Enhanced Visible-Light Activity of Titania via Confinement inside Carbon Nanotubes

Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO2 in comparison with nanoparticles dispersed on the...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 133; no. 38; pp. 14896 - 14899
Main Authors Chen, Wei, Fan, Zhongli, Zhang, Bei, Ma, Guijun, Takanabe, Kazuhiro, Zhang, Xixiang, Lai, Zhiping
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.09.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO2 in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO2 from the UV to the visible-light region. The CNT-confined TiO2 exhibited improved visible-light activity in the degradation of methylene blue (MB) relative to the outside titania and commercial P25, which is attributed to the modification of the electronic structure of TiO2 induced by the unique confinement inside CNTs. These results provide further insight into the effect of confinement within CNTs, and the composites are expected to be promising for applications in visible-light photocatalysis.
AbstractList Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO(2) in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO(2) from the UV to the visible-light region. The CNT-confined TiO(2) exhibited improved visible-light activity in the degradation of methylene blue (MB) relative to the outside titania and commercial P25, which is attributed to the modification of the electronic structure of TiO(2) induced by the unique confinement inside CNTs. These results provide further insight into the effect of confinement within CNTs, and the composites are expected to be promising for applications in visible-light photocatalysis.Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO(2) in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO(2) from the UV to the visible-light region. The CNT-confined TiO(2) exhibited improved visible-light activity in the degradation of methylene blue (MB) relative to the outside titania and commercial P25, which is attributed to the modification of the electronic structure of TiO(2) induced by the unique confinement inside CNTs. These results provide further insight into the effect of confinement within CNTs, and the composites are expected to be promising for applications in visible-light photocatalysis.
Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO2 in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO2 from the UV to the visible-light region. The CNT-confined TiO2 exhibited improved visible-light activity in the degradation of methylene blue (MB) relative to the outside titania and commercial P25, which is attributed to the modification of the electronic structure of TiO2 induced by the unique confinement inside CNTs. These results provide further insight into the effect of confinement within CNTs, and the composites are expected to be promising for applications in visible-light photocatalysis.
Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO(2) in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO(2) from the UV to the visible-light region. The CNT-confined TiO(2) exhibited improved visible-light activity in the degradation of methylene blue (MB) relative to the outside titania and commercial P25, which is attributed to the modification of the electronic structure of TiO(2) induced by the unique confinement inside CNTs. These results provide further insight into the effect of confinement within CNTs, and the composites are expected to be promising for applications in visible-light photocatalysis.
Author Chen, Wei
Zhang, Xixiang
Lai, Zhiping
Fan, Zhongli
Ma, Guijun
Zhang, Bei
Takanabe, Kazuhiro
AuthorAffiliation Imaging and Characterization Laboratory
King Abdullah University of Science and Technology
Chemical and Life Sciences and Engineering Division
AuthorAffiliation_xml – name: King Abdullah University of Science and Technology
– name: Imaging and Characterization Laboratory
– name: Chemical and Life Sciences and Engineering Division
Author_xml – sequence: 1
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  email: wei.chen.1@kaust.edu.sa, zhiping.lai@kaust.edu.sa
– sequence: 2
  givenname: Zhongli
  surname: Fan
  fullname: Fan, Zhongli
– sequence: 3
  givenname: Bei
  surname: Zhang
  fullname: Zhang, Bei
– sequence: 4
  givenname: Guijun
  surname: Ma
  fullname: Ma, Guijun
– sequence: 5
  givenname: Kazuhiro
  surname: Takanabe
  fullname: Takanabe, Kazuhiro
– sequence: 6
  givenname: Xixiang
  surname: Zhang
  fullname: Zhang, Xixiang
– sequence: 7
  givenname: Zhiping
  surname: Lai
  fullname: Lai, Zhiping
  email: wei.chen.1@kaust.edu.sa, zhiping.lai@kaust.edu.sa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21894970$$D View this record in MEDLINE/PubMed
BookMark eNptkF1LwzAUhoMo7kMv_APSGxEv6vLRpsnlKPMDhoJMb0Oapi6jTWaTDvfvrWzzQnZxOBx43hfOMwKn1lkNwBWC9whiNFlJDFPOs-8TMEQphnGKMD0FQwghjjNGyQCMvF_1Z4IZOgcDjBhPeAaH4G1ml9IqXUYfxpui1vHcfC5DNFXBbEzYRq6KFiZIa2S06Sd3tjJWN9qGyFhvSh3lsi2cjV6kdaErtL8AZ5Wsvb7c7zF4f5gt8qd4_vr4nE_nsSQMhjihkKQUUs4qqCRLNCtLiqRENNUMUsISThXHBc2wUqpSkieIMJZxykmFkCZjcLvrXbfuq9M-iMZ4petaWu06LxgnGeIMwZ683pNd0ehSrFvTyHYrDhp6YLIDVOu8b3UlVP9zMM6GVppaICh-RYs_0X3i7l_iUHqMvdmxUnmxcl1rey1HuB-BOYgu
CitedBy_id crossref_primary_10_1039_C4CS00492B
crossref_primary_10_1021_ac502181n
crossref_primary_10_1016_j_jcis_2020_06_126
crossref_primary_10_1016_j_ccr_2015_06_011
crossref_primary_10_1039_C4TA03130J
crossref_primary_10_1039_C4RA03291H
crossref_primary_10_1073_pnas_1819382116
crossref_primary_10_3389_fchem_2017_00084
crossref_primary_10_1039_c3ra45509b
crossref_primary_10_1021_acsami_4c04985
crossref_primary_10_1016_j_jece_2018_08_042
crossref_primary_10_1002_smll_201401854
crossref_primary_10_1016_j_apsusc_2024_160823
crossref_primary_10_1039_C6RA03801H
crossref_primary_10_1016_j_apcata_2015_02_013
crossref_primary_10_3724_SP_J_1088_2013_21281
crossref_primary_10_1002_ange_202319741
crossref_primary_10_1016_j_matdes_2016_03_027
crossref_primary_10_1002_anie_202319741
crossref_primary_10_1038_srep15228
crossref_primary_10_1016_j_jenvman_2025_124663
crossref_primary_10_1039_C6RA08074J
crossref_primary_10_1016_j_apcatb_2022_121289
crossref_primary_10_1021_acsami_3c12660
crossref_primary_10_1021_acsami_5b08443
crossref_primary_10_1016_j_ceramint_2014_08_079
crossref_primary_10_1021_acs_jpcc_2c03947
crossref_primary_10_3390_molecules28041805
crossref_primary_10_1016_j_matlet_2012_03_081
crossref_primary_10_1021_acsestengg_1c00456
crossref_primary_10_1039_c3nr00476g
crossref_primary_10_1016_j_apsusc_2017_05_054
crossref_primary_10_1016_j_apsusc_2013_06_066
crossref_primary_10_1016_j_cej_2022_134832
crossref_primary_10_1021_jz302137d
crossref_primary_10_1016_j_jechem_2018_03_006
crossref_primary_10_1021_cr5000893
crossref_primary_10_1021_nn204504h
crossref_primary_10_1039_C5RA25689E
crossref_primary_10_1016_j_jhazmat_2015_03_011
crossref_primary_10_3390_nano11123352
crossref_primary_10_2139_ssrn_4051627
crossref_primary_10_3390_catal9020128
crossref_primary_10_1155_2012_682138
crossref_primary_10_1016_j_apsusc_2021_151172
crossref_primary_10_1021_am3029798
crossref_primary_10_1021_jacs_3c13355
crossref_primary_10_1142_S1793292012500208
crossref_primary_10_1007_s12274_018_1975_2
crossref_primary_10_1016_j_apcata_2014_10_001
crossref_primary_10_1016_j_cej_2024_148885
crossref_primary_10_1016_j_apcatb_2022_121543
crossref_primary_10_1088_0953_8984_27_44_445502
crossref_primary_10_1021_acs_jpcc_3c03619
crossref_primary_10_1021_acs_chemrev_9b00209
crossref_primary_10_1016_j_molcata_2012_07_003
crossref_primary_10_4028_www_scientific_net_AMR_726_731_429
crossref_primary_10_1155_2016_3967156
crossref_primary_10_1016_j_diamond_2024_111904
crossref_primary_10_1016_j_apcatb_2014_05_021
crossref_primary_10_1016_j_molcata_2012_07_019
crossref_primary_10_1063_1_4972793
crossref_primary_10_1016_j_ceramint_2019_04_058
crossref_primary_10_1016_j_jcis_2014_04_022
crossref_primary_10_1007_s10853_016_9990_8
crossref_primary_10_1016_j_apcata_2018_05_021
crossref_primary_10_1039_D0NR00992J
crossref_primary_10_1016_j_apsusc_2013_01_120
crossref_primary_10_1038_srep20335
crossref_primary_10_1002_cctc_201300527
crossref_primary_10_1039_C9NR10795A
crossref_primary_10_1007_s10853_012_6553_5
crossref_primary_10_1039_c2ic90014a
crossref_primary_10_1016_j_jhazmat_2020_123461
crossref_primary_10_1007_s11164_013_1416_5
crossref_primary_10_1021_acssuschemeng_5b01511
crossref_primary_10_1016_j_carbon_2021_04_101
crossref_primary_10_1016_j_apsusc_2020_145359
crossref_primary_10_1021_am508554t
crossref_primary_10_1039_C3TA13878J
crossref_primary_10_1039_C4RA17002D
crossref_primary_10_1039_C4CE00987H
crossref_primary_10_1016_j_ceramint_2018_01_257
crossref_primary_10_1021_acssuschemeng_6b02650
crossref_primary_10_1039_C3TA14047D
crossref_primary_10_1039_c3cp53325e
crossref_primary_10_1021_acs_jpcc_1c06655
crossref_primary_10_1016_j_cej_2023_144861
crossref_primary_10_1016_j_watres_2018_05_036
crossref_primary_10_1021_am3019965
crossref_primary_10_1016_j_hazadv_2022_100065
crossref_primary_10_1002_advs_201600113
crossref_primary_10_1016_j_synthmet_2019_03_012
crossref_primary_10_1016_j_cej_2012_08_102
crossref_primary_10_1007_s11814_021_0843_z
crossref_primary_10_1039_c3cp55191a
crossref_primary_10_1021_jacs_6b08082
crossref_primary_10_1016_j_apcatb_2017_01_002
Cites_doi 10.1002/adma.200802738
10.1021/ja8008192
10.1002/cssc.201000324
10.1126/science.261.5128.1545
10.1021/nn901221k
10.1002/1521-4095(20021002)14:19<1399::AID-ADMA1399>3.0.CO;2-C
10.1007/s11671-009-9513-5
10.1038/nmat1734
10.1021/ja907923r
10.1021/cr970102g
10.1021/ic0011359
10.1016/S1381-1169(00)00362-9
10.1038/238037a0
10.1088/0957-4484/20/12/125603
10.1063/1.3454908
10.1016/S0045-6535(02)00486-1
10.1002/anie.200805273
10.1021/jp060082z
10.1557/JMR.1990.1246
10.1039/b810994j
10.1021/ja711023z
10.1021/ja0713072
10.1063/1.2061894
10.1021/jp7118422
10.1016/j.carbon.2010.10.010
10.1002/adfm.200701478
10.1002/adma.200702835
10.1021/j100102a038
10.1002/jrs.1250070606
10.1021/ja103843d
10.1016/0008-6223(95)00035-C
10.1038/nmat1916
10.1126/science.274.5294.1897
10.1063/1.104274
ContentType Journal Article
Copyright Copyright © 2011 American Chemical Society
Copyright_xml – notice: Copyright © 2011 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/ja205997x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 14899
ExternalDocumentID 21894970
10_1021_ja205997x
c332036092
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a380t-4603560698f0ca84e8dd61aa165e80638496c92b672cccfca94138879693f11e3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 09:20:51 EDT 2025
Mon Jul 21 06:03:19 EDT 2025
Tue Jul 01 02:08:12 EDT 2025
Thu Apr 24 23:01:43 EDT 2025
Thu Aug 27 13:41:58 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a380t-4603560698f0ca84e8dd61aa165e80638496c92b672cccfca94138879693f11e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21894970
PQID 893719810
PQPubID 23479
PageCount 4
ParticipantIDs proquest_miscellaneous_893719810
pubmed_primary_21894970
crossref_citationtrail_10_1021_ja205997x
crossref_primary_10_1021_ja205997x
acs_journals_10_1021_ja205997x
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-09-28
PublicationDateYYYYMMDD 2011-09-28
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2011
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Fujishima A. (ref1/cit1) 1972; 238
Justicia I. (ref32/cit32) 2002; 14
Wang X. H. (ref29/cit29) 2006; 110
Oh W. C. (ref15/cit15) 2010; 11
Eklund P. C. (ref17/cit17) 1995; 33
Su W. (ref19/cit19) 2008; 112
Xie Y. (ref21/cit21) 2010; 5
Bassi A. L. (ref26/cit26) 2005; 98
Pan X. (ref12/cit12) 2007; 6
Chen W. (ref22/cit22) 2007; 129
Parker J. C. (ref25/cit25) 1990; 5
Zhang L. W. (ref16/cit16) 2008; 18
Zhang H. (ref14/cit14) 2011; 4
Chen W. (ref13/cit13) 2008; 130
Tada H. (ref4/cit4) 2006; 5
Liu H. (ref28/cit28) 2003; 50
Leary R. (ref8/cit8) 2011; 49
Reisner E. (ref5/cit5) 2009; 131
Zuo F. (ref30/cit30) 2010; 132
Woan K. (ref7/cit7a) 2009; 21
Eder D. (ref7/cit7c) 2008; 20
Ugarte D. (ref24/cit24) 1996; 274
Choi W. (ref2/cit2) 1994; 98
Parker J. C. (ref20/cit20) 1990; 57
Dai K. (ref7/cit7b) 2009; 20
Ajayan P. M. (ref9/cit9) 1999; 99
Pan X. (ref10/cit10) 2008
Zhang H. (ref6/cit6) 2010; 4
Nakamura I. (ref31/cit31) 2000; 161
Vettraino M. (ref27/cit27) 2001; 40
Castillejos E. (ref11/cit11) 2009; 48
Ohsaka T. (ref18/cit18) 1978; 7
Chen X. (ref3/cit3) 2008; 130
Lu S.-Y. (ref7/cit7d) 2010; 96
Haddon R. C. (ref23/cit23) 1993; 261
References_xml – volume: 21
  start-page: 2233
  year: 2009
  ident: ref7/cit7a
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802738
– volume: 130
  start-page: 9414
  year: 2008
  ident: ref13/cit13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8008192
– volume: 4
  start-page: 975
  year: 2011
  ident: ref14/cit14
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201000324
– volume: 261
  start-page: 1545
  year: 1993
  ident: ref23/cit23
  publication-title: Science
  doi: 10.1126/science.261.5128.1545
– volume: 4
  start-page: 380
  year: 2010
  ident: ref6/cit6
  publication-title: ACS Nano
  doi: 10.1021/nn901221k
– volume: 14
  start-page: 1399
  year: 2002
  ident: ref32/cit32
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(20021002)14:19<1399::AID-ADMA1399>3.0.CO;2-C
– volume: 5
  start-page: 603
  year: 2010
  ident: ref21/cit21
  publication-title: Nanoscale Res. Lett.
  doi: 10.1007/s11671-009-9513-5
– volume: 5
  start-page: 782
  year: 2006
  ident: ref4/cit4
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1734
– volume: 131
  start-page: 18457
  year: 2009
  ident: ref5/cit5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja907923r
– volume: 99
  start-page: 1787
  year: 1999
  ident: ref9/cit9
  publication-title: Chem. Rev.
  doi: 10.1021/cr970102g
– volume: 40
  start-page: 2088
  year: 2001
  ident: ref27/cit27
  publication-title: Inorg. Chem.
  doi: 10.1021/ic0011359
– volume: 161
  start-page: 205
  year: 2000
  ident: ref31/cit31
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/S1381-1169(00)00362-9
– volume: 238
  start-page: 37
  year: 1972
  ident: ref1/cit1
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 20
  start-page: 125603
  year: 2009
  ident: ref7/cit7b
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/12/125603
– volume: 96
  start-page: 231915
  year: 2010
  ident: ref7/cit7d
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3454908
– volume: 50
  start-page: 39
  year: 2003
  ident: ref28/cit28
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(02)00486-1
– volume: 48
  start-page: 2529
  year: 2009
  ident: ref11/cit11
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200805273
– volume: 110
  start-page: 6804
  year: 2006
  ident: ref29/cit29
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp060082z
– volume: 5
  start-page: 1246
  year: 1990
  ident: ref25/cit25
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1990.1246
– start-page: 6271
  year: 2008
  ident: ref10/cit10
  publication-title: Chem. Commun.
  doi: 10.1039/b810994j
– volume: 130
  start-page: 5018
  year: 2008
  ident: ref3/cit3
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja711023z
– volume: 129
  start-page: 7421
  year: 2007
  ident: ref22/cit22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0713072
– volume: 98
  start-page: 074305
  year: 2005
  ident: ref26/cit26
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2061894
– volume: 112
  start-page: 7710
  year: 2008
  ident: ref19/cit19
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp7118422
– volume: 49
  start-page: 741
  year: 2011
  ident: ref8/cit8
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.10.010
– volume: 18
  start-page: 2180
  year: 2008
  ident: ref16/cit16
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200701478
– volume: 20
  start-page: 1787
  year: 2008
  ident: ref7/cit7c
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200702835
– volume: 98
  start-page: 13669
  year: 1994
  ident: ref2/cit2
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100102a038
– volume: 7
  start-page: 321
  year: 1978
  ident: ref18/cit18
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.1250070606
– volume: 132
  start-page: 11856
  year: 2010
  ident: ref30/cit30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103843d
– volume: 33
  start-page: 959
  year: 1995
  ident: ref17/cit17
  publication-title: Carbon
  doi: 10.1016/0008-6223(95)00035-C
– volume: 6
  start-page: 507
  year: 2007
  ident: ref12/cit12
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1916
– volume: 11
  start-page: 479
  year: 2010
  ident: ref15/cit15
  publication-title: J. Ceram. Process. Res.
– volume: 274
  start-page: 1897
  year: 1996
  ident: ref24/cit24
  publication-title: Science
  doi: 10.1126/science.274.5294.1897
– volume: 57
  start-page: 943
  year: 1990
  ident: ref20/cit20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.104274
SSID ssj0004281
Score 2.3784976
Snippet Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14896
SubjectTerms Light
Nanotubes, Carbon - chemistry
Particle Size
Surface Properties
Titanium - chemistry
Title Enhanced Visible-Light Activity of Titania via Confinement inside Carbon Nanotubes
URI http://dx.doi.org/10.1021/ja205997x
https://www.ncbi.nlm.nih.gov/pubmed/21894970
https://www.proquest.com/docview/893719810
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ07T8MwEICtqgyw8H6UR2UBA0uq2Ekce6xCqwohBmhRt8hxHFFRJahNGfj1nPMoIFoYsl0sy6_7zue7Q-jac2Jb256ymPYVGChCW5wUDsdYKBOLSePigewDG4zcu7E3bqCrNR58avIDUZNDxAdQ3KCM-8bC6gZPX8GPlJOacX3OnDp90PdfjepR85-qZw1PFnqlv4Nu6-ic8jnJa2eRRx318TtZ419d3kXbFVfibrkQ9lBDp_toM6jLuR2gx176Unj78fMEtsFUW_fGLsddVdaPwFmChxNAxYnE7_CZUEAgUHN5iCdFUU8cyFmUpRgO5CxfRHp-iEb93jAYWFVBBUs63M4tl9kOEA4TPLGV5K7mccyIlIR5mht2cQVTgkbMp0qpREkBKg5OIcGEkxCinSPUTLNUnyAMGo9Ij8aeiMC4Fh5PlA-s5TAmgMmE30JtGPGw2hDzsPB1U7A16qFpoZt6MkJVpSM3VTGmq0Qvl6JvZQ6OVUK4ntEQRta4PWSqs8U8NERGBCd2Cx2XM71sBfhGuMK3T__r7RnaKi-ThUX5OWrms4W-ABrJo3axGj8BUNPVXg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB4BPcCltOXR7QOsqkhcgmIncexDD6staIEth7IgbsFxHHVVlFQkSx8_pX-lf65jJ1laBOKExCE3y3LsGX_feF4A76Mg840faY-bWKOBIo0nqHM4ZlLbXEyWuQDZIz48CQ_OorM5-N3lwuAiKpypck786-oCtkwQs6VE4h9tAOWh-fkdzbPqw_5HPMstxvZ2x4Oh13YQ8FQg_NoLuR8gpHMpcl8rERqRZZwqRXlkhAXrUHItWcpjprXOtZJ4p6PaSS6DnFIT4Lzz8ARJD7OGXX9wfJ1zyQTtqHUseNBVLfp3qRbxdPU_4t1BYx2c7S3Dn9lGuCiWrzvTOt3Rv27UiHycO_UMnrYsmvQbsX8Oc6Z4AYuDrnndCnzeLb642AZyOkGlvzDeyL5CkL5uumWQMifjCRLjiSJX-NnER-Tb9qmUTFwLUzJQl2lZEISfsp6mplqFkwf5pTVYKMrCvASC-E5VxLJIpjECeCRyHSOzDDiXyEBl3IMNPImkVf8qcZ59hpZVdxQ92O5kINFt8XXbA-TitqHvZkO_NRVHbhtEOkFKcGetk0cVppxWieWfVArq92C9EbDZLMjmZChj_9V9q92ExeH40ygZ7R8dvoal5hldeky8gYX6cmreIg-r0w2nEATOH1qu_gLpxjUt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB5RKlEutKU8tg9qVa3US1axkzj2oYfVwgoKQhWPiltwHEesQAkiWaD8GP5K_1rHTrItiKonpB5ysyzHnvH3jecF8DEKMt_4kfa4iTUaKNJ4gjqHYya1zcVkmQuQ3eWbh-HXo-hoBm67XBhcRIUzVc6Jb7X6PMvbCgO2VBCz5UTi6zaIctv8uEITrfqytY7n-Ymx0cbBcNNruwh4KhB-7YXcDxDWuRS5r5UIjcgyTpWiPDLCAnYouZYs5THTWudaSbzXUfUkl0FOqQlw3ifw1LoHrXE3GO7_zrtkgnb0OhY86CoX_blUi3q6uot6f6GyDtJGz-HndDNcJMtpf1KnfX1zr07k_7tbL2ChZdNk0Ij_S5gxxSI8G3ZN7F7B3kZx4mIcyPcxKv-Z8XbsawQZ6KZrBilzcjBGgjxW5BI_mwCJvNs-mZKxa2VKhuoiLQuCMFTWk9RUS3D4KL-0DLNFWZhVIIjzVEUsi2QaI5BHItcxMsyAc4lMVMY9WMPTSNproEqch5-hhdUdRQ8-d3KQ6LYIu-0FcvbQ0A_ToedN5ZGHBpFOmBLcWevsUYUpJ1VieSiVgvo9WGmEbDoLsjoZyth__a_Vvoe5b-ujZGdrd_sNzDev6dJj4i3M1hcT8w7pWJ2uOZ0gcPzYYvULcvg3sA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Visible-Light+Activity+of+Titania+via+Confinement+inside+Carbon+Nanotubes&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Chen%2C+Wei&rft.au=Fan%2C+Zhongli&rft.au=Zhang%2C+Bei&rft.au=Ma%2C+Guijun&rft.date=2011-09-28&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=133&rft.issue=38&rft.spage=14896&rft.epage=14899&rft_id=info:doi/10.1021%2Fja205997x&rft.externalDocID=c332036092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon