Surface-Functionalization-Dependent Optical Properties of II–VI Semiconductor Nanocrystals

We report a study of the surface-functionalization-dependent optical properties of II–VI zinc-blende semiconductor nanocrystals on the basis of ligand-exchange chemistry, isomaterial core/shell growth, optical spectroscopy, transmission electron microscopy, and X-ray powder diffraction. Our results...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 133; no. 43; pp. 17504 - 17512
Main Authors Chen, Ou, Yang, Yongan, Wang, Tie, Wu, Huimeng, Niu, Chenggang, Yang, Jianhui, Cao, Y. Charles
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 02.11.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report a study of the surface-functionalization-dependent optical properties of II–VI zinc-blende semiconductor nanocrystals on the basis of ligand-exchange chemistry, isomaterial core/shell growth, optical spectroscopy, transmission electron microscopy, and X-ray powder diffraction. Our results show that the transition energy and extinction coefficient of the 2Sh3/21Se excitonic band of these nanocrystals can be strongly modified by their surface ligands as well as ligand associated surface atomic arrangement. The oleylamine exchange of oleate-capped zinc-blende II–VI nanocrystals narrows the energy gap between their first and second excitonic absorption bands, and this narrowing effect is size-dependent. The oleylamine exchange results in the quenching, subsequent recovery, and even enhancing of the photoluminescence emission of these II–VI semiconductor nanocrystals. In addition, the results from our X-ray powder diffraction measurements and simulations completely rule out the possibility that oleate-capped zinc-blende CdSe nanocrystals can undergo zinc-blende-to-wurtzite crystal transformation upon ligand exchange with oleylamine. Moreover, our theoretical modeling results suggest that the surface-functionalization-dependent optical properties of these semiconductor nanocrystals can be caused by a thin type II isomaterial shell that is created by the negatively charged ligands (e.g., oleate and octadecyl phosphonate). Taking all these results together, we provide the unambiguous identification that II–VI semiconductor nanocrystals exhibit surface-functionalization-dependent excitonic absorption features.
AbstractList We report a study of the surface-functionalization-dependent optical properties of II-VI zinc-blende semiconductor nanocrystals on the basis of ligand-exchange chemistry, isomaterial core/shell growth, optical spectroscopy, transmission electron microscopy, and X-ray powder diffraction. Our results show that the transition energy and extinction coefficient of the 2S(h3/2)1S(e) excitonic band of these nanocrystals can be strongly modified by their surface ligands as well as ligand associated surface atomic arrangement. The oleylamine exchange of oleate-capped zinc-blende II-VI nanocrystals narrows the energy gap between their first and second excitonic absorption bands, and this narrowing effect is size-dependent. The oleylamine exchange results in the quenching, subsequent recovery, and even enhancing of the photoluminescence emission of these II-VI semiconductor nanocrystals. In addition, the results from our X-ray powder diffraction measurements and simulations completely rule out the possibility that oleate-capped zinc-blende CdSe nanocrystals can undergo zinc-blende-to-wurtzite crystal transformation upon ligand exchange with oleylamine. Moreover, our theoretical modeling results suggest that the surface-functionalization-dependent optical properties of these semiconductor nanocrystals can be caused by a thin type II isomaterial shell that is created by the negatively charged ligands (e.g., oleate and octadecyl phosphonate). Taking all these results together, we provide the unambiguous identification that II-VI semiconductor nanocrystals exhibit surface-functionalization-dependent excitonic absorption features.
We report a study of the surface-functionalization-dependent optical properties of II–VI zinc-blende semiconductor nanocrystals on the basis of ligand-exchange chemistry, isomaterial core/shell growth, optical spectroscopy, transmission electron microscopy, and X-ray powder diffraction. Our results show that the transition energy and extinction coefficient of the 2Sh3/21Se excitonic band of these nanocrystals can be strongly modified by their surface ligands as well as ligand associated surface atomic arrangement. The oleylamine exchange of oleate-capped zinc-blende II–VI nanocrystals narrows the energy gap between their first and second excitonic absorption bands, and this narrowing effect is size-dependent. The oleylamine exchange results in the quenching, subsequent recovery, and even enhancing of the photoluminescence emission of these II–VI semiconductor nanocrystals. In addition, the results from our X-ray powder diffraction measurements and simulations completely rule out the possibility that oleate-capped zinc-blende CdSe nanocrystals can undergo zinc-blende-to-wurtzite crystal transformation upon ligand exchange with oleylamine. Moreover, our theoretical modeling results suggest that the surface-functionalization-dependent optical properties of these semiconductor nanocrystals can be caused by a thin type II isomaterial shell that is created by the negatively charged ligands (e.g., oleate and octadecyl phosphonate). Taking all these results together, we provide the unambiguous identification that II–VI semiconductor nanocrystals exhibit surface-functionalization-dependent excitonic absorption features.
We report a study of the surface-functionalization-dependent optical properties of II-VI zinc-blende semiconductor nanocrystals on the basis of ligand-exchange chemistry, isomaterial core/shell growth, optical spectroscopy, transmission electron microscopy, and X-ray powder diffraction. Our results show that the transition energy and extinction coefficient of the 2S(h3/2)1S(e) excitonic band of these nanocrystals can be strongly modified by their surface ligands as well as ligand associated surface atomic arrangement. The oleylamine exchange of oleate-capped zinc-blende II-VI nanocrystals narrows the energy gap between their first and second excitonic absorption bands, and this narrowing effect is size-dependent. The oleylamine exchange results in the quenching, subsequent recovery, and even enhancing of the photoluminescence emission of these II-VI semiconductor nanocrystals. In addition, the results from our X-ray powder diffraction measurements and simulations completely rule out the possibility that oleate-capped zinc-blende CdSe nanocrystals can undergo zinc-blende-to-wurtzite crystal transformation upon ligand exchange with oleylamine. Moreover, our theoretical modeling results suggest that the surface-functionalization-dependent optical properties of these semiconductor nanocrystals can be caused by a thin type II isomaterial shell that is created by the negatively charged ligands (e.g., oleate and octadecyl phosphonate). Taking all these results together, we provide the unambiguous identification that II-VI semiconductor nanocrystals exhibit surface-functionalization-dependent excitonic absorption features.We report a study of the surface-functionalization-dependent optical properties of II-VI zinc-blende semiconductor nanocrystals on the basis of ligand-exchange chemistry, isomaterial core/shell growth, optical spectroscopy, transmission electron microscopy, and X-ray powder diffraction. Our results show that the transition energy and extinction coefficient of the 2S(h3/2)1S(e) excitonic band of these nanocrystals can be strongly modified by their surface ligands as well as ligand associated surface atomic arrangement. The oleylamine exchange of oleate-capped zinc-blende II-VI nanocrystals narrows the energy gap between their first and second excitonic absorption bands, and this narrowing effect is size-dependent. The oleylamine exchange results in the quenching, subsequent recovery, and even enhancing of the photoluminescence emission of these II-VI semiconductor nanocrystals. In addition, the results from our X-ray powder diffraction measurements and simulations completely rule out the possibility that oleate-capped zinc-blende CdSe nanocrystals can undergo zinc-blende-to-wurtzite crystal transformation upon ligand exchange with oleylamine. Moreover, our theoretical modeling results suggest that the surface-functionalization-dependent optical properties of these semiconductor nanocrystals can be caused by a thin type II isomaterial shell that is created by the negatively charged ligands (e.g., oleate and octadecyl phosphonate). Taking all these results together, we provide the unambiguous identification that II-VI semiconductor nanocrystals exhibit surface-functionalization-dependent excitonic absorption features.
Author Yang, Jianhui
Niu, Chenggang
Wang, Tie
Chen, Ou
Yang, Yongan
Cao, Y. Charles
Wu, Huimeng
AuthorAffiliation University of Florida
AuthorAffiliation_xml – name: University of Florida
Author_xml – sequence: 1
  givenname: Ou
  surname: Chen
  fullname: Chen, Ou
– sequence: 2
  givenname: Yongan
  surname: Yang
  fullname: Yang, Yongan
– sequence: 3
  givenname: Tie
  surname: Wang
  fullname: Wang, Tie
– sequence: 4
  givenname: Huimeng
  surname: Wu
  fullname: Wu, Huimeng
– sequence: 5
  givenname: Chenggang
  surname: Niu
  fullname: Niu, Chenggang
– sequence: 6
  givenname: Jianhui
  surname: Yang
  fullname: Yang, Jianhui
– sequence: 7
  givenname: Y. Charles
  surname: Cao
  fullname: Cao, Y. Charles
  email: cao@chem.ufl.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21954890$$D View this record in MEDLINE/PubMed
BookMark eNptkM1O3DAUhS1EVQbaBS9QZVMhFinXduI4ywpKOxIqlfhZIVke-1ryKGOntrOAVd-hb9gnIXSgi4rVuVf6zll8-2Q3xICEHFL4RIHRk7VmIDnv0g5Z0JZB3VImdskCAFjdScH3yH7O6_ltmKRvyR6jfdvIHhbk7mpKThusz6dgio9BD_5BPx31GY4YLIZSXY7FGz1UP1IcMRWPuYquWi7__Pp9u6yucONNDHYyJabquw7RpPtc9JDfkTduDnz_nAfk5vzL9em3-uLy6_L080WtuYRStwybtmXUMIYCmeXO9iAaibx1jQDQjjMrpLC9kz2zFO2K8RV0ZkakFY4fkKPt7pjizwlzURufDQ6DDhinrHqArhPQtTP54ZmcVhu0akx-o9O9ehEyAydbwKSYc0KnjC9_fZSk_aAoqCfl6p_yuXH8X-Nl9DX245bVJqt1nNKsO7_CPQIApo44
CitedBy_id crossref_primary_10_1007_s12274_024_6984_8
crossref_primary_10_1021_acs_jpclett_8b02334
crossref_primary_10_1021_nl402192d
crossref_primary_10_1021_acs_jpclett_7b00909
crossref_primary_10_1039_C5CP02173A
crossref_primary_10_1021_jacs_6b00674
crossref_primary_10_1039_C8CP05844J
crossref_primary_10_1038_nmat3539
crossref_primary_10_1039_D2NH00111J
crossref_primary_10_1063_1_4813013
crossref_primary_10_1021_acs_jpcc_0c07338
crossref_primary_10_1002_lpor_202401971
crossref_primary_10_1021_ja510862c
crossref_primary_10_1021_cm303219a
crossref_primary_10_1039_D3SC04296K
crossref_primary_10_1021_acsaem_0c02674
crossref_primary_10_1021_acs_jpclett_0c00266
crossref_primary_10_1021_acsnano_7b03555
crossref_primary_10_1021_jacs_4c15987
crossref_primary_10_1016_j_matpr_2022_08_159
crossref_primary_10_1021_ja5020025
crossref_primary_10_1016_j_mtcomm_2023_107199
crossref_primary_10_1021_ja211103b
crossref_primary_10_1039_C9NR06355B
crossref_primary_10_1021_acs_jpcc_2c06572
crossref_primary_10_1039_D2NJ05175C
crossref_primary_10_1002_advs_202102784
crossref_primary_10_1007_s12274_024_6987_5
crossref_primary_10_1016_j_nanoso_2015_12_001
crossref_primary_10_1002_anie_201403714
crossref_primary_10_1021_acsnano_0c07176
crossref_primary_10_1021_acsanm_0c03483
crossref_primary_10_1039_C8CE00414E
crossref_primary_10_1016_j_optmat_2013_12_006
crossref_primary_10_1063_1_5092729
crossref_primary_10_1021_acs_nanolett_6b03874
crossref_primary_10_1021_acs_jpclett_9b00786
crossref_primary_10_1021_acs_chemmater_0c02874
crossref_primary_10_1016_j_matdes_2018_04_015
crossref_primary_10_1021_acs_jpca_5b10675
crossref_primary_10_1002_adma_201606666
crossref_primary_10_12693_APhysPolA_127_795
crossref_primary_10_1021_jacs_8b04743
crossref_primary_10_1038_s41467_021_24931_x
crossref_primary_10_1021_acs_chemmater_6b00772
crossref_primary_10_1021_jacs_6b04888
crossref_primary_10_1039_D2NR07247E
crossref_primary_10_1021_cm303786a
crossref_primary_10_1021_jz2013769
crossref_primary_10_1021_jp500872w
crossref_primary_10_1038_s41467_019_13349_1
crossref_primary_10_1016_j_apsusc_2020_148263
crossref_primary_10_1021_acs_jpcc_8b09215
crossref_primary_10_1021_acs_jpclett_0c00958
crossref_primary_10_1021_acs_langmuir_5b03584
crossref_primary_10_1007_s41061_016_0060_0
crossref_primary_10_1021_acsomega_8b02752
crossref_primary_10_1021_jacs_7b10649
crossref_primary_10_1016_j_ultsonch_2013_06_003
crossref_primary_10_1021_la403633e
crossref_primary_10_1021_acs_chemmater_7b05165
crossref_primary_10_1021_acsnano_5b06837
crossref_primary_10_1088_0957_4484_24_50_505601
crossref_primary_10_1021_ja307944d
crossref_primary_10_1088_2053_1591_ab5df0
crossref_primary_10_1039_c2an36658d
crossref_primary_10_1021_acs_jpcc_9b04645
crossref_primary_10_1021_jp4063093
crossref_primary_10_3390_nano13182566
crossref_primary_10_1016_j_nanoen_2018_08_042
crossref_primary_10_1021_acs_chemmater_9b01261
crossref_primary_10_1016_j_tsf_2014_07_015
crossref_primary_10_1038_ncomms14849
crossref_primary_10_1021_acs_nanolett_6b04461
crossref_primary_10_1002_advs_202100214
crossref_primary_10_1021_acs_jpcc_9b05456
crossref_primary_10_1021_acs_jpclett_5b02015
crossref_primary_10_1002_ange_201403714
crossref_primary_10_1007_s12274_019_2611_5
crossref_primary_10_1021_ja4086758
crossref_primary_10_1021_nn3057559
crossref_primary_10_1021_ja306651x
crossref_primary_10_1007_s12274_016_1353_x
crossref_primary_10_1016_j_chemphys_2012_09_029
crossref_primary_10_1021_jp401798y
crossref_primary_10_1021_jacs_3c12853
crossref_primary_10_1021_acs_jpcc_5b01747
crossref_primary_10_1007_BF03353758
crossref_primary_10_1007_s11051_013_1724_0
crossref_primary_10_1021_acs_jpcc_9b11572
crossref_primary_10_1021_jacs_1c03162
crossref_primary_10_1021_jp511346w
crossref_primary_10_1126_science_abq7684
crossref_primary_10_1021_cm5043638
crossref_primary_10_1021_acs_jpcc_6b08178
crossref_primary_10_1007_s00339_020_04137_6
crossref_primary_10_1039_c3cp55226h
crossref_primary_10_1007_s12274_020_2703_2
crossref_primary_10_1038_s44160_023_00330_6
crossref_primary_10_1021_jp408160h
crossref_primary_10_1063_1_4812499
crossref_primary_10_1016_j_jcis_2015_08_053
crossref_primary_10_1021_acs_chemrev_3c00097
crossref_primary_10_1021_acs_jpcc_5b08113
crossref_primary_10_1039_C5RA09267A
crossref_primary_10_1016_j_jallcom_2015_11_203
crossref_primary_10_1016_j_colsurfa_2012_10_057
crossref_primary_10_1039_C8CP02980F
crossref_primary_10_1038_s41467_018_04842_0
crossref_primary_10_1002_aenm_202403574
crossref_primary_10_1016_j_chemphys_2015_09_010
crossref_primary_10_1021_acs_chemmater_7b00968
crossref_primary_10_1016_j_matchemphys_2016_02_022
crossref_primary_10_1002_smll_201502733
crossref_primary_10_1021_jz5015554
crossref_primary_10_1002_aenm_202003233
crossref_primary_10_1088_1402_4896_abac75
Cites_doi 10.1021/ja9805425
10.1002/(SICI)1521-3773(19991216)38:24<3692::AID-ANIE3692>3.0.CO;2-W
10.1126/science.1116703
10.1021/jp068733e
10.1002/adma.200305395
10.1021/ja044593f
10.1126/science.281.5385.2013
10.1002/anie.200804266
10.1021/ja0459678
10.1038/nmat1390
10.1038/nature01217
10.1021/ja711379k
10.1021/ja0423421
10.1021/ja067940p
10.1021/jp9535506
10.1021/jp9530562
10.1021/ja0363563
10.1126/science.1170524
10.1021/ja104351q
10.1021/ja0465404
10.1021/ja0725089
10.1021/ja057676k
10.1103/PhysRevB.53.16338
10.1021/ja804414f
10.1021/ja0574973
10.1021/nl035139x
10.1063/1.462114
10.1126/science.1159832
10.1002/anie.200502279
10.1063/1.473875
10.1021/jp051123e
10.1038/nature08072
10.1002/1521-4095(20020219)14:4<317::AID-ADMA317>3.0.CO;2-U
10.1103/PhysRevLett.89.117401
10.1021/ja9034973
10.1038/nature04165
10.1021/ja970754m
10.1038/nmat2222
10.1126/science.291.5512.2390
10.1021/nn1007435
10.1021/ja003633m
10.1021/nl025785g
10.1021/jp003177o
10.1126/science.271.5251.933
10.1021/ja00072a025
10.1021/jp971091y
10.1021/cm049476y
10.1063/1.168397
10.1021/nl025596y
10.1002/smll.200800841
10.1021/jp1001989
10.1038/nphoton.2007.239
10.1038/90228
ContentType Journal Article
Copyright Copyright © 2011 American Chemical Society
Copyright_xml – notice: Copyright © 2011 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/ja208337r
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 17512
ExternalDocumentID 21954890
10_1021_ja208337r
d242644767
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a380t-52e45521c22e6e2d3fd90648e35f4600af32d686d9f892d1edb23b07c48e8d6f3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 09:00:29 EDT 2025
Thu Apr 03 07:02:03 EDT 2025
Thu Apr 24 22:56:05 EDT 2025
Tue Jul 01 02:08:13 EDT 2025
Thu Aug 27 13:42:37 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a380t-52e45521c22e6e2d3fd90648e35f4600af32d686d9f892d1edb23b07c48e8d6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21954890
PQID 900776075
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_900776075
pubmed_primary_21954890
crossref_citationtrail_10_1021_ja208337r
crossref_primary_10_1021_ja208337r
acs_journals_10_1021_ja208337r
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-11-02
PublicationDateYYYYMMDD 2011-11-02
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2011
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Wu H. (ref50/cit50) 2006; 128
Capek R. K. (ref43/cit43) 2010; 114
Pradhan N. (ref24/cit24) 2007; 129
Murphy J. E. (ref29/cit29) 2006; 128
Chen Y. (ref38/cit38) 2008; 130
Shimizu K. T. (ref5/cit5) 2002; 89
Alivisatos P. (ref16/cit16) 1996; 271
Medintz I. L. (ref20/cit20) 2005; 4
Norris D. J. (ref40/cit40) 1996; 53
Cao Y. (ref51/cit51) 1999; 38
Xu S. (ref30/cit30) 2006; 128
Coe S. (ref34/cit34) 2002; 420
Frederick M. T. (ref10/cit10) 2010; 4
Mahler B. (ref45/cit45) 2010; 132
Han M. (ref32/cit32) 2001; 19
Bruchez M. (ref18/cit18) 1998; 281
Pandey A. (ref39/cit39) 2008; 322
Li J. J. (ref14/cit14) 2003; 125
Mahler B. (ref6/cit6) 2008; 7
Peng Z. A. (ref23/cit23) 2001; 123
Dabbousi B. O. (ref54/cit54) 1997; 101
Madelung O. (ref56/cit56) 2003
Li R. (ref47/cit47) 2005; 127
Fritzinger B. (ref48/cit48) 2010; 132
Mews A. (ref33/cit33) 2007; 1
Bawendi M. G. (ref1/cit1) 1992; 96
Wang C. (ref8/cit8) 2001; 291
Munro A. M. (ref9/cit9) 2007; 111
Medintz I. L. (ref31/cit31) 2005; 4
Mohamed M. B. (ref42/cit42) 2005; 109
Alivisatos A. P. (ref2/cit2) 1996; 100
Peng X. (ref13/cit13) 1997; 119
Kovalenko M. V. (ref4/cit4) 2009; 324
Talapin D. V. (ref25/cit25) 2001; 105
Yu J. H. (ref26/cit26) 2005; 127
Wu. N (ref49/cit49) 2004; 4
Kazes M. (ref35/cit35) 2002; 14
Wang X. (ref7/cit7) 2009; 459
Murray C. B. (ref19/cit19) 1993; 115
Peng X. (ref46/cit46) 1998; 120
Kuno M. (ref3/cit3) 1997; 106
Reiss P. (ref15/cit15) 2002; 2
Talapin D. V. (ref37/cit37) 2005; 310
Chen O. (ref44/cit44) 2008; 47
Zhu L. (ref36/cit36) 2005; 127
Hines M. A. (ref11/cit11) 1996; 100
Yang Y. A. (ref41/cit41) 2005; 44
Cao Y. C. (ref21/cit21) 2004; 126
Du H. (ref22/cit22) 2002; 2
Yu W. (ref27/cit27) 2004; 16
Owen J. S. (ref53/cit53) 2008; 130
Hines M. A. (ref28/cit28) 2003; 15
Hall B. D. (ref52/cit52) 1991; 5
Reiss P. (ref12/cit12) 2009; 5
Yin Y. (ref17/cit17) 2005; 437
Atkins P. (ref55/cit55) 2010
References_xml – volume: 120
  start-page: 5343
  year: 1998
  ident: ref46/cit46
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9805425
– volume: 38
  start-page: 3692
  year: 1999
  ident: ref51/cit51
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/(SICI)1521-3773(19991216)38:24<3692::AID-ANIE3692>3.0.CO;2-W
– volume: 310
  start-page: 86
  year: 2005
  ident: ref37/cit37
  publication-title: Science
  doi: 10.1126/science.1116703
– volume: 111
  start-page: 6220
  year: 2007
  ident: ref9/cit9
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp068733e
– volume: 15
  start-page: 1844
  year: 2003
  ident: ref28/cit28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200305395
– volume: 127
  start-page: 5662
  year: 2005
  ident: ref26/cit26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja044593f
– volume: 281
  start-page: 2013
  year: 1998
  ident: ref18/cit18
  publication-title: Science
  doi: 10.1126/science.281.5385.2013
– volume: 47
  start-page: 8638
  year: 2008
  ident: ref44/cit44
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200804266
– volume: 126
  start-page: 14336
  year: 2004
  ident: ref21/cit21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0459678
– volume: 4
  start-page: 435
  year: 2005
  ident: ref31/cit31
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1390
– volume: 420
  start-page: 800
  year: 2002
  ident: ref34/cit34
  publication-title: Nature
  doi: 10.1038/nature01217
– volume: 130
  start-page: 5026
  year: 2008
  ident: ref38/cit38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja711379k
– volume: 127
  start-page: 8968
  year: 2005
  ident: ref36/cit36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0423421
– volume: 128
  start-page: 16522
  year: 2006
  ident: ref50/cit50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja067940p
– volume-title: Semiconductors: Data Handbook
  year: 2003
  ident: ref56/cit56
– volume: 100
  start-page: 13226
  year: 1996
  ident: ref2/cit2
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp9535506
– volume: 100
  start-page: 468
  year: 1996
  ident: ref11/cit11
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp9530562
– volume: 125
  start-page: 12567
  year: 2003
  ident: ref14/cit14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0363563
– volume: 324
  start-page: 1417
  year: 2009
  ident: ref4/cit4
  publication-title: Science
  doi: 10.1126/science.1170524
– volume: 132
  start-page: 10195
  year: 2010
  ident: ref48/cit48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104351q
– volume: 127
  start-page: 2524
  year: 2005
  ident: ref47/cit47
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0465404
– volume: 129
  start-page: 9500
  year: 2007
  ident: ref24/cit24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0725089
– volume: 4
  start-page: 435
  year: 2005
  ident: ref20/cit20
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1390
– volume: 128
  start-page: 1054
  year: 2006
  ident: ref30/cit30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja057676k
– volume: 53
  start-page: 16338
  year: 1996
  ident: ref40/cit40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.53.16338
– volume: 130
  start-page: 12279
  year: 2008
  ident: ref53/cit53
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja804414f
– volume: 128
  start-page: 3241
  year: 2006
  ident: ref29/cit29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0574973
– volume: 4
  start-page: 383
  year: 2004
  ident: ref49/cit49
  publication-title: Nano Lett.
  doi: 10.1021/nl035139x
– volume: 96
  start-page: 946
  year: 1992
  ident: ref1/cit1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.462114
– volume: 322
  start-page: 5903
  year: 2008
  ident: ref39/cit39
  publication-title: Science
  doi: 10.1126/science.1159832
– volume: 44
  start-page: 6712
  year: 2005
  ident: ref41/cit41
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200502279
– volume: 106
  start-page: 9869
  year: 1997
  ident: ref3/cit3
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.473875
– volume: 109
  start-page: 10533
  year: 2005
  ident: ref42/cit42
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp051123e
– volume: 459
  start-page: 686
  year: 2009
  ident: ref7/cit7
  publication-title: Nature
  doi: 10.1038/nature08072
– volume: 14
  start-page: 317
  year: 2002
  ident: ref35/cit35
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(20020219)14:4<317::AID-ADMA317>3.0.CO;2-U
– volume: 89
  start-page: 117401
  year: 2002
  ident: ref5/cit5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.117401
– volume: 132
  start-page: 953
  year: 2010
  ident: ref45/cit45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9034973
– volume: 437
  start-page: 664
  year: 2005
  ident: ref17/cit17
  publication-title: Nature
  doi: 10.1038/nature04165
– volume: 119
  start-page: 7019
  year: 1997
  ident: ref13/cit13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja970754m
– volume: 7
  start-page: 659
  year: 2008
  ident: ref6/cit6
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2222
– volume-title: Physical Chemistry
  year: 2010
  ident: ref55/cit55
– volume: 291
  start-page: 2390
  year: 2001
  ident: ref8/cit8
  publication-title: Science
  doi: 10.1126/science.291.5512.2390
– volume: 4
  start-page: 3195
  year: 2010
  ident: ref10/cit10
  publication-title: ACS Nano
  doi: 10.1021/nn1007435
– volume: 123
  start-page: 183
  year: 2001
  ident: ref23/cit23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja003633m
– volume: 2
  start-page: 1321
  year: 2002
  ident: ref22/cit22
  publication-title: Nano Lett.
  doi: 10.1021/nl025785g
– volume: 105
  start-page: 2260
  year: 2001
  ident: ref25/cit25
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp003177o
– volume: 271
  start-page: 933
  year: 1996
  ident: ref16/cit16
  publication-title: Science
  doi: 10.1126/science.271.5251.933
– volume: 115
  start-page: 8706
  year: 1993
  ident: ref19/cit19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00072a025
– volume: 101
  start-page: 9463
  year: 1997
  ident: ref54/cit54
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp971091y
– volume: 16
  start-page: 3318
  year: 2004
  ident: ref27/cit27
  publication-title: Chem. Mater.
  doi: 10.1021/cm049476y
– volume: 5
  start-page: 414
  year: 1991
  ident: ref52/cit52
  publication-title: Comput. Phys.
  doi: 10.1063/1.168397
– volume: 2
  start-page: 781
  year: 2002
  ident: ref15/cit15
  publication-title: Nano Lett.
  doi: 10.1021/nl025596y
– volume: 5
  start-page: 154
  year: 2009
  ident: ref12/cit12
  publication-title: Small
  doi: 10.1002/smll.200800841
– volume: 114
  start-page: 6371
  year: 2010
  ident: ref43/cit43
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1001989
– volume: 1
  start-page: 683
  year: 2007
  ident: ref33/cit33
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2007.239
– volume: 19
  start-page: 631
  year: 2001
  ident: ref32/cit32
  publication-title: Nat. Biotechnol.
  doi: 10.1038/90228
SSID ssj0004281
Score 2.3999956
Snippet We report a study of the surface-functionalization-dependent optical properties of II–VI zinc-blende semiconductor nanocrystals on the basis of ligand-exchange...
We report a study of the surface-functionalization-dependent optical properties of II-VI zinc-blende semiconductor nanocrystals on the basis of ligand-exchange...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17504
SubjectTerms Nanoparticles - chemistry
Optics and Photonics
Semiconductors
Surface Properties
Title Surface-Functionalization-Dependent Optical Properties of II–VI Semiconductor Nanocrystals
URI http://dx.doi.org/10.1021/ja208337r
https://www.ncbi.nlm.nih.gov/pubmed/21954890
https://www.proquest.com/docview/900776075
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTuQwEC0xcJi5sC_NJgs4cAnq2IljH1E3rW4kZkZqGHFAipzYvoASlE4f4MQ_8Id8CeUsDIjtXrYsl-16VeV6BXCgJE98GflemPCuF1Bq8B0U2tOpZEqGyhfaZXTPfvPhRXB6GV7OwP4nGXzq-IEowgQWFT9gjnIROQ_ruDf-X_xIhd9i3Ehw1tIHvR7qTE86eWt6PsGTlV0ZLEC_rc6pv5NcH03L5Ci9f0_W-NWSF2G-wZXkuD4ISzBjsmX42Wvbua3A1XhaWJUab4CWrA4ANiWYXr9phFuSP7dVaJv8dSH6wnGtktyS0ejp4fHfiIzdR_o8cwyxeUHwXc7T4g7R5c1kFS4GJ-e9ode0VvAUE90S3U8ThGi5U1QON1QzqyWCE2FYaAPEQMoyqrngWlohqfaNTihLulGKIkJzy9ZgNsszswEER1JOjbFcoavHmUpsEGqc31qaRDLswC7ufdxcjUlcZb0peh3tJnXgsFVLnDbE5K4_xs1Honsvorc1G8dHQqTVbYx77BIgKjP5dBLLirwIQVIH1mudv8xCK-Y72d38brVb8KsKK7vIMt2G2bKYmh3EJWWyW53LZ5yW3Qo
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTuQwELVYDnAZlhmgWS3EYS5BHTtx7CNqaHWzSw0jDkiRE9sXWglK0oeZ0_wDf8iXUHYSNoHgXrZKLtv1qsp-hdCeFCzxReR7YcK6XkCIhnuQK0-lgkoRSp8rW9E9O2eD6-D4JrxpaHLsXxhQooSZSlfEf2EXsDRBBNACjYppNAsghNhA66A3evkDSbjfQt2IM9qyCL0eaj1QWr71QJ_ASude-gt1nyKnmHtVcrc_qZL99N87zsbvab6IfjQoEx_U22IJTelsGc312uZuP9HtaFIYmWqvD36tTgc2HzK9w6YtboUv7l2iG1_ahH1hmVdxbvBw-Pj_4c8Qj-yz-jyzfLF5geGWztPiL2DNcfkLXfePrnoDr2m04EnKuxUEozoIwY-nYCqmiaJGCYAqXNPQBICIpKFEMc6UMFwQ5WuVEJp0oxREuGKGrqCZLM_0GsIwkjCitWESAj9GZWKCUMH8xpAkEmEHbcMaxc1BKWNXAycQg7SL1EG_W-vEaUNTbrtljD8S3X0Wva-5OT4Swq2JY1hjWw6Rmc4nZSwclRFApg5arU3_PAtxPHiiu_6VtjtobnB1dhqfDs9PNtC8SzjbnDPZRDNVMdFbgFiqZNtt1Se73-Vr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB5RkNpeKPSPhQJW1QOXoI2dOPYRLV2x_EtbEIdKkRPbl6JklWQPcOo79A15EsbeZGkRFdzH1shje76Zsb8B-KYkz0KZhEGc8X4QUWrwHhQ60LlkSsYqFNpVdE9O-cFFdHgVX7WBovsLg0rUOFPti_juVE-0bRkGHFUQRcTAkuoVLLlynQu29gbjh3-QVIQd3E0EZx2T0N9DnRfK63-90H-gpXcxw3dwNlfOvyz5tTttst389hFv48u1X4HlFm2Svdn2WIUFU7yHN4OuydsH-DmeVlblJhiif5ulBduPmcF-2x63IWcTn_Am5y5xXzkGVlJaMhrd_f5zOSJj97y-LBxvbFkRvK3LvLpBzHldf4SL4fcfg4OgbbgQKCb6DQalJorRn-doMm6oZlZLhCzCsNhGiIyUZVRzwbW0QlIdGp1RlvWTHEWE5pZ9gsWiLMwaEBxJOTXGcoUBIGcqs1GscX5raZbIuAdbuE5pe2Dq1NfCKcYi3SL1YKezUJq3dOWua8b1U6Jf56KTGUfHU0KkM3OKa-zKIqow5bROpac0QujUg88z889noZ4PT_bXn9N2G16f7w_T49Hp0Qa89Xlnl3qmX2CxqaZmE4FLk2353XoPP1jn7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface-Functionalization-Dependent+Optical+Properties+of+II%E2%80%93VI+Semiconductor+Nanocrystals&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Chen%2C+Ou&rft.au=Yang%2C+Yongan&rft.au=Wang%2C+Tie&rft.au=Wu%2C+Huimeng&rft.date=2011-11-02&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=133&rft.issue=43&rft.spage=17504&rft.epage=17512&rft_id=info:doi/10.1021%2Fja208337r&rft.externalDocID=d242644767
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon