Infiltrating monocytes drive cardiac dysfunction in a cardiomyocyte-restricted mouse model of SARS-CoV-2 infection
Heart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in coronavirus disease 2019 (COVID-19) patients. It remains unclear if cardiac disease is driven by primary infection of the heart or immune re...
Saved in:
Published in | Journal of virology Vol. 98; no. 9; p. e0117924 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
17.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in coronavirus disease 2019 (COVID-19) patients. It remains unclear if cardiac disease is driven by primary infection of the heart or immune response to the virus. SARS-CoV-2 is capable of entering contractile cells of the heart in a culture dish. However, it remains unclear how such infection affects the function of the heart in the body. Here, we designed a mouse in which only heart muscle cells can be infected with a SARS-CoV-2 strain to study cardiac infection in isolation from other organ systems. In our model, infected mice show viral infection, worse function, and accumulation of immune cells in the heart. A subset of immune cells facilitates such worsening heart function. As this model shows features similar to those observed in patients, it may be useful for understanding the heart disease that occurs as a part of COVID-19. |
---|---|
AbstractList | Cardiovascular manifestations of coronavirus disease 2019 (COVID-19) include myocardial injury, heart failure, and myocarditis and are associated with long-term disability and mortality. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antigens are found in the myocardium of COVID-19 patients, and human cardiomyocytes are susceptible to infection in cell or organoid cultures. While these observations raise the possibility that cardiomyocyte infection may contribute to the cardiac sequelae of COVID-19, a causal relationship between cardiomyocyte infection and myocardial dysfunction and pathology has not been established. Here, we generated a mouse model of cardiomyocyte-restricted infection by selectively expressing human angiotensin-converting enzyme 2 (hACE2), the SARS-CoV-2 receptor, in cardiomyocytes. Inoculation of
mice with an ancestral, non-mouse-adapted strain of SARS-CoV-2 resulted in viral replication within the heart, accumulation of macrophages, and moderate left ventricular (LV) systolic dysfunction. Cardiac pathology in this model was transient and resolved with viral clearance. Blockade of monocyte trafficking reduced macrophage accumulation, suppressed the development of LV systolic dysfunction, and promoted viral clearance in the heart. These findings establish a mouse model of SARS-CoV-2 cardiomyocyte infection that recapitulates features of cardiac dysfunctions of COVID-19 and suggests that both viral replication and resultant innate immune responses contribute to cardiac pathology.IMPORTANCEHeart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in coronavirus disease 2019 (COVID-19) patients. It remains unclear if cardiac disease is driven by primary infection of the heart or immune response to the virus. SARS-CoV-2 is capable of entering contractile cells of the heart in a culture dish. However, it remains unclear how such infection affects the function of the heart in the body. Here, we designed a mouse in which only heart muscle cells can be infected with a SARS-CoV-2 strain to study cardiac infection in isolation from other organ systems. In our model, infected mice show viral infection, worse function, and accumulation of immune cells in the heart. A subset of immune cells facilitates such worsening heart function. As this model shows features similar to those observed in patients, it may be useful for understanding the heart disease that occurs as a part of COVID-19. Cardiovascular manifestations of coronavirus disease 2019 (COVID-19) include myocardial injury, heart failure, and myocarditis and are associated with long-term disability and mortality. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antigens are found in the myocardium of COVID-19 patients, and human cardiomyocytes are susceptible to infection in cell or organoid cultures. While these observations raise the possibility that cardiomyocyte infection may contribute to the cardiac sequelae of COVID-19, a causal relationship between cardiomyocyte infection and myocardial dysfunction and pathology has not been established. Here, we generated a mouse model of cardiomyocyte-restricted infection by selectively expressing human angiotensin-converting enzyme 2 (hACE2), the SARS-CoV-2 receptor, in cardiomyocytes. Inoculation of Myh6-Cre Rosa26loxP-STOP-loxP-hACE2 mice with an ancestral, non-mouse-adapted strain of SARS-CoV-2 resulted in viral replication within the heart, accumulation of macrophages, and moderate left ventricular (LV) systolic dysfunction. Cardiac pathology in this model was transient and resolved with viral clearance. Blockade of monocyte trafficking reduced macrophage accumulation, suppressed the development of LV systolic dysfunction, and promoted viral clearance in the heart. These findings establish a mouse model of SARS-CoV-2 cardiomyocyte infection that recapitulates features of cardiac dysfunctions of COVID-19 and suggests that both viral replication and resultant innate immune responses contribute to cardiac pathology.IMPORTANCEHeart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in coronavirus disease 2019 (COVID-19) patients. It remains unclear if cardiac disease is driven by primary infection of the heart or immune response to the virus. SARS-CoV-2 is capable of entering contractile cells of the heart in a culture dish. However, it remains unclear how such infection affects the function of the heart in the body. Here, we designed a mouse in which only heart muscle cells can be infected with a SARS-CoV-2 strain to study cardiac infection in isolation from other organ systems. In our model, infected mice show viral infection, worse function, and accumulation of immune cells in the heart. A subset of immune cells facilitates such worsening heart function. As this model shows features similar to those observed in patients, it may be useful for understanding the heart disease that occurs as a part of COVID-19. Heart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in coronavirus disease 2019 (COVID-19) patients. It remains unclear if cardiac disease is driven by primary infection of the heart or immune response to the virus. SARS-CoV-2 is capable of entering contractile cells of the heart in a culture dish. However, it remains unclear how such infection affects the function of the heart in the body. Here, we designed a mouse in which only heart muscle cells can be infected with a SARS-CoV-2 strain to study cardiac infection in isolation from other organ systems. In our model, infected mice show viral infection, worse function, and accumulation of immune cells in the heart. A subset of immune cells facilitates such worsening heart function. As this model shows features similar to those observed in patients, it may be useful for understanding the heart disease that occurs as a part of COVID-19. Cardiovascular manifestations of coronavirus disease 2019 (COVID-19) include myocardial injury, heart failure, and myocarditis and are associated with long-term disability and mortality. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antigens are found in the myocardium of COVID-19 patients, and human cardiomyocytes are susceptible to infection in cell or organoid cultures. While these observations raise the possibility that cardiomyocyte infection may contribute to the cardiac sequelae of COVID-19, a causal relationship between cardiomyocyte infection and myocardial dysfunction and pathology has not been established. Here, we generated a mouse model of cardiomyocyte-restricted infection by selectively expressing human angiotensin-converting enzyme 2 (hACE2), the SARS-CoV-2 receptor, in cardiomyocytes. Inoculation of Myh6-Cre Rosa26 loxP-STOP-loxP-hACE2 mice with an ancestral, non-mouse-adapted strain of SARS-CoV-2 resulted in viral replication within the heart, accumulation of macrophages, and moderate left ventricular (LV) systolic dysfunction. Cardiac pathology in this model was transient and resolved with viral clearance. Blockade of monocyte trafficking reduced macrophage accumulation, suppressed the development of LV systolic dysfunction, and promoted viral clearance in the heart. These findings establish a mouse model of SARS-CoV-2 cardiomyocyte infection that recapitulates features of cardiac dysfunctions of COVID-19 and suggests that both viral replication and resultant innate immune responses contribute to cardiac pathology. Cardiovascular manifestations of coronavirus disease 2019 (COVID-19) include myocardial injury, heart failure, and myocarditis and are associated with long-term disability and mortality. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antigens are found in the myocardium of COVID-19 patients, and human cardiomyocytes are susceptible to infection in cell or organoid cultures. While these observations raise the possibility that cardiomyocyte infection may contribute to the cardiac sequelae of COVID-19, a causal relationship between cardiomyocyte infection and myocardial dysfunction and pathology has not been established. Here, we generated a mouse model of cardiomyocyte-restricted infection by selectively expressing human angiotensin-converting enzyme 2 (hACE2), the SARS-CoV-2 receptor, in cardiomyocytes. Inoculation of Myh6-Cre Rosa26loxP-STOP-loxP-hACE2 mice with an ancestral, non-mouse-adapted strain of SARS-CoV-2 resulted in viral replication within the heart, accumulation of macrophages, and moderate left ventricular (LV) systolic dysfunction. Cardiac pathology in this model was transient and resolved with viral clearance. Blockade of monocyte trafficking reduced macrophage accumulation, suppressed the development of LV systolic dysfunction, and promoted viral clearance in the heart. These findings establish a mouse model of SARS-CoV-2 cardiomyocyte infection that recapitulates features of cardiac dysfunctions of COVID-19 and suggests that both viral replication and resultant innate immune responses contribute to cardiac pathology.IMPORTANCEHeart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in coronavirus disease 2019 (COVID-19) patients. It remains unclear if cardiac disease is driven by primary infection of the heart or immune response to the virus. SARS-CoV-2 is capable of entering contractile cells of the heart in a culture dish. However, it remains unclear how such infection affects the function of the heart in the body. Here, we designed a mouse in which only heart muscle cells can be infected with a SARS-CoV-2 strain to study cardiac infection in isolation from other organ systems. In our model, infected mice show viral infection, worse function, and accumulation of immune cells in the heart. A subset of immune cells facilitates such worsening heart function. As this model shows features similar to those observed in patients, it may be useful for understanding the heart disease that occurs as a part of COVID-19.Cardiovascular manifestations of coronavirus disease 2019 (COVID-19) include myocardial injury, heart failure, and myocarditis and are associated with long-term disability and mortality. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antigens are found in the myocardium of COVID-19 patients, and human cardiomyocytes are susceptible to infection in cell or organoid cultures. While these observations raise the possibility that cardiomyocyte infection may contribute to the cardiac sequelae of COVID-19, a causal relationship between cardiomyocyte infection and myocardial dysfunction and pathology has not been established. Here, we generated a mouse model of cardiomyocyte-restricted infection by selectively expressing human angiotensin-converting enzyme 2 (hACE2), the SARS-CoV-2 receptor, in cardiomyocytes. Inoculation of Myh6-Cre Rosa26loxP-STOP-loxP-hACE2 mice with an ancestral, non-mouse-adapted strain of SARS-CoV-2 resulted in viral replication within the heart, accumulation of macrophages, and moderate left ventricular (LV) systolic dysfunction. Cardiac pathology in this model was transient and resolved with viral clearance. Blockade of monocyte trafficking reduced macrophage accumulation, suppressed the development of LV systolic dysfunction, and promoted viral clearance in the heart. These findings establish a mouse model of SARS-CoV-2 cardiomyocyte infection that recapitulates features of cardiac dysfunctions of COVID-19 and suggests that both viral replication and resultant innate immune responses contribute to cardiac pathology.IMPORTANCEHeart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in coronavirus disease 2019 (COVID-19) patients. It remains unclear if cardiac disease is driven by primary infection of the heart or immune response to the virus. SARS-CoV-2 is capable of entering contractile cells of the heart in a culture dish. However, it remains unclear how such infection affects the function of the heart in the body. Here, we designed a mouse in which only heart muscle cells can be infected with a SARS-CoV-2 strain to study cardiac infection in isolation from other organ systems. In our model, infected mice show viral infection, worse function, and accumulation of immune cells in the heart. A subset of immune cells facilitates such worsening heart function. As this model shows features similar to those observed in patients, it may be useful for understanding the heart disease that occurs as a part of COVID-19. |
Author | Bredemeyer, Andrea Diamond, Michael S. Dmytrenko, Oleksandr Liu, Meizi Das, Shibali Kovacs, Attila Cicka, Markus Lavine, Kory J. Mack, Matthias Scheaffer, Suzanne M. |
Author_xml | – sequence: 1 givenname: Oleksandr orcidid: 0000-0003-2659-2086 surname: Dmytrenko fullname: Dmytrenko, Oleksandr – sequence: 2 givenname: Shibali surname: Das fullname: Das, Shibali – sequence: 3 givenname: Attila surname: Kovacs fullname: Kovacs, Attila – sequence: 4 givenname: Markus surname: Cicka fullname: Cicka, Markus – sequence: 5 givenname: Meizi surname: Liu fullname: Liu, Meizi – sequence: 6 givenname: Suzanne M. surname: Scheaffer fullname: Scheaffer, Suzanne M. – sequence: 7 givenname: Andrea surname: Bredemeyer fullname: Bredemeyer, Andrea – sequence: 8 givenname: Matthias surname: Mack fullname: Mack, Matthias – sequence: 9 givenname: Michael S. orcidid: 0000-0002-8791-3165 surname: Diamond fullname: Diamond, Michael S. – sequence: 10 givenname: Kory J. orcidid: 0000-0003-1948-9945 surname: Lavine fullname: Lavine, Kory J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39207134$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9rFDEYhoNU7LZ68yxztODUfElmZ3KSsvijUCi0WnoLmeRLzTKT1GRmYf97091aVPSSHPJ8D9-b94gchBiQkNdATwFY93698acUoJU1E8_IAqjs6qYBcUAWlDJWN7y7PSRHOa8pBSGW4gU55JLRFrhYkHQenB-mpCcf7qoxhmi2E-bKJr_ByuhkvTaV3WY3BzP5GCofKr1_iON2R9cJ85S8mdAWw5yxnBaHKrrq-uzqul7Fm5qVOYc7w0vy3Okh46vH-5h8-_Tx6-pLfXH5-Xx1dlFr3sFUA8W-73hDl92S2bI6h4Zzx51oaGtNSzXtBEKjNWsNd1abXkrhJPLeIDeWH5MPe-_93I9oDYYSc1D3yY86bVXUXv35Evx3dRc3CkDQpWSiGN4-GlL8MZeQavTZ4DDogCWn4lTKVnbAoKAne1Tnkal1nFMo2RRQ9VCSKiWpXUlqp33z-2JPG_1qpQDv9oBJMeeE7gn5j4_9hRs_6YevLrH88O-hnw5lsQs |
CitedBy_id | crossref_primary_10_1007_s11936_025_01079_1 crossref_primary_10_1080_15476286_2024_2432729 crossref_primary_10_3390_v17010098 |
Cites_doi | 10.1161/CIRCRESAHA.122.321050 10.1016/j.jacbts.2021.01.002 10.1016/j.cell.2022.03.037 10.1038/s41392-021-00704-2 10.1093/eurheartj/ehaa190 10.1001/jamacardio.2020.3557 10.1038/s41385-020-00340-z 10.1016/j.cell.2020.08.026 10.1016/S0140-6736(20)30912-0 10.1016/j.ijantimicag.2020.106024 10.1038/s41591-021-01283-z 10.1016/j.cell.2020.09.050 10.1073/pnas.2009799117 10.1111/bph.15143 10.1016/j.cell.2020.05.027 10.1038/s41586-022-04630-3 10.1038/s41586-020-2342-5 10.1001/jamacardio.2020.1286 10.1038/s41379-021-00790-1 10.1093/cvr/cvab322 10.1161/CIRCRESAHA.118.314028 10.1093/nar/gkv007 10.4049/jimmunol.166.7.4697 10.1001/jamacardio.2021.2065 10.3390/ijms22168889 10.1093/eurheartj/ehaa664 10.1038/s42003-021-02453-y 10.1016/j.carpath.2021.107361 10.1016/j.cell.2020.06.011 10.1038/s41586-021-03720-y 10.1038/s41586-022-04702-4 10.1089/vim.2006.19.133 10.1093/ehjacc/zuab009 10.1016/j.jacc.2018.08.2149 10.1371/journal.pgen.0030161 10.1001/jamacardio.2020.3551 10.1093/bioinformatics/btt656 10.1042/BSR20200833 10.3791/60015 10.1101/2022.09.20.508614 10.1016/j.xcrm.2020.100052 10.1093/infdis/jiaa753 10.1093/nar/gkv412 10.1093/cvr/cvaa267 10.1128/JVI.01511-21 10.1007/s15010-020-01424-5 10.1038/s41586-020-2708-8 10.1016/B978-0-12-801364-9.00025-0 10.1016/j.stemcr.2021.02.008 10.1016/0378-1119(89)90209-6 10.1093/bioinformatics/bts356 10.1016/j.cell.2020.02.052 10.1016/j.immuni.2013.11.019 10.1038/s41579-020-00459-7 10.1038/s41586-022-04802-1 10.1186/1471-2105-10-161 10.1038/s41590-020-0778-2 10.1161/CIRCULATIONAHA.120.047971 10.1038/nmeth.4197 10.1016/j.jacbts.2022.09.001 10.1038/nm.2354 10.1093/cvr/cvac113 10.1128/JVI.01368-21 10.1126/science.abd4585 10.7554/eLife.73522 10.1093/bioinformatics/bts635 10.1126/science.368.6489.356 10.1038/s41591-018-0059-x 10.1016/j.virol.2020.05.015 |
ContentType | Journal Article |
Copyright | Copyright © 2024 American Society for Microbiology. Copyright © 2024 American Society for Microbiology. 2024 American Society for Microbiology. |
Copyright_xml | – notice: Copyright © 2024 American Society for Microbiology. – notice: Copyright © 2024 American Society for Microbiology. 2024 American Society for Microbiology. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1128/jvi.01179-24 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5514 |
Editor | Liu, Shan-Lu |
Editor_xml | – sequence: 1 givenname: Shan-Lu surname: Liu fullname: Liu, Shan-Lu |
ExternalDocumentID | PMC11406924 jvi01179-24 39207134 10_1128_jvi_01179_24 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Burroughs Wellcome Fund (BWF) grantid: 1014782 – fundername: NIH HHS grantid: S10 OD028597 – fundername: HHS | National Institutes of Health (NIH) grantid: AI157155 – fundername: Children's Discovery Institute (CDI) grantid: PM-LI-2019-829 – fundername: NHLBI NIH HHS grantid: R35 HL161185 – fundername: NIAID NIH HHS grantid: R01 AI157155 – fundername: Fondation Leducq (Leducq Foundation) grantid: 20CVD02 – fundername: NHLBI NIH HHS grantid: R01 HL151078 – fundername: NHLBI NIH HHS grantid: R01 HL150891 – fundername: HHS | National Institutes of Health (NIH) grantid: HL161185, HL150891, HL151078 – fundername: ; grantid: PM-LI-2019-829 – fundername: ; grantid: 20CVD02 – fundername: ; grantid: HL161185, HL150891, HL151078 – fundername: ; grantid: 1014782 – fundername: ; grantid: AI157155 |
GroupedDBID | --- -~X 0R~ 18M 29L 2WC 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAGFI AAYXX ABPPZ ACGFO ACNCT ADBBV AENEX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK E3Z EBS F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 N9A O9- OK1 P2P RHI RNS RPM RSF TR2 UPT W2D W8F WH7 WOQ YQT ~02 ~KM CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-a381t-10ebb83506862d01431533f3f4507dc70a084e15aa27c3fdacb994f9e3bce3cd3 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 18:37:05 EDT 2025 Thu Jul 10 22:38:32 EDT 2025 Thu Mar 20 01:45:58 EDT 2025 Mon Jul 21 05:43:51 EDT 2025 Thu Apr 24 22:52:16 EDT 2025 Tue Aug 05 12:00:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | ACE2 SARS-CoV-2 murine model myocarditis heart cardiomyocyte |
Language | English |
License | All Rights Reserved. https://doi.org/10.1128/ASMCopyrightv2 All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a381t-10ebb83506862d01431533f3f4507dc70a084e15aa27c3fdacb994f9e3bce3cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 M.S.D. is a consultant for the Advisory Board for Inbios, Vir Biotechnology, IntegerBio, GlaxoSmithKline, Akagera Medicines, Merck, and Moderna. The Diamond laboratory has received unrelated funding support in sponsored research agreements from Vir Biotechnology, Emergent BioSolutions, IntegerBio, and Moderna. K.J.L. is a consultant for Implicit Biosciences and Flame Biosciences, is a member of the Medtronic: DT-PAS/APOGEE trial advisory board, and has received funding and unrelated sponsored research agreements from Amgen and Novartis. All other authors have reported that they have no funding and connections relevant to the subject of the manuscript to disclose. Michael S. Diamond and Kory J. Lavine are joint senior authors. |
ORCID | 0000-0003-2659-2086 0000-0002-8791-3165 0000-0003-1948-9945 |
PMID | 39207134 |
PQID | 3099798121 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11406924 proquest_miscellaneous_3099798121 asm2_journals_10_1128_jvi_01179_24 pubmed_primary_39207134 crossref_primary_10_1128_jvi_01179_24 crossref_citationtrail_10_1128_jvi_01179_24 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-17 |
PublicationDateYYYYMMDD | 2024-09-17 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAbbrev | J Virol |
PublicationTitleAlternate | J Virol |
PublicationYear | 2024 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_5_27_2 e_1_3_5_25_2 e_1_3_5_23_2 e_1_3_5_21_2 e_1_3_5_44_2 e_1_3_5_65_2 e_1_3_5_46_2 e_1_3_5_67_2 e_1_3_5_48_2 e_1_3_5_69_2 e_1_3_5_29_2 e_1_3_5_40_2 e_1_3_5_61_2 e_1_3_5_42_2 e_1_3_5_63_2 e_1_3_5_7_2 e_1_3_5_9_2 e_1_3_5_3_2 e_1_3_5_5_2 e_1_3_5_39_2 e_1_3_5_16_2 e_1_3_5_37_2 e_1_3_5_14_2 e_1_3_5_12_2 e_1_3_5_35_2 e_1_3_5_10_2 e_1_3_5_33_2 e_1_3_5_54_2 e_1_3_5_56_2 e_1_3_5_58_2 e_1_3_5_18_2 e_1_3_5_50_2 e_1_3_5_52_2 e_1_3_5_31_2 e_1_3_5_28_2 e_1_3_5_26_2 e_1_3_5_24_2 e_1_3_5_22_2 e_1_3_5_43_2 e_1_3_5_66_2 e_1_3_5_45_2 e_1_3_5_68_2 e_1_3_5_47_2 e_1_3_5_49_2 e_1_3_5_2_2 e_1_3_5_60_2 e_1_3_5_62_2 e_1_3_5_41_2 e_1_3_5_64_2 e_1_3_5_8_2 e_1_3_5_20_2 e_1_3_5_4_2 e_1_3_5_6_2 e_1_3_5_17_2 e_1_3_5_38_2 e_1_3_5_15_2 e_1_3_5_36_2 e_1_3_5_13_2 e_1_3_5_34_2 e_1_3_5_11_2 e_1_3_5_32_2 e_1_3_5_55_2 e_1_3_5_57_2 e_1_3_5_59_2 e_1_3_5_19_2 e_1_3_5_70_2 e_1_3_5_51_2 e_1_3_5_53_2 e_1_3_5_30_2 Bailey, AL, Dmytrenko, O, Greenberg, L, Bredemeyer, AL, Ma, P, Liu, J, Penna, V, Winkler, ES, Sviben, S, Brooks, E (B14) 2021; 6 Rochette, L, Dogon, G, Zeller, M, Cottin, Y, Vergely, C (B40) 2021; 22 Bräuninger, H, Stoffers, B, Fitzek, ADE, Meißner, K, Aleshcheva, G, Schweizer, M, Weimann, J, Rotter, B, Warnke, S, Edler, C, Braun, F, Roedl, K, Scherschel, K, Escher, F, Kluge, S, Huber, TB, Ondruschka, B, Schultheiss, H-P, Kirchhof, P, Blankenberg, S, Püschel, K, Westermann, D, Lindner, D (B37) 2022; 118 Ritchie, ME, Phipson, B, Wu, D, Hu, Y, Law, CW, Shi, W, Smyth, GK (B66) 2015; 43 Zeng, J-H, Liu, Y-X, Yuan, J, Wang, F-X, Wu, W-B, Li, J-X, Wang, L-F, Gao, H, Wang, Y, Dong, C-F, Li, Y-J, Xie, X-J, Feng, C, Liu, L (B11) 2020; 48 Bojkova, D, Wagner, JUG, Shumliakivska, M, Aslan, GS, Saleem, U, Hansen, A, Luxán, G, Günther, S, Pham, MD, Krishnan, J, Harter, PN, Ermel, UH, Frangakis, AS, Milting, H, Zeiher, AM, Klingel, K, Cinatl, J, Dendorfer, A, Eschenhagen, T, Tschöpe, C, Ciesek, S, Dimmeler, S (B16) 2020; 116 Brumback, BD, Dmytrenko, O, Robinson, AN, Bailey, AL, Ma, P, Liu, J, Hicks, SC, Ng, S, Li, G, Zhang, DM, Lipovsky, CE, Lin, C-Y, Diamond, MS, Lavine, KJ, Rentschler, SL (B59) 2023; 8 Hu, B, Guo, H, Zhou, P, Shi, Z-L (B1) 2021; 19 Imai, M, Iwatsuki-Horimoto, K, Hatta, M, Loeber, S, Halfmann, PJ, Nakajima, N, Watanabe, T, Ujie, M, Takahashi, K, Ito, M (B34) 2020; 117 Doyen, D, Moceri, P, Ducreux, D, Dellamonica, J (B12) 2020; 395 Marchiano, S, Hsiang, T-Y, Khanna, A, Higashi, T, Whitmore, LS, Bargehr, J, Davaapil, H, Chang, J, Smith, E, Ong, LP, Colzani, M, Reinecke, H, Yang, X, Pabon, L, Sinha, S, Najafian, B, Sniadecki, NJ, Bertero, A, Gale, M, Murry, CE (B21) 2021; 16 Junqueira, C, Crespo, Â, Ranjbar, S, de Lacerda, LB, Lewandrowski, M, Ingber, J, Parry, B, Ravid, S, Clark, S, Schrimpf, MR (B54) 2022; 606 Kempf, T, Zarbock, A, Widera, C, Butz, S, Stadtmann, A, Rossaint, J, Bolomini-Vittori, M, Korf-Klingebiel, M, Napp, LC, Hansen, B, Kanwischer, A, Bavendiek, U, Beutel, G, Hapke, M, Sauer, MG, Laudanna, C, Hogg, N, Vestweber, D, Wollert, KC (B42) 2011; 17 Daniels, CJ, Rajpal, S, Greenshields, JT, Rosenthal, GL, Chung, EH, Terrin, M, Jeudy, J, Mattson, SE, Law, IH, Borchers, J (B50) 2021; 6 Fox, SE, Falgout, L, Vander Heide, RS (B52) 2021; 54 Leek, JT, Storey, JD (B68) 2007; 3 Sefik, E, Qu, R, Junqueira, C, Kaffe, E, Mirza, H, Zhao, J, Brewer, JR, Han, A, Steach, HR, Israelow, B, Blackburn, HN, Velazquez, SE, Chen, YG, Halene, S, Iwasaki, A, Meffre, E, Nussenzweig, M, Lieberman, J, Wilen, CB, Kluger, Y, Flavell, RA (B53) 2022; 606 Jun-ichi, M, Satoshi, T, Kimi, A, Fumi, T, Akira, T, Kiyoshi, T, Ken-ichi, Y (B57) 1989; 79 Wong, L-YR, Zheng, J, Wilhelmsen, K, Li, K, Ortiz, ME, Schnicker, NJ, Thurman, A, Pezzulo, AA, Szachowicz, PJ, Li, P, Pan, R, Klumpp, K, Aswad, F, Rebo, J, Narumiya, S, Murakami, M, Zuniga, S, Sola, I, Enjuanes, L, Meyerholz, DK, Fortney, K, McCray, PB, Perlman, S (B32) 2022; 605 Wadman, M, Couzin-Frankel, J, Kaiser, J, Matacic, C (B4) 2020; 368 Bastard, P, Rosen, LB, Zhang, Q, Michailidis, E, Hoffmann, H-H, Zhang, Y, Dorgham, K, Philippot, Q, Rosain, J, Béziat, V (B44) 2020; 370 Leist, SR, Dinnon, KH, Schäfer, A, Tse, LV, Okuda, K, Hou, YJ, West, A, Edwards, CE, Sanders, W, Fritch, EJ, Gully, KL, Scobey, T, Brown, AJ, Sheahan, TP, Moorman, NJ, Boucher, RC, Gralinski, LE, Montgomery, SA, Baric, RS (B30) 2020; 183 Luo, W, Friedman, MS, Shedden, K, Hankenson, KD, Woolf, PJ (B69) 2009; 10 Epelman, S, Lavine, KJ, Beaudin, AE, Sojka, DK, Carrero, JA, Calderon, B, Brija, T, Gautier, EL, Ivanov, S, Satpathy, AT, Schilling, JD, Schwendener, R, Sergin, I, Razani, B, Forsberg, EC, Yokoyama, WM, Unanue, ER, Colonna, M, Randolph, GJ, Mann, DL (B45) 2014; 40 Navaratnarajah, CK, Pease, DR, Halfmann, PJ, Taye, B, Barkhymer, A, Howell, KG, Charlesworth, JE, Christensen, TA, Kawaoka, Y, Cattaneo, R, Schneider, JW (B20) 2021; 95 Ying, B, Scheaffer, SM, Whitener, B, Liang, C-Y, Dmytrenko, O, Mackin, S, Wu, K, Lee, D, Avena, LE, Chong, Z (B27) 2022; 185 Hu, H, Ma, F, Wei, X, Fang, Y (B49) 2021; 42 Bajpai, G, Bredemeyer, A, Li, W, Zaitsev, K, Koenig, AL, Lokshina, I, Mohan, J, Ivey, B, Hsiao, H-M, Weinheimer, C, Kovacs, A, Epelman, S, Artyomov, M, Kreisel, D, Lavine, KJ (B47) 2019; 124 Madjid, M, Safavi-Naeini, P, Solomon, SD, Vardeny, O (B9) 2020; 5 Turner, AJ (B58) 2015 Bajpai, G, Schneider, C, Wong, N, Bredemeyer, A, Hulsmans, M, Nahrendorf, M, Epelman, S, Kreisel, D, Liu, Y, Itoh, A, Shankar, TS, Selzman, CH, Drakos, SG, Lavine, KJ (B46) 2018; 24 Winkler, ES, Chen, RE, Alam, F, Yildiz, S, Case, JB, Uccellini, MB, Holtzman, MJ, Garcia-Sastre, A, Schotsaert, M, Diamond, MS (B29) 2022; 96 Bearse, M, Hung, YP, Krauson, AJ, Bonanno, L, Boyraz, B, Harris, CK, Helland, TL, Hilburn, CF, Hutchison, B, Jobbagy, S, Marshall, MS, Shepherd, DJ, Villalba, JA, Delfino, I, Mendez-Pena, J, Chebib, I, Newton-Cheh, C, Stone, JR (B6) 2021; 34 Basso, C, Leone, O, Rizzo, S, De Gaspari, M, van der Wal, AC, Aubry, M-C, Bois, MC, Lin, PT, Maleszewski, JJ, Stone, JR (B5) 2020; 41 Wu, P, Deng, G, Sai, X, Guo, H, Huang, H, Zhu, P (B56) 2021; 41 Nalbandian, A, Sehgal, K, Gupta, A, Madhavan, MV, McGroder, C, Stevens, JS, Cook, JR, Nordvig, AS, Shalev, D, Sehrawat, TS (B13) 2021; 27 Dinnon, KH, Leist, SR, Schäfer, A, Edwards, CE, Martinez, DR, Montgomery, SA, West, A, Yount, BL, Hou, YJ, Adams, LE, Gully, KL, Brown, AJ, Huang, E, Bryant, MD, Choong, IC, Glenn, JS, Gralinski, LE, Sheahan, TP, Baric, RS (B31) 2020; 586 Winkler, ES, Bailey, AL, Kafai, NM, Nair, S, McCune, BT, Yu, J, Fox, JM, Chen, RE, Earnest, JT, Keeler, SP, Ritter, JH, Kang, L-I, Dort, S, Robichaud, A, Head, R, Holtzman, MJ, Diamond, MS (B38) 2020; 21 Hassan, AO, Case, JB, Winkler, ES, Thackray, LB, Kafai, NM, Bailey, AL, McCune, BT, Fox, JM, Chen, RE, Alsoussi, WB, Turner, JS, Schmitz, AJ, Lei, T, Shrihari, S, Keeler, SP, Fremont, DH, Greco, S, McCray, PB, Perlman, S, Holtzman, MJ, Ellebedy, AH, Diamond, MS (B24) 2020; 182 Rizzo, G, Gropper, J, Piollet, M, Vafadarnejad, E, Rizakou, A, Bandi, SR, Arampatzi, P, Krammer, T, DiFabion, N, Dietrich, O, Arias-Loza, A-P, Prinz, M, Mack, M, Schlepckow, K, Haass, C, Silvestre, J-S, Zernecke, A, Saliba, A-E, Cochain, C (B41) 2023; 119 Tam, PE (B51) 2006; 19 Szekely, Y, Lichter, Y, Taieb, P, Banai, A, Hochstadt, A, Merdler, I, Gal Oz, A, Rothschild, E, Baruch, G, Peri, Y, Arbel, Y, Topilsky, Y (B3) 2020; 142 Hassan, AO, Kafai, NM, Dmitriev, IP, Fox, JM, Smith, BK, Harvey, IB, Chen, RE, Winkler, ES, Wessel, AW, Case, JB (B25) 2020; 183 Lavine, KJ, Pinto, AR, Epelman, S, Kopecky, BJ, Clemente-Casares, X, Godwin, J, Rosenthal, N, Kovacic, JC (B39) 2018; 72 Puntmann, VO, Carerj, ML, Wieters, I, Fahim, M, Arendt, C, Hoffmann, J, Shchendrygina, A, Escher, F, Vasa-Nicotera, M, Zeiher, AM, Vehreschild, M, Nagel, E (B10) 2020; 5 Rizvi, ZA, Dalal, R, Sadhu, S, Binayke, A, Dandotiya, J, Kumar, Y, Shrivastava, T, Gupta, SK, Aggarwal, S, Tripathy, MR, Rathore, DK, Yadav, AK, Medigeshi, GR, Pandey, AK, Samal, S, Asthana, S, Awasthi, A (B36) 2022; 11 Patro, R, Duggal, G, Love, MI, Irizarry, RA, Kingsford, C (B64) 2017; 14 Chen, RE, Winkler, ES, Case, JB, Aziati, ID, Bricker, TL, Joshi, A, Darling, TL, Ying, B, Errico, JM, Shrihari, S (B26) 2021; 596 Zheng, J, Wang, Y, Li, K, Meyerholz, DK, Allamargot, C, Perlman, S (B55) 2021; 223 Niu, Z, Zhang, Z, Gao, X, Du, P, Lu, J, Yan, B, Wang, C, Zheng, Y, Huang, H, Sun, Q (B33) 2021; 6 Case, JB, Bailey, AL, Kim, AS, Chen, RE, Diamond, MS (B60) 2020; 548 Cleary, SJ, Pitchford, SC, Amison, RT, Carrington, R, Robaina Cabrera, CL, Magnen, M, Looney, MR, Gray, E, Page, CP (B22) 2020; 177 Wang, L, Wang, S, Li, W (B65) 2012; 28 Lai, C-C, Ko, W-C, Lee, P-I, Jean, S-S, Hsueh, P-R (B2) 2020; 56 Jiang, R-D, Liu, M-Q, Chen, Y, Shan, C, Zhou, Y-W, Shen, X-R, Li, Q, Zhang, L, Zhu, Y, Si, H-R, Wang, Q, Min, J, Wang, X, Zhang, W, Li, B, Zhang, H-J, Baric, RS, Zhou, P, Yang, X-L, Shi, Z-L (B28) 2020; 182 B18 Wang, X, Zhang, G, Dasgupta, S, Niewold, EL, Li, C, Li, Q, Luo, X, Tan, L, Ferdous, A, Lorenzi, PL, Rothermel, BA, Gillette, TG, Adams, CM, Scherer, PE, Hill, JA, Wang, ZV (B43) 2022; 131 Mack, M, Cihak, J, Simonis, C, Luckow, B, Proudfoot, AE, Plachý, J, Brühl, H, Frink, M, Anders, HJ, Vielhauer, V, Pfirstinger, J, Stangassinger, M, Schlöndorff, D (B48) 2001; 166 Liao, Y, Smyth, GK, Shi, W (B63) 2014; 30 Sharma, A, Garcia, G, Wang, Y, Plummer, JT, Morizono, K, Arumugaswami, V, Svendsen, CN (B15) 2020; 1 Williams, TL, Colzani, MT, Macrae, RGC, Robinson, EL, Bloor, S, Greenwood, EJD, Zhan, JR, Strachan, G, Kuc, RE, Nyimanu, D, Maguire, JJ, Lehner, PJ, Sinha, S, Davenport, AP (B17) 2021; 4 Hoffmann, M, Kleine-Weber, H, Schroeder, S, Krüger, N, Herrler, T, Erichsen, S, Schiergens, TS, Herrler, G, Wu, N-H, Nitsche, A, Müller, MA, Drosten, C, Pöhlmann, S (B19) 2020; 181 Dobin, A, Davis, CA, Schlesinger, F, Drenkow, J, Zaleski, C, Jha, S, Batut, P, Chaisson, M, Gingeras, TR (B62) 2013; 29 Mueller, C, Giannitsis, E, Jaffe, AS, Huber, K, Mair, J, Cullen, L, Hammarsten, O, Mills, NL, Möckel, M, Krychtiuk, K, Thygesen, K, Lindahl, B (B7) 2021; 10 Lindner, D, Fitzek, A, Bräuninger, H, Aleshcheva, G, Edler, C, Meissner, K, Scherschel, K, Kirchhof, P, Escher, F, Schultheiss, H-P, Blankenberg, S, Püschel, K, Westermann, D (B8) 2020; 5 Sia, SF, Yan, L-M, Chin, AWH, Fung, K, Choy, K-T, Wong, AYL, Kaewpreedee, P, Perera, RAPM, Poon, LLM, Nicholls, JM, Peiris, M, Yen, H-L (B35) 2020; 583 Bajpai, G, Lavine, KJ (B61) 2019; e60015 Johansen, MD, Irving, A, Montagutelli, X, Tate, MD, Rudloff, I, Nold, MF, Hansbro, NG, Kim, RY, Donovan, C, Liu, G (B23) 2020; 13 Liu, R, Holik, AZ, Su, S, Jansz, N, Chen, K, Leong, HS, Blewitt, ME, Asselin-Labat, M-L, Smyth, GK, Ritchie, ME (B67) 2015; 43 |
References_xml | – ident: e_1_3_5_44_2 doi: 10.1161/CIRCRESAHA.122.321050 – ident: e_1_3_5_15_2 doi: 10.1016/j.jacbts.2021.01.002 – ident: e_1_3_5_28_2 doi: 10.1016/j.cell.2022.03.037 – ident: e_1_3_5_34_2 doi: 10.1038/s41392-021-00704-2 – ident: e_1_3_5_50_2 doi: 10.1093/eurheartj/ehaa190 – ident: e_1_3_5_11_2 doi: 10.1001/jamacardio.2020.3557 – ident: e_1_3_5_24_2 doi: 10.1038/s41385-020-00340-z – ident: e_1_3_5_26_2 doi: 10.1016/j.cell.2020.08.026 – ident: e_1_3_5_13_2 doi: 10.1016/S0140-6736(20)30912-0 – ident: e_1_3_5_3_2 doi: 10.1016/j.ijantimicag.2020.106024 – ident: e_1_3_5_14_2 doi: 10.1038/s41591-021-01283-z – ident: e_1_3_5_31_2 doi: 10.1016/j.cell.2020.09.050 – ident: e_1_3_5_35_2 doi: 10.1073/pnas.2009799117 – ident: e_1_3_5_23_2 doi: 10.1111/bph.15143 – ident: e_1_3_5_29_2 doi: 10.1016/j.cell.2020.05.027 – ident: e_1_3_5_33_2 doi: 10.1038/s41586-022-04630-3 – ident: e_1_3_5_36_2 doi: 10.1038/s41586-020-2342-5 – ident: e_1_3_5_10_2 doi: 10.1001/jamacardio.2020.1286 – ident: e_1_3_5_7_2 doi: 10.1038/s41379-021-00790-1 – ident: e_1_3_5_38_2 doi: 10.1093/cvr/cvab322 – ident: e_1_3_5_48_2 doi: 10.1161/CIRCRESAHA.118.314028 – ident: e_1_3_5_67_2 doi: 10.1093/nar/gkv007 – ident: e_1_3_5_49_2 doi: 10.4049/jimmunol.166.7.4697 – ident: e_1_3_5_51_2 doi: 10.1001/jamacardio.2021.2065 – ident: e_1_3_5_41_2 doi: 10.3390/ijms22168889 – ident: e_1_3_5_6_2 doi: 10.1093/eurheartj/ehaa664 – ident: e_1_3_5_18_2 doi: 10.1038/s42003-021-02453-y – ident: e_1_3_5_53_2 doi: 10.1016/j.carpath.2021.107361 – ident: e_1_3_5_25_2 doi: 10.1016/j.cell.2020.06.011 – ident: e_1_3_5_27_2 doi: 10.1038/s41586-021-03720-y – ident: e_1_3_5_55_2 doi: 10.1038/s41586-022-04702-4 – ident: e_1_3_5_52_2 doi: 10.1089/vim.2006.19.133 – ident: e_1_3_5_8_2 doi: 10.1093/ehjacc/zuab009 – ident: e_1_3_5_40_2 doi: 10.1016/j.jacc.2018.08.2149 – ident: e_1_3_5_69_2 doi: 10.1371/journal.pgen.0030161 – ident: e_1_3_5_9_2 doi: 10.1001/jamacardio.2020.3551 – ident: e_1_3_5_64_2 doi: 10.1093/bioinformatics/btt656 – ident: e_1_3_5_57_2 doi: 10.1042/BSR20200833 – ident: e_1_3_5_62_2 doi: 10.3791/60015 – ident: e_1_3_5_19_2 doi: 10.1101/2022.09.20.508614 – ident: e_1_3_5_16_2 doi: 10.1016/j.xcrm.2020.100052 – ident: e_1_3_5_56_2 doi: 10.1093/infdis/jiaa753 – ident: e_1_3_5_68_2 doi: 10.1093/nar/gkv412 – ident: e_1_3_5_17_2 doi: 10.1093/cvr/cvaa267 – ident: e_1_3_5_30_2 doi: 10.1128/JVI.01511-21 – ident: e_1_3_5_12_2 doi: 10.1007/s15010-020-01424-5 – ident: e_1_3_5_32_2 doi: 10.1038/s41586-020-2708-8 – ident: e_1_3_5_59_2 doi: 10.1016/B978-0-12-801364-9.00025-0 – ident: e_1_3_5_22_2 doi: 10.1016/j.stemcr.2021.02.008 – ident: e_1_3_5_58_2 doi: 10.1016/0378-1119(89)90209-6 – ident: e_1_3_5_66_2 doi: 10.1093/bioinformatics/bts356 – ident: e_1_3_5_20_2 doi: 10.1016/j.cell.2020.02.052 – ident: e_1_3_5_46_2 doi: 10.1016/j.immuni.2013.11.019 – ident: e_1_3_5_2_2 doi: 10.1038/s41579-020-00459-7 – ident: e_1_3_5_54_2 doi: 10.1038/s41586-022-04802-1 – ident: e_1_3_5_70_2 doi: 10.1186/1471-2105-10-161 – ident: e_1_3_5_39_2 doi: 10.1038/s41590-020-0778-2 – ident: e_1_3_5_4_2 doi: 10.1161/CIRCULATIONAHA.120.047971 – ident: e_1_3_5_65_2 doi: 10.1038/nmeth.4197 – ident: e_1_3_5_60_2 doi: 10.1016/j.jacbts.2022.09.001 – ident: e_1_3_5_43_2 doi: 10.1038/nm.2354 – ident: e_1_3_5_42_2 doi: 10.1093/cvr/cvac113 – ident: e_1_3_5_21_2 doi: 10.1128/JVI.01368-21 – ident: e_1_3_5_45_2 doi: 10.1126/science.abd4585 – ident: e_1_3_5_37_2 doi: 10.7554/eLife.73522 – ident: e_1_3_5_63_2 doi: 10.1093/bioinformatics/bts635 – ident: e_1_3_5_5_2 doi: 10.1126/science.368.6489.356 – ident: e_1_3_5_47_2 doi: 10.1038/s41591-018-0059-x – ident: e_1_3_5_61_2 doi: 10.1016/j.virol.2020.05.015 – volume: 5 start-page: 1281 year: 2020 end-page: 1285 ident: B8 article-title: Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases publication-title: JAMA Cardiol doi: 10.1001/jamacardio.2020.3551 – volume: 41 start-page: 3827 year: 2020 end-page: 3835 ident: B5 article-title: Pathological features of COVID-19-associated myocardial injury: a multicentre cardiovascular pathology study publication-title: Eur Heart J doi: 10.1093/eurheartj/ehaa664 – volume: 368 start-page: 356 year: 2020 end-page: 360 ident: B4 article-title: A rampage through the body publication-title: Science doi: 10.1126/science.368.6489.356 – volume: 116 start-page: 2207 year: 2020 end-page: 2215 ident: B16 article-title: SARS-CoV-2 infects and induces cytotoxic effects in human cardiomyocytes publication-title: Cardiovasc Res doi: 10.1093/cvr/cvaa267 – volume: 41 year: 2021 ident: B56 article-title: Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes publication-title: Biosci Rep doi: 10.1042/BSR20200833 – volume: 30 start-page: 923 year: 2014 end-page: 930 ident: B63 article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt656 – volume: 79 start-page: 269 year: 1989 end-page: 277 ident: B57 article-title: Expression vector system based on the chicken β-actin promoter directs efficient production of interleukin-5 publication-title: Gene doi: 10.1016/0378-1119(89)90209-6 – volume: 96 year: 2022 ident: B29 article-title: SARS-CoV-2 causes lung infection without severe disease in human ACE2 knock-in mice publication-title: J Virol doi: 10.1128/JVI.01511-21 – volume: 142 start-page: 342 year: 2020 end-page: 353 ident: B3 article-title: Spectrum of cardiac manifestations in COVID-19 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.120.047971 – volume: 6 start-page: 331 year: 2021 end-page: 345 ident: B14 article-title: SARS-CoV-2 infects human engineeredheart tissues and models COVID-19 myocarditis publication-title: JACC Basic Transl Sci doi: 10.1016/j.jacbts.2021.01.002 – volume: 56 start-page: 106024 year: 2020 ident: B2 article-title: Extra-respiratory manifestations of COVID-19 publication-title: Int J Antimicrob Agents doi: 10.1016/j.ijantimicag.2020.106024 – volume: 28 start-page: 2184 year: 2012 end-page: 2185 ident: B65 article-title: RSeQC: quality control of RNA-seq experiments publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts356 – volume: 395 start-page: 1516 year: 2020 ident: B12 article-title: Myocarditis in a patient with COVID-19: a cause of raised troponin and ECG changes publication-title: Lancet doi: 10.1016/S0140-6736(20)30912-0 – volume: 596 start-page: 103 year: 2021 end-page: 108 ident: B26 article-title: In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains publication-title: Nature New Biol doi: 10.1038/s41586-021-03720-y – volume: 54 start-page: 107361 year: 2021 ident: B52 article-title: COVID-19 myocarditis: quantitative analysis of the inflammatory infiltrate and a proposed mechanism publication-title: Cardiovasc Pathol doi: 10.1016/j.carpath.2021.107361 – volume: 5 start-page: 1265 year: 2020 end-page: 1273 ident: B10 article-title: Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19) publication-title: JAMA Cardiol doi: 10.1001/jamacardio.2020.3557 – volume: 605 start-page: 146 year: 2022 end-page: 151 ident: B32 article-title: Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19 publication-title: Nature New Biol doi: 10.1038/s41586-022-04630-3 – volume: 40 start-page: 91 year: 2014 end-page: 104 ident: B45 article-title: Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation publication-title: Immunity doi: 10.1016/j.immuni.2013.11.019 – volume: 182 start-page: 50 year: 2020 end-page: 58 ident: B28 article-title: Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2 publication-title: Cell doi: 10.1016/j.cell.2020.05.027 – volume: 586 start-page: 560 year: 2020 end-page: 566 ident: B31 article-title: A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures publication-title: Nature New Biol doi: 10.1038/s41586-020-2708-8 – volume: 606 start-page: 576 year: 2022 end-page: 584 ident: B54 article-title: FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation publication-title: Nature New Biol doi: 10.1038/s41586-022-04702-4 – volume: 181 start-page: 271 year: 2020 end-page: 280 ident: B19 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 19 start-page: 133 year: 2006 end-page: 146 ident: B51 article-title: Coxsackievirus myocarditis: interplay between virus and host in the pathogenesis of heart disease publication-title: Viral Immunol doi: 10.1089/vim.2006.19.133 – volume: 34 start-page: 1345 year: 2021 end-page: 1357 ident: B6 article-title: Factors associated with myocardial SARS-CoV-2 infection, myocarditis, and cardiac inflammation in patients with COVID-19 publication-title: Mod Pathol doi: 10.1038/s41379-021-00790-1 – volume: 183 start-page: 1070 year: 2020 end-page: 1085 ident: B30 article-title: A mouse-adapted SARS-CoV-2 induces acute lung injury and mortality in standard laboratory mice publication-title: Cell doi: 10.1016/j.cell.2020.09.050 – volume: 370 year: 2020 ident: B44 article-title: Autoantibodies against type I IFNs in patients with life-threatening COVID-19 publication-title: Science doi: 10.1126/science.abd4585 – volume: 95 year: 2021 ident: B20 article-title: Highly efficient SARS-CoV-2 infection of human cardiomyocytes: spike protein-mediated cell fusion and its inhibition publication-title: J Virol doi: 10.1128/JVI.01368-21 – volume: 223 start-page: 785 year: 2021 end-page: 795 ident: B55 article-title: Severe acute respiratory syndrome coronavirus 2–induced immune activation and death of monocyte-derived human macrophages and dendritic cells publication-title: J Infect Dis doi: 10.1093/infdis/jiaa753 – volume: 19 start-page: 141 year: 2021 end-page: 154 ident: B1 article-title: Characteristics of SARS-CoV-2 and COVID-19 publication-title: Nat Rev Microbiol doi: 10.1038/s41579-020-00459-7 – volume: 42 start-page: 206 year: 2021 end-page: 206 ident: B49 article-title: Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin publication-title: Eur Heart J doi: 10.1093/eurheartj/ehaa190 – volume: 117 start-page: 16587 year: 2020 end-page: 16595 ident: B34 article-title: Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2009799117 – volume: 166 start-page: 4697 year: 2001 end-page: 4704 ident: B48 article-title: Expression and characterization of the chemokine receptors CCR2 and CCR5 in mice publication-title: J Immunol doi: 10.4049/jimmunol.166.7.4697 – volume: 118 start-page: 542 year: 2022 end-page: 555 ident: B37 article-title: Cardiac SARS-CoV-2 infection is associated with pro-inflammatory transcriptomic alterations within the heart publication-title: Cardiovasc Res doi: 10.1093/cvr/cvab322 – volume: 183 start-page: 169 year: 2020 end-page: 184 ident: B25 article-title: A Single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2 publication-title: Cell doi: 10.1016/j.cell.2020.08.026 – volume: 14 start-page: 417 year: 2017 end-page: 419 ident: B64 article-title: Salmon provides fast and bias-aware quantification of transcript expression publication-title: Nat Methods doi: 10.1038/nmeth.4197 – volume: 13 start-page: 877 year: 2020 end-page: 891 ident: B23 article-title: Animal and translational models of SARS-CoV-2 infection and COVID-19 publication-title: Mucosal Immunol doi: 10.1038/s41385-020-00340-z – volume: 583 start-page: 834 year: 2020 end-page: 838 ident: B35 article-title: Pathogenesis and transmission of SARS-CoV-2 in golden hamsters publication-title: Nature New Biol doi: 10.1038/s41586-020-2342-5 – volume: 24 start-page: 1234 year: 2018 end-page: 1245 ident: B46 article-title: The human heart contains distinct macrophage subsets with divergent origins and functions publication-title: Nat Med doi: 10.1038/s41591-018-0059-x – ident: B18 article-title: Rudraraju R , Gartner MJ , Neil JA , Stout ES , Chen J , Needham EJ , See M , Mackenzie-Kludas C , Yang Lee LY , Wang M , et al. . 2022 . Parallel use of pluripotent human stem cell lung and heart models provide new insights for treatment of SARS-CoV-2 . bioRxiv : 2022.09.20.508614 . doi: 10.1101/2022.09.20.508614 – volume: 1 year: 2020 ident: B15 article-title: Human iPSC-derived cardiomyocytes are susceptible to SARS-CoV-2 Infection publication-title: Cell Rep Med doi: 10.1016/j.xcrm.2020.100052 – volume: 48 start-page: 773 year: 2020 end-page: 777 ident: B11 article-title: First case of COVID-19 complicated with fulminant myocarditis: a case report and insights publication-title: Infection doi: 10.1007/s15010-020-01424-5 – volume: 11 year: 2022 ident: B36 article-title: Golden Syrian hamster as a model to study cardiovascular complications associated with SARS-CoV-2 infection publication-title: Elife doi: 10.7554/eLife.73522 – volume: 131 start-page: 91 year: 2022 end-page: 105 ident: B43 article-title: ATF4 protects the heart from failure by antagonizing oxidative stress publication-title: Circ Res doi: 10.1161/CIRCRESAHA.122.321050 – volume: 5 start-page: 831 year: 2020 end-page: 840 ident: B9 article-title: Potential effects of coronaviruses on the cardiovascular system: a review publication-title: JAMA Cardiol doi: 10.1001/jamacardio.2020.1286 – volume: 4 start-page: 926 year: 2021 ident: B17 article-title: Human embryonic stem cell-derived cardiomyocyte platform screens inhibitors of SARS-CoV-2 infection publication-title: Commun Biol doi: 10.1038/s42003-021-02453-y – volume: 22 year: 2021 ident: B40 article-title: GDF15 and cardiac cells: current concepts and new insights publication-title: Int J Mol Sci doi: 10.3390/ijms22168889 – volume: 3 start-page: 1724 year: 2007 end-page: 1735 ident: B68 article-title: Capturing heterogeneity in gene expression studies by surrogate variable analysis publication-title: PLoS Genet doi: 10.1371/journal.pgen.0030161 – volume: 10 year: 2009 ident: B69 article-title: GAGE: generally applicable gene set enrichment for pathway analysis publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-161 – volume: 21 start-page: 1327 year: 2020 end-page: 1335 ident: B38 article-title: SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function publication-title: Nat Immunol doi: 10.1038/s41590-020-0778-2 – volume: 8 start-page: 109 year: 2023 end-page: 120 ident: B59 article-title: Human cardiac pericytes are susceptible to SARS-CoV-2 infection publication-title: JACC Basic Transl Sci doi: 10.1016/j.jacbts.2022.09.001 – volume: 16 start-page: 478 year: 2021 end-page: 492 ident: B21 article-title: SARS-CoV-2 infects human Pluripotent stem cell-derived cardiomyocytes, impairing electrical and mechanical function publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2021.02.008 – volume: 72 start-page: 2213 year: 2018 end-page: 2230 ident: B39 article-title: The macrophage in Cardiac homeostasis and disease: JACC macrophage in CVD series (Part 4) publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2018.08.2149 – volume: 606 start-page: 585 year: 2022 end-page: 593 ident: B53 article-title: Inflammasome activation in infected macrophages drives COVID-19 pathology publication-title: Nature New Biol doi: 10.1038/s41586-022-04802-1 – volume: 29 start-page: 15 year: 2013 end-page: 21 ident: B62 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – start-page: 185 year: 2015 end-page: 189 ident: B58 article-title: ACE2 cell biology, regulation, and physiological functions publication-title: Prot Arm Renin Angiotensin Syst RAS doi: 10.1016/B978-0-12-801364-9.00025-0 – volume: 548 start-page: 39 year: 2020 end-page: 48 ident: B60 article-title: Growth, detection, quantification, and inactivation of SARS-CoV-2 publication-title: Virology (Auckl) doi: 10.1016/j.virol.2020.05.015 – volume: 185 start-page: 1572 year: 2022 end-page: 1587 ident: B27 article-title: Boosting with variant-matched or historical mRNA vaccines protects against omicron infection in mice publication-title: Cell doi: 10.1016/j.cell.2022.03.037 – volume: 182 start-page: 744 year: 2020 end-page: 753 ident: B24 article-title: A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies publication-title: Cell doi: 10.1016/j.cell.2020.06.011 – volume: 10 start-page: 310 year: 2021 end-page: 319 ident: B7 article-title: Cardiovascular biomarkers in patients with COVID-19 publication-title: Eur Heart J Acute Cardiovasc Care doi: 10.1093/ehjacc/zuab009 – volume: 27 start-page: 601 year: 2021 end-page: 615 ident: B13 article-title: Post-acute COVID-19 syndrome publication-title: Nat Med doi: 10.1038/s41591-021-01283-z – volume: 177 start-page: 4851 year: 2020 end-page: 4865 ident: B22 article-title: Animal models of mechanisms of SARS-CoV-2 infection and COVID-19 pathology publication-title: Br J Pharmacol doi: 10.1111/bph.15143 – volume: 6 start-page: 284 year: 2021 ident: B33 article-title: N501Y mutation imparts cross-species transmission of SARS-CoV-2 to mice by enhancing receptor binding publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-021-00704-2 – volume: 43 start-page: e97 year: 2015 end-page: e97 ident: B67 article-title: Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv412 – volume: 119 start-page: 772 year: 2023 end-page: 785 ident: B41 article-title: Dynamics of monocyte-derived macrophage diversity in experimental myocardial infarction publication-title: Cardiovasc Res doi: 10.1093/cvr/cvac113 – volume: 17 start-page: 581 year: 2011 end-page: 588 ident: B42 article-title: GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice publication-title: Nat Med doi: 10.1038/nm.2354 – volume: 43 start-page: e47 year: 2015 end-page: e47 ident: B66 article-title: Limma powers differential expression analyses for RNA-sequencing and microarray studies publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv007 – volume: 124 start-page: 263 year: 2019 end-page: 278 ident: B47 article-title: Tissue resident CCR2- and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury publication-title: Circ Res doi: 10.1161/CIRCRESAHA.118.314028 – volume: 6 start-page: 1078 year: 2021 end-page: 1087 ident: B50 article-title: Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection: results from the big ten COVID-19 cardiac registry publication-title: JAMA Cardiol doi: 10.1001/jamacardio.2021.2065 – volume: e60015 year: 2019 ident: B61 article-title: Isolation of macrophage subsets and stromal cells from human and mouse myocardial specimens publication-title: JoVE doi: 10.3791/60015 |
SSID | ssj0014464 |
Score | 2.480422 |
Snippet | Heart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in... Cardiovascular manifestations of coronavirus disease 2019 (COVID-19) include myocardial injury, heart failure, and myocarditis and are associated with... |
SourceID | pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0117924 |
SubjectTerms | Angiotensin-Converting Enzyme 2 - genetics Angiotensin-Converting Enzyme 2 - metabolism Animals COVID-19 - immunology COVID-19 - pathology COVID-19 - virology Disease Models, Animal Host-Microbial Interactions Humans Macrophages - immunology Macrophages - virology Mice Monocytes - immunology Monocytes - virology Myocardium - immunology Myocardium - pathology Myocytes, Cardiac - metabolism Myocytes, Cardiac - pathology Myocytes, Cardiac - virology Pathogenesis and Immunity SARS-CoV-2 Ventricular Dysfunction, Left - pathology Ventricular Dysfunction, Left - physiopathology Ventricular Dysfunction, Left - virology Virus Replication |
Title | Infiltrating monocytes drive cardiac dysfunction in a cardiomyocyte-restricted mouse model of SARS-CoV-2 infection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39207134 https://journals.asm.org/doi/10.1128/jvi.01179-24 https://www.proquest.com/docview/3099798121 https://pubmed.ncbi.nlm.nih.gov/PMC11406924 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBIviPvKTQbB05TROm6TPFYraAMBEttQ3yLbcbTQNkFtNin8es6xEzcZrTR4iaLEucjny7k45zuHkLdcyySQoP2kH0CAEkDAKoKUe0Jx8GYTsEk-coe_fB0fn_NPs9Gs12tnLV2W8lD93sor-R-pwjGQK7Jk_0Gy7qZwAPZBvrAFCcP2RjI-ydNsYereQrwPTy1UhcuoyQrTgZSRvTpIqjUaryapUdgTxbIyoz3szQG6EB1PXAXQtjeO4bJMvp96R8UPj7mUrXyHL4tkufby_HRZlSudz8067LeFnq9Fnrg04KklkZ1eZBKiAKfyiythk5YmZZktNhlEmZqLhlbUXaZgHHMqLCuzRRsA7TqzhsdqWyxmii5bWx1HYQt20XYtz5C58PMqOzQV7TzLwu4W075m5FzqoQl6WBjD1bG5Omb8FrnNIMrABhjTk8_uJxREyrwpNo9v3vAmWPi-_Www5mK9ZF3H5q9o5XrSbcuLObtP7tUioxOLpQekp_OH5I5tSFo9Iqs2oqhDFDWIojWiaAtRNMupoLsQRQ2iqEEULVK6QRR1iHpMzj9-ODs69uquHJ4A764Eu62lBL_dcIsSLA-JIUPqpxxCi0QFAzEIuR6OhGCB8tNEKBlFPI20L5X2VeI_IXt5ket9TKtLB6keST_EumsjFWKlCsk4OKFahONxn7zBmY3rT24dbxNenxw08x6ruq49tldZ7Bj9zo3-Zeu57Bj3uhFhDAoX_6KJXMOkxT5yzSPwi4d98tSK1N0Jgg1Dzu6TsCNsNwCLuXfP5NmFKeo-HCIHnfFnN3zB5-Tu5jN7QfbK1aV-Cf5xKV8ZFP8BG1a_Pw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infiltrating+monocytes+drive+cardiac+dysfunction+in+a+cardiomyocyte-restricted+mouse+model+of+SARS-CoV-2+infection&rft.jtitle=Journal+of+virology&rft.au=Dmytrenko%2C+Oleksandr&rft.au=Das%2C+Shibali&rft.au=Kovacs%2C+Attila&rft.au=Cicka%2C+Markus&rft.date=2024-09-17&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=98&rft.issue=9&rft_id=info:doi/10.1128%2Fjvi.01179-24&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_jvi_01179_24 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |