The Oligomerization of Amyloid β-Protein Begins Intracellularly in Cells Derived from Human Brain
The progressive aggregation and deposition of amyloid β-protein (Aβ) in brain regions subserving memory and cognition is an early and invariant feature of Alzheimer's disease, the most common cause of cognitive failure in aged humans. Inhibiting Aβ aggregation is therapeutically attractive beca...
Saved in:
Published in | Biochemistry (Easton) Vol. 39; no. 35; pp. 10831 - 10839 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
05.09.2000
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The progressive aggregation and deposition of amyloid β-protein (Aβ) in brain regions subserving memory and cognition is an early and invariant feature of Alzheimer's disease, the most common cause of cognitive failure in aged humans. Inhibiting Aβ aggregation is therapeutically attractive because this process is believed to be an exclusively pathological event. Whereas many studies have examined the aggregation of synthetic Aβ peptides under nonphysiological conditions and concentrations, we have detected and characterized the oligomerization of naturally secreted Aβ at nanomolar levels in cultures of APP-expressing CHO cells [Podlisny, M. B., Ostaszewski, B. L., Squazzo, S. L., Koo, E. H., Rydell, R. E., Teplow, D. B., and Selkoe, D. J. (1995) J. Biol. Chem. 270, 9564−9570 ( ); Podlisny, M. B., Walsh, D. M., Amarante, P., Ostaszewski, B. L., Stimson, E. R., Maggio, J. E., Teplow, D. B., and Selkoe, D. J. (1998) Biochemistry 37, 3602−3611 ( )]. To determine whether similar species occur in vivo, we probed samples of human cerebrospinal fluid (CSF) and detected SDS-stable dimers of Aβ in some subjects. Incubation of CSF or of CHO conditioned medium at 37 °C did not lead to new oligomer formation. This inability to induce oligomers extracellularly as well as the detection of oligomers in cell medium very early during the course of pulse−chase experiments suggested that natural Aβ oligomers might first form intracellularly. We therefore searched for and detected intracellular Aβ oligomers, principally dimers, in primary human neurons and in neuronal and nonneural cell lines. These dimers arose intracellularly rather than being derived from the medium by reuptake. The dimers were particularly detectable in neural cells: the ratio of intracellular to extracellular oligomers was much higher in brain-derived than nonbrain cells. We conclude that the pathogenically critical process of Aβ oligomerization begins intraneuronally. |
---|---|
AbstractList | The progressive aggregation and deposition of amyloid beta -protein (A beta ) in brain regions subserving memory and cognition is an early and invariant feature of Alzheimer's disease, the most common cause of cognitive failure in aged humans. Inhibiting A beta aggregation is therapeutically attractive because this process is believed to be an exclusively pathological event. Whereas many studies have examined the aggregation of synthetic A beta peptides under nonphysiological conditions and concentrations, we have detected and characterized the oligomerization of naturally secreted A beta at nanomolar levels in cultures of APP-expressing CHO cells [Podlisny, M. B., Ostaszewski, B. L., Squazzo, S. L., Koo, E. H., Rydell, R. E., Teplow, D. B., and Selkoe, D. J. (1995) J. Biol. Chem. 270, 9564-9570 (1); Podlisny, M. B., Walsh, D. M., Amarante, P., Ostaszewski, B. L., Stimson, E. R., Maggio, J. E., Teplow, D. B., and Selkoe, D. J. (1998) Biochemistry 37, 3602-3611 (2)]. To determine whether similar species occur in vivo, we probed samples of human cerebrospinal fluid (CSF) and detected SDS-stable dimers of A beta in some subjects. Incubation of CSF or of CHO conditioned medium at 37 degree C did not lead to new oligomer formation. This inability to induce oligomers extracellularly as well as the detection of oligomers in cell medium very early during the course of pulse-chase experiments suggested that natural A beta oligomers might first form intracellularly. We therefore searched for and detected intracellular A beta oligomers, principally dimers, in primary human neurons and in neuronal and nonneural cell lines. These dimers arose intracellularly rather than being derived from the medium by reuptake. The dimers were particularly detectable in neural cells: the ratio of intracellular to extracellular oligomers was much higher in brain-derived than nonbrain cells. We conclude that the pathogenically critical process of A beta oligomerization begins intraneuronally. The progressive aggregation and deposition of amyloid beta-protein (Abeta) in brain regions subserving memory and cognition is an early and invariant feature of Alzheimer's disease, the most common cause of cognitive failure in aged humans. Inhibiting Abeta aggregation is therapeutically attractive because this process is believed to be an exclusively pathological event. Whereas many studies have examined the aggregation of synthetic Abeta peptides under nonphysiological conditions and concentrations, we have detected and characterized the oligomerization of naturally secreted Abeta at nanomolar levels in cultures of APP-expressing CHO cells [Podlisny, M. B., Ostaszewski, B. L., Squazzo, S. L., Koo, E. H., Rydell, R. E., Teplow, D. B., and Selkoe, D. J. (1995) J. Biol. Chem. 270, 9564-9570 (1); Podlisny, M. B., Walsh, D. M., Amarante, P., Ostaszewski, B. L., Stimson, E. R., Maggio, J. E., Teplow, D. B., and Selkoe, D. J. (1998) Biochemistry 37, 3602-3611 (2)]. To determine whether similar species occur in vivo, we probed samples of human cerebrospinal fluid (CSF) and detected SDS-stable dimers of Abeta in some subjects. Incubation of CSF or of CHO conditioned medium at 37 degrees C did not lead to new oligomer formation. This inability to induce oligomers extracellularly as well as the detection of oligomers in cell medium very early during the course of pulse-chase experiments suggested that natural Abeta oligomers might first form intracellularly. We therefore searched for and detected intracellular Abeta oligomers, principally dimers, in primary human neurons and in neuronal and nonneural cell lines. These dimers arose intracellularly rather than being derived from the medium by reuptake. The dimers were particularly detectable in neural cells: the ratio of intracellular to extracellular oligomers was much higher in brain-derived than nonbrain cells. We conclude that the pathogenically critical process of Abeta oligomerization begins intraneuronally.The progressive aggregation and deposition of amyloid beta-protein (Abeta) in brain regions subserving memory and cognition is an early and invariant feature of Alzheimer's disease, the most common cause of cognitive failure in aged humans. Inhibiting Abeta aggregation is therapeutically attractive because this process is believed to be an exclusively pathological event. Whereas many studies have examined the aggregation of synthetic Abeta peptides under nonphysiological conditions and concentrations, we have detected and characterized the oligomerization of naturally secreted Abeta at nanomolar levels in cultures of APP-expressing CHO cells [Podlisny, M. B., Ostaszewski, B. L., Squazzo, S. L., Koo, E. H., Rydell, R. E., Teplow, D. B., and Selkoe, D. J. (1995) J. Biol. Chem. 270, 9564-9570 (1); Podlisny, M. B., Walsh, D. M., Amarante, P., Ostaszewski, B. L., Stimson, E. R., Maggio, J. E., Teplow, D. B., and Selkoe, D. J. (1998) Biochemistry 37, 3602-3611 (2)]. To determine whether similar species occur in vivo, we probed samples of human cerebrospinal fluid (CSF) and detected SDS-stable dimers of Abeta in some subjects. Incubation of CSF or of CHO conditioned medium at 37 degrees C did not lead to new oligomer formation. This inability to induce oligomers extracellularly as well as the detection of oligomers in cell medium very early during the course of pulse-chase experiments suggested that natural Abeta oligomers might first form intracellularly. We therefore searched for and detected intracellular Abeta oligomers, principally dimers, in primary human neurons and in neuronal and nonneural cell lines. These dimers arose intracellularly rather than being derived from the medium by reuptake. The dimers were particularly detectable in neural cells: the ratio of intracellular to extracellular oligomers was much higher in brain-derived than nonbrain cells. We conclude that the pathogenically critical process of Abeta oligomerization begins intraneuronally. The progressive aggregation and deposition of amyloid β-protein (Aβ) in brain regions subserving memory and cognition is an early and invariant feature of Alzheimer's disease, the most common cause of cognitive failure in aged humans. Inhibiting Aβ aggregation is therapeutically attractive because this process is believed to be an exclusively pathological event. Whereas many studies have examined the aggregation of synthetic Aβ peptides under nonphysiological conditions and concentrations, we have detected and characterized the oligomerization of naturally secreted Aβ at nanomolar levels in cultures of APP-expressing CHO cells [Podlisny, M. B., Ostaszewski, B. L., Squazzo, S. L., Koo, E. H., Rydell, R. E., Teplow, D. B., and Selkoe, D. J. (1995) J. Biol. Chem. 270, 9564−9570 ( ); Podlisny, M. B., Walsh, D. M., Amarante, P., Ostaszewski, B. L., Stimson, E. R., Maggio, J. E., Teplow, D. B., and Selkoe, D. J. (1998) Biochemistry 37, 3602−3611 ( )]. To determine whether similar species occur in vivo, we probed samples of human cerebrospinal fluid (CSF) and detected SDS-stable dimers of Aβ in some subjects. Incubation of CSF or of CHO conditioned medium at 37 °C did not lead to new oligomer formation. This inability to induce oligomers extracellularly as well as the detection of oligomers in cell medium very early during the course of pulse−chase experiments suggested that natural Aβ oligomers might first form intracellularly. We therefore searched for and detected intracellular Aβ oligomers, principally dimers, in primary human neurons and in neuronal and nonneural cell lines. These dimers arose intracellularly rather than being derived from the medium by reuptake. The dimers were particularly detectable in neural cells: the ratio of intracellular to extracellular oligomers was much higher in brain-derived than nonbrain cells. We conclude that the pathogenically critical process of Aβ oligomerization begins intraneuronally. The progressive aggregation and deposition of amyloid beta-protein (Abeta) in brain regions subserving memory and cognition is an early and invariant feature of Alzheimer's disease, the most common cause of cognitive failure in aged humans. Inhibiting Abeta aggregation is therapeutically attractive because this process is believed to be an exclusively pathological event. Whereas many studies have examined the aggregation of synthetic Abeta peptides under nonphysiological conditions and concentrations, we have detected and characterized the oligomerization of naturally secreted Abeta at nanomolar levels in cultures of APP-expressing CHO cells [Podlisny, M. B., Ostaszewski, B. L., Squazzo, S. L., Koo, E. H., Rydell, R. E., Teplow, D. B., and Selkoe, D. J. (1995) J. Biol. Chem. 270, 9564-9570 (1); Podlisny, M. B., Walsh, D. M., Amarante, P., Ostaszewski, B. L., Stimson, E. R., Maggio, J. E., Teplow, D. B., and Selkoe, D. J. (1998) Biochemistry 37, 3602-3611 (2)]. To determine whether similar species occur in vivo, we probed samples of human cerebrospinal fluid (CSF) and detected SDS-stable dimers of Abeta in some subjects. Incubation of CSF or of CHO conditioned medium at 37 degrees C did not lead to new oligomer formation. This inability to induce oligomers extracellularly as well as the detection of oligomers in cell medium very early during the course of pulse-chase experiments suggested that natural Abeta oligomers might first form intracellularly. We therefore searched for and detected intracellular Abeta oligomers, principally dimers, in primary human neurons and in neuronal and nonneural cell lines. These dimers arose intracellularly rather than being derived from the medium by reuptake. The dimers were particularly detectable in neural cells: the ratio of intracellular to extracellular oligomers was much higher in brain-derived than nonbrain cells. We conclude that the pathogenically critical process of Abeta oligomerization begins intraneuronally. |
Author | Selkoe, Dennis J Podlisny, Marcia B Walsh, Dominic M Rydel, Russell E Tseng, Bertrand P |
Author_xml | – sequence: 1 givenname: Dominic M surname: Walsh fullname: Walsh, Dominic M – sequence: 2 givenname: Bertrand P surname: Tseng fullname: Tseng, Bertrand P – sequence: 3 givenname: Russell E surname: Rydel fullname: Rydel, Russell E – sequence: 4 givenname: Marcia B surname: Podlisny fullname: Podlisny, Marcia B – sequence: 5 givenname: Dennis J surname: Selkoe fullname: Selkoe, Dennis J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10978169$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFOFTEUhhuDkQu68AVMN5q4GDmdaafTJV5BSEgg4eqCTdOZOcXiTAvtjOH6WD6Iz2TxIjGGxNXJyfn-Pyf_v0O2fPBIyEsG7xiUbK91AAx4k56QBRMlFFwpsUUWAFAXpaphm-ykdJVXDpI_I9sMlGxYrRakXX1Bejq4yzBidN_N5IKnwdL9cT0E19OfP4qzGCZ0nr7HS-cTPfZTNB0OwzyYOKxpvizzluiHbPANe2pjGOnRPJosicb55-SpNUPCF_dzl3w6PFgtj4qT04_Hy_2TwlQNTAUCR6yxA9YyJXplJC8bi7yyIJD31qJtTFUzJoUsm54BKG6Z5LxuRWNlVe2SNxvf6xhuZkyTHl26e9R4DHPSsiw51IL9F2QNEwoEZPDVPTi3I_b6OrrRxLX-E18G3m6ALoaUItq_EH1XjX6oJrN7_7Cdm37nnfN0w6OKYqNwacLbB2sTv-paVlLo1dm5lhefDy_YSurzzL_e8KZL-irM0ee4H_H9BetjqzM |
CitedBy_id | crossref_primary_10_1002_ange_200700861 crossref_primary_10_1016_j_neuron_2004_09_010 crossref_primary_10_1007_s00249_009_0439_8 crossref_primary_10_1111_j_1471_4159_2004_02816_x crossref_primary_10_1016_j_neuint_2009_08_002 crossref_primary_10_1089_rej_2008_0761 crossref_primary_10_1016_S0891_5849_02_00801_8 crossref_primary_10_1007_s10930_023_10138_0 crossref_primary_10_1038_ni_2639 crossref_primary_10_1096_fj_05_3735fje crossref_primary_10_1515_REVNEURO_2005_16_2_123 crossref_primary_10_1016_S0301_0082_03_00089_3 crossref_primary_10_1046_j_1471_4159_2003_01818_x crossref_primary_10_1021_cn3001203 crossref_primary_10_1021_jm100601q crossref_primary_10_1021_jp1086575 crossref_primary_10_1016_j_neulet_2021_135869 crossref_primary_10_1186_1750_1326_6_63 crossref_primary_10_1002_pro_33 crossref_primary_10_1016_j_bbagen_2008_12_001 crossref_primary_10_1016_j_neuroimage_2010_08_044 crossref_primary_10_3390_ijms13033038 crossref_primary_10_1016_S0166_4328_03_00118_9 crossref_primary_10_1073_pnas_0404349101 crossref_primary_10_3892_ol_2016_5178 crossref_primary_10_1016_j_lfs_2005_12_004 crossref_primary_10_1074_jbc_M300825200 crossref_primary_10_1016_S0733_8619_05_70232_2 crossref_primary_10_1186_1742_2094_6_1 crossref_primary_10_1523_JNEUROSCI_5161_07_2008 crossref_primary_10_1002_jnr_20818 crossref_primary_10_1016_j_bbamem_2018_03_015 crossref_primary_10_1073_pnas_2212954119 crossref_primary_10_1093_hmg_ddm030 crossref_primary_10_15407_fz66_06_088 crossref_primary_10_3233_JAD_150318 crossref_primary_10_1021_acschemneuro_1c00847 crossref_primary_10_1126_scitranslmed_3007747 crossref_primary_10_1111_j_1365_2362_2011_02618_x crossref_primary_10_1016_S0306_4522_02_00132_X crossref_primary_10_1111_j_1471_4159_2006_04426_x crossref_primary_10_1016_j_neurobiolaging_2012_04_018 crossref_primary_10_1016_j_neulet_2005_10_087 crossref_primary_10_1017_S0317167100013408 crossref_primary_10_1093_brain_awq065 crossref_primary_10_2353_ajpath_2007_070105 crossref_primary_10_3233_JAD_190562 crossref_primary_10_1002_ana_21051 crossref_primary_10_1523_JNEUROSCI_5053_06_2007 crossref_primary_10_1016_j_neurobiolaging_2014_07_017 crossref_primary_10_1371_journal_pone_0147808 crossref_primary_10_1007_s12035_015_9224_0 crossref_primary_10_2353_ajpath_2006_060269 crossref_primary_10_1074_jbc_M606015200 crossref_primary_10_1002_cbic_201500623 crossref_primary_10_1016_j_bbrc_2005_04_090 crossref_primary_10_1042_BJ20081118 crossref_primary_10_1515_bmc_2011_019 crossref_primary_10_1016_j_neulet_2016_12_060 crossref_primary_10_1016_S0306_4522_02_00191_4 crossref_primary_10_1016_j_brainres_2005_03_017 crossref_primary_10_1007_s12035_014_8675_z crossref_primary_10_1074_jbc_M009598200 crossref_primary_10_1007_s00429_009_0232_6 crossref_primary_10_1016_j_neuint_2007_10_020 crossref_primary_10_1016_j_brainres_2008_03_079 crossref_primary_10_1186_1750_1326_7_8 crossref_primary_10_2217_bmm_11_48 crossref_primary_10_1021_acschemneuro_0c00642 crossref_primary_10_3390_ma9090740 crossref_primary_10_1016_j_peptides_2013_04_020 crossref_primary_10_1016_j_mce_2019_110537 crossref_primary_10_1179_016164105X49436 crossref_primary_10_2119_2007_00100_Irvine crossref_primary_10_1097_00001756_200210280_00005 crossref_primary_10_1016_j_neulet_2017_09_028 crossref_primary_10_1017_S1462399411001906 crossref_primary_10_2217_17520363_1_1_59 crossref_primary_10_1021_acsphotonics_4c01900 crossref_primary_10_1523_JNEUROSCI_2984_08_2009 crossref_primary_10_2174_1570159X20666221010113812 crossref_primary_10_1242_jcs_042226 crossref_primary_10_1093_hmg_ddq160 crossref_primary_10_1042_BST0331087 crossref_primary_10_1523_JNEUROSCI_3268_10_2011 crossref_primary_10_5012_bkcs_2006_27_4_477 crossref_primary_10_1007_s00249_007_0237_0 crossref_primary_10_1074_jbc_M701078200 crossref_primary_10_1080_15622970510029795 crossref_primary_10_1038_nrd3050 crossref_primary_10_1007_s00125_010_1671_6 crossref_primary_10_1186_1750_1326_4_14 crossref_primary_10_1080_10715760500329721 crossref_primary_10_1186_2193_1801_3_161 crossref_primary_10_1016_j_mehy_2017_12_015 crossref_primary_10_1111_j_1742_4658_2008_06727_x crossref_primary_10_1007_s00775_004_0602_8 crossref_primary_10_1093_jrr_rrx045 crossref_primary_10_1523_JNEUROSCI_5543_03_2004 crossref_primary_10_1073_pnas_151261398 crossref_primary_10_1074_jbc_M110_178707 crossref_primary_10_1016_j_ejmech_2023_115670 crossref_primary_10_1021_acs_jmedchem_6b01130 crossref_primary_10_3109_13506120208995241 crossref_primary_10_1172_JCI0216783 crossref_primary_10_1016_j_bbr_2008_02_016 crossref_primary_10_1523_JNEUROSCI_1633_03_2004 crossref_primary_10_1007_s11910_001_0101_z crossref_primary_10_1074_jbc_M109_038646 crossref_primary_10_1007_s10571_011_9691_4 crossref_primary_10_1089_104454904322745934 crossref_primary_10_1021_bi5003053 crossref_primary_10_1016_j_arr_2021_101307 crossref_primary_10_1126_science_1213210 crossref_primary_10_1038_nm1782 crossref_primary_10_1074_jbc_M103598200 crossref_primary_10_1016_j_jmb_2003_11_046 crossref_primary_10_1074_jbc_R111_288308 crossref_primary_10_1074_jbc_M109_045187 crossref_primary_10_1007_s00401_010_0666_1 crossref_primary_10_1016_j_neuint_2011_02_008 crossref_primary_10_1038_s41380_021_01249_0 crossref_primary_10_1371_journal_pone_0013391 crossref_primary_10_3390_ijms232314588 crossref_primary_10_1016_j_biomaterials_2016_06_056 crossref_primary_10_1016_j_yhbeh_2015_05_020 crossref_primary_10_1016_j_bcp_2022_114927 crossref_primary_10_1016_j_neurobiolaging_2003_12_011 crossref_primary_10_1074_jbc_M102223200 crossref_primary_10_1038_s41598_019_41443_3 crossref_primary_10_2353_ajpath_2006_051232 crossref_primary_10_1002_psc_998 crossref_primary_10_1021_tx900358j crossref_primary_10_1074_jbc_M110_186411 crossref_primary_10_1111_j_1476_5381_2012_01973_x crossref_primary_10_1002_jnr_20952 crossref_primary_10_1111_j_1749_6632_2003_tb07475_x crossref_primary_10_1126_science_290_5494_1113 crossref_primary_10_1007_s00401_015_1386_3 crossref_primary_10_1016_j_nbd_2005_03_007 crossref_primary_10_1007_s00401_009_0539_7 crossref_primary_10_1186_1741_7007_4_32 crossref_primary_10_1016_j_npep_2017_04_001 crossref_primary_10_1111_j_1742_4658_2010_07568_x crossref_primary_10_1038_nature07055 crossref_primary_10_1016_j_virusres_2015_01_019 crossref_primary_10_1016_S1567_5769_02_00168_6 crossref_primary_10_1074_jbc_M210207200 crossref_primary_10_1146_annurev_pathol_1_110304_100113 crossref_primary_10_1016_S0197_4580_01_00283_4 crossref_primary_10_1002_ange_202013754 crossref_primary_10_1016_j_expneurol_2012_05_004 crossref_primary_10_1016_j_tjog_2012_09_005 crossref_primary_10_1111_j_1471_4159_2004_02737_x crossref_primary_10_1016_j_expneurol_2009_10_013 crossref_primary_10_1016_j_neurobiolaging_2012_10_016 crossref_primary_10_1186_1750_1326_5_19 crossref_primary_10_1021_acschemneuro_2c00785 crossref_primary_10_1523_JNEUROSCI_4330_03_2004 crossref_primary_10_1016_j_bbr_2010_01_044 crossref_primary_10_1038_416535a crossref_primary_10_1074_jbc_M610390200 crossref_primary_10_1016_j_bbadis_2008_10_014 crossref_primary_10_3390_ijms12129369 crossref_primary_10_1111_j_1742_4658_2010_07721_x crossref_primary_10_1016_j_ejphar_2017_05_057 crossref_primary_10_1016_j_jbc_2023_105445 crossref_primary_10_1111_j_1471_4159_2011_07478_x crossref_primary_10_3233_JAD_150173 crossref_primary_10_1186_2051_5960_2_61 crossref_primary_10_3233_JAD_160405 crossref_primary_10_1111_j_1460_9568_2008_06207_x crossref_primary_10_1111_jnc_13873 crossref_primary_10_3389_fninf_2018_00026 crossref_primary_10_1074_jbc_M507892200 crossref_primary_10_3389_fnagi_2014_00077 crossref_primary_10_1021_acssensors_9b00974 crossref_primary_10_1021_cr3000994 crossref_primary_10_1016_j_neuint_2017_08_010 crossref_primary_10_2217_17460875_3_5_505 crossref_primary_10_1016_j_bpj_2010_06_043 crossref_primary_10_1111_gtc_12332 crossref_primary_10_3389_fnins_2019_01007 crossref_primary_10_4061_2009_951548 crossref_primary_10_3389_fncel_2019_00037 crossref_primary_10_1007_s00775_011_0783_x crossref_primary_10_1186_1750_1326_4_51 crossref_primary_10_1016_j_jns_2016_01_008 crossref_primary_10_1515_cclm_2016_1061 crossref_primary_10_4196_kjpp_2009_13_3_195 crossref_primary_10_1002_prot_22832 crossref_primary_10_1523_JNEUROSCI_3672_12_2013 crossref_primary_10_1586_ern_09_28 crossref_primary_10_3389_fnins_2019_00043 crossref_primary_10_1177_153331750201700209 crossref_primary_10_1111_j_1471_4159_2012_07847_x crossref_primary_10_1016_S0896_6273_03_00787_6 crossref_primary_10_1371_journal_pone_0111492 crossref_primary_10_1074_jbc_M313003200 crossref_primary_10_1016_j_plipres_2010_09_001 crossref_primary_10_1021_bi902203m crossref_primary_10_3390_molecules23082010 crossref_primary_10_1016_j_pneurobio_2012_03_002 crossref_primary_10_1039_D3AY01667F crossref_primary_10_1113_jphysiol_2005_103754 crossref_primary_10_2174_0929866526666190228122849 crossref_primary_10_3390_biom13101492 crossref_primary_10_1111_jnc_15030 crossref_primary_10_1016_j_brainres_2009_01_008 crossref_primary_10_1074_jbc_M701823200 crossref_primary_10_1038_nn1022 crossref_primary_10_1002_anie_200700861 crossref_primary_10_1007_s10822_007_9155_6 crossref_primary_10_4061_2011_304583 crossref_primary_10_1111_j_1471_4159_2006_03862_x crossref_primary_10_1073_pnas_0806192105 crossref_primary_10_1074_jbc_M109_036798 crossref_primary_10_1111_j_1749_6632_2000_tb05554_x crossref_primary_10_3390_biom7040071 crossref_primary_10_1016_j_tips_2017_10_008 crossref_primary_10_1155_2015_803942 crossref_primary_10_1111_j_1471_4159_2011_07187_x crossref_primary_10_1073_pnas_192585799 crossref_primary_10_1016_S0304_4165_03_00101_6 crossref_primary_10_1097_00001756_200301200_00023 crossref_primary_10_1007_s12035_019_01660_3 crossref_primary_10_1523_JNEUROSCI_5167_03_2004 crossref_primary_10_4061_2010_986310 crossref_primary_10_1042_BST0390857 crossref_primary_10_1074_jbc_RA118_004511 crossref_primary_10_1007_s10534_011_9490_x crossref_primary_10_1038_nn1372 crossref_primary_10_1016_j_neuropharm_2017_09_031 crossref_primary_10_1016_j_nbd_2009_07_021 crossref_primary_10_1089_scd_2012_0345 crossref_primary_10_1016_j_ebiom_2016_03_035 crossref_primary_10_1038_s41598_017_05619_z crossref_primary_10_1074_jbc_M414176200 crossref_primary_10_1146_annurev_biochem_75_101304_123901 crossref_primary_10_1186_2051_5960_1_56 crossref_primary_10_1155_2016_7361613 crossref_primary_10_1021_bi702097s crossref_primary_10_1590_S1807_59322011001300006 crossref_primary_10_1016_j_chembiol_2014_03_014 crossref_primary_10_3109_13506120109007356 crossref_primary_10_1007_s12013_008_9033_4 crossref_primary_10_1021_ja076059o crossref_primary_10_1038_s41598_017_02370_3 crossref_primary_10_1016_j_neurobiolaging_2012_11_014 crossref_primary_10_1021_jp906107p crossref_primary_10_3233_ADR_170051 crossref_primary_10_1021_acs_jpcb_8b07805 crossref_primary_10_1080_13506120701461020 crossref_primary_10_1007_s00401_013_1083_z crossref_primary_10_1515_REVNEURO_2006_17_5_497 crossref_primary_10_1002_ana_22052 crossref_primary_10_1002_anie_202013754 crossref_primary_10_1038_s41467_024_50153_y crossref_primary_10_1038_nm1234 crossref_primary_10_1016_j_bbrc_2004_02_059 crossref_primary_10_1016_j_nic_2005_09_009 crossref_primary_10_1039_B206351D crossref_primary_10_3390_ijms24119652 crossref_primary_10_1038_nrn2168 crossref_primary_10_1155_2012_132146 crossref_primary_10_1007_s00775_009_0600_y crossref_primary_10_1111_j_1471_4159_2005_03188_x crossref_primary_10_1246_bcsj_20190356 crossref_primary_10_1007_s11357_012_9403_0 crossref_primary_10_1523_JNEUROSCI_4391_04_2005 crossref_primary_10_1016_j_cub_2020_02_083 crossref_primary_10_1016_j_neurobiolaging_2009_11_007 crossref_primary_10_1016_j_jneumeth_2008_08_001 crossref_primary_10_1111_j_1471_4159_2010_06811_x crossref_primary_10_3389_fnagi_2014_00166 crossref_primary_10_5012_bkcs_2004_25_5_601 crossref_primary_10_1002_cmdc_200700140 crossref_primary_10_1042_BST20120009 crossref_primary_10_1016_j_ceca_2020_102190 crossref_primary_10_3390_cells9051215 crossref_primary_10_1016_j_neurobiolaging_2011_07_012 crossref_primary_10_1016_j_neuron_2014_02_027 crossref_primary_10_1074_jbc_M111_220863 crossref_primary_10_1111_j_1742_4658_2006_05162_x crossref_primary_10_1016_j_brainres_2004_10_041 crossref_primary_10_1074_jbc_M109008200 crossref_primary_10_1007_s00401_009_0557_5 crossref_primary_10_1523_JNEUROSCI_4970_06_2007 crossref_primary_10_1007_s00401_009_0497_0 crossref_primary_10_1007_s12031_002_0011_9 crossref_primary_10_1016_j_tips_2009_05_002 crossref_primary_10_1111_j_1749_6632_2001_tb03477_x crossref_primary_10_1074_jbc_M506646200 crossref_primary_10_4061_2009_689285 crossref_primary_10_1039_D3NR05184F crossref_primary_10_1007_s00401_007_0284_8 crossref_primary_10_1152_physrev_2001_81_2_741 crossref_primary_10_1016_j_biopsych_2003_10_014 crossref_primary_10_1007_s00702_009_0314_x crossref_primary_10_1038_nrm2101 crossref_primary_10_1016_j_abb_2008_03_021 crossref_primary_10_1016_j_exger_2007_10_018 crossref_primary_10_1016_S0002_9440_10_64463_X crossref_primary_10_1016_j_jmb_2005_06_043 crossref_primary_10_1016_j_mcn_2009_02_008 crossref_primary_10_1177_0271678X16654920 crossref_primary_10_1586_14737175_7_7_887 crossref_primary_10_1016_j_jalz_2012_11_005 crossref_primary_10_1074_jbc_M210105200 crossref_primary_10_1016_j_arr_2023_101999 crossref_primary_10_1016_j_biologicals_2020_02_004 crossref_primary_10_1016_j_neurobiolaging_2010_01_001 crossref_primary_10_1038_mp_2013_171 crossref_primary_10_1016_j_isci_2021_103207 crossref_primary_10_1038_s41593_019_0385_4 crossref_primary_10_1016_j_mito_2007_06_001 crossref_primary_10_1021_ja503535m crossref_primary_10_1002_syn_20957 crossref_primary_10_1134_S0006297914130057 crossref_primary_10_1016_j_neurobiolaging_2014_08_014 crossref_primary_10_2174_1568026619666190304153353 crossref_primary_10_1016_j_neuroscience_2017_08_042 crossref_primary_10_1016_j_jalz_2015_01_005 crossref_primary_10_1034_j_1399_3011_2002_11002_x |
Cites_doi | 10.1083/jcb.141.4.1031 10.1111/j.1471-4159.1993.tb09841.x 10.1074/jbc.270.16.9564 10.1042/bj3110001 10.1074/jbc.274.36.25945 10.1074/jbc.271.34.20631 10.1016/S0002-9440(10)64700-1 10.1016/S0002-9440(10)65094-8 10.1016/S0021-9258(19)39590-0 10.1016/S0002-9440(10)65273-X 10.2105/AJPH.89.1.90 10.1523/JNEUROSCI.11-12-03783.1991 10.1523/JNEUROSCI.19-20-08876.1999 10.1523/JNEUROSCI.20-05-01657.2000 10.1146/annurev.biochem.66.1.385 |
ContentType | Journal Article |
Copyright | Copyright © 2000 American Chemical Society |
Copyright_xml | – notice: Copyright © 2000 American Chemical Society |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 |
DOI | 10.1021/bi001048s |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1520-4995 |
EndPage | 10839 |
ExternalDocumentID | 10978169 10_1021_bi001048s ark_67375_TPS_7ZVFZ1T7_S c774571467 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: AG05134 |
GroupedDBID | - .K2 02 08R 186 23N 3O- 4.4 53G 55 55A 5GY 5RE 5VS 7~N 85S AABXI AAYJJ ABFLS ABMVS ABOCM ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS ADKFC AEESW AENEX AETEA AFEFF AFFDN AFFNX AFMIJ AIDAL AJYGW ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F5P G8K GJ GNL IH9 IHE JG JG~ K2 K78 KM L7B LG6 MVM NHB OHT P2P ROL TN5 UI2 UNC UQL VF5 VG9 VQA W1F WH7 X X7M YZZ ZA5 ZE2 ZGI ZXP --- -DZ -~X .55 .GJ 6TJ ABDPE ABJNI ABQRX ADHLV AGXLV AHGAQ BSCLL CUPRZ GGK XOL XSW YYP ZCA ~02 ~KM AAYXX ABBLG ABLBI ACRPL ADNMO AEYZD AGQPQ ANPPW CITATION CGR CUY CVF ECM EIF NPM VXZ 7TK 7X8 |
ID | FETCH-LOGICAL-a380t-e04ee6ec01b195d9a7428fe43f05e4dffef8a361175728d10094f17446b58f733 |
IEDL.DBID | ACS |
ISSN | 0006-2960 |
IngestDate | Fri Jul 11 15:08:01 EDT 2025 Fri Jul 11 05:42:10 EDT 2025 Wed Feb 19 02:34:34 EST 2025 Tue Jul 01 04:29:44 EDT 2025 Thu Apr 24 23:07:08 EDT 2025 Wed Oct 30 09:41:41 EDT 2024 Thu Aug 27 13:42:07 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a380t-e04ee6ec01b195d9a7428fe43f05e4dffef8a361175728d10094f17446b58f733 |
Notes | ark:/67375/TPS-7ZVFZ1T7-S istex:BA8F3B73164A4E8BB838393162624B32B60FF512 This work was supported by NIH Grant AG05134 (D.J.S.) and by the Foundation for Neurologic Diseases. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 10978169 |
PQID | 18159050 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_72240651 proquest_miscellaneous_18159050 pubmed_primary_10978169 crossref_primary_10_1021_bi001048s crossref_citationtrail_10_1021_bi001048s istex_primary_ark_67375_TPS_7ZVFZ1T7_S acs_journals_10_1021_bi001048s |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2000-09-05 |
PublicationDateYYYYMMDD | 2000-09-05 |
PublicationDate_xml | – month: 09 year: 2000 text: 2000-09-05 day: 05 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemistry (Easton) |
PublicationTitleAlternate | Biochemistry |
PublicationYear | 2000 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Seubert P. (bi001048sb00026/bi001048sb00026_1) 1992 Xia W. M. (bi001048sb00032/bi001048sb00032_1) 1998 Podlisny M. B. (bi001048sb00001/bi001048sb00001_1) 1995; 270 Haass C. (bi001048sb00027/bi001048sb00027_1) 1991; 11 Harper J. D. (bi001048sb00037/bi001048sb00037_1) 1997; 66 Pike C. J. (bi001048sb00006/bi001048sb00006_1) 1993; 13 Xia W. M. (bi001048sb00020/bi001048sb00020_1) 1997; 272 Skovronsky D. M. (bi001048sb00021/bi001048sb00021_1) 1998; 141 Kuo Y.-M. (bi001048sb00022/bi001048sb00022_1) 1999 Funato H. (bi001048sb00038/bi001048sb00038_1) 1998; 152 Morishima-Kawashima M. (bi001048sb00040/bi001048sb00040_1) 1998 Gouras G. K. (bi001048sb00014/bi001048sb00014_1) 2000; 156 Kuo Y. M. (bi001048sb00016/bi001048sb00016_1) 1996; 271 Walsh D. M. (bi001048sb00010/bi001048sb00010_1) 1999; 274 Andreasen N. (bi001048sb00041/bi001048sb00041_1) 1999 Pitschke M. (bi001048sb00042/bi001048sb00042_1) 1998 Pike C. J. (bi001048sb00005/bi001048sb00005_1) 1991 Enya M. (bi001048sb00019/bi001048sb00019_1) 1999; 154 Johnson-Wood K. (bi001048sb00028/bi001048sb00028_1) 1997 Vekrellis K. (bi001048sb00039/bi001048sb00039_1) 2000; 20 Citron M. (bi001048sb00025/bi001048sb00025_1) 1995 Haass C. (bi001048sb00030/bi001048sb00030_1) 1992 Hsia A. Y. (bi001048sb00012/bi001048sb00012_1) 1999 Chui D.-H. (bi001048sb00013/bi001048sb00013_1) 1999 Vigo-Pelfrey C. (bi001048sb00034/bi001048sb00034_1) 1993; 61 Roher A. E. (bi001048sb00017/bi001048sb00017_1) 1996; 271 Funato H. (bi001048sb00018/bi001048sb00018_1) 1999; 155 Biere A. L. (bi001048sb00024/bi001048sb00024_1) 1995 Hartley D. M. (bi001048sb00011/bi001048sb00011_1) 1999; 19 Qiu W. Q. (bi001048sb00035/bi001048sb00035_1) 1997; 272 Kim K. S. (bi001048sb00029/bi001048sb00029_1) 1990 Iversen L. L. (bi001048sb00008/bi001048sb00008_1) 1995; 311 Hardy (bi001048sb00004/bi001048sb00004_1) 2095 Qiu W. Q. (bi001048sb00036/bi001048sb00036_1) 1998; 273 Lambert M. P. (bi001048sb00009/bi001048sb00009_1) 1998 Ida N. (bi001048sb00033/bi001048sb00033_1) 1996; 271 Lorenzo A. (bi001048sb00007/bi001048sb00007_1) 1994 Kuo Y.-M. (bi001048sb00023/bi001048sb00023_1) 2000 Podlisny M. B. (bi001048sb00002/bi001048sb00002_1) 1998 Ewbank D. C. (bi001048sb00003/bi001048sb00003_1) 1999; 89 Yang A. J. (bi001048sb00015/bi001048sb00015_1) 1999; 274 Oltersdorf T. (bi001048sb00031/bi001048sb00031_1) 1990; 265 |
References_xml | – volume: 141 year: 1998 ident: bi001048sb00021/bi001048sb00021_1 publication-title: J. Cell Biol. doi: 10.1083/jcb.141.4.1031 – volume: 61 year: 1993 ident: bi001048sb00034/bi001048sb00034_1 publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.1993.tb09841.x – volume: 270 year: 1995 ident: bi001048sb00001/bi001048sb00001_1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.16.9564 – volume: 311 start-page: 16 year: 1995 ident: bi001048sb00008/bi001048sb00008_1 publication-title: Biochem. J. doi: 10.1042/bj3110001 – volume: 152 year: 1998 ident: bi001048sb00038/bi001048sb00038_1 publication-title: Am. J. Pathol. – volume-title: Biochemistry 37, 3602−3611 year: 1998 ident: bi001048sb00002/bi001048sb00002_1 – volume: 272 year: 1997 ident: bi001048sb00020/bi001048sb00020_1 publication-title: J. Biol. Chem. – volume: 274 year: 1999 ident: bi001048sb00010/bi001048sb00010_1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.36.25945 – volume-title: Biochemistry 37, 15247−15253 year: 1998 ident: bi001048sb00040/bi001048sb00040_1 – volume: 271 year: 1996 ident: bi001048sb00033/bi001048sb00033_1 publication-title: J. Biol. Chem. – volume: 271 year: 1996 ident: bi001048sb00016/bi001048sb00016_1 publication-title: J. Biol. Chem. – volume: 271 year: 1996 ident: bi001048sb00017/bi001048sb00017_1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.34.20631 – volume: 156 start-page: 20 year: 2000 ident: bi001048sb00014/bi001048sb00014_1 publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)64700-1 – volume-title: Biochem. Biophys. Res. Commun. 268, 750−756 year: 2000 ident: bi001048sb00023/bi001048sb00023_1 – volume-title: Neurosci. Res. Commun. 7, 113−122 year: 1990 ident: bi001048sb00029/bi001048sb00029_1 – volume-title: Biochemistry 37, 16465−16471 year: 1998 ident: bi001048sb00032/bi001048sb00032_1 – volume: 155 start-page: 28 year: 1999 ident: bi001048sb00018/bi001048sb00018_1 publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)65094-8 – volume-title: Nature 359, 325−327 year: 1992 ident: bi001048sb00026/bi001048sb00026_1 – volume-title: J. (1997) year: 2095 ident: bi001048sb00004/bi001048sb00004_1 – volume-title: Proc. Natl. Acad. Sci. U.S.A. 96, 3228−3233 year: 1999 ident: bi001048sb00012/bi001048sb00012_1 – volume: 265 year: 1990 ident: bi001048sb00031/bi001048sb00031_1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)39590-0 – volume-title: Nature 359, 322−325 year: 1992 ident: bi001048sb00030/bi001048sb00030_1 – volume-title: Proc. Natl. Acad. Sci. U.S.A. 95, 6448−6453 year: 1998 ident: bi001048sb00009/bi001048sb00009_1 – volume-title: 4, 832−834 year: 1998 ident: bi001048sb00042/bi001048sb00042_1 – volume-title: Neurobiol. Dis. 2, 177−187 year: 1995 ident: bi001048sb00024/bi001048sb00024_1 – volume: 154 year: 1999 ident: bi001048sb00019/bi001048sb00019_1 publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)65273-X – volume: 89 start-page: 92 year: 1999 ident: bi001048sb00003/bi001048sb00003_1 publication-title: Am. J. Public Health doi: 10.2105/AJPH.89.1.90 – volume-title: Arch. Neurol. 56, 673−680 year: 1999 ident: bi001048sb00041/bi001048sb00041_1 – volume-title: Proc. Natl. Acad. Sci. U.S.A. 94, 1550−1555 year: 1997 ident: bi001048sb00028/bi001048sb00028_1 – volume: 13 year: 1993 ident: bi001048sb00006/bi001048sb00006_1 publication-title: J. Neurosci. – volume: 274 year: 1999 ident: bi001048sb00015/bi001048sb00015_1 publication-title: J. Biol. Chem. – volume-title: Brain Res. 563, 311−314 year: 1991 ident: bi001048sb00005/bi001048sb00005_1 – volume: 11 year: 1991 ident: bi001048sb00027/bi001048sb00027_1 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.11-12-03783.1991 – volume: 19 year: 1999 ident: bi001048sb00011/bi001048sb00011_1 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-20-08876.1999 – volume-title: Neuron 14, 661−670 year: 1995 ident: bi001048sb00025/bi001048sb00025_1 – volume: 272 year: 1997 ident: bi001048sb00035/bi001048sb00035_1 publication-title: J. Biol. Chem. – volume: 20 year: 2000 ident: bi001048sb00039/bi001048sb00039_1 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-05-01657.2000 – volume-title: 5, 560−564 year: 1999 ident: bi001048sb00013/bi001048sb00013_1 – volume: 273 year: 1998 ident: bi001048sb00036/bi001048sb00036_1 publication-title: J. Biol. Chem. – volume-title: Biochem. Biophys. Res. Commun. 257, 787−791 year: 1999 ident: bi001048sb00022/bi001048sb00022_1 – volume: 66 year: 1997 ident: bi001048sb00037/bi001048sb00037_1 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.66.1.385 – volume-title: Proc. Natl. Acad. Sci. U.S.A. 91, 12243−12247 year: 1994 ident: bi001048sb00007/bi001048sb00007_1 |
SSID | ssj0004074 |
Score | 2.219803 |
Snippet | The progressive aggregation and deposition of amyloid β-protein (Aβ) in brain regions subserving memory and cognition is an early and invariant feature of... The progressive aggregation and deposition of amyloid beta-protein (Abeta) in brain regions subserving memory and cognition is an early and invariant feature... The progressive aggregation and deposition of amyloid beta -protein (A beta ) in brain regions subserving memory and cognition is an early and invariant... |
SourceID | proquest pubmed crossref istex acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10831 |
SubjectTerms | Amyloid beta-Peptides - cerebrospinal fluid Amyloid beta-Peptides - metabolism Amyloid beta-Protein Precursor - biosynthesis Amyloid beta-Protein Precursor - genetics Animals Body Temperature Cell-Free System - metabolism Cells, Cultured Cerebral Cortex - chemistry Cerebral Cortex - cytology Cerebral Cortex - metabolism CHO Cells Cricetinae Culture Media, Conditioned - metabolism Dimerization Extracellular Space - metabolism Fetus Humans Intracellular Fluid - metabolism Molecular Weight Neurons - chemistry Neurons - metabolism Sodium Dodecyl Sulfate - metabolism Transfection |
Title | The Oligomerization of Amyloid β-Protein Begins Intracellularly in Cells Derived from Human Brain |
URI | http://dx.doi.org/10.1021/bi001048s https://api.istex.fr/ark:/67375/TPS-7ZVFZ1T7-S/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/10978169 https://www.proquest.com/docview/18159050 https://www.proquest.com/docview/72240651 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V9gAXHi2P5VEsQBUXt05iO_Zxu2VVkIBKu0VVL1ES22jVbRY1u4jys_gh_CY8TrIU0YVjlEnkeCaa-Twz3wC8klwa73cFTbguKTcuodpJS71rE0kZpVFTPP7-gzw85u9OxMkavFyRwY-jvWISOGRUfQM2YqlSRFj9weh38yNrqZY9NI59PN7RB119FF1PWf_hejZwF7-tjiuDfxnegYOuS6cpKznbXcyL3fL736SN_1r6Xbjdxpek3xjEPViz1SZs9SuPrc8vyQ4JFZ_hKH0Tbg66aW9bUHh7IR-nk88zTOE0vZlk5kj_3CP6iSE_f9AjpHSYVGQfZznU5C0eC-O5PxayTi-JvzPwVzU58C_4ag3BzhUSkgRkHwdR3Ifj4Zvx4JC28xdonig2p5Zxa6UtWVREWhidexitnOWJY8J6tTrrVJ5IJPtMY2UirFJ0HuFwWQjl0iR5AOvVrLKPgFhTaFY6rbgyXDNEMUbmymojldFC9GDbKyhr_586C6nxOMqWO9iD153usrJlL8chGtPrRF8sRb80lB3XCe0EA1hK5BdnWOOWimx8NMrS00_D02icZqMePO8sJPMqwW3NKztb-DUqHwoywVZLpCFeElEPHjamdWU9yDUm9eP_ffcTuNU0_2vKxFNYn18s7DMfBs2L7fAb_AIs1_89 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fT9swELc2eGAv-wP7U7aBNU1oLwaniR37sXSrygYMqWVCvFhJbE8VJUWkncY-1j7IPtPunLSwCbQ9RrlYl_NZd-e7-x0hb2UiLdhdweJEFyyxPmbaS8fAtIm4iNKoLh4_OJT94-TjiThpYHKwFwaYqGClKiTxr9EFop18FKBkVHWfLIMT0sZAq9MdXPdA8gZxGSLkNrjlcxShm5-iBSqqPyzQMgrz-93uZTAzvUf1vKLAYKguOdueTfPt4sdf2I3_9wePycPG26SdWj2ekHuuXCVrnRIi7fMrukVD_We4WF8lK9357Lc1koP20M_j0dcJJnTqTk068bRzDvH9yNJfP9kRAjyMSrqLkx0quoeXxJgFwLLW8RWFN114quh7WOCbsxT7WGhIGdBdHEvxlBz3Pgy7fdZMY2BZrPiUOZ44J13BozzSwuoMgmrlXRJ7LhxssndeZbFE6M-0rWyENYse4p1E5kL5NI6fkaVyUroXhDqba154rRJlE80xprEyU05bqawWokU2QICmOU2VCYnydmQWEmyRd_MtNEWDZY4jNca3kb5ZkF7UAB63EW0FPVhQZJdnWPGWCjM8Gpj09EvvNBqmZtAim3NFMbAlKNasdJMZ8KjAMeSC302RBu9JRC3yvNawG_wg8pjU6__6702y0h8e7Jv9vcNPL8mDGhZAMy5ekaXp5cy9Bgdpmm-Ek_EbNukHrQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9tIG287AP20X2ANU1oLwGniR37sZRVsA-o1DIhXqIktlFFSRFpp7E_a3_I_qbdOWnHJtD2GOViXc5n3Z3v7ncAb2UsDdpdEUSxLoLYuCjQTtoATZuIijAJ6-Lxzwdy7yj-cCyOm0CRemGQiQpXqnwSn071hXENwkC4nY88nIyq7sIypeso2Op0B7_7IHmDuoxRchtd8zmS0PVPyQoV1R9WaJkE-u12F9Obmt5DOFww6StMzrZm03yr-P4XfuP__8UjeNB4naxTq8ljuGPLVVjrlBhxn1-xTebrQP0F-yrc785nwK1BjlrEDsej0wklduqOTTZxrHOOcf7IsJ8_gj4BPYxKtkMTHiq2T5fFlA2g8tbxFcM3XXyq2C4u8NUaRv0szKcO2A6Np3gCR733w-5e0ExlCLJI8WlgeWyttAUP81ALozMMrpWzceS4sLjZzjqVRZIgQJO2MiHVLjqMe2KZC-WSKHoKS-WktM-BWZNrXjitYmVizSm2MTJTVhupjBaiBesoxLQ5VVXqE-btMF1IsAXv5tuYFg2mOY3WGN9E-mZBelEDedxEtOl1YUGRXZ5R5Vsi0mF_kCYnX3on4TBJBy3YmCtLiltCYs1KO5khjwodRC747RSJ96JE2IJntZZd44cQyKR-8a__3oB7_d1e-mn_4ONLWKnRAXTAxStYml7O7Gv0k6b5uj8cvwDQAAow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Oligomerization+of+Amyloid+beta+-Protein+Begins+Intracellularly+in+Cells+Derived+from+Human+Brain&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Walsh%2C+D+M&rft.au=Tseng%2C+B+P&rft.au=Rydel%2C+R+E&rft.au=Podlisny%2C+M+B&rft.date=2000-09-05&rft.issn=0006-2960&rft.volume=39&rft.issue=35&rft.spage=10831&rft.epage=10839&rft_id=info:doi/10.1021%2Fbi001048s&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |