Surface-Functionalization-Dependent Optical Properties of II–VI Semiconductor Nanocrystals
We report a study of the surface-functionalization-dependent optical properties of II–VI zinc-blende semiconductor nanocrystals on the basis of ligand-exchange chemistry, isomaterial core/shell growth, optical spectroscopy, transmission electron microscopy, and X-ray powder diffraction. Our results...
Saved in:
Published in | Journal of the American Chemical Society Vol. 133; no. 43; pp. 17504 - 17512 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
02.11.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report a study of the surface-functionalization-dependent optical properties of II–VI zinc-blende semiconductor nanocrystals on the basis of ligand-exchange chemistry, isomaterial core/shell growth, optical spectroscopy, transmission electron microscopy, and X-ray powder diffraction. Our results show that the transition energy and extinction coefficient of the 2Sh3/21Se excitonic band of these nanocrystals can be strongly modified by their surface ligands as well as ligand associated surface atomic arrangement. The oleylamine exchange of oleate-capped zinc-blende II–VI nanocrystals narrows the energy gap between their first and second excitonic absorption bands, and this narrowing effect is size-dependent. The oleylamine exchange results in the quenching, subsequent recovery, and even enhancing of the photoluminescence emission of these II–VI semiconductor nanocrystals. In addition, the results from our X-ray powder diffraction measurements and simulations completely rule out the possibility that oleate-capped zinc-blende CdSe nanocrystals can undergo zinc-blende-to-wurtzite crystal transformation upon ligand exchange with oleylamine. Moreover, our theoretical modeling results suggest that the surface-functionalization-dependent optical properties of these semiconductor nanocrystals can be caused by a thin type II isomaterial shell that is created by the negatively charged ligands (e.g., oleate and octadecyl phosphonate). Taking all these results together, we provide the unambiguous identification that II–VI semiconductor nanocrystals exhibit surface-functionalization-dependent excitonic absorption features. |
---|---|
AbstractList | We report a study of the surface-functionalization-dependent optical properties of II-VI zinc-blende semiconductor nanocrystals on the basis of ligand-exchange chemistry, isomaterial core/shell growth, optical spectroscopy, transmission electron microscopy, and X-ray powder diffraction. Our results show that the transition energy and extinction coefficient of the 2S(h3/2)1S(e) excitonic band of these nanocrystals can be strongly modified by their surface ligands as well as ligand associated surface atomic arrangement. The oleylamine exchange of oleate-capped zinc-blende II-VI nanocrystals narrows the energy gap between their first and second excitonic absorption bands, and this narrowing effect is size-dependent. The oleylamine exchange results in the quenching, subsequent recovery, and even enhancing of the photoluminescence emission of these II-VI semiconductor nanocrystals. In addition, the results from our X-ray powder diffraction measurements and simulations completely rule out the possibility that oleate-capped zinc-blende CdSe nanocrystals can undergo zinc-blende-to-wurtzite crystal transformation upon ligand exchange with oleylamine. Moreover, our theoretical modeling results suggest that the surface-functionalization-dependent optical properties of these semiconductor nanocrystals can be caused by a thin type II isomaterial shell that is created by the negatively charged ligands (e.g., oleate and octadecyl phosphonate). Taking all these results together, we provide the unambiguous identification that II-VI semiconductor nanocrystals exhibit surface-functionalization-dependent excitonic absorption features. We report a study of the surface-functionalization-dependent optical properties of II–VI zinc-blende semiconductor nanocrystals on the basis of ligand-exchange chemistry, isomaterial core/shell growth, optical spectroscopy, transmission electron microscopy, and X-ray powder diffraction. Our results show that the transition energy and extinction coefficient of the 2Sh3/21Se excitonic band of these nanocrystals can be strongly modified by their surface ligands as well as ligand associated surface atomic arrangement. The oleylamine exchange of oleate-capped zinc-blende II–VI nanocrystals narrows the energy gap between their first and second excitonic absorption bands, and this narrowing effect is size-dependent. The oleylamine exchange results in the quenching, subsequent recovery, and even enhancing of the photoluminescence emission of these II–VI semiconductor nanocrystals. In addition, the results from our X-ray powder diffraction measurements and simulations completely rule out the possibility that oleate-capped zinc-blende CdSe nanocrystals can undergo zinc-blende-to-wurtzite crystal transformation upon ligand exchange with oleylamine. Moreover, our theoretical modeling results suggest that the surface-functionalization-dependent optical properties of these semiconductor nanocrystals can be caused by a thin type II isomaterial shell that is created by the negatively charged ligands (e.g., oleate and octadecyl phosphonate). Taking all these results together, we provide the unambiguous identification that II–VI semiconductor nanocrystals exhibit surface-functionalization-dependent excitonic absorption features. We report a study of the surface-functionalization-dependent optical properties of II-VI zinc-blende semiconductor nanocrystals on the basis of ligand-exchange chemistry, isomaterial core/shell growth, optical spectroscopy, transmission electron microscopy, and X-ray powder diffraction. Our results show that the transition energy and extinction coefficient of the 2S(h3/2)1S(e) excitonic band of these nanocrystals can be strongly modified by their surface ligands as well as ligand associated surface atomic arrangement. The oleylamine exchange of oleate-capped zinc-blende II-VI nanocrystals narrows the energy gap between their first and second excitonic absorption bands, and this narrowing effect is size-dependent. The oleylamine exchange results in the quenching, subsequent recovery, and even enhancing of the photoluminescence emission of these II-VI semiconductor nanocrystals. In addition, the results from our X-ray powder diffraction measurements and simulations completely rule out the possibility that oleate-capped zinc-blende CdSe nanocrystals can undergo zinc-blende-to-wurtzite crystal transformation upon ligand exchange with oleylamine. Moreover, our theoretical modeling results suggest that the surface-functionalization-dependent optical properties of these semiconductor nanocrystals can be caused by a thin type II isomaterial shell that is created by the negatively charged ligands (e.g., oleate and octadecyl phosphonate). Taking all these results together, we provide the unambiguous identification that II-VI semiconductor nanocrystals exhibit surface-functionalization-dependent excitonic absorption features.We report a study of the surface-functionalization-dependent optical properties of II-VI zinc-blende semiconductor nanocrystals on the basis of ligand-exchange chemistry, isomaterial core/shell growth, optical spectroscopy, transmission electron microscopy, and X-ray powder diffraction. Our results show that the transition energy and extinction coefficient of the 2S(h3/2)1S(e) excitonic band of these nanocrystals can be strongly modified by their surface ligands as well as ligand associated surface atomic arrangement. The oleylamine exchange of oleate-capped zinc-blende II-VI nanocrystals narrows the energy gap between their first and second excitonic absorption bands, and this narrowing effect is size-dependent. The oleylamine exchange results in the quenching, subsequent recovery, and even enhancing of the photoluminescence emission of these II-VI semiconductor nanocrystals. In addition, the results from our X-ray powder diffraction measurements and simulations completely rule out the possibility that oleate-capped zinc-blende CdSe nanocrystals can undergo zinc-blende-to-wurtzite crystal transformation upon ligand exchange with oleylamine. Moreover, our theoretical modeling results suggest that the surface-functionalization-dependent optical properties of these semiconductor nanocrystals can be caused by a thin type II isomaterial shell that is created by the negatively charged ligands (e.g., oleate and octadecyl phosphonate). Taking all these results together, we provide the unambiguous identification that II-VI semiconductor nanocrystals exhibit surface-functionalization-dependent excitonic absorption features. |
Author | Yang, Jianhui Niu, Chenggang Wang, Tie Chen, Ou Yang, Yongan Cao, Y. Charles Wu, Huimeng |
AuthorAffiliation | University of Florida |
AuthorAffiliation_xml | – name: University of Florida |
Author_xml | – sequence: 1 givenname: Ou surname: Chen fullname: Chen, Ou – sequence: 2 givenname: Yongan surname: Yang fullname: Yang, Yongan – sequence: 3 givenname: Tie surname: Wang fullname: Wang, Tie – sequence: 4 givenname: Huimeng surname: Wu fullname: Wu, Huimeng – sequence: 5 givenname: Chenggang surname: Niu fullname: Niu, Chenggang – sequence: 6 givenname: Jianhui surname: Yang fullname: Yang, Jianhui – sequence: 7 givenname: Y. Charles surname: Cao fullname: Cao, Y. Charles email: cao@chem.ufl.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21954890$$D View this record in MEDLINE/PubMed |
BookMark | eNptkM1O3DAUhS1EVQbaBS9QZVMhFinXduI4ywpKOxIqlfhZIVke-1ryKGOntrOAVd-hb9gnIXSgi4rVuVf6zll8-2Q3xICEHFL4RIHRk7VmIDnv0g5Z0JZB3VImdskCAFjdScH3yH7O6_ltmKRvyR6jfdvIHhbk7mpKThusz6dgio9BD_5BPx31GY4YLIZSXY7FGz1UP1IcMRWPuYquWi7__Pp9u6yucONNDHYyJabquw7RpPtc9JDfkTduDnz_nAfk5vzL9em3-uLy6_L080WtuYRStwybtmXUMIYCmeXO9iAaibx1jQDQjjMrpLC9kz2zFO2K8RV0ZkakFY4fkKPt7pjizwlzURufDQ6DDhinrHqArhPQtTP54ZmcVhu0akx-o9O9ehEyAydbwKSYc0KnjC9_fZSk_aAoqCfl6p_yuXH8X-Nl9DX245bVJqt1nNKsO7_CPQIApo44 |
CitedBy_id | crossref_primary_10_1007_s12274_024_6984_8 crossref_primary_10_1021_acs_jpclett_8b02334 crossref_primary_10_1021_nl402192d crossref_primary_10_1021_acs_jpclett_7b00909 crossref_primary_10_1039_C5CP02173A crossref_primary_10_1021_jacs_6b00674 crossref_primary_10_1039_C8CP05844J crossref_primary_10_1038_nmat3539 crossref_primary_10_1039_D2NH00111J crossref_primary_10_1063_1_4813013 crossref_primary_10_1021_acs_jpcc_0c07338 crossref_primary_10_1002_lpor_202401971 crossref_primary_10_1021_ja510862c crossref_primary_10_1021_cm303219a crossref_primary_10_1039_D3SC04296K crossref_primary_10_1021_acsaem_0c02674 crossref_primary_10_1021_acs_jpclett_0c00266 crossref_primary_10_1021_acsnano_7b03555 crossref_primary_10_1021_jacs_4c15987 crossref_primary_10_1016_j_matpr_2022_08_159 crossref_primary_10_1021_ja5020025 crossref_primary_10_1016_j_mtcomm_2023_107199 crossref_primary_10_1021_ja211103b crossref_primary_10_1039_C9NR06355B crossref_primary_10_1021_acs_jpcc_2c06572 crossref_primary_10_1039_D2NJ05175C crossref_primary_10_1002_advs_202102784 crossref_primary_10_1007_s12274_024_6987_5 crossref_primary_10_1016_j_nanoso_2015_12_001 crossref_primary_10_1002_anie_201403714 crossref_primary_10_1021_acsnano_0c07176 crossref_primary_10_1021_acsanm_0c03483 crossref_primary_10_1039_C8CE00414E crossref_primary_10_1016_j_optmat_2013_12_006 crossref_primary_10_1063_1_5092729 crossref_primary_10_1021_acs_nanolett_6b03874 crossref_primary_10_1021_acs_jpclett_9b00786 crossref_primary_10_1021_acs_chemmater_0c02874 crossref_primary_10_1016_j_matdes_2018_04_015 crossref_primary_10_1021_acs_jpca_5b10675 crossref_primary_10_1002_adma_201606666 crossref_primary_10_12693_APhysPolA_127_795 crossref_primary_10_1021_jacs_8b04743 crossref_primary_10_1038_s41467_021_24931_x crossref_primary_10_1021_acs_chemmater_6b00772 crossref_primary_10_1021_jacs_6b04888 crossref_primary_10_1039_D2NR07247E crossref_primary_10_1021_cm303786a crossref_primary_10_1021_jz2013769 crossref_primary_10_1021_jp500872w crossref_primary_10_1038_s41467_019_13349_1 crossref_primary_10_1016_j_apsusc_2020_148263 crossref_primary_10_1021_acs_jpcc_8b09215 crossref_primary_10_1021_acs_jpclett_0c00958 crossref_primary_10_1021_acs_langmuir_5b03584 crossref_primary_10_1007_s41061_016_0060_0 crossref_primary_10_1021_acsomega_8b02752 crossref_primary_10_1021_jacs_7b10649 crossref_primary_10_1016_j_ultsonch_2013_06_003 crossref_primary_10_1021_la403633e crossref_primary_10_1021_acs_chemmater_7b05165 crossref_primary_10_1021_acsnano_5b06837 crossref_primary_10_1088_0957_4484_24_50_505601 crossref_primary_10_1021_ja307944d crossref_primary_10_1088_2053_1591_ab5df0 crossref_primary_10_1039_c2an36658d crossref_primary_10_1021_acs_jpcc_9b04645 crossref_primary_10_1021_jp4063093 crossref_primary_10_3390_nano13182566 crossref_primary_10_1016_j_nanoen_2018_08_042 crossref_primary_10_1021_acs_chemmater_9b01261 crossref_primary_10_1016_j_tsf_2014_07_015 crossref_primary_10_1038_ncomms14849 crossref_primary_10_1021_acs_nanolett_6b04461 crossref_primary_10_1002_advs_202100214 crossref_primary_10_1021_acs_jpcc_9b05456 crossref_primary_10_1021_acs_jpclett_5b02015 crossref_primary_10_1002_ange_201403714 crossref_primary_10_1007_s12274_019_2611_5 crossref_primary_10_1021_ja4086758 crossref_primary_10_1021_nn3057559 crossref_primary_10_1021_ja306651x crossref_primary_10_1007_s12274_016_1353_x crossref_primary_10_1016_j_chemphys_2012_09_029 crossref_primary_10_1021_jp401798y crossref_primary_10_1021_jacs_3c12853 crossref_primary_10_1021_acs_jpcc_5b01747 crossref_primary_10_1007_BF03353758 crossref_primary_10_1007_s11051_013_1724_0 crossref_primary_10_1021_acs_jpcc_9b11572 crossref_primary_10_1021_jacs_1c03162 crossref_primary_10_1021_jp511346w crossref_primary_10_1126_science_abq7684 crossref_primary_10_1021_cm5043638 crossref_primary_10_1021_acs_jpcc_6b08178 crossref_primary_10_1007_s00339_020_04137_6 crossref_primary_10_1039_c3cp55226h crossref_primary_10_1007_s12274_020_2703_2 crossref_primary_10_1038_s44160_023_00330_6 crossref_primary_10_1021_jp408160h crossref_primary_10_1063_1_4812499 crossref_primary_10_1016_j_jcis_2015_08_053 crossref_primary_10_1021_acs_chemrev_3c00097 crossref_primary_10_1021_acs_jpcc_5b08113 crossref_primary_10_1039_C5RA09267A crossref_primary_10_1016_j_jallcom_2015_11_203 crossref_primary_10_1016_j_colsurfa_2012_10_057 crossref_primary_10_1039_C8CP02980F crossref_primary_10_1038_s41467_018_04842_0 crossref_primary_10_1002_aenm_202403574 crossref_primary_10_1016_j_chemphys_2015_09_010 crossref_primary_10_1021_acs_chemmater_7b00968 crossref_primary_10_1016_j_matchemphys_2016_02_022 crossref_primary_10_1002_smll_201502733 crossref_primary_10_1021_jz5015554 crossref_primary_10_1002_aenm_202003233 crossref_primary_10_1088_1402_4896_abac75 |
Cites_doi | 10.1021/ja9805425 10.1002/(SICI)1521-3773(19991216)38:24<3692::AID-ANIE3692>3.0.CO;2-W 10.1126/science.1116703 10.1021/jp068733e 10.1002/adma.200305395 10.1021/ja044593f 10.1126/science.281.5385.2013 10.1002/anie.200804266 10.1021/ja0459678 10.1038/nmat1390 10.1038/nature01217 10.1021/ja711379k 10.1021/ja0423421 10.1021/ja067940p 10.1021/jp9535506 10.1021/jp9530562 10.1021/ja0363563 10.1126/science.1170524 10.1021/ja104351q 10.1021/ja0465404 10.1021/ja0725089 10.1021/ja057676k 10.1103/PhysRevB.53.16338 10.1021/ja804414f 10.1021/ja0574973 10.1021/nl035139x 10.1063/1.462114 10.1126/science.1159832 10.1002/anie.200502279 10.1063/1.473875 10.1021/jp051123e 10.1038/nature08072 10.1002/1521-4095(20020219)14:4<317::AID-ADMA317>3.0.CO;2-U 10.1103/PhysRevLett.89.117401 10.1021/ja9034973 10.1038/nature04165 10.1021/ja970754m 10.1038/nmat2222 10.1126/science.291.5512.2390 10.1021/nn1007435 10.1021/ja003633m 10.1021/nl025785g 10.1021/jp003177o 10.1126/science.271.5251.933 10.1021/ja00072a025 10.1021/jp971091y 10.1021/cm049476y 10.1063/1.168397 10.1021/nl025596y 10.1002/smll.200800841 10.1021/jp1001989 10.1038/nphoton.2007.239 10.1038/90228 |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Chemical Society |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/ja208337r |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 17512 |
ExternalDocumentID | 21954890 10_1021_ja208337r d242644767 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a380t-52e45521c22e6e2d3fd90648e35f4600af32d686d9f892d1edb23b07c48e8d6f3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 09:00:29 EDT 2025 Thu Apr 03 07:02:03 EDT 2025 Thu Apr 24 22:56:05 EDT 2025 Tue Jul 01 02:08:13 EDT 2025 Thu Aug 27 13:42:37 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a380t-52e45521c22e6e2d3fd90648e35f4600af32d686d9f892d1edb23b07c48e8d6f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21954890 |
PQID | 900776075 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_900776075 pubmed_primary_21954890 crossref_citationtrail_10_1021_ja208337r crossref_primary_10_1021_ja208337r acs_journals_10_1021_ja208337r |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-11-02 |
PublicationDateYYYYMMDD | 2011-11-02 |
PublicationDate_xml | – month: 11 year: 2011 text: 2011-11-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Wu H. (ref50/cit50) 2006; 128 Capek R. K. (ref43/cit43) 2010; 114 Pradhan N. (ref24/cit24) 2007; 129 Murphy J. E. (ref29/cit29) 2006; 128 Chen Y. (ref38/cit38) 2008; 130 Shimizu K. T. (ref5/cit5) 2002; 89 Alivisatos P. (ref16/cit16) 1996; 271 Medintz I. L. (ref20/cit20) 2005; 4 Norris D. J. (ref40/cit40) 1996; 53 Cao Y. (ref51/cit51) 1999; 38 Xu S. (ref30/cit30) 2006; 128 Coe S. (ref34/cit34) 2002; 420 Frederick M. T. (ref10/cit10) 2010; 4 Mahler B. (ref45/cit45) 2010; 132 Han M. (ref32/cit32) 2001; 19 Bruchez M. (ref18/cit18) 1998; 281 Pandey A. (ref39/cit39) 2008; 322 Li J. J. (ref14/cit14) 2003; 125 Mahler B. (ref6/cit6) 2008; 7 Peng Z. A. (ref23/cit23) 2001; 123 Dabbousi B. O. (ref54/cit54) 1997; 101 Madelung O. (ref56/cit56) 2003 Li R. (ref47/cit47) 2005; 127 Fritzinger B. (ref48/cit48) 2010; 132 Mews A. (ref33/cit33) 2007; 1 Bawendi M. G. (ref1/cit1) 1992; 96 Wang C. (ref8/cit8) 2001; 291 Munro A. M. (ref9/cit9) 2007; 111 Medintz I. L. (ref31/cit31) 2005; 4 Mohamed M. B. (ref42/cit42) 2005; 109 Alivisatos A. P. (ref2/cit2) 1996; 100 Peng X. (ref13/cit13) 1997; 119 Kovalenko M. V. (ref4/cit4) 2009; 324 Talapin D. V. (ref25/cit25) 2001; 105 Yu J. H. (ref26/cit26) 2005; 127 Wu. N (ref49/cit49) 2004; 4 Kazes M. (ref35/cit35) 2002; 14 Wang X. (ref7/cit7) 2009; 459 Murray C. B. (ref19/cit19) 1993; 115 Peng X. (ref46/cit46) 1998; 120 Kuno M. (ref3/cit3) 1997; 106 Reiss P. (ref15/cit15) 2002; 2 Talapin D. V. (ref37/cit37) 2005; 310 Chen O. (ref44/cit44) 2008; 47 Zhu L. (ref36/cit36) 2005; 127 Hines M. A. (ref11/cit11) 1996; 100 Yang Y. A. (ref41/cit41) 2005; 44 Cao Y. C. (ref21/cit21) 2004; 126 Du H. (ref22/cit22) 2002; 2 Yu W. (ref27/cit27) 2004; 16 Owen J. S. (ref53/cit53) 2008; 130 Hines M. A. (ref28/cit28) 2003; 15 Hall B. D. (ref52/cit52) 1991; 5 Reiss P. (ref12/cit12) 2009; 5 Yin Y. (ref17/cit17) 2005; 437 Atkins P. (ref55/cit55) 2010 |
References_xml | – volume: 120 start-page: 5343 year: 1998 ident: ref46/cit46 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9805425 – volume: 38 start-page: 3692 year: 1999 ident: ref51/cit51 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/(SICI)1521-3773(19991216)38:24<3692::AID-ANIE3692>3.0.CO;2-W – volume: 310 start-page: 86 year: 2005 ident: ref37/cit37 publication-title: Science doi: 10.1126/science.1116703 – volume: 111 start-page: 6220 year: 2007 ident: ref9/cit9 publication-title: J. Phys. Chem. C doi: 10.1021/jp068733e – volume: 15 start-page: 1844 year: 2003 ident: ref28/cit28 publication-title: Adv. Mater. doi: 10.1002/adma.200305395 – volume: 127 start-page: 5662 year: 2005 ident: ref26/cit26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja044593f – volume: 281 start-page: 2013 year: 1998 ident: ref18/cit18 publication-title: Science doi: 10.1126/science.281.5385.2013 – volume: 47 start-page: 8638 year: 2008 ident: ref44/cit44 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200804266 – volume: 126 start-page: 14336 year: 2004 ident: ref21/cit21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0459678 – volume: 4 start-page: 435 year: 2005 ident: ref31/cit31 publication-title: Nat. Mater. doi: 10.1038/nmat1390 – volume: 420 start-page: 800 year: 2002 ident: ref34/cit34 publication-title: Nature doi: 10.1038/nature01217 – volume: 130 start-page: 5026 year: 2008 ident: ref38/cit38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja711379k – volume: 127 start-page: 8968 year: 2005 ident: ref36/cit36 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0423421 – volume: 128 start-page: 16522 year: 2006 ident: ref50/cit50 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja067940p – volume-title: Semiconductors: Data Handbook year: 2003 ident: ref56/cit56 – volume: 100 start-page: 13226 year: 1996 ident: ref2/cit2 publication-title: J. Phys. Chem. doi: 10.1021/jp9535506 – volume: 100 start-page: 468 year: 1996 ident: ref11/cit11 publication-title: J. Phys. Chem. doi: 10.1021/jp9530562 – volume: 125 start-page: 12567 year: 2003 ident: ref14/cit14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0363563 – volume: 324 start-page: 1417 year: 2009 ident: ref4/cit4 publication-title: Science doi: 10.1126/science.1170524 – volume: 132 start-page: 10195 year: 2010 ident: ref48/cit48 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104351q – volume: 127 start-page: 2524 year: 2005 ident: ref47/cit47 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0465404 – volume: 129 start-page: 9500 year: 2007 ident: ref24/cit24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0725089 – volume: 4 start-page: 435 year: 2005 ident: ref20/cit20 publication-title: Nat. Mater. doi: 10.1038/nmat1390 – volume: 128 start-page: 1054 year: 2006 ident: ref30/cit30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja057676k – volume: 53 start-page: 16338 year: 1996 ident: ref40/cit40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.53.16338 – volume: 130 start-page: 12279 year: 2008 ident: ref53/cit53 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja804414f – volume: 128 start-page: 3241 year: 2006 ident: ref29/cit29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0574973 – volume: 4 start-page: 383 year: 2004 ident: ref49/cit49 publication-title: Nano Lett. doi: 10.1021/nl035139x – volume: 96 start-page: 946 year: 1992 ident: ref1/cit1 publication-title: J. Chem. Phys. doi: 10.1063/1.462114 – volume: 322 start-page: 5903 year: 2008 ident: ref39/cit39 publication-title: Science doi: 10.1126/science.1159832 – volume: 44 start-page: 6712 year: 2005 ident: ref41/cit41 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200502279 – volume: 106 start-page: 9869 year: 1997 ident: ref3/cit3 publication-title: J. Chem. Phys. doi: 10.1063/1.473875 – volume: 109 start-page: 10533 year: 2005 ident: ref42/cit42 publication-title: J. Phys. Chem. B doi: 10.1021/jp051123e – volume: 459 start-page: 686 year: 2009 ident: ref7/cit7 publication-title: Nature doi: 10.1038/nature08072 – volume: 14 start-page: 317 year: 2002 ident: ref35/cit35 publication-title: Adv. Mater. doi: 10.1002/1521-4095(20020219)14:4<317::AID-ADMA317>3.0.CO;2-U – volume: 89 start-page: 117401 year: 2002 ident: ref5/cit5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.117401 – volume: 132 start-page: 953 year: 2010 ident: ref45/cit45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9034973 – volume: 437 start-page: 664 year: 2005 ident: ref17/cit17 publication-title: Nature doi: 10.1038/nature04165 – volume: 119 start-page: 7019 year: 1997 ident: ref13/cit13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja970754m – volume: 7 start-page: 659 year: 2008 ident: ref6/cit6 publication-title: Nat. Mater. doi: 10.1038/nmat2222 – volume-title: Physical Chemistry year: 2010 ident: ref55/cit55 – volume: 291 start-page: 2390 year: 2001 ident: ref8/cit8 publication-title: Science doi: 10.1126/science.291.5512.2390 – volume: 4 start-page: 3195 year: 2010 ident: ref10/cit10 publication-title: ACS Nano doi: 10.1021/nn1007435 – volume: 123 start-page: 183 year: 2001 ident: ref23/cit23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja003633m – volume: 2 start-page: 1321 year: 2002 ident: ref22/cit22 publication-title: Nano Lett. doi: 10.1021/nl025785g – volume: 105 start-page: 2260 year: 2001 ident: ref25/cit25 publication-title: J. Phys. Chem. B doi: 10.1021/jp003177o – volume: 271 start-page: 933 year: 1996 ident: ref16/cit16 publication-title: Science doi: 10.1126/science.271.5251.933 – volume: 115 start-page: 8706 year: 1993 ident: ref19/cit19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00072a025 – volume: 101 start-page: 9463 year: 1997 ident: ref54/cit54 publication-title: J. Phys. Chem. B doi: 10.1021/jp971091y – volume: 16 start-page: 3318 year: 2004 ident: ref27/cit27 publication-title: Chem. Mater. doi: 10.1021/cm049476y – volume: 5 start-page: 414 year: 1991 ident: ref52/cit52 publication-title: Comput. Phys. doi: 10.1063/1.168397 – volume: 2 start-page: 781 year: 2002 ident: ref15/cit15 publication-title: Nano Lett. doi: 10.1021/nl025596y – volume: 5 start-page: 154 year: 2009 ident: ref12/cit12 publication-title: Small doi: 10.1002/smll.200800841 – volume: 114 start-page: 6371 year: 2010 ident: ref43/cit43 publication-title: J. Phys. Chem. C doi: 10.1021/jp1001989 – volume: 1 start-page: 683 year: 2007 ident: ref33/cit33 publication-title: Nat. Photon doi: 10.1038/nphoton.2007.239 – volume: 19 start-page: 631 year: 2001 ident: ref32/cit32 publication-title: Nat. Biotechnol. doi: 10.1038/90228 |
SSID | ssj0004281 |
Score | 2.3999956 |
Snippet | We report a study of the surface-functionalization-dependent optical properties of II–VI zinc-blende semiconductor nanocrystals on the basis of ligand-exchange... We report a study of the surface-functionalization-dependent optical properties of II-VI zinc-blende semiconductor nanocrystals on the basis of ligand-exchange... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17504 |
SubjectTerms | Nanoparticles - chemistry Optics and Photonics Semiconductors Surface Properties |
Title | Surface-Functionalization-Dependent Optical Properties of II–VI Semiconductor Nanocrystals |
URI | http://dx.doi.org/10.1021/ja208337r https://www.ncbi.nlm.nih.gov/pubmed/21954890 https://www.proquest.com/docview/900776075 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTuQwEC0xcJi5sC_NJgs4cAnq2IljH1E3rW4kZkZqGHFAipzYvoASlE4f4MQ_8Id8CeUsDIjtXrYsl-16VeV6BXCgJE98GflemPCuF1Bq8B0U2tOpZEqGyhfaZXTPfvPhRXB6GV7OwP4nGXzq-IEowgQWFT9gjnIROQ_ruDf-X_xIhd9i3Ehw1tIHvR7qTE86eWt6PsGTlV0ZLEC_rc6pv5NcH03L5Ci9f0_W-NWSF2G-wZXkuD4ISzBjsmX42Wvbua3A1XhaWJUab4CWrA4ANiWYXr9phFuSP7dVaJv8dSH6wnGtktyS0ejp4fHfiIzdR_o8cwyxeUHwXc7T4g7R5c1kFS4GJ-e9ode0VvAUE90S3U8ThGi5U1QON1QzqyWCE2FYaAPEQMoyqrngWlohqfaNTihLulGKIkJzy9ZgNsszswEER1JOjbFcoavHmUpsEGqc31qaRDLswC7ufdxcjUlcZb0peh3tJnXgsFVLnDbE5K4_xs1Honsvorc1G8dHQqTVbYx77BIgKjP5dBLLirwIQVIH1mudv8xCK-Y72d38brVb8KsKK7vIMt2G2bKYmh3EJWWyW53LZ5yW3Qo |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTuQwELVYDnAZlhmgWS3EYS5BHTtx7CNqaHWzSw0jDkiRE9sXWglK0oeZ0_wDf8iXUHYSNoHgXrZKLtv1qsp-hdCeFCzxReR7YcK6XkCIhnuQK0-lgkoRSp8rW9E9O2eD6-D4JrxpaHLsXxhQooSZSlfEf2EXsDRBBNACjYppNAsghNhA66A3evkDSbjfQt2IM9qyCL0eaj1QWr71QJ_ASude-gt1nyKnmHtVcrc_qZL99N87zsbvab6IfjQoEx_U22IJTelsGc312uZuP9HtaFIYmWqvD36tTgc2HzK9w6YtboUv7l2iG1_ahH1hmVdxbvBw-Pj_4c8Qj-yz-jyzfLF5geGWztPiL2DNcfkLXfePrnoDr2m04EnKuxUEozoIwY-nYCqmiaJGCYAqXNPQBICIpKFEMc6UMFwQ5WuVEJp0oxREuGKGrqCZLM_0GsIwkjCitWESAj9GZWKCUMH8xpAkEmEHbcMaxc1BKWNXAycQg7SL1EG_W-vEaUNTbrtljD8S3X0Wva-5OT4Swq2JY1hjWw6Rmc4nZSwclRFApg5arU3_PAtxPHiiu_6VtjtobnB1dhqfDs9PNtC8SzjbnDPZRDNVMdFbgFiqZNtt1Se73-Vr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB5RkNpeKPSPhQJW1QOXoI2dOPYRLV2x_EtbEIdKkRPbl6JklWQPcOo79A15EsbeZGkRFdzH1shje76Zsb8B-KYkz0KZhEGc8X4QUWrwHhQ60LlkSsYqFNpVdE9O-cFFdHgVX7WBovsLg0rUOFPti_juVE-0bRkGHFUQRcTAkuoVLLlynQu29gbjh3-QVIQd3E0EZx2T0N9DnRfK63-90H-gpXcxw3dwNlfOvyz5tTttst389hFv48u1X4HlFm2Svdn2WIUFU7yHN4OuydsH-DmeVlblJhiif5ulBduPmcF-2x63IWcTn_Am5y5xXzkGVlJaMhrd_f5zOSJj97y-LBxvbFkRvK3LvLpBzHldf4SL4fcfg4OgbbgQKCb6DQalJorRn-doMm6oZlZLhCzCsNhGiIyUZVRzwbW0QlIdGp1RlvWTHEWE5pZ9gsWiLMwaEBxJOTXGcoUBIGcqs1GscX5raZbIuAdbuE5pe2Dq1NfCKcYi3SL1YKezUJq3dOWua8b1U6Jf56KTGUfHU0KkM3OKa-zKIqow5bROpac0QujUg88z889noZ4PT_bXn9N2G16f7w_T49Hp0Qa89Xlnl3qmX2CxqaZmE4FLk2353XoPP1jn7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface-Functionalization-Dependent+Optical+Properties+of+II%E2%80%93VI+Semiconductor+Nanocrystals&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Chen%2C+Ou&rft.au=Yang%2C+Yongan&rft.au=Wang%2C+Tie&rft.au=Wu%2C+Huimeng&rft.date=2011-11-02&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=133&rft.issue=43&rft.spage=17504&rft.epage=17512&rft_id=info:doi/10.1021%2Fja208337r&rft.externalDocID=d242644767 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |