Reductive Electrosynthesis of Crystalline Metal–Organic Frameworks

Electroreduction of oxoanions affords hydroxide equivalents that induce selective deposition of crystalline metal–organic frameworks (MOFs) on conductive surfaces. The method is illustrated by cathodic electrodeposition of Zn4O(BDC)3 (MOF-5; BDC = 1,4-benzenedicarboxylate), which is deposited at roo...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 133; no. 33; pp. 12926 - 12929
Main Authors Li, Minyuan, Dincă, Mircea
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.08.2011
Online AccessGet full text

Cover

Loading…
Abstract Electroreduction of oxoanions affords hydroxide equivalents that induce selective deposition of crystalline metal–organic frameworks (MOFs) on conductive surfaces. The method is illustrated by cathodic electrodeposition of Zn4O(BDC)3 (MOF-5; BDC = 1,4-benzenedicarboxylate), which is deposited at room temperature in only 15 min under cathodic potential. Although many crystalline phases are known in the Zn2+/BDC2– system, MOF-5 is the only observed crystalline MOF phase under these conditions. This fast and mild method of synthesizing MOFs is amenable to direct surface functionalization and could impact applications requiring conformal coatings of microporous MOFs, such as gas separation membranes and electrochemical sensors.
AbstractList Electroreduction of oxoanions affords hydroxide equivalents that induce selective deposition of crystalline metal–organic frameworks (MOFs) on conductive surfaces. The method is illustrated by cathodic electrodeposition of Zn4O(BDC)3 (MOF-5; BDC = 1,4-benzenedicarboxylate), which is deposited at room temperature in only 15 min under cathodic potential. Although many crystalline phases are known in the Zn2+/BDC2– system, MOF-5 is the only observed crystalline MOF phase under these conditions. This fast and mild method of synthesizing MOFs is amenable to direct surface functionalization and could impact applications requiring conformal coatings of microporous MOFs, such as gas separation membranes and electrochemical sensors.
Electroreduction of oxoanions affords hydroxide equivalents that induce selective deposition of crystalline metal-organic frameworks (MOFs) on conductive surfaces. The method is illustrated by cathodic electrodeposition of Zn(4)O(BDC)(3) (MOF-5; BDC = 1,4-benzenedicarboxylate), which is deposited at room temperature in only 15 min under cathodic potential. Although many crystalline phases are known in the Zn(2+)/BDC(2-) system, MOF-5 is the only observed crystalline MOF phase under these conditions. This fast and mild method of synthesizing MOFs is amenable to direct surface functionalization and could impact applications requiring conformal coatings of microporous MOFs, such as gas separation membranes and electrochemical sensors.
Electroreduction of oxoanions affords hydroxide equivalents that induce selective deposition of crystalline metal-organic frameworks (MOFs) on conductive surfaces. The method is illustrated by cathodic electrodeposition of Zn(4)O(BDC)(3) (MOF-5; BDC = 1,4-benzenedicarboxylate), which is deposited at room temperature in only 15 min under cathodic potential. Although many crystalline phases are known in the Zn(2+)/BDC(2-) system, MOF-5 is the only observed crystalline MOF phase under these conditions. This fast and mild method of synthesizing MOFs is amenable to direct surface functionalization and could impact applications requiring conformal coatings of microporous MOFs, such as gas separation membranes and electrochemical sensors.Electroreduction of oxoanions affords hydroxide equivalents that induce selective deposition of crystalline metal-organic frameworks (MOFs) on conductive surfaces. The method is illustrated by cathodic electrodeposition of Zn(4)O(BDC)(3) (MOF-5; BDC = 1,4-benzenedicarboxylate), which is deposited at room temperature in only 15 min under cathodic potential. Although many crystalline phases are known in the Zn(2+)/BDC(2-) system, MOF-5 is the only observed crystalline MOF phase under these conditions. This fast and mild method of synthesizing MOFs is amenable to direct surface functionalization and could impact applications requiring conformal coatings of microporous MOFs, such as gas separation membranes and electrochemical sensors.
Author Li, Minyuan
Dincă, Mircea
AuthorAffiliation Massachusetts Institute of Technology
AuthorAffiliation_xml – name: Massachusetts Institute of Technology
Author_xml – sequence: 1
  givenname: Minyuan
  surname: Li
  fullname: Li, Minyuan
– sequence: 2
  givenname: Mircea
  surname: Dincă
  fullname: Dincă, Mircea
  email: mdinca@mit.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21790152$$D View this record in MEDLINE/PubMed
BookMark eNpt0M1Kw0AQB_BFKvZDD76A5CLiIXY3m4_NUWqrglIQPYfZj-jWZFN3N0pvvoNv6JMYae1BepoZ-M3A_IeoZxqjEDom-ILgiIwXEOGYJHG6hwYkiXCYkCjtoQHGOAozltI-Gjq36MY4YuQA9SOS5biTA3T1oGQrvH5XwbRSwtvGrYx_UU67oCmDiV05D1WljQruVdd9f37N7TMYLYKZhVp9NPbVHaL9EiqnjjZ1hJ5m08fJTXg3v76dXN6FQBn2YcqkoiLLuOS5yCDlOS1Bcp5RQiGWpJSEcwmSJrwsBY0YUCowS5McIM4lpyN0tr67tM1bq5wvau2EqiowqmldwfKYkRyzrJMnG9nyWsliaXUNdlX8Pd6B8zUQ3cfOqnJLCC5-Qy22oXZ2_M8K7cHrxngLutq5cbreAOGKRdNa08Wyw_0AFQeGIg
CitedBy_id crossref_primary_10_1002_anie_201306162
crossref_primary_10_1039_D3RA04110G
crossref_primary_10_1016_j_nanoen_2016_11_024
crossref_primary_10_1039_D1NJ00987G
crossref_primary_10_1021_acssuschemeng_9b01022
crossref_primary_10_1021_acs_chemrev_0c00033
crossref_primary_10_1021_acs_jpcc_4c02651
crossref_primary_10_1021_cm301435j
crossref_primary_10_1039_D2EE01073A
crossref_primary_10_1002_ange_202104366
crossref_primary_10_1016_j_ccr_2020_213757
crossref_primary_10_1149_1945_7111_ad3500
crossref_primary_10_1007_s11356_024_33317_7
crossref_primary_10_3390_molecules29163885
crossref_primary_10_1080_10408347_2015_1063978
crossref_primary_10_1016_j_ces_2013_03_006
crossref_primary_10_1039_C4CC09272D
crossref_primary_10_1007_s43832_024_00119_4
crossref_primary_10_1002_smll_202408624
crossref_primary_10_1021_acsami_0c17031
crossref_primary_10_1021_jacs_9b05035
crossref_primary_10_1002_chem_202402747
crossref_primary_10_1007_s00604_023_05711_4
crossref_primary_10_1021_acsmaterialslett_2c00294
crossref_primary_10_1016_j_cej_2023_147302
crossref_primary_10_1039_D3SC04725C
crossref_primary_10_1021_acs_cgd_0c00297
crossref_primary_10_1021_jacs_1c10963
crossref_primary_10_1016_j_ccr_2020_213544
crossref_primary_10_1002_admi_202002151
crossref_primary_10_1021_ic5011133
crossref_primary_10_1002_ange_202202698
crossref_primary_10_1039_C5CC09695B
crossref_primary_10_1038_ncomms11830
crossref_primary_10_1021_acs_cgd_3c01293
crossref_primary_10_1021_cg4002362
crossref_primary_10_1016_j_talo_2024_100396
crossref_primary_10_1039_C5RA26097C
crossref_primary_10_1002_ange_202401817
crossref_primary_10_1007_s00604_022_05537_6
crossref_primary_10_1021_acs_inorgchem_0c00227
crossref_primary_10_1016_j_jcat_2015_04_010
crossref_primary_10_1039_C9TA05383B
crossref_primary_10_1016_j_apcatb_2022_121419
crossref_primary_10_1021_acs_energyfuels_1c01850
crossref_primary_10_1039_c3ta10419b
crossref_primary_10_1021_acsami_3c03021
crossref_primary_10_1016_j_ica_2022_121299
crossref_primary_10_3390_bios8040092
crossref_primary_10_1002_anie_201400581
crossref_primary_10_1002_anie_201400580
crossref_primary_10_1016_j_cej_2022_136866
crossref_primary_10_1039_D0TA00406E
crossref_primary_10_1002_aenm_202003499
crossref_primary_10_1002_adfm_201707244
crossref_primary_10_1039_C8TA11296G
crossref_primary_10_1021_acsami_4c17699
crossref_primary_10_1021_jacs_7b08840
crossref_primary_10_1039_C5TA10782B
crossref_primary_10_1016_j_ica_2023_121780
crossref_primary_10_1021_acs_inorgchem_4c04891
crossref_primary_10_1016_j_synthmet_2016_07_003
crossref_primary_10_1007_s10904_019_01120_4
crossref_primary_10_1016_j_ccr_2020_213679
crossref_primary_10_1021_acsami_6b16821
crossref_primary_10_1002_ange_201400580
crossref_primary_10_1039_C7NJ03171H
crossref_primary_10_1039_C5TA02092A
crossref_primary_10_1039_D4DT02662D
crossref_primary_10_1002_adfm_201706961
crossref_primary_10_1016_j_actbio_2023_12_023
crossref_primary_10_1021_jacs_6b12564
crossref_primary_10_1002_advs_202104374
crossref_primary_10_1002_cctc_202101653
crossref_primary_10_1002_adma_201202116
crossref_primary_10_1021_acsami_6b05375
crossref_primary_10_1039_C5DT04229A
crossref_primary_10_1016_j_ccr_2022_214917
crossref_primary_10_1021_acs_cgd_3c01162
crossref_primary_10_1007_s11705_019_1857_5
crossref_primary_10_1016_j_nanoms_2022_01_003
crossref_primary_10_1002_aoc_3415
crossref_primary_10_1002_celc_202200373
crossref_primary_10_1016_j_mtsust_2021_100104
crossref_primary_10_1016_j_ica_2021_120540
crossref_primary_10_1039_D2TA00226D
crossref_primary_10_1039_C7CS00122C
crossref_primary_10_1002_mame_201400251
crossref_primary_10_1021_acs_chemmater_6b02626
crossref_primary_10_3390_pr8030377
crossref_primary_10_1016_j_snb_2023_134816
crossref_primary_10_1039_D1DT00491C
crossref_primary_10_1039_C8CE00761F
crossref_primary_10_1016_j_talanta_2019_120696
crossref_primary_10_1039_D1NJ01059J
crossref_primary_10_1002_EXP_20210012
crossref_primary_10_1039_D3CS00131H
crossref_primary_10_1007_s00604_020_4124_z
crossref_primary_10_1007_s40242_014_3349_y
crossref_primary_10_1039_C9CC01701A
crossref_primary_10_1002_smm2_1057
crossref_primary_10_1002_adfm_201907089
crossref_primary_10_1016_j_jssc_2021_122177
crossref_primary_10_1016_j_talanta_2015_11_062
crossref_primary_10_1039_C7TC03150E
crossref_primary_10_1016_j_micromeso_2015_11_060
crossref_primary_10_1016_j_micromeso_2012_03_029
crossref_primary_10_1016_j_seppur_2025_132543
crossref_primary_10_1021_acs_analchem_2c05668
crossref_primary_10_1039_C3DT52546E
crossref_primary_10_1002_adom_201500203
crossref_primary_10_1016_j_ccr_2019_213137
crossref_primary_10_1002_smll_202306616
crossref_primary_10_1039_C9SE00483A
crossref_primary_10_1002_cplu_202000584
crossref_primary_10_1039_C5CE00848D
crossref_primary_10_1016_j_jelechem_2024_118295
crossref_primary_10_1039_D3AN00110E
crossref_primary_10_1021_acs_energyfuels_3c00090
crossref_primary_10_1039_D0NR07236B
crossref_primary_10_1021_acs_analchem_1c01763
crossref_primary_10_1016_j_colsurfb_2018_02_028
crossref_primary_10_1016_j_mtchem_2018_12_004
crossref_primary_10_1016_j_jssc_2021_122040
crossref_primary_10_1038_s41598_019_50390_y
crossref_primary_10_1016_j_nxmate_2024_100362
crossref_primary_10_1039_C4RA09387A
crossref_primary_10_1021_am4029872
crossref_primary_10_1039_D0CE01651A
crossref_primary_10_1039_C4DT02338B
crossref_primary_10_1016_j_jma_2024_11_029
crossref_primary_10_1038_s41467_019_12268_5
crossref_primary_10_1021_acscentsci_1c00686
crossref_primary_10_3390_s20226686
crossref_primary_10_1039_c3cc39191d
crossref_primary_10_1021_acs_chemmater_6b03934
crossref_primary_10_1016_j_cej_2023_142271
crossref_primary_10_1039_C6CC00534A
crossref_primary_10_1021_cr2003272
crossref_primary_10_1021_jacs_3c05606
crossref_primary_10_1039_C4TA04203D
crossref_primary_10_1038_s41598_021_97801_7
crossref_primary_10_1002_anie_202202698
crossref_primary_10_1016_j_electacta_2016_02_145
crossref_primary_10_1021_ja407778a
crossref_primary_10_1016_j_jpcs_2021_110485
crossref_primary_10_1021_jacs_0c05913
crossref_primary_10_1039_C9CC06795G
crossref_primary_10_1021_acsami_3c01936
crossref_primary_10_1002_ange_202006402
crossref_primary_10_1039_C7CS00315C
crossref_primary_10_1039_C7CS00109F
crossref_primary_10_1016_j_jallcom_2020_157368
crossref_primary_10_1016_j_micromeso_2020_110322
crossref_primary_10_1039_c2cc31821k
crossref_primary_10_1039_D2CC04190A
crossref_primary_10_1039_c3dt53504e
crossref_primary_10_1002_ange_201808465
crossref_primary_10_1021_jacs_5b06382
crossref_primary_10_1021_acs_jpclett_5b00019
crossref_primary_10_1038_s41598_021_96001_7
crossref_primary_10_1039_C6CC00805D
crossref_primary_10_1016_j_jelechem_2023_117417
crossref_primary_10_1002_jssc_201700401
crossref_primary_10_1016_j_seppur_2024_127318
crossref_primary_10_1002_celc_201402429
crossref_primary_10_1002_smll_202401509
crossref_primary_10_1088_1755_1315_108_4_042104
crossref_primary_10_1007_s12274_023_5441_4
crossref_primary_10_1016_j_apsadv_2024_100577
crossref_primary_10_1039_C4TC01551G
crossref_primary_10_1002_ange_201400581
crossref_primary_10_1016_j_cej_2023_141710
crossref_primary_10_1016_j_envres_2021_112320
crossref_primary_10_1021_ja3059827
crossref_primary_10_1016_j_mtsust_2024_100899
crossref_primary_10_1016_j_jiec_2024_09_037
crossref_primary_10_1002_anie_202104366
crossref_primary_10_1002_anie_202401817
crossref_primary_10_1002_cnma_201500062
crossref_primary_10_1039_C6TA03547G
crossref_primary_10_1016_j_cclet_2020_04_019
crossref_primary_10_13005_ojc_380301
crossref_primary_10_1002_celc_202200196
crossref_primary_10_1021_am3009696
crossref_primary_10_1021_acs_cgd_9b00054
crossref_primary_10_1021_cm504806p
crossref_primary_10_1016_j_jssc_2024_124820
crossref_primary_10_1002_pssa_202400702
crossref_primary_10_1016_j_electacta_2012_10_064
crossref_primary_10_1021_acs_jpcc_8b10448
crossref_primary_10_1039_C6DT01179A
crossref_primary_10_1186_s12951_025_03252_x
crossref_primary_10_1016_j_jcis_2024_01_063
crossref_primary_10_1021_acsami_0c08815
crossref_primary_10_1021_acs_chemmater_5b00899
crossref_primary_10_1002_anie_201808465
crossref_primary_10_1016_j_inoche_2019_107671
crossref_primary_10_1002_adfm_202302816
crossref_primary_10_1016_j_xcrp_2023_101412
crossref_primary_10_1016_j_ccr_2015_09_013
crossref_primary_10_1126_sciadv_aau1393
crossref_primary_10_1016_j_ssi_2017_01_022
crossref_primary_10_1039_c2ra21848h
crossref_primary_10_1039_C6TA02118B
crossref_primary_10_1002_ange_202108485
crossref_primary_10_1016_j_compositesb_2024_111888
crossref_primary_10_1016_j_bioelechem_2022_108154
crossref_primary_10_1021_acs_chemrev_8b00091
crossref_primary_10_1016_j_cej_2023_147230
crossref_primary_10_4028_www_scientific_net_KEM_874_3
crossref_primary_10_1002_cssc_202200644
crossref_primary_10_1039_D1TA10213C
crossref_primary_10_1016_j_cej_2021_132823
crossref_primary_10_1021_jp4079663
crossref_primary_10_1039_C3SC51815A
crossref_primary_10_1021_acs_cgd_3c00329
crossref_primary_10_1002_anie_202108485
crossref_primary_10_1016_j_ccr_2017_10_010
crossref_primary_10_1021_acsaelm_0c00142
crossref_primary_10_1021_acsabm_3c00402
crossref_primary_10_1039_D4CS00141A
crossref_primary_10_1149_1945_7111_abc6c6
crossref_primary_10_1002_adma_201301626
crossref_primary_10_1021_acssuschemeng_8b05463
crossref_primary_10_1039_C5SC02214B
crossref_primary_10_1021_cg300552w
crossref_primary_10_1016_j_jelechem_2017_11_001
crossref_primary_10_3390_membranes12121205
crossref_primary_10_1039_D0NJ04303F
crossref_primary_10_1002_anie_202006402
crossref_primary_10_1039_C4CS00089G
crossref_primary_10_1002_celc_201901153
crossref_primary_10_1002_ange_201306162
crossref_primary_10_1016_j_apsusc_2019_144504
crossref_primary_10_1021_acsmaterialslett_3c01224
crossref_primary_10_1016_j_ccr_2018_01_005
crossref_primary_10_1039_D4AY00691G
crossref_primary_10_1002_adma_201401940
crossref_primary_10_1007_s10853_024_10291_6
crossref_primary_10_1039_C7DT00082K
crossref_primary_10_1021_cr3002824
crossref_primary_10_1002_adfm_202112517
crossref_primary_10_1039_D3TC04366E
crossref_primary_10_1016_j_colsurfa_2021_127195
crossref_primary_10_1016_j_trac_2025_118157
Cites_doi 10.1039/b817735j
10.1039/b804680h
10.1002/adma.201000857
10.1021/ja106381x
10.1021/jp073458x
10.1039/b802426j
10.1039/b802352m
10.1149/1.1838359
10.1021/la103958z
10.1016/0048-9697(90)90120-J
10.1039/b807083k
10.1021/cm200555s
10.1039/b802256a
10.1002/anie.201001684
10.1111/j.1151-2916.1995.tb08425.x
10.1002/anie.200501766
10.1021/cm990447a
10.1002/adma.200400177
10.1149/1.1392473
10.1021/ja909263x
10.1021/ja2002428
10.1021/la102409e
10.1016/j.elecom.2006.07.042
10.1039/b903811f
10.1021/ja101415b
10.1021/jp7110633
10.1021/cm902032y
10.1021/ja071330n
10.1039/b805038b
10.1021/ja0701208
10.1021/jp051771y
10.1021/ja806799t
10.1002/elan.200804267
10.1021/cr8003696
10.1021/ja076877g
10.1021/cm900069f
10.1002/(SICI)1097-4636(199603)30:3<287::AID-JBM3>3.0.CO;2-M
10.1039/f19898504139
10.1016/0022-0728(86)80023-7
10.1021/ja8074874
10.1002/anie.200351718
10.1021/ja076303b
10.1039/C0CC03927F
10.1039/c0cp02394a
10.1021/la000808x
10.1039/a706079c
10.1021/ja076210u
10.1039/B311156C
10.1073/pnas.0602439103
10.1038/46248
10.1039/c0sc00179a
ContentType Journal Article
Copyright Copyright © 2011 American Chemical Society
Copyright_xml – notice: Copyright © 2011 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/ja2041546
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 12929
ExternalDocumentID 21790152
10_1021_ja2041546
b635188685
Genre Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
NPM
7X8
ID FETCH-LOGICAL-a380t-68de3c77bdb9c7a6b93fadbb7313a4d1fd1bbdad35bffc328a33c08659aa49db3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 15:12:35 EDT 2025
Mon Jul 21 05:49:33 EDT 2025
Tue Jul 01 02:08:10 EDT 2025
Thu Apr 24 22:53:40 EDT 2025
Thu Aug 27 13:42:21 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a380t-68de3c77bdb9c7a6b93fadbb7313a4d1fd1bbdad35bffc328a33c08659aa49db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21790152
PQID 894819087
PQPubID 23479
PageCount 4
ParticipantIDs proquest_miscellaneous_894819087
pubmed_primary_21790152
crossref_primary_10_1021_ja2041546
crossref_citationtrail_10_1021_ja2041546
acs_journals_10_1021_ja2041546
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-24
PublicationDateYYYYMMDD 2011-08-24
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2011
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Shekhah O. (ref8/cit8b) 2007; 129
Centrone A. (ref5/cit5c) 2010; 132
Doménech A. (ref22/cit22b) 2007; 111
Bein T. (ref8/cit8f) 2010; 49
Roşca V. (ref20/cit20d) 2009; 109
Ameloot R. (ref16/cit16) 2009; 21
Skoulidas A. I. (ref5/cit5a) 2005; 109
Kulp E. A. (ref15/cit15d) 2007; 129
Park K. S. (ref13/cit13b) 2006; 103
Carreon M. A. (ref8/cit8g) 2010; 132
Therese G. H. A. (ref15/cit15b) 1998; 8
McCarthy M. C. (ref8/cit8h) 2010; 26
Li H. (ref10/cit10) 1999; 402
van Ranocchiari M. (ref3/cit3b) 2011; 13
Forster P. M. (ref12/cit12a) 2004
Lewandowski A. (ref18/cit18b) 2008; 20
Carbonell C. (ref25/cit25a) 2011; 133
Lu G. (ref6/cit6) 2010; 132
Zacher D. (ref7/cit7) 2009; 38
Stock N. (ref13/cit13a) 2004; 43
Murray L. J. (ref1/cit1b) 2009; 38
Kanaizuka K. (ref8/cit8c) 2008; 130
Bux H. (ref8/cit8j) 2011; 23
Hsieh S. J. (ref20/cit20b) 2000; 16
Switzer J. A. (ref14/cit14a) 1987; 66
Raman V. (ref21/cit21) 1990; 93
Gassensmith J. J. (ref25/cit25b) 2011; 27
Tranchemontagne D. J. (ref9/cit9) 2009; 38
Hausdorf S. (ref17/cit17) 2008; 112
Lewandowski A. (ref18/cit18a) 1989; 85
Li J.-R. (ref2/cit2) 2009; 38
Sumida K. (ref13/cit13c) 2010; 1
Xu S. (ref15/cit15c) 1999; 146
Peulon S. (ref14/cit14c) 1998; 145
Ma L. (ref3/cit3a) 2009; 38
Forster P. M. (ref12/cit12b) 2005; 44
Jin W. Q. (ref8/cit8i) 2011; 47
Doménech A. (ref22/cit22a) 2006; 8
Long J. R. (ref11/cit11) 2009; 38
Zhou Y. C. (ref14/cit14b) 1995; 78
Bard A. J. (ref19/cit19) 2001
Redepenning J. (ref15/cit15a) 1996; 30
Therese G. H. A. (ref14/cit14d) 2000; 12
Xing X. K. (ref20/cit20a) 1986; 199
Kaye S. S. (ref24/cit24) 2007; 129
Czaja A. U. (ref1/cit1a) 2009; 38
Li Y. S. (ref5/cit5b) 2010; 22
Bein T. (ref8/cit8a) 2007; 129
Ranjan R. (ref8/cit8d) 2009; 21
Guo H. (ref8/cit8e) 2009; 131
Allendorf M. D. (ref4/cit4) 2009; 38
Bae S. E. (ref20/cit20c) 2007; 129
Siegfried M. J. (ref14/cit14e) 2004; 16
References_xml – volume: 38
  start-page: 1257
  year: 2009
  ident: ref9/cit9
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b817735j
– volume: 38
  start-page: 1284
  year: 2009
  ident: ref1/cit1a
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b804680h
– volume: 22
  start-page: 3322
  year: 2010
  ident: ref5/cit5b
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201000857
– volume: 132
  start-page: 15687
  year: 2010
  ident: ref5/cit5c
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja106381x
– volume-title: Electrochemical Methods: Fundamentals and Applications
  year: 2001
  ident: ref19/cit19
– volume: 111
  start-page: 13701
  year: 2007
  ident: ref22/cit22b
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp073458x
– volume: 38
  start-page: 1477
  year: 2009
  ident: ref2/cit2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802426j
– volume: 38
  start-page: 1330
  year: 2009
  ident: ref4/cit4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802352m
– volume: 145
  start-page: 864
  year: 1998
  ident: ref14/cit14c
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1838359
– volume: 27
  start-page: 1341
  year: 2011
  ident: ref25/cit25b
  publication-title: Langmuir
  doi: 10.1021/la103958z
– volume: 93
  start-page: 301
  year: 1990
  ident: ref21/cit21
  publication-title: Sci. Total Environ.
  doi: 10.1016/0048-9697(90)90120-J
– volume: 38
  start-page: 1248
  year: 2009
  ident: ref3/cit3a
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b807083k
– volume: 23
  start-page: 2262
  year: 2011
  ident: ref8/cit8j
  publication-title: Chem. Mater.
  doi: 10.1021/cm200555s
– volume: 38
  start-page: 1294
  year: 2009
  ident: ref1/cit1b
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802256a
– volume: 49
  start-page: 7225
  year: 2010
  ident: ref8/cit8f
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201001684
– volume: 78
  start-page: 981
  year: 1995
  ident: ref14/cit14b
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1995.tb08425.x
– volume: 44
  start-page: 7608
  year: 2005
  ident: ref12/cit12b
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200501766
– volume: 12
  start-page: 1195
  year: 2000
  ident: ref14/cit14d
  publication-title: Chem. Mater.
  doi: 10.1021/cm990447a
– volume: 16
  start-page: 1743
  year: 2004
  ident: ref14/cit14e
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200400177
– volume: 146
  start-page: 3315
  year: 1999
  ident: ref15/cit15c
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1392473
– volume: 132
  start-page: 76
  year: 2010
  ident: ref8/cit8g
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909263x
– volume: 133
  start-page: 2144
  year: 2011
  ident: ref25/cit25a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2002428
– volume: 26
  start-page: 14636
  year: 2010
  ident: ref8/cit8h
  publication-title: Langmuir
  doi: 10.1021/la102409e
– volume: 8
  start-page: 1830
  year: 2006
  ident: ref22/cit22a
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2006.07.042
– volume: 38
  start-page: 1213
  year: 2009
  ident: ref11/cit11
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b903811f
– volume: 132
  start-page: 7832
  year: 2010
  ident: ref6/cit6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101415b
– volume: 112
  start-page: 7567
  year: 2008
  ident: ref17/cit17
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp7110633
– volume: 21
  start-page: 4920
  year: 2009
  ident: ref8/cit8d
  publication-title: Chem. Mater.
  doi: 10.1021/cm902032y
– volume: 129
  start-page: 10171
  year: 2007
  ident: ref20/cit20c
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja071330n
– volume: 38
  start-page: 1418
  year: 2009
  ident: ref7/cit7
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b805038b
– volume: 129
  start-page: 8054
  year: 2007
  ident: ref8/cit8a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0701208
– volume: 109
  start-page: 15760
  year: 2005
  ident: ref5/cit5a
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp051771y
– volume: 130
  start-page: 15778
  year: 2008
  ident: ref8/cit8c
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja806799t
– volume: 20
  start-page: 1903
  year: 2008
  ident: ref18/cit18b
  publication-title: Electroanalysis
  doi: 10.1002/elan.200804267
– volume: 109
  start-page: 2209
  year: 2009
  ident: ref20/cit20d
  publication-title: Chem. Rev.
  doi: 10.1021/cr8003696
– volume: 129
  start-page: 14176
  year: 2007
  ident: ref24/cit24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja076877g
– volume: 21
  start-page: 2580
  year: 2009
  ident: ref16/cit16
  publication-title: Chem. Mater.
  doi: 10.1021/cm900069f
– volume: 30
  start-page: 287
  year: 1996
  ident: ref15/cit15a
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/(SICI)1097-4636(199603)30:3<287::AID-JBM3>3.0.CO;2-M
– volume: 85
  start-page: 4139
  year: 1989
  ident: ref18/cit18a
  publication-title: J. Chem. Soc., Faraday Trans. 1
  doi: 10.1039/f19898504139
– volume: 199
  start-page: 485
  year: 1986
  ident: ref20/cit20a
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/0022-0728(86)80023-7
– volume: 131
  start-page: 1646
  year: 2009
  ident: ref8/cit8e
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8074874
– volume: 43
  start-page: 749
  year: 2004
  ident: ref13/cit13a
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200351718
– volume: 129
  start-page: 15120
  year: 2007
  ident: ref15/cit15d
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja076303b
– volume: 47
  start-page: 737
  year: 2011
  ident: ref8/cit8i
  publication-title: Chem. Commun.
  doi: 10.1039/C0CC03927F
– volume: 66
  start-page: 1521
  year: 1987
  ident: ref14/cit14a
  publication-title: Am. Ceram. Soc. Bull.
– volume: 13
  start-page: 6388
  year: 2011
  ident: ref3/cit3b
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp02394a
– volume: 16
  start-page: 9501
  year: 2000
  ident: ref20/cit20b
  publication-title: Langmuir
  doi: 10.1021/la000808x
– volume: 8
  start-page: 405
  year: 1998
  ident: ref15/cit15b
  publication-title: J. Mater. Chem.
  doi: 10.1039/a706079c
– volume: 129
  start-page: 15118
  year: 2007
  ident: ref8/cit8b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja076210u
– start-page: 368
  year: 2004
  ident: ref12/cit12a
  publication-title: Chem. Commun.
  doi: 10.1039/B311156C
– volume: 103
  start-page: 10186
  year: 2006
  ident: ref13/cit13b
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0602439103
– volume: 402
  start-page: 276
  year: 1999
  ident: ref10/cit10
  publication-title: Nature
  doi: 10.1038/46248
– volume: 1
  start-page: 184
  year: 2010
  ident: ref13/cit13c
  publication-title: Chem. Sci.
  doi: 10.1039/c0sc00179a
SSID ssj0004281
Score 2.496609
Snippet Electroreduction of oxoanions affords hydroxide equivalents that induce selective deposition of crystalline metal–organic frameworks (MOFs) on conductive...
Electroreduction of oxoanions affords hydroxide equivalents that induce selective deposition of crystalline metal-organic frameworks (MOFs) on conductive...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12926
Title Reductive Electrosynthesis of Crystalline Metal–Organic Frameworks
URI http://dx.doi.org/10.1021/ja2041546
https://www.ncbi.nlm.nih.gov/pubmed/21790152
https://www.proquest.com/docview/894819087
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwELZKGWDh_SiPKgIGllSJ7TjJWKWtKqQyAJW6RX5KCJSiJh3KxH_gH_JLsJu4gGhhy3CxTnd27ruc7zsArohgKIyl70ZQCRdz7LuUG8p9JRiOWSgxM43Cg1vSH-KbUTCqgcsVFXxo-IGgaSPHZA2sQxKFJsNqJ_dfzY8w8i3GDSOCLH3Q91dN6OH5z9CzAk_O40pvG3Rsd055neSpNS1Yi7_-Jmv8S-UdsFXhSqddboRdUJPZHthI7Di3fdC5MySt5uPmdMvRN_ks0-gvf8ydsXKSyUzjREPQLZ2B1E8fb-9lnyZ3evYCV34Ahr3uQ9J3qxEKLkWRV7gkEhLxMGSCxTykhMVIUcFYiHxEsfCV8BkTVKCAKcURjChCXGc5QUwpjrUfD0E9G2fyGDhSSIkw5QgrhX3IWUA94imKpYYg-tg3QFPbOK2OQJ7Oq9tQZxfWGA1wbc2f8oqA3MzBeF4merEQfSlZN5YJOdaHqbalKXTQTI6neRoZCprYMzodlb5drAINI5nGLCf_aXsKNu3vY4jPQL2YTOW5xh8Fa8733ycuGNUQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV07TxwxEB4RUpAG8uCZBKwoSDSLbm3fPgoKdHA6HkeRgES3-ClFQXsI3wkdFf-BLn-Ff8MvYby7PpKIiAop3RYjazweez6vZ74B-JpoydLcxFFGrY644nEklKfct1ryXKaGS18o3D9Keid8_7R9OgW_Qi0MKuFwJFc94j-yC3iaIOqryXnSJFAemPEVXs_c1t4OruU6pd3d404vajoIRIJlrWGUZNowlaZSy1ylIpE5s0JLmbKYCa5jq2MptdCsLa1VjGaCMYUgv50LwXOcBo77Cl4j6KH-Yrfd-f5Yc0mzOEDrNEtYYC36XVUf8ZT7M-L9A8ZW4aw7B3cTQ1RZLD83R0O5qa7_4oj8Py31FmYbFE22a7d_B1OmfA8zndC87gPsfPOUtP4oJ7t1ox83LhHruh-ODCzpXI4RFXs6ckP6Br_ub27rqlRFuiFdzc3DyYtMYgGmy0FploAYbQzjQjFuLY-pkm3RSlpWcIOACw-5ZVhF2xfNhndF9ZZP8S4VjL8MG2HVC9XQrfuuH-dPiX6ZiF7UHCNPCZHgOgXa0j_riNIMRq7IPOFO3vI6LdYuNRmFev41RGgrz2m7BjO94_5hcbh3dPAR3oQf55R_gunh5ch8RuQ1lKvVFiBw9tKe9ADUmDxK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LSxxBEC7UQPRiYhLj2yYk4GVkp7t3HgcPsuvimxAVvE36CRKZFXsXWU_-h9zzV_Jf8ktSPTO9JsHgSfA2h6Kprq7u-nqq6yuAj4mWLM1NHGXU6ogrHkdCecp9qyXPZWq49IXCR8fJ7hnfP2-fT8CPUAuDSjgcyVVJfL-rr7RtGAY8VRD1FeU8aR5RHpjRDV7R3NZeF9fzE6W9ndPObtR0EYgEy1qDKMm0YSpNpZa5SkUic2aFljJlMRNcx1bHUmqhWVtaqxjNBGMKgX47F4LnOBUcdxJe-PSgv9xtd07u6y5pFgd4nWYJC8xFf6rqo55yf0e9_0DZKqT1XsHPsTGqlyzfNocDualu_-GJfL7Weg2zDZom27X7z8GEKd_AdCc0sXsL3S-emtYf6WSnbvjjRiViXnfhSN-SzvUI0bGnJTfkyODXr7vvdXWqIr3wbM29g7MnmcQ8TJX90iwAMdoYxoVi3FoeUyXbopW0rOAGgRcedouwhvYvmo3viiqnT_FOFYy_CBth5QvV0K777h-XD4l-GIte1VwjDwmR4D4F2tKnd0Rp-kNXZJ54J295nd7XbjUehXoeNkRqS49puw4vP3d7xeHe8cEyzIT_55SvwNTgemhWEYAN5Fq1Cwh8fWpH-g1BSz7N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reductive+Electrosynthesis+of+Crystalline+Metal%E2%80%93Organic+Frameworks&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Li%2C+Minyuan&rft.au=Dinca%CC%86%2C+Mircea&rft.date=2011-08-24&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=133&rft.issue=33&rft.spage=12926&rft.epage=12929&rft_id=info:doi/10.1021%2Fja2041546&rft.externalDocID=b635188685
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon