The Oligomerization of Amyloid β-Protein Begins Intracellularly in Cells Derived from Human Brain

The progressive aggregation and deposition of amyloid β-protein (Aβ) in brain regions subserving memory and cognition is an early and invariant feature of Alzheimer's disease, the most common cause of cognitive failure in aged humans. Inhibiting Aβ aggregation is therapeutically attractive beca...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 39; no. 35; pp. 10831 - 10839
Main Authors Walsh, Dominic M, Tseng, Bertrand P, Rydel, Russell E, Podlisny, Marcia B, Selkoe, Dennis J
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 05.09.2000
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The progressive aggregation and deposition of amyloid β-protein (Aβ) in brain regions subserving memory and cognition is an early and invariant feature of Alzheimer's disease, the most common cause of cognitive failure in aged humans. Inhibiting Aβ aggregation is therapeutically attractive because this process is believed to be an exclusively pathological event. Whereas many studies have examined the aggregation of synthetic Aβ peptides under nonphysiological conditions and concentrations, we have detected and characterized the oligomerization of naturally secreted Aβ at nanomolar levels in cultures of APP-expressing CHO cells [Podlisny, M. B., Ostaszewski, B. L., Squazzo, S. L., Koo, E. H., Rydell, R. E., Teplow, D. B., and Selkoe, D. J. (1995) J. Biol. Chem. 270, 9564−9570 ( ); Podlisny, M. B., Walsh, D. M., Amarante, P., Ostaszewski, B. L., Stimson, E. R., Maggio, J. E., Teplow, D. B., and Selkoe, D. J. (1998) Biochemistry 37, 3602−3611 ( )]. To determine whether similar species occur in vivo, we probed samples of human cerebrospinal fluid (CSF) and detected SDS-stable dimers of Aβ in some subjects. Incubation of CSF or of CHO conditioned medium at 37 °C did not lead to new oligomer formation. This inability to induce oligomers extracellularly as well as the detection of oligomers in cell medium very early during the course of pulse−chase experiments suggested that natural Aβ oligomers might first form intracellularly. We therefore searched for and detected intracellular Aβ oligomers, principally dimers, in primary human neurons and in neuronal and nonneural cell lines. These dimers arose intracellularly rather than being derived from the medium by reuptake. The dimers were particularly detectable in neural cells:  the ratio of intracellular to extracellular oligomers was much higher in brain-derived than nonbrain cells. We conclude that the pathogenically critical process of Aβ oligomerization begins intraneuronally.
AbstractList The progressive aggregation and deposition of amyloid beta -protein (A beta ) in brain regions subserving memory and cognition is an early and invariant feature of Alzheimer's disease, the most common cause of cognitive failure in aged humans. Inhibiting A beta aggregation is therapeutically attractive because this process is believed to be an exclusively pathological event. Whereas many studies have examined the aggregation of synthetic A beta peptides under nonphysiological conditions and concentrations, we have detected and characterized the oligomerization of naturally secreted A beta at nanomolar levels in cultures of APP-expressing CHO cells [Podlisny, M. B., Ostaszewski, B. L., Squazzo, S. L., Koo, E. H., Rydell, R. E., Teplow, D. B., and Selkoe, D. J. (1995) J. Biol. Chem. 270, 9564-9570 (1); Podlisny, M. B., Walsh, D. M., Amarante, P., Ostaszewski, B. L., Stimson, E. R., Maggio, J. E., Teplow, D. B., and Selkoe, D. J. (1998) Biochemistry 37, 3602-3611 (2)]. To determine whether similar species occur in vivo, we probed samples of human cerebrospinal fluid (CSF) and detected SDS-stable dimers of A beta in some subjects. Incubation of CSF or of CHO conditioned medium at 37 degree C did not lead to new oligomer formation. This inability to induce oligomers extracellularly as well as the detection of oligomers in cell medium very early during the course of pulse-chase experiments suggested that natural A beta oligomers might first form intracellularly. We therefore searched for and detected intracellular A beta oligomers, principally dimers, in primary human neurons and in neuronal and nonneural cell lines. These dimers arose intracellularly rather than being derived from the medium by reuptake. The dimers were particularly detectable in neural cells: the ratio of intracellular to extracellular oligomers was much higher in brain-derived than nonbrain cells. We conclude that the pathogenically critical process of A beta oligomerization begins intraneuronally.
The progressive aggregation and deposition of amyloid beta-protein (Abeta) in brain regions subserving memory and cognition is an early and invariant feature of Alzheimer's disease, the most common cause of cognitive failure in aged humans. Inhibiting Abeta aggregation is therapeutically attractive because this process is believed to be an exclusively pathological event. Whereas many studies have examined the aggregation of synthetic Abeta peptides under nonphysiological conditions and concentrations, we have detected and characterized the oligomerization of naturally secreted Abeta at nanomolar levels in cultures of APP-expressing CHO cells [Podlisny, M. B., Ostaszewski, B. L., Squazzo, S. L., Koo, E. H., Rydell, R. E., Teplow, D. B., and Selkoe, D. J. (1995) J. Biol. Chem. 270, 9564-9570 (1); Podlisny, M. B., Walsh, D. M., Amarante, P., Ostaszewski, B. L., Stimson, E. R., Maggio, J. E., Teplow, D. B., and Selkoe, D. J. (1998) Biochemistry 37, 3602-3611 (2)]. To determine whether similar species occur in vivo, we probed samples of human cerebrospinal fluid (CSF) and detected SDS-stable dimers of Abeta in some subjects. Incubation of CSF or of CHO conditioned medium at 37 degrees C did not lead to new oligomer formation. This inability to induce oligomers extracellularly as well as the detection of oligomers in cell medium very early during the course of pulse-chase experiments suggested that natural Abeta oligomers might first form intracellularly. We therefore searched for and detected intracellular Abeta oligomers, principally dimers, in primary human neurons and in neuronal and nonneural cell lines. These dimers arose intracellularly rather than being derived from the medium by reuptake. The dimers were particularly detectable in neural cells: the ratio of intracellular to extracellular oligomers was much higher in brain-derived than nonbrain cells. We conclude that the pathogenically critical process of Abeta oligomerization begins intraneuronally.The progressive aggregation and deposition of amyloid beta-protein (Abeta) in brain regions subserving memory and cognition is an early and invariant feature of Alzheimer's disease, the most common cause of cognitive failure in aged humans. Inhibiting Abeta aggregation is therapeutically attractive because this process is believed to be an exclusively pathological event. Whereas many studies have examined the aggregation of synthetic Abeta peptides under nonphysiological conditions and concentrations, we have detected and characterized the oligomerization of naturally secreted Abeta at nanomolar levels in cultures of APP-expressing CHO cells [Podlisny, M. B., Ostaszewski, B. L., Squazzo, S. L., Koo, E. H., Rydell, R. E., Teplow, D. B., and Selkoe, D. J. (1995) J. Biol. Chem. 270, 9564-9570 (1); Podlisny, M. B., Walsh, D. M., Amarante, P., Ostaszewski, B. L., Stimson, E. R., Maggio, J. E., Teplow, D. B., and Selkoe, D. J. (1998) Biochemistry 37, 3602-3611 (2)]. To determine whether similar species occur in vivo, we probed samples of human cerebrospinal fluid (CSF) and detected SDS-stable dimers of Abeta in some subjects. Incubation of CSF or of CHO conditioned medium at 37 degrees C did not lead to new oligomer formation. This inability to induce oligomers extracellularly as well as the detection of oligomers in cell medium very early during the course of pulse-chase experiments suggested that natural Abeta oligomers might first form intracellularly. We therefore searched for and detected intracellular Abeta oligomers, principally dimers, in primary human neurons and in neuronal and nonneural cell lines. These dimers arose intracellularly rather than being derived from the medium by reuptake. The dimers were particularly detectable in neural cells: the ratio of intracellular to extracellular oligomers was much higher in brain-derived than nonbrain cells. We conclude that the pathogenically critical process of Abeta oligomerization begins intraneuronally.
The progressive aggregation and deposition of amyloid β-protein (Aβ) in brain regions subserving memory and cognition is an early and invariant feature of Alzheimer's disease, the most common cause of cognitive failure in aged humans. Inhibiting Aβ aggregation is therapeutically attractive because this process is believed to be an exclusively pathological event. Whereas many studies have examined the aggregation of synthetic Aβ peptides under nonphysiological conditions and concentrations, we have detected and characterized the oligomerization of naturally secreted Aβ at nanomolar levels in cultures of APP-expressing CHO cells [Podlisny, M. B., Ostaszewski, B. L., Squazzo, S. L., Koo, E. H., Rydell, R. E., Teplow, D. B., and Selkoe, D. J. (1995) J. Biol. Chem. 270, 9564−9570 ( ); Podlisny, M. B., Walsh, D. M., Amarante, P., Ostaszewski, B. L., Stimson, E. R., Maggio, J. E., Teplow, D. B., and Selkoe, D. J. (1998) Biochemistry 37, 3602−3611 ( )]. To determine whether similar species occur in vivo, we probed samples of human cerebrospinal fluid (CSF) and detected SDS-stable dimers of Aβ in some subjects. Incubation of CSF or of CHO conditioned medium at 37 °C did not lead to new oligomer formation. This inability to induce oligomers extracellularly as well as the detection of oligomers in cell medium very early during the course of pulse−chase experiments suggested that natural Aβ oligomers might first form intracellularly. We therefore searched for and detected intracellular Aβ oligomers, principally dimers, in primary human neurons and in neuronal and nonneural cell lines. These dimers arose intracellularly rather than being derived from the medium by reuptake. The dimers were particularly detectable in neural cells:  the ratio of intracellular to extracellular oligomers was much higher in brain-derived than nonbrain cells. We conclude that the pathogenically critical process of Aβ oligomerization begins intraneuronally.
The progressive aggregation and deposition of amyloid beta-protein (Abeta) in brain regions subserving memory and cognition is an early and invariant feature of Alzheimer's disease, the most common cause of cognitive failure in aged humans. Inhibiting Abeta aggregation is therapeutically attractive because this process is believed to be an exclusively pathological event. Whereas many studies have examined the aggregation of synthetic Abeta peptides under nonphysiological conditions and concentrations, we have detected and characterized the oligomerization of naturally secreted Abeta at nanomolar levels in cultures of APP-expressing CHO cells [Podlisny, M. B., Ostaszewski, B. L., Squazzo, S. L., Koo, E. H., Rydell, R. E., Teplow, D. B., and Selkoe, D. J. (1995) J. Biol. Chem. 270, 9564-9570 (1); Podlisny, M. B., Walsh, D. M., Amarante, P., Ostaszewski, B. L., Stimson, E. R., Maggio, J. E., Teplow, D. B., and Selkoe, D. J. (1998) Biochemistry 37, 3602-3611 (2)]. To determine whether similar species occur in vivo, we probed samples of human cerebrospinal fluid (CSF) and detected SDS-stable dimers of Abeta in some subjects. Incubation of CSF or of CHO conditioned medium at 37 degrees C did not lead to new oligomer formation. This inability to induce oligomers extracellularly as well as the detection of oligomers in cell medium very early during the course of pulse-chase experiments suggested that natural Abeta oligomers might first form intracellularly. We therefore searched for and detected intracellular Abeta oligomers, principally dimers, in primary human neurons and in neuronal and nonneural cell lines. These dimers arose intracellularly rather than being derived from the medium by reuptake. The dimers were particularly detectable in neural cells: the ratio of intracellular to extracellular oligomers was much higher in brain-derived than nonbrain cells. We conclude that the pathogenically critical process of Abeta oligomerization begins intraneuronally.
Author Selkoe, Dennis J
Podlisny, Marcia B
Walsh, Dominic M
Rydel, Russell E
Tseng, Bertrand P
Author_xml – sequence: 1
  givenname: Dominic M
  surname: Walsh
  fullname: Walsh, Dominic M
– sequence: 2
  givenname: Bertrand P
  surname: Tseng
  fullname: Tseng, Bertrand P
– sequence: 3
  givenname: Russell E
  surname: Rydel
  fullname: Rydel, Russell E
– sequence: 4
  givenname: Marcia B
  surname: Podlisny
  fullname: Podlisny, Marcia B
– sequence: 5
  givenname: Dennis J
  surname: Selkoe
  fullname: Selkoe, Dennis J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10978169$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFOFTEUhhuDkQu68AVMN5q4GDmdaafTJV5BSEgg4eqCTdOZOcXiTAvtjOH6WD6Iz2TxIjGGxNXJyfn-Pyf_v0O2fPBIyEsG7xiUbK91AAx4k56QBRMlFFwpsUUWAFAXpaphm-ykdJVXDpI_I9sMlGxYrRakXX1Bejq4yzBidN_N5IKnwdL9cT0E19OfP4qzGCZ0nr7HS-cTPfZTNB0OwzyYOKxpvizzluiHbPANe2pjGOnRPJosicb55-SpNUPCF_dzl3w6PFgtj4qT04_Hy_2TwlQNTAUCR6yxA9YyJXplJC8bi7yyIJD31qJtTFUzJoUsm54BKG6Z5LxuRWNlVe2SNxvf6xhuZkyTHl26e9R4DHPSsiw51IL9F2QNEwoEZPDVPTi3I_b6OrrRxLX-E18G3m6ALoaUItq_EH1XjX6oJrN7_7Cdm37nnfN0w6OKYqNwacLbB2sTv-paVlLo1dm5lhefDy_YSurzzL_e8KZL-irM0ee4H_H9BetjqzM
CitedBy_id crossref_primary_10_1002_ange_200700861
crossref_primary_10_1016_j_neuron_2004_09_010
crossref_primary_10_1007_s00249_009_0439_8
crossref_primary_10_1111_j_1471_4159_2004_02816_x
crossref_primary_10_1016_j_neuint_2009_08_002
crossref_primary_10_1089_rej_2008_0761
crossref_primary_10_1016_S0891_5849_02_00801_8
crossref_primary_10_1007_s10930_023_10138_0
crossref_primary_10_1038_ni_2639
crossref_primary_10_1096_fj_05_3735fje
crossref_primary_10_1515_REVNEURO_2005_16_2_123
crossref_primary_10_1016_S0301_0082_03_00089_3
crossref_primary_10_1046_j_1471_4159_2003_01818_x
crossref_primary_10_1021_cn3001203
crossref_primary_10_1021_jm100601q
crossref_primary_10_1021_jp1086575
crossref_primary_10_1016_j_neulet_2021_135869
crossref_primary_10_1186_1750_1326_6_63
crossref_primary_10_1002_pro_33
crossref_primary_10_1016_j_bbagen_2008_12_001
crossref_primary_10_1016_j_neuroimage_2010_08_044
crossref_primary_10_3390_ijms13033038
crossref_primary_10_1016_S0166_4328_03_00118_9
crossref_primary_10_1073_pnas_0404349101
crossref_primary_10_3892_ol_2016_5178
crossref_primary_10_1016_j_lfs_2005_12_004
crossref_primary_10_1074_jbc_M300825200
crossref_primary_10_1016_S0733_8619_05_70232_2
crossref_primary_10_1186_1742_2094_6_1
crossref_primary_10_1523_JNEUROSCI_5161_07_2008
crossref_primary_10_1002_jnr_20818
crossref_primary_10_1016_j_bbamem_2018_03_015
crossref_primary_10_1073_pnas_2212954119
crossref_primary_10_1093_hmg_ddm030
crossref_primary_10_15407_fz66_06_088
crossref_primary_10_3233_JAD_150318
crossref_primary_10_1021_acschemneuro_1c00847
crossref_primary_10_1126_scitranslmed_3007747
crossref_primary_10_1111_j_1365_2362_2011_02618_x
crossref_primary_10_1016_S0306_4522_02_00132_X
crossref_primary_10_1111_j_1471_4159_2006_04426_x
crossref_primary_10_1016_j_neurobiolaging_2012_04_018
crossref_primary_10_1016_j_neulet_2005_10_087
crossref_primary_10_1017_S0317167100013408
crossref_primary_10_1093_brain_awq065
crossref_primary_10_2353_ajpath_2007_070105
crossref_primary_10_3233_JAD_190562
crossref_primary_10_1002_ana_21051
crossref_primary_10_1523_JNEUROSCI_5053_06_2007
crossref_primary_10_1016_j_neurobiolaging_2014_07_017
crossref_primary_10_1371_journal_pone_0147808
crossref_primary_10_1007_s12035_015_9224_0
crossref_primary_10_2353_ajpath_2006_060269
crossref_primary_10_1074_jbc_M606015200
crossref_primary_10_1002_cbic_201500623
crossref_primary_10_1016_j_bbrc_2005_04_090
crossref_primary_10_1042_BJ20081118
crossref_primary_10_1515_bmc_2011_019
crossref_primary_10_1016_j_neulet_2016_12_060
crossref_primary_10_1016_S0306_4522_02_00191_4
crossref_primary_10_1016_j_brainres_2005_03_017
crossref_primary_10_1007_s12035_014_8675_z
crossref_primary_10_1074_jbc_M009598200
crossref_primary_10_1007_s00429_009_0232_6
crossref_primary_10_1016_j_neuint_2007_10_020
crossref_primary_10_1016_j_brainres_2008_03_079
crossref_primary_10_1186_1750_1326_7_8
crossref_primary_10_2217_bmm_11_48
crossref_primary_10_1021_acschemneuro_0c00642
crossref_primary_10_3390_ma9090740
crossref_primary_10_1016_j_peptides_2013_04_020
crossref_primary_10_1016_j_mce_2019_110537
crossref_primary_10_1179_016164105X49436
crossref_primary_10_2119_2007_00100_Irvine
crossref_primary_10_1097_00001756_200210280_00005
crossref_primary_10_1016_j_neulet_2017_09_028
crossref_primary_10_1017_S1462399411001906
crossref_primary_10_2217_17520363_1_1_59
crossref_primary_10_1021_acsphotonics_4c01900
crossref_primary_10_1523_JNEUROSCI_2984_08_2009
crossref_primary_10_2174_1570159X20666221010113812
crossref_primary_10_1242_jcs_042226
crossref_primary_10_1093_hmg_ddq160
crossref_primary_10_1042_BST0331087
crossref_primary_10_1523_JNEUROSCI_3268_10_2011
crossref_primary_10_5012_bkcs_2006_27_4_477
crossref_primary_10_1007_s00249_007_0237_0
crossref_primary_10_1074_jbc_M701078200
crossref_primary_10_1080_15622970510029795
crossref_primary_10_1038_nrd3050
crossref_primary_10_1007_s00125_010_1671_6
crossref_primary_10_1186_1750_1326_4_14
crossref_primary_10_1080_10715760500329721
crossref_primary_10_1186_2193_1801_3_161
crossref_primary_10_1016_j_mehy_2017_12_015
crossref_primary_10_1111_j_1742_4658_2008_06727_x
crossref_primary_10_1007_s00775_004_0602_8
crossref_primary_10_1093_jrr_rrx045
crossref_primary_10_1523_JNEUROSCI_5543_03_2004
crossref_primary_10_1073_pnas_151261398
crossref_primary_10_1074_jbc_M110_178707
crossref_primary_10_1016_j_ejmech_2023_115670
crossref_primary_10_1021_acs_jmedchem_6b01130
crossref_primary_10_3109_13506120208995241
crossref_primary_10_1172_JCI0216783
crossref_primary_10_1016_j_bbr_2008_02_016
crossref_primary_10_1523_JNEUROSCI_1633_03_2004
crossref_primary_10_1007_s11910_001_0101_z
crossref_primary_10_1074_jbc_M109_038646
crossref_primary_10_1007_s10571_011_9691_4
crossref_primary_10_1089_104454904322745934
crossref_primary_10_1021_bi5003053
crossref_primary_10_1016_j_arr_2021_101307
crossref_primary_10_1126_science_1213210
crossref_primary_10_1038_nm1782
crossref_primary_10_1074_jbc_M103598200
crossref_primary_10_1016_j_jmb_2003_11_046
crossref_primary_10_1074_jbc_R111_288308
crossref_primary_10_1074_jbc_M109_045187
crossref_primary_10_1007_s00401_010_0666_1
crossref_primary_10_1016_j_neuint_2011_02_008
crossref_primary_10_1038_s41380_021_01249_0
crossref_primary_10_1371_journal_pone_0013391
crossref_primary_10_3390_ijms232314588
crossref_primary_10_1016_j_biomaterials_2016_06_056
crossref_primary_10_1016_j_yhbeh_2015_05_020
crossref_primary_10_1016_j_bcp_2022_114927
crossref_primary_10_1016_j_neurobiolaging_2003_12_011
crossref_primary_10_1074_jbc_M102223200
crossref_primary_10_1038_s41598_019_41443_3
crossref_primary_10_2353_ajpath_2006_051232
crossref_primary_10_1002_psc_998
crossref_primary_10_1021_tx900358j
crossref_primary_10_1074_jbc_M110_186411
crossref_primary_10_1111_j_1476_5381_2012_01973_x
crossref_primary_10_1002_jnr_20952
crossref_primary_10_1111_j_1749_6632_2003_tb07475_x
crossref_primary_10_1126_science_290_5494_1113
crossref_primary_10_1007_s00401_015_1386_3
crossref_primary_10_1016_j_nbd_2005_03_007
crossref_primary_10_1007_s00401_009_0539_7
crossref_primary_10_1186_1741_7007_4_32
crossref_primary_10_1016_j_npep_2017_04_001
crossref_primary_10_1111_j_1742_4658_2010_07568_x
crossref_primary_10_1038_nature07055
crossref_primary_10_1016_j_virusres_2015_01_019
crossref_primary_10_1016_S1567_5769_02_00168_6
crossref_primary_10_1074_jbc_M210207200
crossref_primary_10_1146_annurev_pathol_1_110304_100113
crossref_primary_10_1016_S0197_4580_01_00283_4
crossref_primary_10_1002_ange_202013754
crossref_primary_10_1016_j_expneurol_2012_05_004
crossref_primary_10_1016_j_tjog_2012_09_005
crossref_primary_10_1111_j_1471_4159_2004_02737_x
crossref_primary_10_1016_j_expneurol_2009_10_013
crossref_primary_10_1016_j_neurobiolaging_2012_10_016
crossref_primary_10_1186_1750_1326_5_19
crossref_primary_10_1021_acschemneuro_2c00785
crossref_primary_10_1523_JNEUROSCI_4330_03_2004
crossref_primary_10_1016_j_bbr_2010_01_044
crossref_primary_10_1038_416535a
crossref_primary_10_1074_jbc_M610390200
crossref_primary_10_1016_j_bbadis_2008_10_014
crossref_primary_10_3390_ijms12129369
crossref_primary_10_1111_j_1742_4658_2010_07721_x
crossref_primary_10_1016_j_ejphar_2017_05_057
crossref_primary_10_1016_j_jbc_2023_105445
crossref_primary_10_1111_j_1471_4159_2011_07478_x
crossref_primary_10_3233_JAD_150173
crossref_primary_10_1186_2051_5960_2_61
crossref_primary_10_3233_JAD_160405
crossref_primary_10_1111_j_1460_9568_2008_06207_x
crossref_primary_10_1111_jnc_13873
crossref_primary_10_3389_fninf_2018_00026
crossref_primary_10_1074_jbc_M507892200
crossref_primary_10_3389_fnagi_2014_00077
crossref_primary_10_1021_acssensors_9b00974
crossref_primary_10_1021_cr3000994
crossref_primary_10_1016_j_neuint_2017_08_010
crossref_primary_10_2217_17460875_3_5_505
crossref_primary_10_1016_j_bpj_2010_06_043
crossref_primary_10_1111_gtc_12332
crossref_primary_10_3389_fnins_2019_01007
crossref_primary_10_4061_2009_951548
crossref_primary_10_3389_fncel_2019_00037
crossref_primary_10_1007_s00775_011_0783_x
crossref_primary_10_1186_1750_1326_4_51
crossref_primary_10_1016_j_jns_2016_01_008
crossref_primary_10_1515_cclm_2016_1061
crossref_primary_10_4196_kjpp_2009_13_3_195
crossref_primary_10_1002_prot_22832
crossref_primary_10_1523_JNEUROSCI_3672_12_2013
crossref_primary_10_1586_ern_09_28
crossref_primary_10_3389_fnins_2019_00043
crossref_primary_10_1177_153331750201700209
crossref_primary_10_1111_j_1471_4159_2012_07847_x
crossref_primary_10_1016_S0896_6273_03_00787_6
crossref_primary_10_1371_journal_pone_0111492
crossref_primary_10_1074_jbc_M313003200
crossref_primary_10_1016_j_plipres_2010_09_001
crossref_primary_10_1021_bi902203m
crossref_primary_10_3390_molecules23082010
crossref_primary_10_1016_j_pneurobio_2012_03_002
crossref_primary_10_1039_D3AY01667F
crossref_primary_10_1113_jphysiol_2005_103754
crossref_primary_10_2174_0929866526666190228122849
crossref_primary_10_3390_biom13101492
crossref_primary_10_1111_jnc_15030
crossref_primary_10_1016_j_brainres_2009_01_008
crossref_primary_10_1074_jbc_M701823200
crossref_primary_10_1038_nn1022
crossref_primary_10_1002_anie_200700861
crossref_primary_10_1007_s10822_007_9155_6
crossref_primary_10_4061_2011_304583
crossref_primary_10_1111_j_1471_4159_2006_03862_x
crossref_primary_10_1073_pnas_0806192105
crossref_primary_10_1074_jbc_M109_036798
crossref_primary_10_1111_j_1749_6632_2000_tb05554_x
crossref_primary_10_3390_biom7040071
crossref_primary_10_1016_j_tips_2017_10_008
crossref_primary_10_1155_2015_803942
crossref_primary_10_1111_j_1471_4159_2011_07187_x
crossref_primary_10_1073_pnas_192585799
crossref_primary_10_1016_S0304_4165_03_00101_6
crossref_primary_10_1097_00001756_200301200_00023
crossref_primary_10_1007_s12035_019_01660_3
crossref_primary_10_1523_JNEUROSCI_5167_03_2004
crossref_primary_10_4061_2010_986310
crossref_primary_10_1042_BST0390857
crossref_primary_10_1074_jbc_RA118_004511
crossref_primary_10_1007_s10534_011_9490_x
crossref_primary_10_1038_nn1372
crossref_primary_10_1016_j_neuropharm_2017_09_031
crossref_primary_10_1016_j_nbd_2009_07_021
crossref_primary_10_1089_scd_2012_0345
crossref_primary_10_1016_j_ebiom_2016_03_035
crossref_primary_10_1038_s41598_017_05619_z
crossref_primary_10_1074_jbc_M414176200
crossref_primary_10_1146_annurev_biochem_75_101304_123901
crossref_primary_10_1186_2051_5960_1_56
crossref_primary_10_1155_2016_7361613
crossref_primary_10_1021_bi702097s
crossref_primary_10_1590_S1807_59322011001300006
crossref_primary_10_1016_j_chembiol_2014_03_014
crossref_primary_10_3109_13506120109007356
crossref_primary_10_1007_s12013_008_9033_4
crossref_primary_10_1021_ja076059o
crossref_primary_10_1038_s41598_017_02370_3
crossref_primary_10_1016_j_neurobiolaging_2012_11_014
crossref_primary_10_1021_jp906107p
crossref_primary_10_3233_ADR_170051
crossref_primary_10_1021_acs_jpcb_8b07805
crossref_primary_10_1080_13506120701461020
crossref_primary_10_1007_s00401_013_1083_z
crossref_primary_10_1515_REVNEURO_2006_17_5_497
crossref_primary_10_1002_ana_22052
crossref_primary_10_1002_anie_202013754
crossref_primary_10_1038_s41467_024_50153_y
crossref_primary_10_1038_nm1234
crossref_primary_10_1016_j_bbrc_2004_02_059
crossref_primary_10_1016_j_nic_2005_09_009
crossref_primary_10_1039_B206351D
crossref_primary_10_3390_ijms24119652
crossref_primary_10_1038_nrn2168
crossref_primary_10_1155_2012_132146
crossref_primary_10_1007_s00775_009_0600_y
crossref_primary_10_1111_j_1471_4159_2005_03188_x
crossref_primary_10_1246_bcsj_20190356
crossref_primary_10_1007_s11357_012_9403_0
crossref_primary_10_1523_JNEUROSCI_4391_04_2005
crossref_primary_10_1016_j_cub_2020_02_083
crossref_primary_10_1016_j_neurobiolaging_2009_11_007
crossref_primary_10_1016_j_jneumeth_2008_08_001
crossref_primary_10_1111_j_1471_4159_2010_06811_x
crossref_primary_10_3389_fnagi_2014_00166
crossref_primary_10_5012_bkcs_2004_25_5_601
crossref_primary_10_1002_cmdc_200700140
crossref_primary_10_1042_BST20120009
crossref_primary_10_1016_j_ceca_2020_102190
crossref_primary_10_3390_cells9051215
crossref_primary_10_1016_j_neurobiolaging_2011_07_012
crossref_primary_10_1016_j_neuron_2014_02_027
crossref_primary_10_1074_jbc_M111_220863
crossref_primary_10_1111_j_1742_4658_2006_05162_x
crossref_primary_10_1016_j_brainres_2004_10_041
crossref_primary_10_1074_jbc_M109008200
crossref_primary_10_1007_s00401_009_0557_5
crossref_primary_10_1523_JNEUROSCI_4970_06_2007
crossref_primary_10_1007_s00401_009_0497_0
crossref_primary_10_1007_s12031_002_0011_9
crossref_primary_10_1016_j_tips_2009_05_002
crossref_primary_10_1111_j_1749_6632_2001_tb03477_x
crossref_primary_10_1074_jbc_M506646200
crossref_primary_10_4061_2009_689285
crossref_primary_10_1039_D3NR05184F
crossref_primary_10_1007_s00401_007_0284_8
crossref_primary_10_1152_physrev_2001_81_2_741
crossref_primary_10_1016_j_biopsych_2003_10_014
crossref_primary_10_1007_s00702_009_0314_x
crossref_primary_10_1038_nrm2101
crossref_primary_10_1016_j_abb_2008_03_021
crossref_primary_10_1016_j_exger_2007_10_018
crossref_primary_10_1016_S0002_9440_10_64463_X
crossref_primary_10_1016_j_jmb_2005_06_043
crossref_primary_10_1016_j_mcn_2009_02_008
crossref_primary_10_1177_0271678X16654920
crossref_primary_10_1586_14737175_7_7_887
crossref_primary_10_1016_j_jalz_2012_11_005
crossref_primary_10_1074_jbc_M210105200
crossref_primary_10_1016_j_arr_2023_101999
crossref_primary_10_1016_j_biologicals_2020_02_004
crossref_primary_10_1016_j_neurobiolaging_2010_01_001
crossref_primary_10_1038_mp_2013_171
crossref_primary_10_1016_j_isci_2021_103207
crossref_primary_10_1038_s41593_019_0385_4
crossref_primary_10_1016_j_mito_2007_06_001
crossref_primary_10_1021_ja503535m
crossref_primary_10_1002_syn_20957
crossref_primary_10_1134_S0006297914130057
crossref_primary_10_1016_j_neurobiolaging_2014_08_014
crossref_primary_10_2174_1568026619666190304153353
crossref_primary_10_1016_j_neuroscience_2017_08_042
crossref_primary_10_1016_j_jalz_2015_01_005
crossref_primary_10_1034_j_1399_3011_2002_11002_x
Cites_doi 10.1083/jcb.141.4.1031
10.1111/j.1471-4159.1993.tb09841.x
10.1074/jbc.270.16.9564
10.1042/bj3110001
10.1074/jbc.274.36.25945
10.1074/jbc.271.34.20631
10.1016/S0002-9440(10)64700-1
10.1016/S0002-9440(10)65094-8
10.1016/S0021-9258(19)39590-0
10.1016/S0002-9440(10)65273-X
10.2105/AJPH.89.1.90
10.1523/JNEUROSCI.11-12-03783.1991
10.1523/JNEUROSCI.19-20-08876.1999
10.1523/JNEUROSCI.20-05-01657.2000
10.1146/annurev.biochem.66.1.385
ContentType Journal Article
Copyright Copyright © 2000 American Chemical Society
Copyright_xml – notice: Copyright © 2000 American Chemical Society
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1021/bi001048s
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 10839
ExternalDocumentID 10978169
10_1021_bi001048s
ark_67375_TPS_7ZVFZ1T7_S
c774571467
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: AG05134
GroupedDBID -
.K2
02
08R
186
23N
3O-
4.4
53G
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
AAYJJ
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
ADKFC
AEESW
AENEX
AETEA
AFEFF
AFFDN
AFFNX
AFMIJ
AIDAL
AJYGW
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F5P
G8K
GJ
GNL
IH9
IHE
JG
JG~
K2
K78
KM
L7B
LG6
MVM
NHB
OHT
P2P
ROL
TN5
UI2
UNC
UQL
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
ZE2
ZGI
ZXP
---
-DZ
-~X
.55
.GJ
6TJ
ABDPE
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
XOL
XSW
YYP
ZCA
~02
~KM
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
AEYZD
AGQPQ
ANPPW
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7TK
7X8
ID FETCH-LOGICAL-a380t-e04ee6ec01b195d9a7428fe43f05e4dffef8a361175728d10094f17446b58f733
IEDL.DBID ACS
ISSN 0006-2960
IngestDate Fri Jul 11 15:08:01 EDT 2025
Fri Jul 11 05:42:10 EDT 2025
Wed Feb 19 02:34:34 EST 2025
Tue Jul 01 04:29:44 EDT 2025
Thu Apr 24 23:07:08 EDT 2025
Wed Oct 30 09:41:41 EDT 2024
Thu Aug 27 13:42:07 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a380t-e04ee6ec01b195d9a7428fe43f05e4dffef8a361175728d10094f17446b58f733
Notes ark:/67375/TPS-7ZVFZ1T7-S
istex:BA8F3B73164A4E8BB838393162624B32B60FF512
This work was supported by NIH Grant AG05134 (D.J.S.) and by the Foundation for Neurologic Diseases.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 10978169
PQID 18159050
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_72240651
proquest_miscellaneous_18159050
pubmed_primary_10978169
crossref_primary_10_1021_bi001048s
crossref_citationtrail_10_1021_bi001048s
istex_primary_ark_67375_TPS_7ZVFZ1T7_S
acs_journals_10_1021_bi001048s
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2000-09-05
PublicationDateYYYYMMDD 2000-09-05
PublicationDate_xml – month: 09
  year: 2000
  text: 2000-09-05
  day: 05
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2000
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Seubert P. (bi001048sb00026/bi001048sb00026_1) 1992
Xia W. M. (bi001048sb00032/bi001048sb00032_1) 1998
Podlisny M. B. (bi001048sb00001/bi001048sb00001_1) 1995; 270
Haass C. (bi001048sb00027/bi001048sb00027_1) 1991; 11
Harper J. D. (bi001048sb00037/bi001048sb00037_1) 1997; 66
Pike C. J. (bi001048sb00006/bi001048sb00006_1) 1993; 13
Xia W. M. (bi001048sb00020/bi001048sb00020_1) 1997; 272
Skovronsky D. M. (bi001048sb00021/bi001048sb00021_1) 1998; 141
Kuo Y.-M. (bi001048sb00022/bi001048sb00022_1) 1999
Funato H. (bi001048sb00038/bi001048sb00038_1) 1998; 152
Morishima-Kawashima M. (bi001048sb00040/bi001048sb00040_1) 1998
Gouras G. K. (bi001048sb00014/bi001048sb00014_1) 2000; 156
Kuo Y. M. (bi001048sb00016/bi001048sb00016_1) 1996; 271
Walsh D. M. (bi001048sb00010/bi001048sb00010_1) 1999; 274
Andreasen N. (bi001048sb00041/bi001048sb00041_1) 1999
Pitschke M. (bi001048sb00042/bi001048sb00042_1) 1998
Pike C. J. (bi001048sb00005/bi001048sb00005_1) 1991
Enya M. (bi001048sb00019/bi001048sb00019_1) 1999; 154
Johnson-Wood K. (bi001048sb00028/bi001048sb00028_1) 1997
Vekrellis K. (bi001048sb00039/bi001048sb00039_1) 2000; 20
Citron M. (bi001048sb00025/bi001048sb00025_1) 1995
Haass C. (bi001048sb00030/bi001048sb00030_1) 1992
Hsia A. Y. (bi001048sb00012/bi001048sb00012_1) 1999
Chui D.-H. (bi001048sb00013/bi001048sb00013_1) 1999
Vigo-Pelfrey C. (bi001048sb00034/bi001048sb00034_1) 1993; 61
Roher A. E. (bi001048sb00017/bi001048sb00017_1) 1996; 271
Funato H. (bi001048sb00018/bi001048sb00018_1) 1999; 155
Biere A. L. (bi001048sb00024/bi001048sb00024_1) 1995
Hartley D. M. (bi001048sb00011/bi001048sb00011_1) 1999; 19
Qiu W. Q. (bi001048sb00035/bi001048sb00035_1) 1997; 272
Kim K. S. (bi001048sb00029/bi001048sb00029_1) 1990
Iversen L. L. (bi001048sb00008/bi001048sb00008_1) 1995; 311
Hardy (bi001048sb00004/bi001048sb00004_1) 2095
Qiu W. Q. (bi001048sb00036/bi001048sb00036_1) 1998; 273
Lambert M. P. (bi001048sb00009/bi001048sb00009_1) 1998
Ida N. (bi001048sb00033/bi001048sb00033_1) 1996; 271
Lorenzo A. (bi001048sb00007/bi001048sb00007_1) 1994
Kuo Y.-M. (bi001048sb00023/bi001048sb00023_1) 2000
Podlisny M. B. (bi001048sb00002/bi001048sb00002_1) 1998
Ewbank D. C. (bi001048sb00003/bi001048sb00003_1) 1999; 89
Yang A. J. (bi001048sb00015/bi001048sb00015_1) 1999; 274
Oltersdorf T. (bi001048sb00031/bi001048sb00031_1) 1990; 265
References_xml – volume: 141
  year: 1998
  ident: bi001048sb00021/bi001048sb00021_1
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.141.4.1031
– volume: 61
  year: 1993
  ident: bi001048sb00034/bi001048sb00034_1
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.1993.tb09841.x
– volume: 270
  year: 1995
  ident: bi001048sb00001/bi001048sb00001_1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.16.9564
– volume: 311
  start-page: 16
  year: 1995
  ident: bi001048sb00008/bi001048sb00008_1
  publication-title: Biochem. J.
  doi: 10.1042/bj3110001
– volume: 152
  year: 1998
  ident: bi001048sb00038/bi001048sb00038_1
  publication-title: Am. J. Pathol.
– volume-title: Biochemistry 37, 3602−3611
  year: 1998
  ident: bi001048sb00002/bi001048sb00002_1
– volume: 272
  year: 1997
  ident: bi001048sb00020/bi001048sb00020_1
  publication-title: J. Biol. Chem.
– volume: 274
  year: 1999
  ident: bi001048sb00010/bi001048sb00010_1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.36.25945
– volume-title: Biochemistry 37, 15247−15253
  year: 1998
  ident: bi001048sb00040/bi001048sb00040_1
– volume: 271
  year: 1996
  ident: bi001048sb00033/bi001048sb00033_1
  publication-title: J. Biol. Chem.
– volume: 271
  year: 1996
  ident: bi001048sb00016/bi001048sb00016_1
  publication-title: J. Biol. Chem.
– volume: 271
  year: 1996
  ident: bi001048sb00017/bi001048sb00017_1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.34.20631
– volume: 156
  start-page: 20
  year: 2000
  ident: bi001048sb00014/bi001048sb00014_1
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)64700-1
– volume-title: Biochem. Biophys. Res. Commun. 268, 750−756
  year: 2000
  ident: bi001048sb00023/bi001048sb00023_1
– volume-title: Neurosci. Res. Commun. 7, 113−122
  year: 1990
  ident: bi001048sb00029/bi001048sb00029_1
– volume-title: Biochemistry 37, 16465−16471
  year: 1998
  ident: bi001048sb00032/bi001048sb00032_1
– volume: 155
  start-page: 28
  year: 1999
  ident: bi001048sb00018/bi001048sb00018_1
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)65094-8
– volume-title: Nature 359, 325−327
  year: 1992
  ident: bi001048sb00026/bi001048sb00026_1
– volume-title: J. (1997)
  year: 2095
  ident: bi001048sb00004/bi001048sb00004_1
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 96, 3228−3233
  year: 1999
  ident: bi001048sb00012/bi001048sb00012_1
– volume: 265
  year: 1990
  ident: bi001048sb00031/bi001048sb00031_1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)39590-0
– volume-title: Nature 359, 322−325
  year: 1992
  ident: bi001048sb00030/bi001048sb00030_1
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 95, 6448−6453
  year: 1998
  ident: bi001048sb00009/bi001048sb00009_1
– volume-title: 4, 832−834
  year: 1998
  ident: bi001048sb00042/bi001048sb00042_1
– volume-title: Neurobiol. Dis. 2, 177−187
  year: 1995
  ident: bi001048sb00024/bi001048sb00024_1
– volume: 154
  year: 1999
  ident: bi001048sb00019/bi001048sb00019_1
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)65273-X
– volume: 89
  start-page: 92
  year: 1999
  ident: bi001048sb00003/bi001048sb00003_1
  publication-title: Am. J. Public Health
  doi: 10.2105/AJPH.89.1.90
– volume-title: Arch. Neurol. 56, 673−680
  year: 1999
  ident: bi001048sb00041/bi001048sb00041_1
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 94, 1550−1555
  year: 1997
  ident: bi001048sb00028/bi001048sb00028_1
– volume: 13
  year: 1993
  ident: bi001048sb00006/bi001048sb00006_1
  publication-title: J. Neurosci.
– volume: 274
  year: 1999
  ident: bi001048sb00015/bi001048sb00015_1
  publication-title: J. Biol. Chem.
– volume-title: Brain Res. 563, 311−314
  year: 1991
  ident: bi001048sb00005/bi001048sb00005_1
– volume: 11
  year: 1991
  ident: bi001048sb00027/bi001048sb00027_1
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.11-12-03783.1991
– volume: 19
  year: 1999
  ident: bi001048sb00011/bi001048sb00011_1
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.19-20-08876.1999
– volume-title: Neuron 14, 661−670
  year: 1995
  ident: bi001048sb00025/bi001048sb00025_1
– volume: 272
  year: 1997
  ident: bi001048sb00035/bi001048sb00035_1
  publication-title: J. Biol. Chem.
– volume: 20
  year: 2000
  ident: bi001048sb00039/bi001048sb00039_1
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-05-01657.2000
– volume-title: 5, 560−564
  year: 1999
  ident: bi001048sb00013/bi001048sb00013_1
– volume: 273
  year: 1998
  ident: bi001048sb00036/bi001048sb00036_1
  publication-title: J. Biol. Chem.
– volume-title: Biochem. Biophys. Res. Commun. 257, 787−791
  year: 1999
  ident: bi001048sb00022/bi001048sb00022_1
– volume: 66
  year: 1997
  ident: bi001048sb00037/bi001048sb00037_1
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.66.1.385
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 91, 12243−12247
  year: 1994
  ident: bi001048sb00007/bi001048sb00007_1
SSID ssj0004074
Score 2.219803
Snippet The progressive aggregation and deposition of amyloid β-protein (Aβ) in brain regions subserving memory and cognition is an early and invariant feature of...
The progressive aggregation and deposition of amyloid beta-protein (Abeta) in brain regions subserving memory and cognition is an early and invariant feature...
The progressive aggregation and deposition of amyloid beta -protein (A beta ) in brain regions subserving memory and cognition is an early and invariant...
SourceID proquest
pubmed
crossref
istex
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10831
SubjectTerms Amyloid beta-Peptides - cerebrospinal fluid
Amyloid beta-Peptides - metabolism
Amyloid beta-Protein Precursor - biosynthesis
Amyloid beta-Protein Precursor - genetics
Animals
Body Temperature
Cell-Free System - metabolism
Cells, Cultured
Cerebral Cortex - chemistry
Cerebral Cortex - cytology
Cerebral Cortex - metabolism
CHO Cells
Cricetinae
Culture Media, Conditioned - metabolism
Dimerization
Extracellular Space - metabolism
Fetus
Humans
Intracellular Fluid - metabolism
Molecular Weight
Neurons - chemistry
Neurons - metabolism
Sodium Dodecyl Sulfate - metabolism
Transfection
Title The Oligomerization of Amyloid β-Protein Begins Intracellularly in Cells Derived from Human Brain
URI http://dx.doi.org/10.1021/bi001048s
https://api.istex.fr/ark:/67375/TPS-7ZVFZ1T7-S/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/10978169
https://www.proquest.com/docview/18159050
https://www.proquest.com/docview/72240651
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V9gAXHi2P5VEsQBUXt05iO_Zxu2VVkIBKu0VVL1ES22jVbRY1u4jys_gh_CY8TrIU0YVjlEnkeCaa-Twz3wC8klwa73cFTbguKTcuodpJS71rE0kZpVFTPP7-gzw85u9OxMkavFyRwY-jvWISOGRUfQM2YqlSRFj9weh38yNrqZY9NI59PN7RB119FF1PWf_hejZwF7-tjiuDfxnegYOuS6cpKznbXcyL3fL736SN_1r6Xbjdxpek3xjEPViz1SZs9SuPrc8vyQ4JFZ_hKH0Tbg66aW9bUHh7IR-nk88zTOE0vZlk5kj_3CP6iSE_f9AjpHSYVGQfZznU5C0eC-O5PxayTi-JvzPwVzU58C_4ag3BzhUSkgRkHwdR3Ifj4Zvx4JC28xdonig2p5Zxa6UtWVREWhidexitnOWJY8J6tTrrVJ5IJPtMY2UirFJ0HuFwWQjl0iR5AOvVrLKPgFhTaFY6rbgyXDNEMUbmymojldFC9GDbKyhr_586C6nxOMqWO9iD153usrJlL8chGtPrRF8sRb80lB3XCe0EA1hK5BdnWOOWimx8NMrS00_D02icZqMePO8sJPMqwW3NKztb-DUqHwoywVZLpCFeElEPHjamdWU9yDUm9eP_ffcTuNU0_2vKxFNYn18s7DMfBs2L7fAb_AIs1_89
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fT9swELc2eGAv-wP7U7aBNU1oLwaniR37sXSrygYMqWVCvFhJbE8VJUWkncY-1j7IPtPunLSwCbQ9RrlYl_NZd-e7-x0hb2UiLdhdweJEFyyxPmbaS8fAtIm4iNKoLh4_OJT94-TjiThpYHKwFwaYqGClKiTxr9EFop18FKBkVHWfLIMT0sZAq9MdXPdA8gZxGSLkNrjlcxShm5-iBSqqPyzQMgrz-93uZTAzvUf1vKLAYKguOdueTfPt4sdf2I3_9wePycPG26SdWj2ekHuuXCVrnRIi7fMrukVD_We4WF8lK9357Lc1koP20M_j0dcJJnTqTk068bRzDvH9yNJfP9kRAjyMSrqLkx0quoeXxJgFwLLW8RWFN114quh7WOCbsxT7WGhIGdBdHEvxlBz3Pgy7fdZMY2BZrPiUOZ44J13BozzSwuoMgmrlXRJ7LhxssndeZbFE6M-0rWyENYse4p1E5kL5NI6fkaVyUroXhDqba154rRJlE80xprEyU05bqawWokU2QICmOU2VCYnydmQWEmyRd_MtNEWDZY4jNca3kb5ZkF7UAB63EW0FPVhQZJdnWPGWCjM8Gpj09EvvNBqmZtAim3NFMbAlKNasdJMZ8KjAMeSC302RBu9JRC3yvNawG_wg8pjU6__6702y0h8e7Jv9vcNPL8mDGhZAMy5ekaXp5cy9Bgdpmm-Ek_EbNukHrQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9tIG287AP20X2ANU1oLwGniR37sZRVsA-o1DIhXqIktlFFSRFpp7E_a3_I_qbdOWnHJtD2GOViXc5n3Z3v7ncAb2UsDdpdEUSxLoLYuCjQTtoATZuIijAJ6-Lxzwdy7yj-cCyOm0CRemGQiQpXqnwSn071hXENwkC4nY88nIyq7sIypeso2Op0B7_7IHmDuoxRchtd8zmS0PVPyQoV1R9WaJkE-u12F9Obmt5DOFww6StMzrZm03yr-P4XfuP__8UjeNB4naxTq8ljuGPLVVjrlBhxn1-xTebrQP0F-yrc785nwK1BjlrEDsej0wklduqOTTZxrHOOcf7IsJ8_gj4BPYxKtkMTHiq2T5fFlA2g8tbxFcM3XXyq2C4u8NUaRv0szKcO2A6Np3gCR733w-5e0ExlCLJI8WlgeWyttAUP81ALozMMrpWzceS4sLjZzjqVRZIgQJO2MiHVLjqMe2KZC-WSKHoKS-WktM-BWZNrXjitYmVizSm2MTJTVhupjBaiBesoxLQ5VVXqE-btMF1IsAXv5tuYFg2mOY3WGN9E-mZBelEDedxEtOl1YUGRXZ5R5Vsi0mF_kCYnX3on4TBJBy3YmCtLiltCYs1KO5khjwodRC747RSJ96JE2IJntZZd44cQyKR-8a__3oB7_d1e-mn_4ONLWKnRAXTAxStYml7O7Gv0k6b5uj8cvwDQAAow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Oligomerization+of+Amyloid+beta+-Protein+Begins+Intracellularly+in+Cells+Derived+from+Human+Brain&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Walsh%2C+D+M&rft.au=Tseng%2C+B+P&rft.au=Rydel%2C+R+E&rft.au=Podlisny%2C+M+B&rft.date=2000-09-05&rft.issn=0006-2960&rft.volume=39&rft.issue=35&rft.spage=10831&rft.epage=10839&rft_id=info:doi/10.1021%2Fbi001048s&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon