Reductive Electrosynthesis of Crystalline Metal–Organic Frameworks
Electroreduction of oxoanions affords hydroxide equivalents that induce selective deposition of crystalline metal–organic frameworks (MOFs) on conductive surfaces. The method is illustrated by cathodic electrodeposition of Zn4O(BDC)3 (MOF-5; BDC = 1,4-benzenedicarboxylate), which is deposited at roo...
Saved in:
Published in | Journal of the American Chemical Society Vol. 133; no. 33; pp. 12926 - 12929 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.08.2011
|
Online Access | Get full text |
Cover
Loading…
Abstract | Electroreduction of oxoanions affords hydroxide equivalents that induce selective deposition of crystalline metal–organic frameworks (MOFs) on conductive surfaces. The method is illustrated by cathodic electrodeposition of Zn4O(BDC)3 (MOF-5; BDC = 1,4-benzenedicarboxylate), which is deposited at room temperature in only 15 min under cathodic potential. Although many crystalline phases are known in the Zn2+/BDC2– system, MOF-5 is the only observed crystalline MOF phase under these conditions. This fast and mild method of synthesizing MOFs is amenable to direct surface functionalization and could impact applications requiring conformal coatings of microporous MOFs, such as gas separation membranes and electrochemical sensors. |
---|---|
AbstractList | Electroreduction of oxoanions affords hydroxide equivalents that induce selective deposition of crystalline metal–organic frameworks (MOFs) on conductive surfaces. The method is illustrated by cathodic electrodeposition of Zn4O(BDC)3 (MOF-5; BDC = 1,4-benzenedicarboxylate), which is deposited at room temperature in only 15 min under cathodic potential. Although many crystalline phases are known in the Zn2+/BDC2– system, MOF-5 is the only observed crystalline MOF phase under these conditions. This fast and mild method of synthesizing MOFs is amenable to direct surface functionalization and could impact applications requiring conformal coatings of microporous MOFs, such as gas separation membranes and electrochemical sensors. Electroreduction of oxoanions affords hydroxide equivalents that induce selective deposition of crystalline metal-organic frameworks (MOFs) on conductive surfaces. The method is illustrated by cathodic electrodeposition of Zn(4)O(BDC)(3) (MOF-5; BDC = 1,4-benzenedicarboxylate), which is deposited at room temperature in only 15 min under cathodic potential. Although many crystalline phases are known in the Zn(2+)/BDC(2-) system, MOF-5 is the only observed crystalline MOF phase under these conditions. This fast and mild method of synthesizing MOFs is amenable to direct surface functionalization and could impact applications requiring conformal coatings of microporous MOFs, such as gas separation membranes and electrochemical sensors. Electroreduction of oxoanions affords hydroxide equivalents that induce selective deposition of crystalline metal-organic frameworks (MOFs) on conductive surfaces. The method is illustrated by cathodic electrodeposition of Zn(4)O(BDC)(3) (MOF-5; BDC = 1,4-benzenedicarboxylate), which is deposited at room temperature in only 15 min under cathodic potential. Although many crystalline phases are known in the Zn(2+)/BDC(2-) system, MOF-5 is the only observed crystalline MOF phase under these conditions. This fast and mild method of synthesizing MOFs is amenable to direct surface functionalization and could impact applications requiring conformal coatings of microporous MOFs, such as gas separation membranes and electrochemical sensors.Electroreduction of oxoanions affords hydroxide equivalents that induce selective deposition of crystalline metal-organic frameworks (MOFs) on conductive surfaces. The method is illustrated by cathodic electrodeposition of Zn(4)O(BDC)(3) (MOF-5; BDC = 1,4-benzenedicarboxylate), which is deposited at room temperature in only 15 min under cathodic potential. Although many crystalline phases are known in the Zn(2+)/BDC(2-) system, MOF-5 is the only observed crystalline MOF phase under these conditions. This fast and mild method of synthesizing MOFs is amenable to direct surface functionalization and could impact applications requiring conformal coatings of microporous MOFs, such as gas separation membranes and electrochemical sensors. |
Author | Li, Minyuan Dincă, Mircea |
AuthorAffiliation | Massachusetts Institute of Technology |
AuthorAffiliation_xml | – name: Massachusetts Institute of Technology |
Author_xml | – sequence: 1 givenname: Minyuan surname: Li fullname: Li, Minyuan – sequence: 2 givenname: Mircea surname: Dincă fullname: Dincă, Mircea email: mdinca@mit.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21790152$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0M1Kw0AQB_BFKvZDD76A5CLiIXY3m4_NUWqrglIQPYfZj-jWZFN3N0pvvoNv6JMYae1BepoZ-M3A_IeoZxqjEDom-ILgiIwXEOGYJHG6hwYkiXCYkCjtoQHGOAozltI-Gjq36MY4YuQA9SOS5biTA3T1oGQrvH5XwbRSwtvGrYx_UU67oCmDiV05D1WljQruVdd9f37N7TMYLYKZhVp9NPbVHaL9EiqnjjZ1hJ5m08fJTXg3v76dXN6FQBn2YcqkoiLLuOS5yCDlOS1Bcp5RQiGWpJSEcwmSJrwsBY0YUCowS5McIM4lpyN0tr67tM1bq5wvau2EqiowqmldwfKYkRyzrJMnG9nyWsliaXUNdlX8Pd6B8zUQ3cfOqnJLCC5-Qy22oXZ2_M8K7cHrxngLutq5cbreAOGKRdNa08Wyw_0AFQeGIg |
CitedBy_id | crossref_primary_10_1002_anie_201306162 crossref_primary_10_1039_D3RA04110G crossref_primary_10_1016_j_nanoen_2016_11_024 crossref_primary_10_1039_D1NJ00987G crossref_primary_10_1021_acssuschemeng_9b01022 crossref_primary_10_1021_acs_chemrev_0c00033 crossref_primary_10_1021_acs_jpcc_4c02651 crossref_primary_10_1021_cm301435j crossref_primary_10_1039_D2EE01073A crossref_primary_10_1002_ange_202104366 crossref_primary_10_1016_j_ccr_2020_213757 crossref_primary_10_1149_1945_7111_ad3500 crossref_primary_10_1007_s11356_024_33317_7 crossref_primary_10_3390_molecules29163885 crossref_primary_10_1080_10408347_2015_1063978 crossref_primary_10_1016_j_ces_2013_03_006 crossref_primary_10_1039_C4CC09272D crossref_primary_10_1007_s43832_024_00119_4 crossref_primary_10_1002_smll_202408624 crossref_primary_10_1021_acsami_0c17031 crossref_primary_10_1021_jacs_9b05035 crossref_primary_10_1002_chem_202402747 crossref_primary_10_1007_s00604_023_05711_4 crossref_primary_10_1021_acsmaterialslett_2c00294 crossref_primary_10_1016_j_cej_2023_147302 crossref_primary_10_1039_D3SC04725C crossref_primary_10_1021_acs_cgd_0c00297 crossref_primary_10_1021_jacs_1c10963 crossref_primary_10_1016_j_ccr_2020_213544 crossref_primary_10_1002_admi_202002151 crossref_primary_10_1021_ic5011133 crossref_primary_10_1002_ange_202202698 crossref_primary_10_1039_C5CC09695B crossref_primary_10_1038_ncomms11830 crossref_primary_10_1021_acs_cgd_3c01293 crossref_primary_10_1021_cg4002362 crossref_primary_10_1016_j_talo_2024_100396 crossref_primary_10_1039_C5RA26097C crossref_primary_10_1002_ange_202401817 crossref_primary_10_1007_s00604_022_05537_6 crossref_primary_10_1021_acs_inorgchem_0c00227 crossref_primary_10_1016_j_jcat_2015_04_010 crossref_primary_10_1039_C9TA05383B crossref_primary_10_1016_j_apcatb_2022_121419 crossref_primary_10_1021_acs_energyfuels_1c01850 crossref_primary_10_1039_c3ta10419b crossref_primary_10_1021_acsami_3c03021 crossref_primary_10_1016_j_ica_2022_121299 crossref_primary_10_3390_bios8040092 crossref_primary_10_1002_anie_201400581 crossref_primary_10_1002_anie_201400580 crossref_primary_10_1016_j_cej_2022_136866 crossref_primary_10_1039_D0TA00406E crossref_primary_10_1002_aenm_202003499 crossref_primary_10_1002_adfm_201707244 crossref_primary_10_1039_C8TA11296G crossref_primary_10_1021_acsami_4c17699 crossref_primary_10_1021_jacs_7b08840 crossref_primary_10_1039_C5TA10782B crossref_primary_10_1016_j_ica_2023_121780 crossref_primary_10_1021_acs_inorgchem_4c04891 crossref_primary_10_1016_j_synthmet_2016_07_003 crossref_primary_10_1007_s10904_019_01120_4 crossref_primary_10_1016_j_ccr_2020_213679 crossref_primary_10_1021_acsami_6b16821 crossref_primary_10_1002_ange_201400580 crossref_primary_10_1039_C7NJ03171H crossref_primary_10_1039_C5TA02092A crossref_primary_10_1039_D4DT02662D crossref_primary_10_1002_adfm_201706961 crossref_primary_10_1016_j_actbio_2023_12_023 crossref_primary_10_1021_jacs_6b12564 crossref_primary_10_1002_advs_202104374 crossref_primary_10_1002_cctc_202101653 crossref_primary_10_1002_adma_201202116 crossref_primary_10_1021_acsami_6b05375 crossref_primary_10_1039_C5DT04229A crossref_primary_10_1016_j_ccr_2022_214917 crossref_primary_10_1021_acs_cgd_3c01162 crossref_primary_10_1007_s11705_019_1857_5 crossref_primary_10_1016_j_nanoms_2022_01_003 crossref_primary_10_1002_aoc_3415 crossref_primary_10_1002_celc_202200373 crossref_primary_10_1016_j_mtsust_2021_100104 crossref_primary_10_1016_j_ica_2021_120540 crossref_primary_10_1039_D2TA00226D crossref_primary_10_1039_C7CS00122C crossref_primary_10_1002_mame_201400251 crossref_primary_10_1021_acs_chemmater_6b02626 crossref_primary_10_3390_pr8030377 crossref_primary_10_1016_j_snb_2023_134816 crossref_primary_10_1039_D1DT00491C crossref_primary_10_1039_C8CE00761F crossref_primary_10_1016_j_talanta_2019_120696 crossref_primary_10_1039_D1NJ01059J crossref_primary_10_1002_EXP_20210012 crossref_primary_10_1039_D3CS00131H crossref_primary_10_1007_s00604_020_4124_z crossref_primary_10_1007_s40242_014_3349_y crossref_primary_10_1039_C9CC01701A crossref_primary_10_1002_smm2_1057 crossref_primary_10_1002_adfm_201907089 crossref_primary_10_1016_j_jssc_2021_122177 crossref_primary_10_1016_j_talanta_2015_11_062 crossref_primary_10_1039_C7TC03150E crossref_primary_10_1016_j_micromeso_2015_11_060 crossref_primary_10_1016_j_micromeso_2012_03_029 crossref_primary_10_1016_j_seppur_2025_132543 crossref_primary_10_1021_acs_analchem_2c05668 crossref_primary_10_1039_C3DT52546E crossref_primary_10_1002_adom_201500203 crossref_primary_10_1016_j_ccr_2019_213137 crossref_primary_10_1002_smll_202306616 crossref_primary_10_1039_C9SE00483A crossref_primary_10_1002_cplu_202000584 crossref_primary_10_1039_C5CE00848D crossref_primary_10_1016_j_jelechem_2024_118295 crossref_primary_10_1039_D3AN00110E crossref_primary_10_1021_acs_energyfuels_3c00090 crossref_primary_10_1039_D0NR07236B crossref_primary_10_1021_acs_analchem_1c01763 crossref_primary_10_1016_j_colsurfb_2018_02_028 crossref_primary_10_1016_j_mtchem_2018_12_004 crossref_primary_10_1016_j_jssc_2021_122040 crossref_primary_10_1038_s41598_019_50390_y crossref_primary_10_1016_j_nxmate_2024_100362 crossref_primary_10_1039_C4RA09387A crossref_primary_10_1021_am4029872 crossref_primary_10_1039_D0CE01651A crossref_primary_10_1039_C4DT02338B crossref_primary_10_1016_j_jma_2024_11_029 crossref_primary_10_1038_s41467_019_12268_5 crossref_primary_10_1021_acscentsci_1c00686 crossref_primary_10_3390_s20226686 crossref_primary_10_1039_c3cc39191d crossref_primary_10_1021_acs_chemmater_6b03934 crossref_primary_10_1016_j_cej_2023_142271 crossref_primary_10_1039_C6CC00534A crossref_primary_10_1021_cr2003272 crossref_primary_10_1021_jacs_3c05606 crossref_primary_10_1039_C4TA04203D crossref_primary_10_1038_s41598_021_97801_7 crossref_primary_10_1002_anie_202202698 crossref_primary_10_1016_j_electacta_2016_02_145 crossref_primary_10_1021_ja407778a crossref_primary_10_1016_j_jpcs_2021_110485 crossref_primary_10_1021_jacs_0c05913 crossref_primary_10_1039_C9CC06795G crossref_primary_10_1021_acsami_3c01936 crossref_primary_10_1002_ange_202006402 crossref_primary_10_1039_C7CS00315C crossref_primary_10_1039_C7CS00109F crossref_primary_10_1016_j_jallcom_2020_157368 crossref_primary_10_1016_j_micromeso_2020_110322 crossref_primary_10_1039_c2cc31821k crossref_primary_10_1039_D2CC04190A crossref_primary_10_1039_c3dt53504e crossref_primary_10_1002_ange_201808465 crossref_primary_10_1021_jacs_5b06382 crossref_primary_10_1021_acs_jpclett_5b00019 crossref_primary_10_1038_s41598_021_96001_7 crossref_primary_10_1039_C6CC00805D crossref_primary_10_1016_j_jelechem_2023_117417 crossref_primary_10_1002_jssc_201700401 crossref_primary_10_1016_j_seppur_2024_127318 crossref_primary_10_1002_celc_201402429 crossref_primary_10_1002_smll_202401509 crossref_primary_10_1088_1755_1315_108_4_042104 crossref_primary_10_1007_s12274_023_5441_4 crossref_primary_10_1016_j_apsadv_2024_100577 crossref_primary_10_1039_C4TC01551G crossref_primary_10_1002_ange_201400581 crossref_primary_10_1016_j_cej_2023_141710 crossref_primary_10_1016_j_envres_2021_112320 crossref_primary_10_1021_ja3059827 crossref_primary_10_1016_j_mtsust_2024_100899 crossref_primary_10_1016_j_jiec_2024_09_037 crossref_primary_10_1002_anie_202104366 crossref_primary_10_1002_anie_202401817 crossref_primary_10_1002_cnma_201500062 crossref_primary_10_1039_C6TA03547G crossref_primary_10_1016_j_cclet_2020_04_019 crossref_primary_10_13005_ojc_380301 crossref_primary_10_1002_celc_202200196 crossref_primary_10_1021_am3009696 crossref_primary_10_1021_acs_cgd_9b00054 crossref_primary_10_1021_cm504806p crossref_primary_10_1016_j_jssc_2024_124820 crossref_primary_10_1002_pssa_202400702 crossref_primary_10_1016_j_electacta_2012_10_064 crossref_primary_10_1021_acs_jpcc_8b10448 crossref_primary_10_1039_C6DT01179A crossref_primary_10_1186_s12951_025_03252_x crossref_primary_10_1016_j_jcis_2024_01_063 crossref_primary_10_1021_acsami_0c08815 crossref_primary_10_1021_acs_chemmater_5b00899 crossref_primary_10_1002_anie_201808465 crossref_primary_10_1016_j_inoche_2019_107671 crossref_primary_10_1002_adfm_202302816 crossref_primary_10_1016_j_xcrp_2023_101412 crossref_primary_10_1016_j_ccr_2015_09_013 crossref_primary_10_1126_sciadv_aau1393 crossref_primary_10_1016_j_ssi_2017_01_022 crossref_primary_10_1039_c2ra21848h crossref_primary_10_1039_C6TA02118B crossref_primary_10_1002_ange_202108485 crossref_primary_10_1016_j_compositesb_2024_111888 crossref_primary_10_1016_j_bioelechem_2022_108154 crossref_primary_10_1021_acs_chemrev_8b00091 crossref_primary_10_1016_j_cej_2023_147230 crossref_primary_10_4028_www_scientific_net_KEM_874_3 crossref_primary_10_1002_cssc_202200644 crossref_primary_10_1039_D1TA10213C crossref_primary_10_1016_j_cej_2021_132823 crossref_primary_10_1021_jp4079663 crossref_primary_10_1039_C3SC51815A crossref_primary_10_1021_acs_cgd_3c00329 crossref_primary_10_1002_anie_202108485 crossref_primary_10_1016_j_ccr_2017_10_010 crossref_primary_10_1021_acsaelm_0c00142 crossref_primary_10_1021_acsabm_3c00402 crossref_primary_10_1039_D4CS00141A crossref_primary_10_1149_1945_7111_abc6c6 crossref_primary_10_1002_adma_201301626 crossref_primary_10_1021_acssuschemeng_8b05463 crossref_primary_10_1039_C5SC02214B crossref_primary_10_1021_cg300552w crossref_primary_10_1016_j_jelechem_2017_11_001 crossref_primary_10_3390_membranes12121205 crossref_primary_10_1039_D0NJ04303F crossref_primary_10_1002_anie_202006402 crossref_primary_10_1039_C4CS00089G crossref_primary_10_1002_celc_201901153 crossref_primary_10_1002_ange_201306162 crossref_primary_10_1016_j_apsusc_2019_144504 crossref_primary_10_1021_acsmaterialslett_3c01224 crossref_primary_10_1016_j_ccr_2018_01_005 crossref_primary_10_1039_D4AY00691G crossref_primary_10_1002_adma_201401940 crossref_primary_10_1007_s10853_024_10291_6 crossref_primary_10_1039_C7DT00082K crossref_primary_10_1021_cr3002824 crossref_primary_10_1002_adfm_202112517 crossref_primary_10_1039_D3TC04366E crossref_primary_10_1016_j_colsurfa_2021_127195 crossref_primary_10_1016_j_trac_2025_118157 |
Cites_doi | 10.1039/b817735j 10.1039/b804680h 10.1002/adma.201000857 10.1021/ja106381x 10.1021/jp073458x 10.1039/b802426j 10.1039/b802352m 10.1149/1.1838359 10.1021/la103958z 10.1016/0048-9697(90)90120-J 10.1039/b807083k 10.1021/cm200555s 10.1039/b802256a 10.1002/anie.201001684 10.1111/j.1151-2916.1995.tb08425.x 10.1002/anie.200501766 10.1021/cm990447a 10.1002/adma.200400177 10.1149/1.1392473 10.1021/ja909263x 10.1021/ja2002428 10.1021/la102409e 10.1016/j.elecom.2006.07.042 10.1039/b903811f 10.1021/ja101415b 10.1021/jp7110633 10.1021/cm902032y 10.1021/ja071330n 10.1039/b805038b 10.1021/ja0701208 10.1021/jp051771y 10.1021/ja806799t 10.1002/elan.200804267 10.1021/cr8003696 10.1021/ja076877g 10.1021/cm900069f 10.1002/(SICI)1097-4636(199603)30:3<287::AID-JBM3>3.0.CO;2-M 10.1039/f19898504139 10.1016/0022-0728(86)80023-7 10.1021/ja8074874 10.1002/anie.200351718 10.1021/ja076303b 10.1039/C0CC03927F 10.1039/c0cp02394a 10.1021/la000808x 10.1039/a706079c 10.1021/ja076210u 10.1039/B311156C 10.1073/pnas.0602439103 10.1038/46248 10.1039/c0sc00179a |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Chemical Society |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/ja2041546 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 12929 |
ExternalDocumentID | 21790152 10_1021_ja2041546 b635188685 |
Genre | Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT NPM 7X8 |
ID | FETCH-LOGICAL-a380t-68de3c77bdb9c7a6b93fadbb7313a4d1fd1bbdad35bffc328a33c08659aa49db3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 15:12:35 EDT 2025 Mon Jul 21 05:49:33 EDT 2025 Tue Jul 01 02:08:10 EDT 2025 Thu Apr 24 22:53:40 EDT 2025 Thu Aug 27 13:42:21 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a380t-68de3c77bdb9c7a6b93fadbb7313a4d1fd1bbdad35bffc328a33c08659aa49db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21790152 |
PQID | 894819087 |
PQPubID | 23479 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_894819087 pubmed_primary_21790152 crossref_primary_10_1021_ja2041546 crossref_citationtrail_10_1021_ja2041546 acs_journals_10_1021_ja2041546 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-08-24 |
PublicationDateYYYYMMDD | 2011-08-24 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Shekhah O. (ref8/cit8b) 2007; 129 Centrone A. (ref5/cit5c) 2010; 132 Doménech A. (ref22/cit22b) 2007; 111 Bein T. (ref8/cit8f) 2010; 49 Roşca V. (ref20/cit20d) 2009; 109 Ameloot R. (ref16/cit16) 2009; 21 Skoulidas A. I. (ref5/cit5a) 2005; 109 Kulp E. A. (ref15/cit15d) 2007; 129 Park K. S. (ref13/cit13b) 2006; 103 Carreon M. A. (ref8/cit8g) 2010; 132 Therese G. H. A. (ref15/cit15b) 1998; 8 McCarthy M. C. (ref8/cit8h) 2010; 26 Li H. (ref10/cit10) 1999; 402 van Ranocchiari M. (ref3/cit3b) 2011; 13 Forster P. M. (ref12/cit12a) 2004 Lewandowski A. (ref18/cit18b) 2008; 20 Carbonell C. (ref25/cit25a) 2011; 133 Lu G. (ref6/cit6) 2010; 132 Zacher D. (ref7/cit7) 2009; 38 Stock N. (ref13/cit13a) 2004; 43 Murray L. J. (ref1/cit1b) 2009; 38 Kanaizuka K. (ref8/cit8c) 2008; 130 Bux H. (ref8/cit8j) 2011; 23 Hsieh S. J. (ref20/cit20b) 2000; 16 Switzer J. A. (ref14/cit14a) 1987; 66 Raman V. (ref21/cit21) 1990; 93 Gassensmith J. J. (ref25/cit25b) 2011; 27 Tranchemontagne D. J. (ref9/cit9) 2009; 38 Hausdorf S. (ref17/cit17) 2008; 112 Lewandowski A. (ref18/cit18a) 1989; 85 Li J.-R. (ref2/cit2) 2009; 38 Sumida K. (ref13/cit13c) 2010; 1 Xu S. (ref15/cit15c) 1999; 146 Peulon S. (ref14/cit14c) 1998; 145 Ma L. (ref3/cit3a) 2009; 38 Forster P. M. (ref12/cit12b) 2005; 44 Jin W. Q. (ref8/cit8i) 2011; 47 Doménech A. (ref22/cit22a) 2006; 8 Long J. R. (ref11/cit11) 2009; 38 Zhou Y. C. (ref14/cit14b) 1995; 78 Bard A. J. (ref19/cit19) 2001 Redepenning J. (ref15/cit15a) 1996; 30 Therese G. H. A. (ref14/cit14d) 2000; 12 Xing X. K. (ref20/cit20a) 1986; 199 Kaye S. S. (ref24/cit24) 2007; 129 Czaja A. U. (ref1/cit1a) 2009; 38 Li Y. S. (ref5/cit5b) 2010; 22 Bein T. (ref8/cit8a) 2007; 129 Ranjan R. (ref8/cit8d) 2009; 21 Guo H. (ref8/cit8e) 2009; 131 Allendorf M. D. (ref4/cit4) 2009; 38 Bae S. E. (ref20/cit20c) 2007; 129 Siegfried M. J. (ref14/cit14e) 2004; 16 |
References_xml | – volume: 38 start-page: 1257 year: 2009 ident: ref9/cit9 publication-title: Chem. Soc. Rev. doi: 10.1039/b817735j – volume: 38 start-page: 1284 year: 2009 ident: ref1/cit1a publication-title: Chem. Soc. Rev. doi: 10.1039/b804680h – volume: 22 start-page: 3322 year: 2010 ident: ref5/cit5b publication-title: Adv. Mater. doi: 10.1002/adma.201000857 – volume: 132 start-page: 15687 year: 2010 ident: ref5/cit5c publication-title: J. Am. Chem. Soc. doi: 10.1021/ja106381x – volume-title: Electrochemical Methods: Fundamentals and Applications year: 2001 ident: ref19/cit19 – volume: 111 start-page: 13701 year: 2007 ident: ref22/cit22b publication-title: J. Phys. Chem. C doi: 10.1021/jp073458x – volume: 38 start-page: 1477 year: 2009 ident: ref2/cit2 publication-title: Chem. Soc. Rev. doi: 10.1039/b802426j – volume: 38 start-page: 1330 year: 2009 ident: ref4/cit4 publication-title: Chem. Soc. Rev. doi: 10.1039/b802352m – volume: 145 start-page: 864 year: 1998 ident: ref14/cit14c publication-title: J. Electrochem. Soc. doi: 10.1149/1.1838359 – volume: 27 start-page: 1341 year: 2011 ident: ref25/cit25b publication-title: Langmuir doi: 10.1021/la103958z – volume: 93 start-page: 301 year: 1990 ident: ref21/cit21 publication-title: Sci. Total Environ. doi: 10.1016/0048-9697(90)90120-J – volume: 38 start-page: 1248 year: 2009 ident: ref3/cit3a publication-title: Chem. Soc. Rev. doi: 10.1039/b807083k – volume: 23 start-page: 2262 year: 2011 ident: ref8/cit8j publication-title: Chem. Mater. doi: 10.1021/cm200555s – volume: 38 start-page: 1294 year: 2009 ident: ref1/cit1b publication-title: Chem. Soc. Rev. doi: 10.1039/b802256a – volume: 49 start-page: 7225 year: 2010 ident: ref8/cit8f publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201001684 – volume: 78 start-page: 981 year: 1995 ident: ref14/cit14b publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1995.tb08425.x – volume: 44 start-page: 7608 year: 2005 ident: ref12/cit12b publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200501766 – volume: 12 start-page: 1195 year: 2000 ident: ref14/cit14d publication-title: Chem. Mater. doi: 10.1021/cm990447a – volume: 16 start-page: 1743 year: 2004 ident: ref14/cit14e publication-title: Adv. Mater. doi: 10.1002/adma.200400177 – volume: 146 start-page: 3315 year: 1999 ident: ref15/cit15c publication-title: J. Electrochem. Soc. doi: 10.1149/1.1392473 – volume: 132 start-page: 76 year: 2010 ident: ref8/cit8g publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909263x – volume: 133 start-page: 2144 year: 2011 ident: ref25/cit25a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2002428 – volume: 26 start-page: 14636 year: 2010 ident: ref8/cit8h publication-title: Langmuir doi: 10.1021/la102409e – volume: 8 start-page: 1830 year: 2006 ident: ref22/cit22a publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2006.07.042 – volume: 38 start-page: 1213 year: 2009 ident: ref11/cit11 publication-title: Chem. Soc. Rev. doi: 10.1039/b903811f – volume: 132 start-page: 7832 year: 2010 ident: ref6/cit6 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101415b – volume: 112 start-page: 7567 year: 2008 ident: ref17/cit17 publication-title: J. Phys. Chem. A doi: 10.1021/jp7110633 – volume: 21 start-page: 4920 year: 2009 ident: ref8/cit8d publication-title: Chem. Mater. doi: 10.1021/cm902032y – volume: 129 start-page: 10171 year: 2007 ident: ref20/cit20c publication-title: J. Am. Chem. Soc. doi: 10.1021/ja071330n – volume: 38 start-page: 1418 year: 2009 ident: ref7/cit7 publication-title: Chem. Soc. Rev. doi: 10.1039/b805038b – volume: 129 start-page: 8054 year: 2007 ident: ref8/cit8a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0701208 – volume: 109 start-page: 15760 year: 2005 ident: ref5/cit5a publication-title: J. Phys. Chem. B doi: 10.1021/jp051771y – volume: 130 start-page: 15778 year: 2008 ident: ref8/cit8c publication-title: J. Am. Chem. Soc. doi: 10.1021/ja806799t – volume: 20 start-page: 1903 year: 2008 ident: ref18/cit18b publication-title: Electroanalysis doi: 10.1002/elan.200804267 – volume: 109 start-page: 2209 year: 2009 ident: ref20/cit20d publication-title: Chem. Rev. doi: 10.1021/cr8003696 – volume: 129 start-page: 14176 year: 2007 ident: ref24/cit24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja076877g – volume: 21 start-page: 2580 year: 2009 ident: ref16/cit16 publication-title: Chem. Mater. doi: 10.1021/cm900069f – volume: 30 start-page: 287 year: 1996 ident: ref15/cit15a publication-title: J. Biomed. Mater. Res. doi: 10.1002/(SICI)1097-4636(199603)30:3<287::AID-JBM3>3.0.CO;2-M – volume: 85 start-page: 4139 year: 1989 ident: ref18/cit18a publication-title: J. Chem. Soc., Faraday Trans. 1 doi: 10.1039/f19898504139 – volume: 199 start-page: 485 year: 1986 ident: ref20/cit20a publication-title: J. Electroanal. Chem. doi: 10.1016/0022-0728(86)80023-7 – volume: 131 start-page: 1646 year: 2009 ident: ref8/cit8e publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8074874 – volume: 43 start-page: 749 year: 2004 ident: ref13/cit13a publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200351718 – volume: 129 start-page: 15120 year: 2007 ident: ref15/cit15d publication-title: J. Am. Chem. Soc. doi: 10.1021/ja076303b – volume: 47 start-page: 737 year: 2011 ident: ref8/cit8i publication-title: Chem. Commun. doi: 10.1039/C0CC03927F – volume: 66 start-page: 1521 year: 1987 ident: ref14/cit14a publication-title: Am. Ceram. Soc. Bull. – volume: 13 start-page: 6388 year: 2011 ident: ref3/cit3b publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp02394a – volume: 16 start-page: 9501 year: 2000 ident: ref20/cit20b publication-title: Langmuir doi: 10.1021/la000808x – volume: 8 start-page: 405 year: 1998 ident: ref15/cit15b publication-title: J. Mater. Chem. doi: 10.1039/a706079c – volume: 129 start-page: 15118 year: 2007 ident: ref8/cit8b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja076210u – start-page: 368 year: 2004 ident: ref12/cit12a publication-title: Chem. Commun. doi: 10.1039/B311156C – volume: 103 start-page: 10186 year: 2006 ident: ref13/cit13b publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0602439103 – volume: 402 start-page: 276 year: 1999 ident: ref10/cit10 publication-title: Nature doi: 10.1038/46248 – volume: 1 start-page: 184 year: 2010 ident: ref13/cit13c publication-title: Chem. Sci. doi: 10.1039/c0sc00179a |
SSID | ssj0004281 |
Score | 2.496609 |
Snippet | Electroreduction of oxoanions affords hydroxide equivalents that induce selective deposition of crystalline metal–organic frameworks (MOFs) on conductive... Electroreduction of oxoanions affords hydroxide equivalents that induce selective deposition of crystalline metal-organic frameworks (MOFs) on conductive... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12926 |
Title | Reductive Electrosynthesis of Crystalline Metal–Organic Frameworks |
URI | http://dx.doi.org/10.1021/ja2041546 https://www.ncbi.nlm.nih.gov/pubmed/21790152 https://www.proquest.com/docview/894819087 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwELZKGWDh_SiPKgIGllSJ7TjJWKWtKqQyAJW6RX5KCJSiJh3KxH_gH_JLsJu4gGhhy3CxTnd27ruc7zsArohgKIyl70ZQCRdz7LuUG8p9JRiOWSgxM43Cg1vSH-KbUTCqgcsVFXxo-IGgaSPHZA2sQxKFJsNqJ_dfzY8w8i3GDSOCLH3Q91dN6OH5z9CzAk_O40pvG3Rsd055neSpNS1Yi7_-Jmv8S-UdsFXhSqddboRdUJPZHthI7Di3fdC5MySt5uPmdMvRN_ks0-gvf8ydsXKSyUzjREPQLZ2B1E8fb-9lnyZ3evYCV34Ahr3uQ9J3qxEKLkWRV7gkEhLxMGSCxTykhMVIUcFYiHxEsfCV8BkTVKCAKcURjChCXGc5QUwpjrUfD0E9G2fyGDhSSIkw5QgrhX3IWUA94imKpYYg-tg3QFPbOK2OQJ7Oq9tQZxfWGA1wbc2f8oqA3MzBeF4merEQfSlZN5YJOdaHqbalKXTQTI6neRoZCprYMzodlb5drAINI5nGLCf_aXsKNu3vY4jPQL2YTOW5xh8Fa8733ycuGNUQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV07TxwxEB4RUpAG8uCZBKwoSDSLbm3fPgoKdHA6HkeRgES3-ClFQXsI3wkdFf-BLn-Ff8MvYby7PpKIiAop3RYjazweez6vZ74B-JpoydLcxFFGrY644nEklKfct1ryXKaGS18o3D9Keid8_7R9OgW_Qi0MKuFwJFc94j-yC3iaIOqryXnSJFAemPEVXs_c1t4OruU6pd3d404vajoIRIJlrWGUZNowlaZSy1ylIpE5s0JLmbKYCa5jq2MptdCsLa1VjGaCMYUgv50LwXOcBo77Cl4j6KH-Yrfd-f5Yc0mzOEDrNEtYYC36XVUf8ZT7M-L9A8ZW4aw7B3cTQ1RZLD83R0O5qa7_4oj8Py31FmYbFE22a7d_B1OmfA8zndC87gPsfPOUtP4oJ7t1ox83LhHruh-ODCzpXI4RFXs6ckP6Br_ub27rqlRFuiFdzc3DyYtMYgGmy0FploAYbQzjQjFuLY-pkm3RSlpWcIOACw-5ZVhF2xfNhndF9ZZP8S4VjL8MG2HVC9XQrfuuH-dPiX6ZiF7UHCNPCZHgOgXa0j_riNIMRq7IPOFO3vI6LdYuNRmFev41RGgrz2m7BjO94_5hcbh3dPAR3oQf55R_gunh5ch8RuQ1lKvVFiBw9tKe9ADUmDxK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LSxxBEC7UQPRiYhLj2yYk4GVkp7t3HgcPsuvimxAVvE36CRKZFXsXWU_-h9zzV_Jf8ktSPTO9JsHgSfA2h6Kprq7u-nqq6yuAj4mWLM1NHGXU6ogrHkdCecp9qyXPZWq49IXCR8fJ7hnfP2-fT8CPUAuDSjgcyVVJfL-rr7RtGAY8VRD1FeU8aR5RHpjRDV7R3NZeF9fzE6W9ndPObtR0EYgEy1qDKMm0YSpNpZa5SkUic2aFljJlMRNcx1bHUmqhWVtaqxjNBGMKgX47F4LnOBUcdxJe-PSgv9xtd07u6y5pFgd4nWYJC8xFf6rqo55yf0e9_0DZKqT1XsHPsTGqlyzfNocDualu_-GJfL7Weg2zDZom27X7z8GEKd_AdCc0sXsL3S-emtYf6WSnbvjjRiViXnfhSN-SzvUI0bGnJTfkyODXr7vvdXWqIr3wbM29g7MnmcQ8TJX90iwAMdoYxoVi3FoeUyXbopW0rOAGgRcedouwhvYvmo3viiqnT_FOFYy_CBth5QvV0K777h-XD4l-GIte1VwjDwmR4D4F2tKnd0Rp-kNXZJ54J295nd7XbjUehXoeNkRqS49puw4vP3d7xeHe8cEyzIT_55SvwNTgemhWEYAN5Fq1Cwh8fWpH-g1BSz7N |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reductive+Electrosynthesis+of+Crystalline+Metal%E2%80%93Organic+Frameworks&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Li%2C+Minyuan&rft.au=Dinca%CC%86%2C+Mircea&rft.date=2011-08-24&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=133&rft.issue=33&rft.spage=12926&rft.epage=12929&rft_id=info:doi/10.1021%2Fja2041546&rft.externalDocID=b635188685 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |