30
  article-title: A mouse-adapted SARS-CoV-2 induces acute lung injury and mortality in standard laboratory mice
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.050
– volume: 370
  year: 2020
  ident: B44
  article-title: Autoantibodies against type I IFNs in patients with life-threatening COVID-19
  publication-title: Science
  doi: 10.1126/science.abd4585
– volume: 95
  year: 2021
  ident: B20
  article-title: Highly efficient SARS-CoV-2 infection of human cardiomyocytes: spike protein-mediated cell fusion and its inhibition
  publication-title: J Virol
  doi: 10.1128/JVI.01368-21
– volume: 223
  start-page: 785
  year: 2021
  end-page: 795
  ident: B55
  article-title: Severe acute respiratory syndrome coronavirus 2–induced immune activation and death of monocyte-derived human macrophages and dendritic cells
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiaa753
– volume: 19
  start-page: 141
  year: 2021
  end-page: 154
  ident: B1
  article-title: Characteristics of SARS-CoV-2 and COVID-19
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-020-00459-7
– volume: 42
  start-page: 206
  year: 2021
  end-page: 206
  ident: B49
  article-title: Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehaa190
– volume: 117
  start-page: 16587
  year: 2020
  end-page: 16595
  ident: B34
  article-title: Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2009799117
– volume: 166
  start-page: 4697
  year: 2001
  end-page: 4704
  ident: B48
  article-title: Expression and characterization of the chemokine receptors CCR2 and CCR5 in mice
  publication-title: J Immunol
  doi: 10.4049/jimmunol.166.7.4697
– volume: 118
  start-page: 542
  year: 2022
  end-page: 555
  ident: B37
  article-title: Cardiac SARS-CoV-2 infection is associated with pro-inflammatory transcriptomic alterations within the heart
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvab322
– volume: 183
  start-page: 169
  year: 2020
  end-page: 184
  ident: B25
  article-title: A Single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.026
– volume: 14
  start-page: 417
  year: 2017
  end-page: 419
  ident: B64
  article-title: Salmon provides fast and bias-aware quantification of transcript expression
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4197
– volume: 13
  start-page: 877
  year: 2020
  end-page: 891
  ident: B23
  article-title: Animal and translational models of SARS-CoV-2 infection and COVID-19
  publication-title: Mucosal Immunol
  doi: 10.1038/s41385-020-00340-z
– volume: 583
  start-page: 834
  year: 2020
  end-page: 838
  ident: B35
  article-title: Pathogenesis and transmission of SARS-CoV-2 in golden hamsters
  publication-title: Nature New Biol
  doi: 10.1038/s41586-020-2342-5
– volume: 24
  start-page: 1234
  year: 2018
  end-page: 1245
  ident: B46
  article-title: The human heart contains distinct macrophage subsets with divergent origins and functions
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0059-x
– ident: B18
  article-title: Rudraraju R , Gartner MJ , Neil JA , Stout ES , Chen J , Needham EJ , See M , Mackenzie-Kludas C , Yang Lee LY , Wang M , et al. . 2022 . Parallel use of pluripotent human stem cell lung and heart models provide new insights for treatment of SARS-CoV-2 . bioRxiv : 2022.09.20.508614 . doi: 10.1101/2022.09.20.508614
– volume: 1
  year: 2020
  ident: B15
  article-title: Human iPSC-derived cardiomyocytes are susceptible to SARS-CoV-2 Infection
  publication-title: Cell Rep Med
  doi: 10.1016/j.xcrm.2020.100052
– volume: 48
  start-page: 773
  year: 2020
  end-page: 777
  ident: B11
  article-title: First case of COVID-19 complicated with fulminant myocarditis: a case report and insights
  publication-title: Infection
  doi: 10.1007/s15010-020-01424-5
– volume: 11
  year: 2022
  ident: B36
  article-title: Golden Syrian hamster as a model to study cardiovascular complications associated with SARS-CoV-2 infection
  publication-title: Elife
  doi: 10.7554/eLife.73522
– volume: 131
  start-page: 91
  year: 2022
  end-page: 105
  ident: B43
  article-title: ATF4 protects the heart from failure by antagonizing oxidative stress
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.122.321050
– volume: 5
  start-page: 831
  year: 2020
  end-page: 840
  ident: B9
  article-title: Potential effects of coronaviruses on the cardiovascular system: a review
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2020.1286
– volume: 4
  start-page: 926
  year: 2021
  ident: B17
  article-title: Human embryonic stem cell-derived cardiomyocyte platform screens inhibitors of SARS-CoV-2 infection
  publication-title: Commun Biol
  doi: 10.1038/s42003-021-02453-y
– volume: 22
  year: 2021
  ident: B40
  article-title: GDF15 and cardiac cells: current concepts and new insights
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22168889
– volume: 3
  start-page: 1724
  year: 2007
  end-page: 1735
  ident: B68
  article-title: Capturing heterogeneity in gene expression studies by surrogate variable analysis
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0030161
– volume: 10
  year: 2009
  ident: B69
  article-title: GAGE: generally applicable gene set enrichment for pathway analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-161
– volume: 21
  start-page: 1327
  year: 2020
  end-page: 1335
  ident: B38
  article-title: SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function
  publication-title: Nat Immunol
  doi: 10.1038/s41590-020-0778-2
– volume: 8
  start-page: 109
  year: 2023
  end-page: 120
  ident: B59
  article-title: Human cardiac pericytes are susceptible to SARS-CoV-2 infection
  publication-title: JACC Basic Transl Sci
  doi: 10.1016/j.jacbts.2022.09.001
– volume: 16
  start-page: 478
  year: 2021
  end-page: 492
  ident: B21
  article-title: SARS-CoV-2 infects human Pluripotent stem cell-derived cardiomyocytes, impairing electrical and mechanical function
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2021.02.008
– volume: 72
  start-page: 2213
  year: 2018
  end-page: 2230
  ident: B39
  article-title: The macrophage in Cardiac homeostasis and disease: JACC macrophage in CVD series (Part 4)
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2018.08.2149
– volume: 606
  start-page: 585
  year: 2022
  end-page: 593
  ident: B53
  article-title: Inflammasome activation in infected macrophages drives COVID-19 pathology
  publication-title: Nature New Biol
  doi: 10.1038/s41586-022-04802-1
– volume: 29
  start-page: 15
  year: 2013
  end-page: 21
  ident: B62
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– start-page: 185
  year: 2015
  end-page: 189
  ident: B58
  article-title: ACE2 cell biology, regulation, and physiological functions
  publication-title: Prot Arm Renin Angiotensin Syst RAS
  doi: 10.1016/B978-0-12-801364-9.00025-0
– volume: 548
  start-page: 39
  year: 2020
  end-page: 48
  ident: B60
  article-title: Growth, detection, quantification, and inactivation of SARS-CoV-2
  publication-title: Virology (Auckl)
  doi: 10.1016/j.virol.2020.05.015
– volume: 185
  start-page: 1572
  year: 2022
  end-page: 1587
  ident: B27
  article-title: Boosting with variant-matched or historical mRNA vaccines protects against omicron infection in mice
  publication-title: Cell
  doi: 10.1016/j.cell.2022.03.037
– volume: 182
  start-page: 744
  year: 2020
  end-page: 753
  ident: B24
  article-title: A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.011
– volume: 10
  start-page: 310
  year: 2021
  end-page: 319
  ident: B7
  article-title: Cardiovascular biomarkers in patients with COVID-19
  publication-title: Eur Heart J Acute Cardiovasc Care
  doi: 10.1093/ehjacc/zuab009
– volume: 27
  start-page: 601
  year: 2021
  end-page: 615
  ident: B13
  article-title: Post-acute COVID-19 syndrome
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01283-z
– volume: 177
  start-page: 4851
  year: 2020
  end-page: 4865
  ident: B22
  article-title: Animal models of mechanisms of SARS-CoV-2 infection and COVID-19 pathology
  publication-title: Br J Pharmacol
  doi: 10.1111/bph.15143
– volume: 6
  start-page: 284
  year: 2021
  ident: B33
  article-title: N501Y mutation imparts cross-species transmission of SARS-CoV-2 to mice by enhancing receptor binding
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/s41392-021-00704-2
– volume: 43
  start-page: e97
  year: 2015
  end-page: e97
  ident: B67
  article-title: Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv412
– volume: 119
  start-page: 772
  year: 2023
  end-page: 785
  ident: B41
  article-title: Dynamics of monocyte-derived macrophage diversity in experimental myocardial infarction
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvac113
– volume: 17
  start-page: 581
  year: 2011
  end-page: 588
  ident: B42
  article-title: GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice
  publication-title: Nat Med
  doi: 10.1038/nm.2354
– volume: 43
  start-page: e47
  year: 2015
  end-page: e47
  ident: B66
  article-title: Limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv007
– volume: 124
  start-page: 263
  year: 2019
  end-page: 278
  ident: B47
  article-title: Tissue resident CCR2- and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.118.314028
– volume: 6
  start-page: 1078
  year: 2021
  end-page: 1087
  ident: B50
  article-title: Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection: results from the big ten COVID-19 cardiac registry
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2021.2065
– volume: e60015
  year: 2019
  ident: B61
  article-title: Isolation of macrophage subsets and stromal cells from human and mouse myocardial specimens
  publication-title: JoVE
  doi: 10.3791/60015
SSID ssj0014464
Score 2.480422
Snippet Heart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in...
Cardiovascular manifestations of coronavirus disease 2019 (COVID-19) include myocardial injury, heart failure, and myocarditis and are associated with...
SourceID pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0117924
SubjectTerms Angiotensin-Converting Enzyme 2 - genetics
Angiotensin-Converting Enzyme 2 - metabolism
Animals
COVID-19 - immunology
COVID-19 - pathology
COVID-19 - virology
Disease Models, Animal
Host-Microbial Interactions
Humans
Macrophages - immunology
Macrophages - virology
Mice
Monocytes - immunology
Monocytes - virology
Myocardium - immunology
Myocardium - pathology
Myocytes, Cardiac - metabolism
Myocytes, Cardiac - pathology
Myocytes, Cardiac - virology
Pathogenesis and Immunity
SARS-CoV-2
Ventricular Dysfunction, Left - pathology
Ventricular Dysfunction, Left - physiopathology
Ventricular Dysfunction, Left - virology
Virus Replication
Title Infiltrating monocytes drive cardiac dysfunction in a cardiomyocyte-restricted mouse model of SARS-CoV-2 infection
URI https://www.ncbi.nlm.nih.gov/pubmed/39207134
https://journals.asm.org/doi/10.1128/jvi.01179-24
https://www.proquest.com/docview/3099798121
https://pubmed.ncbi.nlm.nih.gov/PMC11406924
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBIviPvKTQbB05TROm6TPFYraAMBEttQ3yLbcbTQNkFtNin8es6xEzcZrTR4iaLEucjny7k45zuHkLdcyySQoP2kH0CAEkDAKoKUe0Jx8GYTsEk-coe_fB0fn_NPs9Gs12tnLV2W8lD93sor-R-pwjGQK7Jk_0Gy7qZwAPZBvrAFCcP2RjI-ydNsYereQrwPTy1UhcuoyQrTgZSRvTpIqjUaryapUdgTxbIyoz3szQG6EB1PXAXQtjeO4bJMvp96R8UPj7mUrXyHL4tkufby_HRZlSudz8067LeFnq9Fnrg04KklkZ1eZBKiAKfyiythk5YmZZktNhlEmZqLhlbUXaZgHHMqLCuzRRsA7TqzhsdqWyxmii5bWx1HYQt20XYtz5C58PMqOzQV7TzLwu4W075m5FzqoQl6WBjD1bG5Omb8FrnNIMrABhjTk8_uJxREyrwpNo9v3vAmWPi-_Www5mK9ZF3H5q9o5XrSbcuLObtP7tUioxOLpQekp_OH5I5tSFo9Iqs2oqhDFDWIojWiaAtRNMupoLsQRQ2iqEEULVK6QRR1iHpMzj9-ODs69uquHJ4A764Eu62lBL_dcIsSLA-JIUPqpxxCi0QFAzEIuR6OhGCB8tNEKBlFPI20L5X2VeI_IXt5ket9TKtLB6keST_EumsjFWKlCsk4OKFahONxn7zBmY3rT24dbxNenxw08x6ruq49tldZ7Bj9zo3-Zeu57Bj3uhFhDAoX_6KJXMOkxT5yzSPwi4d98tSK1N0Jgg1Dzu6TsCNsNwCLuXfP5NmFKeo-HCIHnfFnN3zB5-Tu5jN7QfbK1aV-Cf5xKV8ZFP8BG1a_Pw
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infiltrating+monocytes+drive+cardiac+dysfunction+in+a+cardiomyocyte-restricted+mouse+model+of+SARS-CoV-2+infection&rft.jtitle=Journal+of+virology&rft.au=Dmytrenko%2C+Oleksandr&rft.au=Das%2C+Shibali&rft.au=Kovacs%2C+Attila&rft.au=Cicka%2C+Markus&rft.date=2024-09-17&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=98&rft.issue=9&rft_id=info:doi/10.1128%2Fjvi.01179-24&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_jvi_01179_24
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon