Catalytic Acid−Base Groups in Yeast Pyruvate Decarboxylase. 3. A Steady-State Kinetic Model Consistent with the Behavior of both Wild-Type and Variant Enzymes at All Relevant pH Values
The widely quoted kinetic model for the mechanism of yeast pyruvate decarboxylase (YPDC, EC 4.1.1.1), an enzyme subject to substrate activation, is based on data for the wild-type enzyme under optimal experimental conditions. The major feature of the model is the obligatory binding of substrate in t...
Saved in:
Published in | Biochemistry (Easton) Vol. 40; no. 25; pp. 7382 - 7403 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.06.2001
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The widely quoted kinetic model for the mechanism of yeast pyruvate decarboxylase (YPDC, EC 4.1.1.1), an enzyme subject to substrate activation, is based on data for the wild-type enzyme under optimal experimental conditions. The major feature of the model is the obligatory binding of substrate in the regulatory site prior to substrate binding at the catalytic site. The activated monomer would complete the cycle by irreversible decarboxylation of the substrate and product (acetaldehyde) release. Our recent kinetic studies of YPDC variants substituted at positions D28 and E477 at the active center necessitate some modification of the mechanism. It was found that enzyme without substrate activation apparently is still catalytically competent. Further, substrate-dependent inhibition of D28-substituted variants leads to an enzyme form with nonzero activity at full saturation, requiring a second major branch point in the mechanism. Kinetic data for the E477Q variant suggest that three consecutive substrate binding steps may be needed to release product acetaldehyde, unlikely if YPDC monomer is the minimal catalytic unit with only two binding sites for substrate. A model to account for all kinetic observations involves a functional dimer operating through alternation of active sites. In the context of this mechanism, roles are suggested for the active center acid−base groups D28, E477, H114, and H115. The results underline once more the enormous importance that both aromatic rings of the thiamin diphosphate, rather than only the thiazolium ring, have in catalysis, a fact little appreciated prior to the availability of the 3-dimensional structure of these enzymes. |
---|---|
AbstractList | The widely quoted kinetic model for the mechanism of yeast pyruvate decarboxylase (YPDC, EC 4.1.1.1), an enzyme subject to substrate activation, is based on data for the wild-type enzyme under optimal experimental conditions. The major feature of the model is the obligatory binding of substrate in the regulatory site prior to substrate binding at the catalytic site. The activated monomer would complete the cycle by irreversible decarboxylation of the substrate and product (acetaldehyde) release. Our recent kinetic studies of YPDC variants substituted at positions D28 and E477 at the active center necessitate some modification of the mechanism. It was found that enzyme without substrate activation apparently is still catalytically competent. Further, substrate-dependent inhibition of D28-substituted variants leads to an enzyme form with nonzero activity at full saturation, requiring a second major branch point in the mechanism. Kinetic data for the E477Q variant suggest that three consecutive substrate binding steps may be needed to release product acetaldehyde, unlikely if YPDC monomer is the minimal catalytic unit with only two binding sites for substrate. A model to account for all kinetic observations involves a functional dimer operating through alternation of active sites. In the context of this mechanism, roles are suggested for the active center acid−base groups D28, E477, H114, and H115. The results underline once more the enormous importance that both aromatic rings of the thiamin diphosphate, rather than only the thiazolium ring, have in catalysis, a fact little appreciated prior to the availability of the 3-dimensional structure of these enzymes. The widely quoted kinetic model for the mechanism of yeast pyruvate decarboxylase (YPDC, EC 4.1.1.1), an enzyme subject to substrate activation, is based on data for the wild-type enzyme under optimal experimental conditions. The major feature of the model is the obligatory binding of substrate in the regulatory site prior to substrate binding at the catalytic site. The activated monomer would complete the cycle by irreversible decarboxylation of the substrate and product (acetaldehyde) release. Our recent kinetic studies of YPDC variants substituted at positions D28 and E477 at the active center necessitate some modification of the mechanism. It was found that enzyme without substrate activation apparently is still catalytically competent. Further, substrate-dependent inhibition of D28-substituted variants leads to an enzyme form with nonzero activity at full saturation, requiring a second major branch point in the mechanism. Kinetic data for the E477Q variant suggest that three consecutive substrate binding steps may be needed to release product acetaldehyde, unlikely if YPDC monomer is the minimal catalytic unit with only two binding sites for substrate. A model to account for all kinetic observations involves a functional dimer operating through alternation of active sites. In the context of this mechanism, roles are suggested for the active center acid-base groups D28, E477, H114, and H115. The results underline once more the enormous importance that both aromatic rings of the thiamin diphosphate, rather than only the thiazolium ring, have in catalysis, a fact little appreciated prior to the availability of the 3-dimensional structure of these enzymes.The widely quoted kinetic model for the mechanism of yeast pyruvate decarboxylase (YPDC, EC 4.1.1.1), an enzyme subject to substrate activation, is based on data for the wild-type enzyme under optimal experimental conditions. The major feature of the model is the obligatory binding of substrate in the regulatory site prior to substrate binding at the catalytic site. The activated monomer would complete the cycle by irreversible decarboxylation of the substrate and product (acetaldehyde) release. Our recent kinetic studies of YPDC variants substituted at positions D28 and E477 at the active center necessitate some modification of the mechanism. It was found that enzyme without substrate activation apparently is still catalytically competent. Further, substrate-dependent inhibition of D28-substituted variants leads to an enzyme form with nonzero activity at full saturation, requiring a second major branch point in the mechanism. Kinetic data for the E477Q variant suggest that three consecutive substrate binding steps may be needed to release product acetaldehyde, unlikely if YPDC monomer is the minimal catalytic unit with only two binding sites for substrate. A model to account for all kinetic observations involves a functional dimer operating through alternation of active sites. In the context of this mechanism, roles are suggested for the active center acid-base groups D28, E477, H114, and H115. The results underline once more the enormous importance that both aromatic rings of the thiamin diphosphate, rather than only the thiazolium ring, have in catalysis, a fact little appreciated prior to the availability of the 3-dimensional structure of these enzymes. The widely quoted kinetic model for the mechanism of yeast pyruvate decarboxylase (YPDC, EC 4.1.1.1), an enzyme subject to substrate activation, is based on data for the wild-type enzyme under optimal experimental conditions. The major feature of the model is the obligatory binding of substrate in the regulatory site prior to substrate binding at the catalytic site. The activated monomer would complete the cycle by irreversible decarboxylation of the substrate and product (acetaldehyde) release. Our recent kinetic studies of YPDC variants substituted at positions D28 and E477 at the active center necessitate some modification of the mechanism. It was found that enzyme without substrate activation apparently is still catalytically competent. Further, substrate-dependent inhibition of D28-substituted variants leads to an enzyme form with nonzero activity at full saturation, requiring a second major branch point in the mechanism. Kinetic data for the E477Q variant suggest that three consecutive substrate binding steps may be needed to release product acetaldehyde, unlikely if YPDC monomer is the minimal catalytic unit with only two binding sites for substrate. A model to account for all kinetic observations involves a functional dimer operating through alternation of active sites. In the context of this mechanism, roles are suggested for the active center acid-base groups D28, E477, H114, and H115. The results underline once more the enormous importance that both aromatic rings of the thiamin diphosphate, rather than only the thiazolium ring, have in catalysis, a fact little appreciated prior to the availability of the 3-dimensional structure of these enzymes. |
Author | Jordan, Frank Sergienko, Eduard A |
Author_xml | – sequence: 1 givenname: Eduard A surname: Sergienko fullname: Sergienko, Eduard A – sequence: 2 givenname: Frank surname: Jordan fullname: Jordan, Frank |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11412092$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c9u0zAcB_AIDbE_cOAFkC8gcUhnJ04cH7uydYgBEy1FnCzH-UX1cONiO2XhCTjzODwOT4Krjh7QJE6Wrc_va-n3PU4OOttBkjwleERwRk5rjXFWFQweJEekyHBKOS8OkiOMcZlmvMSHybH3N_FKMaOPkkNCKMkwz46SXxMZpBmCVmisdPP7x88z6QFNne3XHukOfQbpA7oeXL-RAdArUNLV9nYwkY1QPkJjNAsgmyGdhS14ozvYpr21DRg0sZ3XPkAX0DcdligsAZ3BUm60dci2qLbx8ZM2TTof1oBk16CFdFpGf959H1bgkQxobAz6AAY22_f1ZSSmB_84edhK4-HJ3XmSfLw4n08u06v309eT8VUq8wqHlJeKFW1WESkpVXVG6wpY3raQFW1RqpozyZqcKs44BY6bjOdSKsClIrhiNclPkhe73LWzX-O_Qay0V2CM7MD2XjDM87Iqi_9CwjhmPKsifHYH-3oFjVg7vZJuEH9rieB0B5Sz3jtohdJxu9p2wUltBMFiW7zYFx8nXv4zsQ-9x6Y7u23mdg-l-yJKlrNCzK9nYkEvppQv3gka_fOdl8qLG9u7Lq77ntw_6MrKaA |
CitedBy_id | crossref_primary_10_1016_j_molcatb_2013_09_010 crossref_primary_10_1073_pnas_0609973104 crossref_primary_10_1039_b514511m crossref_primary_10_3390_catal6120190 crossref_primary_10_1074_jbc_M706569200 crossref_primary_10_1371_journal_pone_0215084 crossref_primary_10_1111_febs_12459 crossref_primary_10_1002_yea_690 crossref_primary_10_1016_j_bioorg_2006_09_006 crossref_primary_10_1002_chem_201302429 crossref_primary_10_1016_S0022_2836_03_00734_4 crossref_primary_10_1111_j_1742_4658_2009_06964_x crossref_primary_10_1021_jp052802s crossref_primary_10_1046_j_1432_1033_2003_03601_x crossref_primary_10_1074_jbc_M509921200 crossref_primary_10_1016_j_bioorg_2014_08_002 crossref_primary_10_1021_cs400272x crossref_primary_10_1006_bioo_2002_1249 crossref_primary_10_1142_S0219633606002386 crossref_primary_10_3390_reactions3010011 crossref_primary_10_1021_ja209856x crossref_primary_10_1186_1471_2091_13_24 crossref_primary_10_1111_j_1742_4658_2011_08421_x crossref_primary_10_1016_j_bioorg_2005_02_001 crossref_primary_10_1021_ja211139c |
Cites_doi | 10.1146/annurev.biochem.66.1.717 10.1021/ja00022a030 10.1111/j.1749-6632.1989.tb14985.x 10.1016/S0022-2836(65)80285-6 10.1016/S0021-9258(18)64075-X 10.1016/S0167-4838(98)00075-2 10.1074/jbc.274.44.31506 10.1111/j.1432-1033.1978.tb12735.x 10.1016/0003-9861(68)90204-X 10.1006/jmbi.1996.0111 10.1016/S0021-9258(18)85013-X 10.1016/0014-5793(70)80381-7 |
ContentType | Journal Article |
Copyright | Copyright © 2001 American Chemical Society |
Copyright_xml | – notice: Copyright © 2001 American Chemical Society |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM M7N 7X8 |
DOI | 10.1021/bi002857e |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1520-4995 |
EndPage | 7403 |
ExternalDocumentID | 11412092 10_1021_bi002857e ark_67375_TPS_V4FG49VN_4 c491038564 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Comparative Study Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM-50380 |
GroupedDBID | - .K2 02 08R 186 23N 3O- 4.4 53G 55 55A 5GY 5RE 5VS 7~N 85S AABXI AAYJJ ABFLS ABMVS ABOCM ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS ADKFC AEESW AENEX AETEA AFEFF AFFDN AFFNX AFMIJ AIDAL AJYGW ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F5P G8K GJ GNL IH9 IHE JG JG~ K2 K78 KM L7B LG6 MVM NHB OHT P2P ROL TN5 UI2 UNC UQL VF5 VG9 VQA W1F WH7 X X7M YZZ ZA5 ZE2 ZGI ZXP --- -DZ -~X .55 .GJ 6TJ ABDPE ABJNI ABQRX ADHLV AGXLV AHGAQ BSCLL CUPRZ GGK XOL XSW YYP ZCA ~02 ~KM AAYXX ABBLG ABLBI ACRPL ADNMO AEYZD AGQPQ ANPPW CITATION CGR CUY CVF ECM EIF NPM VXZ M7N 7X8 |
ID | FETCH-LOGICAL-a380t-96c75f281aa44cb24b8e73ffe25f56cb97a7d34c9794e90d293aace06c1087b13 |
IEDL.DBID | ACS |
ISSN | 0006-2960 |
IngestDate | Fri Jul 11 12:16:25 EDT 2025 Fri Jul 11 14:27:04 EDT 2025 Wed Feb 19 02:36:15 EST 2025 Thu Apr 24 22:59:59 EDT 2025 Tue Jul 01 02:05:13 EDT 2025 Wed Oct 30 09:40:11 EDT 2024 Thu Aug 27 13:42:52 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a380t-96c75f281aa44cb24b8e73ffe25f56cb97a7d34c9794e90d293aace06c1087b13 |
Notes | ark:/67375/TPS-V4FG49VN-4 This work was supported by NIH Grant GM-50380, NSF Training Grant BIR 94/13198 in Cellular and Molecular Biodynamics (F.J., PI), and the Rutgers University Busch Biomedical Fund and Roche Diagnostics Corp., Indianapolis, IN. Presented in part at the ASBMB annual meeting, Boston, MA, June 2000. istex:0110E063182366B745A3CFCCE99AE57D05F7DE62 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 11412092 |
PQID | 17907928 |
PQPubID | 23462 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_70936865 proquest_miscellaneous_17907928 pubmed_primary_11412092 crossref_citationtrail_10_1021_bi002857e crossref_primary_10_1021_bi002857e istex_primary_ark_67375_TPS_V4FG49VN_4 acs_journals_10_1021_bi002857e |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-06-26 |
PublicationDateYYYYMMDD | 2001-06-26 |
PublicationDate_xml | – month: 06 year: 2001 text: 2001-06-26 day: 26 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemistry (Easton) |
PublicationTitleAlternate | Biochemistry |
PublicationYear | 2001 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Juni E. (bi002857eb00023/bi002857eb00023_1) 1961; 236 Li H. (bi002857eb00042/bi002857eb00042_1) 1999 Pastra-Landis S. C. (bi002857eb00013/bi002857eb00013_1) 1978; 253 Khailova L. S. (bi002857eb00045/bi002857eb00045_1) 1989; 573 Jordan F. (bi002857eb00002/bi002857eb00002_1) 1998; 1385 Lu G. (bi002857eb00028/bi002857eb00028_1) 2000; 276 Alvarez F. J. (bi002857eb00005/bi002857eb00005_1) 1991; 113 Yi J. (bi002857eb00040/bi002857eb00040_1) 1996; 271 Wang J. (bi002857eb00018/bi002857eb00018_1) 2000 Brendza K. M. (bi002857eb00031/bi002857eb00031_1) 1999; 274 Juni E. (bi002857eb00025/bi002857eb00025_1) 1968; 127 Arjunan D. (bi002857eb00008/bi002857eb00008_1) 1996; 256 bi002857eb00034/bi002857eb00034_1 Alvarez F. (bi002857eb00006/bi002857eb00006_1) 1995; 117 Cleland W. W. (bi002857eb00026/bi002857eb00026_1) 1979 Jordan F. (bi002857eb00036/bi002857eb00036_1) 1999 Guo F. (bi002857eb00038/bi002857eb00038_1) 1998 Sergienko E. A. (bi002857eb00012/bi002857eb00012_1) 2001 Juni E. (bi002857eb00024/bi002857eb00024_1) 1968; 127 Jordan F. (bi002857eb00033/bi002857eb00033_1) 1978; 100 Boiteux A. (bi002857eb00003/bi002857eb00003_1) 1970; 9 bi002857eb00001/bi002857eb00001_1 Nemeria N. (bi002857eb00043/bi002857eb00043_1) 1998 Mannervik B. (bi002857eb00015/bi002857eb00015_1) 1982 Baburina I. (bi002857eb00021/bi002857eb00021_1) 1996 Kuhl P. W. (bi002857eb00027/bi002857eb00027_1) 1994; 298 LiCata V. J. (bi002857eb00014/bi002857eb00014_1) 1997 Liu M. (bi002857eb00011/bi002857eb00011_1) 2001 Hübner G. (bi002857eb00004/bi002857eb00004_1) 1978; 92 Lu G. (bi002857eb00009/bi002857eb00009_1) 1997; 403 Sergienko E. A. (bi002857eb00032/bi002857eb00032_1) 2000; 14 Baburina I. (bi002857eb00020/bi002857eb00020_1) 1994 Sergienko E. A. (bi002857eb00010/bi002857eb00010_1) 2000 Stivers J. T. (bi002857eb00035/bi002857eb00035_1) 1993 Li H. (bi002857eb00041/bi002857eb00041_1) 1999 bi002857eb00016/bi002857eb00016_1 Monod J. (bi002857eb00029/bi002857eb00029_1) 1965; 12 Boyer P. D. (bi002857eb00030/bi002857eb00030_1) 1997; 66 Dahlquist F. W. (bi002857eb00044/bi002857eb00044_1) 1978 Abbreviations DP (bi002857en00001/bi002857en00001_1) Adair G. S. (bi002857eb00017/bi002857eb00017_1) 1925; 63 Dyda F. (bi002857eb00007/bi002857eb00007_1) 1993 bi002857eb00039/bi002857eb00039_1 Baburina I. (bi002857eb00022/bi002857eb00022_1) 1998 |
References_xml | – volume-title: Biochemistry 32, 13472−13482 year: 1993 ident: bi002857eb00035/bi002857eb00035_1 – volume-title: Biochemistry 37, 13379−13391 year: 1998 ident: bi002857eb00038/bi002857eb00038_1 – ident: bi002857eb00016/bi002857eb00016_1 – volume: 403 year: 1997 ident: bi002857eb00009/bi002857eb00009_1 publication-title: FEBS Lett. – volume-title: Methods Enzymol. 87, 370−390 year: 1982 ident: bi002857eb00015/bi002857eb00015_1 – volume: 66 year: 1997 ident: bi002857eb00030/bi002857eb00030_1 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.66.1.717 – volume-title: Biochemistry 40, 1755−1763 year: 2000 ident: bi002857eb00018/bi002857eb00018_1 – volume: 113 year: 1991 ident: bi002857eb00005/bi002857eb00005_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00022a030 – ident: bi002857eb00001/bi002857eb00001_1 – volume: 100 year: 1978 ident: bi002857eb00033/bi002857eb00033_1 publication-title: J. Am. Chem. Soc. – volume: 573 start-page: 54 year: 1989 ident: bi002857eb00045/bi002857eb00045_1 publication-title: Ann. N.Y. Acad. Sci. doi: 10.1111/j.1749-6632.1989.tb14985.x – volume: 12 start-page: 118 year: 1965 ident: bi002857eb00029/bi002857eb00029_1 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(65)80285-6 – volume-title: Biophys. Chem. 64, 225−234 year: 1997 ident: bi002857eb00014/bi002857eb00014_1 – volume: 236 year: 1961 ident: bi002857eb00023/bi002857eb00023_1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)64075-X – volume: 1385 year: 1998 ident: bi002857eb00002/bi002857eb00002_1 publication-title: Biochim. Biophys. Acta doi: 10.1016/S0167-4838(98)00075-2 – volume-title: Biochemistry 35, 10249−10255 year: 1996 ident: bi002857eb00021/bi002857eb00021_1 – volume: 14 year: 2000 ident: bi002857eb00032/bi002857eb00032_1 publication-title: FASEB J. – volume-title: Biochemistry 38, 6369−6373 year: 1999 ident: bi002857eb00036/bi002857eb00036_1 – ident: bi002857eb00039/bi002857eb00039_1 – volume-title: Biochemistry 32, 6165−6170 year: 1993 ident: bi002857eb00007/bi002857eb00007_1 – volume: 274 year: 1999 ident: bi002857eb00031/bi002857eb00031_1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.44.31506 – volume: 92 year: 1978 ident: bi002857eb00004/bi002857eb00004_1 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1978.tb12735.x – volume: 127 start-page: 100 year: 1968 ident: bi002857eb00025/bi002857eb00025_1 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(68)90204-X – volume: 298 year: 1994 ident: bi002857eb00027/bi002857eb00027_1 publication-title: Biochem. J. – volume-title: Biochemistry 40, 7369−7381 year: 2001 ident: bi002857eb00012/bi002857eb00012_1 – volume-title: Methods Enzymol. 48, 270−299 year: 1978 ident: bi002857eb00044/bi002857eb00044_1 – volume-title: Biochemistry 37, 1235−1244 year: 1998 ident: bi002857eb00022/bi002857eb00022_1 – volume-title: thiamin diphosphate ident: bi002857en00001/bi002857en00001_1 – volume: 256 year: 1996 ident: bi002857eb00008/bi002857eb00008_1 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1996.0111 – volume-title: Biochemistry 37, 911−922 year: 1998 ident: bi002857eb00043/bi002857eb00043_1 – volume: 271 year: 1996 ident: bi002857eb00040/bi002857eb00040_1 publication-title: J. Biol. Chem. – volume: 127 start-page: 88 year: 1968 ident: bi002857eb00024/bi002857eb00024_1 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(68)90204-X – volume: 253 year: 1978 ident: bi002857eb00013/bi002857eb00013_1 publication-title: J. Biol. Chem. – volume: 63 year: 1925 ident: bi002857eb00017/bi002857eb00017_1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)85013-X – volume-title: Biochemistry 33, 5630−5635 year: 1994 ident: bi002857eb00020/bi002857eb00020_1 – volume-title: Biochemistry 38, 10004−10012 year: 1999 ident: bi002857eb00041/bi002857eb00041_1 – volume-title: Biochemistry 38, 9992−10003 year: 1999 ident: bi002857eb00042/bi002857eb00042_1 – ident: bi002857eb00034/bi002857eb00034_1 – volume: 276 year: 2000 ident: bi002857eb00028/bi002857eb00028_1 publication-title: Eur. J. Biochem. – volume-title: Biochemistry 40, 7355−7368 year: 2001 ident: bi002857eb00011/bi002857eb00011_1 – volume: 117 year: 1995 ident: bi002857eb00006/bi002857eb00006_1 publication-title: J. Am. Chem. Soc. – volume-title: Methods Enzymol. 63, 500−513 year: 1979 ident: bi002857eb00026/bi002857eb00026_1 – volume: 9 year: 1970 ident: bi002857eb00003/bi002857eb00003_1 publication-title: FEBS Lett. doi: 10.1016/0014-5793(70)80381-7 – volume-title: Biochemistry 39, 13862−13869 year: 2000 ident: bi002857eb00010/bi002857eb00010_1 |
SSID | ssj0004074 |
Score | 1.821272 |
Snippet | The widely quoted kinetic model for the mechanism of yeast pyruvate decarboxylase (YPDC, EC 4.1.1.1), an enzyme subject to substrate activation, is based on... |
SourceID | proquest pubmed crossref istex acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7382 |
SubjectTerms | Acetaldehyde - metabolism Alanine - genetics Amino Acid Substitution - genetics Asparagine - genetics Aspartic Acid - genetics Binding Sites - genetics Catalytic Domain - genetics Computer Simulation Glutamic Acid - genetics Glutamine - genetics Hydrogen-Ion Concentration Kinetics Models, Chemical Pyruvate Decarboxylase - antagonists & inhibitors Pyruvate Decarboxylase - chemistry Pyruvate Decarboxylase - genetics Pyruvates - chemistry Recombinant Proteins - antagonists & inhibitors Recombinant Proteins - chemistry Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Substrate Specificity - genetics |
Title | Catalytic Acid−Base Groups in Yeast Pyruvate Decarboxylase. 3. A Steady-State Kinetic Model Consistent with the Behavior of both Wild-Type and Variant Enzymes at All Relevant pH Values |
URI | http://dx.doi.org/10.1021/bi002857e https://api.istex.fr/ark:/67375/TPS-V4FG49VN-4/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/11412092 https://www.proquest.com/docview/17907928 https://www.proquest.com/docview/70936865 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZKe4ALhZbHFigjQBWXLHk4dnwM2y4rEFVF21U5RY5jS6tus1U2i0h_AWd-Dj-HX8I4jy2ILlyjSTTxzHi-sedByCvFEWRLpRzGEL5RboQjIiYcrlMuVBb6mtp654-HbHRK35-FZ2vk5YobfN97k05sXBByfYts-AyN1-KfwfF18aPbtlrG0NhHPN61D_r9Vet61PwP17NhV_HralxZ-5fhJtnvqnSatJLz_qJM--rq76aN_2L9Hrnb4kuIG4W4T9Z0vkW24xxj64sK9qDO-KyP0rfI7UE37W2b_BjYc5wK34JYTbKf376_Rf8G9dHUHCY5fLZDfuCoKhZfEJ7CvlaySJFXRN-6D0EfYrC5wVnl1PgVPiB8tV-zw9amUM8FxaXIS7Anv4CwE9rWjAXMDKSoMIA7VObYwBhknsEYo3gUOxzkV9WFnoMsIZ5O4ZMtiLfPL0dIMsU1fUBOhwcng5HTznVwZBC5pSOY4qHxI09KSlXq0zTSPDBG-6EJmUoFlzwLqBK4V2jhZohIpFTaZcpzI556wUOyns9y_ZiAkF5kMsNEZNteahUh-vWYMcZTrkSo2yO7KPiktct5Ul-5-16ylEyPvO50IlFtV3Q7nGN6E-mLJell0wrkJqK9WrGWFLI4t7lzPExOjo6TMR2-o2J8mNAeed5pXoKittc0MtezBfLIhcuFH62m4K4IWMTCHnnUqOw1Px61xdD-zv_--wm502TTodGwp2S9LBb6GcKrMt2tzesXGAAfJA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagPZQLj5ZHeLQjhCouG_bhtdfHJTQE2kYVTatyWnm9thQ13VTZDSL9BZz5OfwcfgljZ5MAagXX1aw1tsf2N_bMN4S8UhxBtlTKYwzhG-VGeCJhwuM650IVcaipzXc-7LPeCf14Fp81NDk2FwaVqLClyj3ir9gFgjf50LoHMde3yTqCkNBac9o5XuVA-g3jMnrIIcLyBYvQ77_aE0hVf5xA63Ywv94ML90x0703r1fkFHTRJeftaZ231dVf3I3_14P75G6DNiGdm8cDckuXm2QrLdHTvpjBLrj4T3exvkk2Oovab1vkR8fe6szwL0jVsPj57ftbPO3AXVRVMCzhsy35A0ezyfQLglV4p5Wc5KgyYnHdhqgNKdhI4WLmOTQL-whmbWu29NoIXJVQHJGyBnsPDAhCoSFqnMDYQI7mA7hfFZ51k0GWBZyiT49GAHvl1exCVyBrSEcj-GTT4-33yx6KjHBoH5KT7t6g0_OaKg-ejBK_9gRTPDZhEkhJqcpDmieaR8boMDYxU7ngkhcRVQJ3Di38AvGJlEr7TAV-wvMgekTWynGpnxAQMkhMYZhILAmmVgli4YAZYwLlSwS-LbKNE5M1q7TK3AN8GGTLmWmR1wvTyFTDkW5LdYyuE325FL2cE4NcJ7Tr7GspISfnNpKOx9ng6Dg7pd33VJz2M9oiOwsDzHCq7aONLPV4ijpy4XMRJjdLcF9ELGFxizyeW-5Kn4Da1Ojw6b_6vUM2eoPDg-zgQ3__Gbkzj7PDdcSek7V6MtUvEHjV-bZbcb8Ai_onhQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELaglYALj5ZHeLQjhCouG_bhtdfHJW0IFEJF26icVl6vLUVNN1F2g0h_AWd-Dj-HX8LY2aSAWsF1NWuN7bHnm_E8CHmhOIJsqZTHGMI3yo3wRMKEx3XOhSriUFOb7_yhz3rH9N1JfNIYijYXBpmocKTKPeLbUz0pTFNhIHiVD62JEHN9nazb5zor0Wnn8CIP0m-qLqOVHCI0X1YS-v1Xq4VU9YcWWrcL-vVqiOlUTfcO-bhi0kWYnLZndd5W53_Vb_z_WdwltxvUCelCTO6Ra7rcIJtpiRb32Rx2wMWBOgf7BrnZWfaA2yQ_Ota7M8e_IFXD4ue3769R64FzWFUwLOGzbf0DB_Pp7AuCVtjVSk5zZBsxuW5D1IYUbMRwMfccqoV9BLV2NNuCbQSuWyiuSlmD9QcDglFoCjZOYWwgRzECvLcKz5rLIMsCBmjbozDAXnk-P9MVyBrS0Qg-2TR5-33SQ5IRLu99ctzdO-r0vKbbgyejxK89wRSPTZgEUlKq8pDmieaRMTqMTcxULrjkRUSVwBtEC79AnCKl0j5TgZ_wPIgekLVyXOpHBIQMElMYJhJbDFOrBDFxwIwxgfIlAuAW2cLNyZrTWmXuIT4MstXOtMjLpXhkqqmVblt2jC4jfb4inSwKhFxGtONkbEUhp6c2oo7H2dHBYTag3TdUDPoZbZHtpRBmuNX28UaWejxDHrnwuQiTqym4LyKWsLhFHi6k94KfgNoU6fDxv-a9TW4c7Haz92_7-0_IrUW4HR4l9pSs1dOZfob4q8633KH7BQgkKgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalytic+Acid%E2%88%92Base+Groups+in+Yeast+Pyruvate+Decarboxylase.+3.+A+Steady-State+Kinetic+Model+Consistent+with+the+Behavior+of+both+Wild-Type+and+Variant+Enzymes+at+All+Relevant+pH+Values&rft.jtitle=Biochemistry+%28Easton%29&rft.au=SERGIENKO%2C+Eduard+A.&rft.au=JORDAN%2C+Frank&rft.date=2001-06-26&rft.pub=American+Chemical+Society&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=40&rft.issue=25&rft.spage=7382&rft.epage=7403&rft_id=info:doi/10.1021%2Fbi002857e&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_TPS_V4FG49VN_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |