Catalytic Acid−Base Groups in Yeast Pyruvate Decarboxylase. 3. A Steady-State Kinetic Model Consistent with the Behavior of both Wild-Type and Variant Enzymes at All Relevant pH Values

The widely quoted kinetic model for the mechanism of yeast pyruvate decarboxylase (YPDC, EC 4.1.1.1), an enzyme subject to substrate activation, is based on data for the wild-type enzyme under optimal experimental conditions. The major feature of the model is the obligatory binding of substrate in t...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 40; no. 25; pp. 7382 - 7403
Main Authors Sergienko, Eduard A, Jordan, Frank
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.06.2001
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The widely quoted kinetic model for the mechanism of yeast pyruvate decarboxylase (YPDC, EC 4.1.1.1), an enzyme subject to substrate activation, is based on data for the wild-type enzyme under optimal experimental conditions. The major feature of the model is the obligatory binding of substrate in the regulatory site prior to substrate binding at the catalytic site. The activated monomer would complete the cycle by irreversible decarboxylation of the substrate and product (acetaldehyde) release. Our recent kinetic studies of YPDC variants substituted at positions D28 and E477 at the active center necessitate some modification of the mechanism. It was found that enzyme without substrate activation apparently is still catalytically competent. Further, substrate-dependent inhibition of D28-substituted variants leads to an enzyme form with nonzero activity at full saturation, requiring a second major branch point in the mechanism. Kinetic data for the E477Q variant suggest that three consecutive substrate binding steps may be needed to release product acetaldehyde, unlikely if YPDC monomer is the minimal catalytic unit with only two binding sites for substrate. A model to account for all kinetic observations involves a functional dimer operating through alternation of active sites. In the context of this mechanism, roles are suggested for the active center acid−base groups D28, E477, H114, and H115. The results underline once more the enormous importance that both aromatic rings of the thiamin diphosphate, rather than only the thiazolium ring, have in catalysis, a fact little appreciated prior to the availability of the 3-dimensional structure of these enzymes.
AbstractList The widely quoted kinetic model for the mechanism of yeast pyruvate decarboxylase (YPDC, EC 4.1.1.1), an enzyme subject to substrate activation, is based on data for the wild-type enzyme under optimal experimental conditions. The major feature of the model is the obligatory binding of substrate in the regulatory site prior to substrate binding at the catalytic site. The activated monomer would complete the cycle by irreversible decarboxylation of the substrate and product (acetaldehyde) release. Our recent kinetic studies of YPDC variants substituted at positions D28 and E477 at the active center necessitate some modification of the mechanism. It was found that enzyme without substrate activation apparently is still catalytically competent. Further, substrate-dependent inhibition of D28-substituted variants leads to an enzyme form with nonzero activity at full saturation, requiring a second major branch point in the mechanism. Kinetic data for the E477Q variant suggest that three consecutive substrate binding steps may be needed to release product acetaldehyde, unlikely if YPDC monomer is the minimal catalytic unit with only two binding sites for substrate. A model to account for all kinetic observations involves a functional dimer operating through alternation of active sites. In the context of this mechanism, roles are suggested for the active center acid−base groups D28, E477, H114, and H115. The results underline once more the enormous importance that both aromatic rings of the thiamin diphosphate, rather than only the thiazolium ring, have in catalysis, a fact little appreciated prior to the availability of the 3-dimensional structure of these enzymes.
The widely quoted kinetic model for the mechanism of yeast pyruvate decarboxylase (YPDC, EC 4.1.1.1), an enzyme subject to substrate activation, is based on data for the wild-type enzyme under optimal experimental conditions. The major feature of the model is the obligatory binding of substrate in the regulatory site prior to substrate binding at the catalytic site. The activated monomer would complete the cycle by irreversible decarboxylation of the substrate and product (acetaldehyde) release. Our recent kinetic studies of YPDC variants substituted at positions D28 and E477 at the active center necessitate some modification of the mechanism. It was found that enzyme without substrate activation apparently is still catalytically competent. Further, substrate-dependent inhibition of D28-substituted variants leads to an enzyme form with nonzero activity at full saturation, requiring a second major branch point in the mechanism. Kinetic data for the E477Q variant suggest that three consecutive substrate binding steps may be needed to release product acetaldehyde, unlikely if YPDC monomer is the minimal catalytic unit with only two binding sites for substrate. A model to account for all kinetic observations involves a functional dimer operating through alternation of active sites. In the context of this mechanism, roles are suggested for the active center acid-base groups D28, E477, H114, and H115. The results underline once more the enormous importance that both aromatic rings of the thiamin diphosphate, rather than only the thiazolium ring, have in catalysis, a fact little appreciated prior to the availability of the 3-dimensional structure of these enzymes.The widely quoted kinetic model for the mechanism of yeast pyruvate decarboxylase (YPDC, EC 4.1.1.1), an enzyme subject to substrate activation, is based on data for the wild-type enzyme under optimal experimental conditions. The major feature of the model is the obligatory binding of substrate in the regulatory site prior to substrate binding at the catalytic site. The activated monomer would complete the cycle by irreversible decarboxylation of the substrate and product (acetaldehyde) release. Our recent kinetic studies of YPDC variants substituted at positions D28 and E477 at the active center necessitate some modification of the mechanism. It was found that enzyme without substrate activation apparently is still catalytically competent. Further, substrate-dependent inhibition of D28-substituted variants leads to an enzyme form with nonzero activity at full saturation, requiring a second major branch point in the mechanism. Kinetic data for the E477Q variant suggest that three consecutive substrate binding steps may be needed to release product acetaldehyde, unlikely if YPDC monomer is the minimal catalytic unit with only two binding sites for substrate. A model to account for all kinetic observations involves a functional dimer operating through alternation of active sites. In the context of this mechanism, roles are suggested for the active center acid-base groups D28, E477, H114, and H115. The results underline once more the enormous importance that both aromatic rings of the thiamin diphosphate, rather than only the thiazolium ring, have in catalysis, a fact little appreciated prior to the availability of the 3-dimensional structure of these enzymes.
The widely quoted kinetic model for the mechanism of yeast pyruvate decarboxylase (YPDC, EC 4.1.1.1), an enzyme subject to substrate activation, is based on data for the wild-type enzyme under optimal experimental conditions. The major feature of the model is the obligatory binding of substrate in the regulatory site prior to substrate binding at the catalytic site. The activated monomer would complete the cycle by irreversible decarboxylation of the substrate and product (acetaldehyde) release. Our recent kinetic studies of YPDC variants substituted at positions D28 and E477 at the active center necessitate some modification of the mechanism. It was found that enzyme without substrate activation apparently is still catalytically competent. Further, substrate-dependent inhibition of D28-substituted variants leads to an enzyme form with nonzero activity at full saturation, requiring a second major branch point in the mechanism. Kinetic data for the E477Q variant suggest that three consecutive substrate binding steps may be needed to release product acetaldehyde, unlikely if YPDC monomer is the minimal catalytic unit with only two binding sites for substrate. A model to account for all kinetic observations involves a functional dimer operating through alternation of active sites. In the context of this mechanism, roles are suggested for the active center acid-base groups D28, E477, H114, and H115. The results underline once more the enormous importance that both aromatic rings of the thiamin diphosphate, rather than only the thiazolium ring, have in catalysis, a fact little appreciated prior to the availability of the 3-dimensional structure of these enzymes.
Author Jordan, Frank
Sergienko, Eduard A
Author_xml – sequence: 1
  givenname: Eduard A
  surname: Sergienko
  fullname: Sergienko, Eduard A
– sequence: 2
  givenname: Frank
  surname: Jordan
  fullname: Jordan, Frank
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11412092$$D View this record in MEDLINE/PubMed
BookMark eNqF0c9u0zAcB_AIDbE_cOAFkC8gcUhnJ04cH7uydYgBEy1FnCzH-UX1cONiO2XhCTjzODwOT4Krjh7QJE6Wrc_va-n3PU4OOttBkjwleERwRk5rjXFWFQweJEekyHBKOS8OkiOMcZlmvMSHybH3N_FKMaOPkkNCKMkwz46SXxMZpBmCVmisdPP7x88z6QFNne3XHukOfQbpA7oeXL-RAdArUNLV9nYwkY1QPkJjNAsgmyGdhS14ozvYpr21DRg0sZ3XPkAX0DcdligsAZ3BUm60dci2qLbx8ZM2TTof1oBk16CFdFpGf959H1bgkQxobAz6AAY22_f1ZSSmB_84edhK4-HJ3XmSfLw4n08u06v309eT8VUq8wqHlJeKFW1WESkpVXVG6wpY3raQFW1RqpozyZqcKs44BY6bjOdSKsClIrhiNclPkhe73LWzX-O_Qay0V2CM7MD2XjDM87Iqi_9CwjhmPKsifHYH-3oFjVg7vZJuEH9rieB0B5Sz3jtohdJxu9p2wUltBMFiW7zYFx8nXv4zsQ-9x6Y7u23mdg-l-yJKlrNCzK9nYkEvppQv3gka_fOdl8qLG9u7Lq77ntw_6MrKaA
CitedBy_id crossref_primary_10_1016_j_molcatb_2013_09_010
crossref_primary_10_1073_pnas_0609973104
crossref_primary_10_1039_b514511m
crossref_primary_10_3390_catal6120190
crossref_primary_10_1074_jbc_M706569200
crossref_primary_10_1371_journal_pone_0215084
crossref_primary_10_1111_febs_12459
crossref_primary_10_1002_yea_690
crossref_primary_10_1016_j_bioorg_2006_09_006
crossref_primary_10_1002_chem_201302429
crossref_primary_10_1016_S0022_2836_03_00734_4
crossref_primary_10_1111_j_1742_4658_2009_06964_x
crossref_primary_10_1021_jp052802s
crossref_primary_10_1046_j_1432_1033_2003_03601_x
crossref_primary_10_1074_jbc_M509921200
crossref_primary_10_1016_j_bioorg_2014_08_002
crossref_primary_10_1021_cs400272x
crossref_primary_10_1006_bioo_2002_1249
crossref_primary_10_1142_S0219633606002386
crossref_primary_10_3390_reactions3010011
crossref_primary_10_1021_ja209856x
crossref_primary_10_1186_1471_2091_13_24
crossref_primary_10_1111_j_1742_4658_2011_08421_x
crossref_primary_10_1016_j_bioorg_2005_02_001
crossref_primary_10_1021_ja211139c
Cites_doi 10.1146/annurev.biochem.66.1.717
10.1021/ja00022a030
10.1111/j.1749-6632.1989.tb14985.x
10.1016/S0022-2836(65)80285-6
10.1016/S0021-9258(18)64075-X
10.1016/S0167-4838(98)00075-2
10.1074/jbc.274.44.31506
10.1111/j.1432-1033.1978.tb12735.x
10.1016/0003-9861(68)90204-X
10.1006/jmbi.1996.0111
10.1016/S0021-9258(18)85013-X
10.1016/0014-5793(70)80381-7
ContentType Journal Article
Copyright Copyright © 2001 American Chemical Society
Copyright_xml – notice: Copyright © 2001 American Chemical Society
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
M7N
7X8
DOI 10.1021/bi002857e
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 7403
ExternalDocumentID 11412092
10_1021_bi002857e
ark_67375_TPS_V4FG49VN_4
c491038564
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM-50380
GroupedDBID -
.K2
02
08R
186
23N
3O-
4.4
53G
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
AAYJJ
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
ADKFC
AEESW
AENEX
AETEA
AFEFF
AFFDN
AFFNX
AFMIJ
AIDAL
AJYGW
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F5P
G8K
GJ
GNL
IH9
IHE
JG
JG~
K2
K78
KM
L7B
LG6
MVM
NHB
OHT
P2P
ROL
TN5
UI2
UNC
UQL
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
ZE2
ZGI
ZXP
---
-DZ
-~X
.55
.GJ
6TJ
ABDPE
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
XOL
XSW
YYP
ZCA
~02
~KM
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
AEYZD
AGQPQ
ANPPW
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
M7N
7X8
ID FETCH-LOGICAL-a380t-96c75f281aa44cb24b8e73ffe25f56cb97a7d34c9794e90d293aace06c1087b13
IEDL.DBID ACS
ISSN 0006-2960
IngestDate Fri Jul 11 12:16:25 EDT 2025
Fri Jul 11 14:27:04 EDT 2025
Wed Feb 19 02:36:15 EST 2025
Thu Apr 24 22:59:59 EDT 2025
Tue Jul 01 02:05:13 EDT 2025
Wed Oct 30 09:40:11 EDT 2024
Thu Aug 27 13:42:52 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a380t-96c75f281aa44cb24b8e73ffe25f56cb97a7d34c9794e90d293aace06c1087b13
Notes ark:/67375/TPS-V4FG49VN-4
This work was supported by NIH Grant GM-50380, NSF Training Grant BIR 94/13198 in Cellular and Molecular Biodynamics (F.J., PI), and the Rutgers University Busch Biomedical Fund and Roche Diagnostics Corp., Indianapolis, IN. Presented in part at the ASBMB annual meeting, Boston, MA, June 2000.
istex:0110E063182366B745A3CFCCE99AE57D05F7DE62
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 11412092
PQID 17907928
PQPubID 23462
PageCount 22
ParticipantIDs proquest_miscellaneous_70936865
proquest_miscellaneous_17907928
pubmed_primary_11412092
crossref_citationtrail_10_1021_bi002857e
crossref_primary_10_1021_bi002857e
istex_primary_ark_67375_TPS_V4FG49VN_4
acs_journals_10_1021_bi002857e
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-06-26
PublicationDateYYYYMMDD 2001-06-26
PublicationDate_xml – month: 06
  year: 2001
  text: 2001-06-26
  day: 26
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2001
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Juni E. (bi002857eb00023/bi002857eb00023_1) 1961; 236
Li H. (bi002857eb00042/bi002857eb00042_1) 1999
Pastra-Landis S. C. (bi002857eb00013/bi002857eb00013_1) 1978; 253
Khailova L. S. (bi002857eb00045/bi002857eb00045_1) 1989; 573
Jordan F. (bi002857eb00002/bi002857eb00002_1) 1998; 1385
Lu G. (bi002857eb00028/bi002857eb00028_1) 2000; 276
Alvarez F. J. (bi002857eb00005/bi002857eb00005_1) 1991; 113
Yi J. (bi002857eb00040/bi002857eb00040_1) 1996; 271
Wang J. (bi002857eb00018/bi002857eb00018_1) 2000
Brendza K. M. (bi002857eb00031/bi002857eb00031_1) 1999; 274
Juni E. (bi002857eb00025/bi002857eb00025_1) 1968; 127
Arjunan D. (bi002857eb00008/bi002857eb00008_1) 1996; 256
bi002857eb00034/bi002857eb00034_1
Alvarez F. (bi002857eb00006/bi002857eb00006_1) 1995; 117
Cleland W. W. (bi002857eb00026/bi002857eb00026_1) 1979
Jordan F. (bi002857eb00036/bi002857eb00036_1) 1999
Guo F. (bi002857eb00038/bi002857eb00038_1) 1998
Sergienko E. A. (bi002857eb00012/bi002857eb00012_1) 2001
Juni E. (bi002857eb00024/bi002857eb00024_1) 1968; 127
Jordan F. (bi002857eb00033/bi002857eb00033_1) 1978; 100
Boiteux A. (bi002857eb00003/bi002857eb00003_1) 1970; 9
bi002857eb00001/bi002857eb00001_1
Nemeria N. (bi002857eb00043/bi002857eb00043_1) 1998
Mannervik B. (bi002857eb00015/bi002857eb00015_1) 1982
Baburina I. (bi002857eb00021/bi002857eb00021_1) 1996
Kuhl P. W. (bi002857eb00027/bi002857eb00027_1) 1994; 298
LiCata V. J. (bi002857eb00014/bi002857eb00014_1) 1997
Liu M. (bi002857eb00011/bi002857eb00011_1) 2001
Hübner G. (bi002857eb00004/bi002857eb00004_1) 1978; 92
Lu G. (bi002857eb00009/bi002857eb00009_1) 1997; 403
Sergienko E. A. (bi002857eb00032/bi002857eb00032_1) 2000; 14
Baburina I. (bi002857eb00020/bi002857eb00020_1) 1994
Sergienko E. A. (bi002857eb00010/bi002857eb00010_1) 2000
Stivers J. T. (bi002857eb00035/bi002857eb00035_1) 1993
Li H. (bi002857eb00041/bi002857eb00041_1) 1999
bi002857eb00016/bi002857eb00016_1
Monod J. (bi002857eb00029/bi002857eb00029_1) 1965; 12
Boyer P. D. (bi002857eb00030/bi002857eb00030_1) 1997; 66
Dahlquist F. W. (bi002857eb00044/bi002857eb00044_1) 1978
Abbreviations DP (bi002857en00001/bi002857en00001_1)
Adair G. S. (bi002857eb00017/bi002857eb00017_1) 1925; 63
Dyda F. (bi002857eb00007/bi002857eb00007_1) 1993
bi002857eb00039/bi002857eb00039_1
Baburina I. (bi002857eb00022/bi002857eb00022_1) 1998
References_xml – volume-title: Biochemistry 32, 13472−13482
  year: 1993
  ident: bi002857eb00035/bi002857eb00035_1
– volume-title: Biochemistry 37, 13379−13391
  year: 1998
  ident: bi002857eb00038/bi002857eb00038_1
– ident: bi002857eb00016/bi002857eb00016_1
– volume: 403
  year: 1997
  ident: bi002857eb00009/bi002857eb00009_1
  publication-title: FEBS Lett.
– volume-title: Methods Enzymol. 87, 370−390
  year: 1982
  ident: bi002857eb00015/bi002857eb00015_1
– volume: 66
  year: 1997
  ident: bi002857eb00030/bi002857eb00030_1
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.66.1.717
– volume-title: Biochemistry 40, 1755−1763
  year: 2000
  ident: bi002857eb00018/bi002857eb00018_1
– volume: 113
  year: 1991
  ident: bi002857eb00005/bi002857eb00005_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00022a030
– ident: bi002857eb00001/bi002857eb00001_1
– volume: 100
  year: 1978
  ident: bi002857eb00033/bi002857eb00033_1
  publication-title: J. Am. Chem. Soc.
– volume: 573
  start-page: 54
  year: 1989
  ident: bi002857eb00045/bi002857eb00045_1
  publication-title: Ann. N.Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1989.tb14985.x
– volume: 12
  start-page: 118
  year: 1965
  ident: bi002857eb00029/bi002857eb00029_1
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(65)80285-6
– volume-title: Biophys. Chem. 64, 225−234
  year: 1997
  ident: bi002857eb00014/bi002857eb00014_1
– volume: 236
  year: 1961
  ident: bi002857eb00023/bi002857eb00023_1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)64075-X
– volume: 1385
  year: 1998
  ident: bi002857eb00002/bi002857eb00002_1
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0167-4838(98)00075-2
– volume-title: Biochemistry 35, 10249−10255
  year: 1996
  ident: bi002857eb00021/bi002857eb00021_1
– volume: 14
  year: 2000
  ident: bi002857eb00032/bi002857eb00032_1
  publication-title: FASEB J.
– volume-title: Biochemistry 38, 6369−6373
  year: 1999
  ident: bi002857eb00036/bi002857eb00036_1
– ident: bi002857eb00039/bi002857eb00039_1
– volume-title: Biochemistry 32, 6165−6170
  year: 1993
  ident: bi002857eb00007/bi002857eb00007_1
– volume: 274
  year: 1999
  ident: bi002857eb00031/bi002857eb00031_1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.44.31506
– volume: 92
  year: 1978
  ident: bi002857eb00004/bi002857eb00004_1
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1978.tb12735.x
– volume: 127
  start-page: 100
  year: 1968
  ident: bi002857eb00025/bi002857eb00025_1
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(68)90204-X
– volume: 298
  year: 1994
  ident: bi002857eb00027/bi002857eb00027_1
  publication-title: Biochem. J.
– volume-title: Biochemistry 40, 7369−7381
  year: 2001
  ident: bi002857eb00012/bi002857eb00012_1
– volume-title: Methods Enzymol. 48, 270−299
  year: 1978
  ident: bi002857eb00044/bi002857eb00044_1
– volume-title: Biochemistry 37, 1235−1244
  year: 1998
  ident: bi002857eb00022/bi002857eb00022_1
– volume-title: thiamin diphosphate
  ident: bi002857en00001/bi002857en00001_1
– volume: 256
  year: 1996
  ident: bi002857eb00008/bi002857eb00008_1
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1996.0111
– volume-title: Biochemistry 37, 911−922
  year: 1998
  ident: bi002857eb00043/bi002857eb00043_1
– volume: 271
  year: 1996
  ident: bi002857eb00040/bi002857eb00040_1
  publication-title: J. Biol. Chem.
– volume: 127
  start-page: 88
  year: 1968
  ident: bi002857eb00024/bi002857eb00024_1
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(68)90204-X
– volume: 253
  year: 1978
  ident: bi002857eb00013/bi002857eb00013_1
  publication-title: J. Biol. Chem.
– volume: 63
  year: 1925
  ident: bi002857eb00017/bi002857eb00017_1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)85013-X
– volume-title: Biochemistry 33, 5630−5635
  year: 1994
  ident: bi002857eb00020/bi002857eb00020_1
– volume-title: Biochemistry 38, 10004−10012
  year: 1999
  ident: bi002857eb00041/bi002857eb00041_1
– volume-title: Biochemistry 38, 9992−10003
  year: 1999
  ident: bi002857eb00042/bi002857eb00042_1
– ident: bi002857eb00034/bi002857eb00034_1
– volume: 276
  year: 2000
  ident: bi002857eb00028/bi002857eb00028_1
  publication-title: Eur. J. Biochem.
– volume-title: Biochemistry 40, 7355−7368
  year: 2001
  ident: bi002857eb00011/bi002857eb00011_1
– volume: 117
  year: 1995
  ident: bi002857eb00006/bi002857eb00006_1
  publication-title: J. Am. Chem. Soc.
– volume-title: Methods Enzymol. 63, 500−513
  year: 1979
  ident: bi002857eb00026/bi002857eb00026_1
– volume: 9
  year: 1970
  ident: bi002857eb00003/bi002857eb00003_1
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(70)80381-7
– volume-title: Biochemistry 39, 13862−13869
  year: 2000
  ident: bi002857eb00010/bi002857eb00010_1
SSID ssj0004074
Score 1.821272
Snippet The widely quoted kinetic model for the mechanism of yeast pyruvate decarboxylase (YPDC, EC 4.1.1.1), an enzyme subject to substrate activation, is based on...
SourceID proquest
pubmed
crossref
istex
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7382
SubjectTerms Acetaldehyde - metabolism
Alanine - genetics
Amino Acid Substitution - genetics
Asparagine - genetics
Aspartic Acid - genetics
Binding Sites - genetics
Catalytic Domain - genetics
Computer Simulation
Glutamic Acid - genetics
Glutamine - genetics
Hydrogen-Ion Concentration
Kinetics
Models, Chemical
Pyruvate Decarboxylase - antagonists & inhibitors
Pyruvate Decarboxylase - chemistry
Pyruvate Decarboxylase - genetics
Pyruvates - chemistry
Recombinant Proteins - antagonists & inhibitors
Recombinant Proteins - chemistry
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Substrate Specificity - genetics
Title Catalytic Acid−Base Groups in Yeast Pyruvate Decarboxylase. 3. A Steady-State Kinetic Model Consistent with the Behavior of both Wild-Type and Variant Enzymes at All Relevant pH Values
URI http://dx.doi.org/10.1021/bi002857e
https://api.istex.fr/ark:/67375/TPS-V4FG49VN-4/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/11412092
https://www.proquest.com/docview/17907928
https://www.proquest.com/docview/70936865
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZKe4ALhZbHFigjQBWXLHk4dnwM2y4rEFVF21U5RY5jS6tus1U2i0h_AWd-Dj-HX8I4jy2ILlyjSTTxzHi-sedByCvFEWRLpRzGEL5RboQjIiYcrlMuVBb6mtp654-HbHRK35-FZ2vk5YobfN97k05sXBByfYts-AyN1-KfwfF18aPbtlrG0NhHPN61D_r9Vet61PwP17NhV_HralxZ-5fhJtnvqnSatJLz_qJM--rq76aN_2L9Hrnb4kuIG4W4T9Z0vkW24xxj64sK9qDO-KyP0rfI7UE37W2b_BjYc5wK34JYTbKf376_Rf8G9dHUHCY5fLZDfuCoKhZfEJ7CvlaySJFXRN-6D0EfYrC5wVnl1PgVPiB8tV-zw9amUM8FxaXIS7Anv4CwE9rWjAXMDKSoMIA7VObYwBhknsEYo3gUOxzkV9WFnoMsIZ5O4ZMtiLfPL0dIMsU1fUBOhwcng5HTznVwZBC5pSOY4qHxI09KSlXq0zTSPDBG-6EJmUoFlzwLqBK4V2jhZohIpFTaZcpzI556wUOyns9y_ZiAkF5kMsNEZNteahUh-vWYMcZTrkSo2yO7KPiktct5Ul-5-16ylEyPvO50IlFtV3Q7nGN6E-mLJell0wrkJqK9WrGWFLI4t7lzPExOjo6TMR2-o2J8mNAeed5pXoKittc0MtezBfLIhcuFH62m4K4IWMTCHnnUqOw1Px61xdD-zv_--wm502TTodGwp2S9LBb6GcKrMt2tzesXGAAfJA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagPZQLj5ZHeLQjhCouG_bhtdfHJTQE2kYVTatyWnm9thQ13VTZDSL9BZz5OfwcfgljZ5MAagXX1aw1tsf2N_bMN4S8UhxBtlTKYwzhG-VGeCJhwuM650IVcaipzXc-7LPeCf14Fp81NDk2FwaVqLClyj3ir9gFgjf50LoHMde3yTqCkNBac9o5XuVA-g3jMnrIIcLyBYvQ77_aE0hVf5xA63Ywv94ML90x0703r1fkFHTRJeftaZ231dVf3I3_14P75G6DNiGdm8cDckuXm2QrLdHTvpjBLrj4T3exvkk2Oovab1vkR8fe6szwL0jVsPj57ftbPO3AXVRVMCzhsy35A0ezyfQLglV4p5Wc5KgyYnHdhqgNKdhI4WLmOTQL-whmbWu29NoIXJVQHJGyBnsPDAhCoSFqnMDYQI7mA7hfFZ51k0GWBZyiT49GAHvl1exCVyBrSEcj-GTT4-33yx6KjHBoH5KT7t6g0_OaKg-ejBK_9gRTPDZhEkhJqcpDmieaR8boMDYxU7ngkhcRVQJ3Di38AvGJlEr7TAV-wvMgekTWynGpnxAQMkhMYZhILAmmVgli4YAZYwLlSwS-LbKNE5M1q7TK3AN8GGTLmWmR1wvTyFTDkW5LdYyuE325FL2cE4NcJ7Tr7GspISfnNpKOx9ng6Dg7pd33VJz2M9oiOwsDzHCq7aONLPV4ijpy4XMRJjdLcF9ELGFxizyeW-5Kn4Da1Ojw6b_6vUM2eoPDg-zgQ3__Gbkzj7PDdcSek7V6MtUvEHjV-bZbcb8Ai_onhQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELaglYALj5ZHeLQjhCouG_bhtdfHJW0IFEJF26icVl6vLUVNN1F2g0h_AWd-Dj-HX8LY2aSAWsF1NWuN7bHnm_E8CHmhOIJsqZTHGMI3yo3wRMKEx3XOhSriUFOb7_yhz3rH9N1JfNIYijYXBpmocKTKPeLbUz0pTFNhIHiVD62JEHN9nazb5zor0Wnn8CIP0m-qLqOVHCI0X1YS-v1Xq4VU9YcWWrcL-vVqiOlUTfcO-bhi0kWYnLZndd5W53_Vb_z_WdwltxvUCelCTO6Ra7rcIJtpiRb32Rx2wMWBOgf7BrnZWfaA2yQ_Ota7M8e_IFXD4ue3769R64FzWFUwLOGzbf0DB_Pp7AuCVtjVSk5zZBsxuW5D1IYUbMRwMfccqoV9BLV2NNuCbQSuWyiuSlmD9QcDglFoCjZOYWwgRzECvLcKz5rLIMsCBmjbozDAXnk-P9MVyBrS0Qg-2TR5-33SQ5IRLu99ctzdO-r0vKbbgyejxK89wRSPTZgEUlKq8pDmieaRMTqMTcxULrjkRUSVwBtEC79AnCKl0j5TgZ_wPIgekLVyXOpHBIQMElMYJhJbDFOrBDFxwIwxgfIlAuAW2cLNyZrTWmXuIT4MstXOtMjLpXhkqqmVblt2jC4jfb4inSwKhFxGtONkbEUhp6c2oo7H2dHBYTag3TdUDPoZbZHtpRBmuNX28UaWejxDHrnwuQiTqym4LyKWsLhFHi6k94KfgNoU6fDxv-a9TW4c7Haz92_7-0_IrUW4HR4l9pSs1dOZfob4q8633KH7BQgkKgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalytic+Acid%E2%88%92Base+Groups+in+Yeast+Pyruvate+Decarboxylase.+3.+A+Steady-State+Kinetic+Model+Consistent+with+the+Behavior+of+both+Wild-Type+and+Variant+Enzymes+at+All+Relevant+pH+Values&rft.jtitle=Biochemistry+%28Easton%29&rft.au=SERGIENKO%2C+Eduard+A.&rft.au=JORDAN%2C+Frank&rft.date=2001-06-26&rft.pub=American+Chemical+Society&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=40&rft.issue=25&rft.spage=7382&rft.epage=7403&rft_id=info:doi/10.1021%2Fbi002857e&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_TPS_V4FG49VN_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon