Enhanced Visible-Light Activity of Titania via Confinement inside Carbon Nanotubes
Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO2 in comparison with nanoparticles dispersed on the...
Saved in:
Published in | Journal of the American Chemical Society Vol. 133; no. 38; pp. 14896 - 14899 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.09.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO2 in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO2 from the UV to the visible-light region. The CNT-confined TiO2 exhibited improved visible-light activity in the degradation of methylene blue (MB) relative to the outside titania and commercial P25, which is attributed to the modification of the electronic structure of TiO2 induced by the unique confinement inside CNTs. These results provide further insight into the effect of confinement within CNTs, and the composites are expected to be promising for applications in visible-light photocatalysis. |
---|---|
AbstractList | Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO(2) in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO(2) from the UV to the visible-light region. The CNT-confined TiO(2) exhibited improved visible-light activity in the degradation of methylene blue (MB) relative to the outside titania and commercial P25, which is attributed to the modification of the electronic structure of TiO(2) induced by the unique confinement inside CNTs. These results provide further insight into the effect of confinement within CNTs, and the composites are expected to be promising for applications in visible-light photocatalysis.Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO(2) in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO(2) from the UV to the visible-light region. The CNT-confined TiO(2) exhibited improved visible-light activity in the degradation of methylene blue (MB) relative to the outside titania and commercial P25, which is attributed to the modification of the electronic structure of TiO(2) induced by the unique confinement inside CNTs. These results provide further insight into the effect of confinement within CNTs, and the composites are expected to be promising for applications in visible-light photocatalysis. Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO2 in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO2 from the UV to the visible-light region. The CNT-confined TiO2 exhibited improved visible-light activity in the degradation of methylene blue (MB) relative to the outside titania and commercial P25, which is attributed to the modification of the electronic structure of TiO2 induced by the unique confinement inside CNTs. These results provide further insight into the effect of confinement within CNTs, and the composites are expected to be promising for applications in visible-light photocatalysis. Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO(2) in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO(2) from the UV to the visible-light region. The CNT-confined TiO(2) exhibited improved visible-light activity in the degradation of methylene blue (MB) relative to the outside titania and commercial P25, which is attributed to the modification of the electronic structure of TiO(2) induced by the unique confinement inside CNTs. These results provide further insight into the effect of confinement within CNTs, and the composites are expected to be promising for applications in visible-light photocatalysis. |
Author | Chen, Wei Zhang, Xixiang Lai, Zhiping Fan, Zhongli Ma, Guijun Zhang, Bei Takanabe, Kazuhiro |
AuthorAffiliation | Imaging and Characterization Laboratory King Abdullah University of Science and Technology Chemical and Life Sciences and Engineering Division |
AuthorAffiliation_xml | – name: King Abdullah University of Science and Technology – name: Imaging and Characterization Laboratory – name: Chemical and Life Sciences and Engineering Division |
Author_xml | – sequence: 1 givenname: Wei surname: Chen fullname: Chen, Wei email: wei.chen.1@kaust.edu.sa, zhiping.lai@kaust.edu.sa – sequence: 2 givenname: Zhongli surname: Fan fullname: Fan, Zhongli – sequence: 3 givenname: Bei surname: Zhang fullname: Zhang, Bei – sequence: 4 givenname: Guijun surname: Ma fullname: Ma, Guijun – sequence: 5 givenname: Kazuhiro surname: Takanabe fullname: Takanabe, Kazuhiro – sequence: 6 givenname: Xixiang surname: Zhang fullname: Zhang, Xixiang – sequence: 7 givenname: Zhiping surname: Lai fullname: Lai, Zhiping email: wei.chen.1@kaust.edu.sa, zhiping.lai@kaust.edu.sa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21894970$$D View this record in MEDLINE/PubMed |
BookMark | eNptkF1LwzAUhoMo7kMv_APSGxEv6vLRpsnlKPMDhoJMb0Oapi6jTWaTDvfvrWzzQnZxOBx43hfOMwKn1lkNwBWC9whiNFlJDFPOs-8TMEQphnGKMD0FQwghjjNGyQCMvF_1Z4IZOgcDjBhPeAaH4G1ml9IqXUYfxpui1vHcfC5DNFXBbEzYRq6KFiZIa2S06Sd3tjJWN9qGyFhvSh3lsi2cjV6kdaErtL8AZ5Wsvb7c7zF4f5gt8qd4_vr4nE_nsSQMhjihkKQUUs4qqCRLNCtLiqRENNUMUsISThXHBc2wUqpSkieIMJZxykmFkCZjcLvrXbfuq9M-iMZ4petaWu06LxgnGeIMwZ683pNd0ehSrFvTyHYrDhp6YLIDVOu8b3UlVP9zMM6GVppaICh-RYs_0X3i7l_iUHqMvdmxUnmxcl1rey1HuB-BOYgu |
CitedBy_id | crossref_primary_10_1039_C4CS00492B crossref_primary_10_1021_ac502181n crossref_primary_10_1016_j_jcis_2020_06_126 crossref_primary_10_1016_j_ccr_2015_06_011 crossref_primary_10_1039_C4TA03130J crossref_primary_10_1039_C4RA03291H crossref_primary_10_1073_pnas_1819382116 crossref_primary_10_3389_fchem_2017_00084 crossref_primary_10_1039_c3ra45509b crossref_primary_10_1021_acsami_4c04985 crossref_primary_10_1016_j_jece_2018_08_042 crossref_primary_10_1002_smll_201401854 crossref_primary_10_1016_j_apsusc_2024_160823 crossref_primary_10_1039_C6RA03801H crossref_primary_10_1016_j_apcata_2015_02_013 crossref_primary_10_3724_SP_J_1088_2013_21281 crossref_primary_10_1002_ange_202319741 crossref_primary_10_1016_j_matdes_2016_03_027 crossref_primary_10_1002_anie_202319741 crossref_primary_10_1038_srep15228 crossref_primary_10_1016_j_jenvman_2025_124663 crossref_primary_10_1039_C6RA08074J crossref_primary_10_1016_j_apcatb_2022_121289 crossref_primary_10_1021_acsami_3c12660 crossref_primary_10_1021_acsami_5b08443 crossref_primary_10_1016_j_ceramint_2014_08_079 crossref_primary_10_1021_acs_jpcc_2c03947 crossref_primary_10_3390_molecules28041805 crossref_primary_10_1016_j_matlet_2012_03_081 crossref_primary_10_1021_acsestengg_1c00456 crossref_primary_10_1039_c3nr00476g crossref_primary_10_1016_j_apsusc_2017_05_054 crossref_primary_10_1016_j_apsusc_2013_06_066 crossref_primary_10_1016_j_cej_2022_134832 crossref_primary_10_1021_jz302137d crossref_primary_10_1016_j_jechem_2018_03_006 crossref_primary_10_1021_cr5000893 crossref_primary_10_1021_nn204504h crossref_primary_10_1039_C5RA25689E crossref_primary_10_1016_j_jhazmat_2015_03_011 crossref_primary_10_3390_nano11123352 crossref_primary_10_2139_ssrn_4051627 crossref_primary_10_3390_catal9020128 crossref_primary_10_1155_2012_682138 crossref_primary_10_1016_j_apsusc_2021_151172 crossref_primary_10_1021_am3029798 crossref_primary_10_1021_jacs_3c13355 crossref_primary_10_1142_S1793292012500208 crossref_primary_10_1007_s12274_018_1975_2 crossref_primary_10_1016_j_apcata_2014_10_001 crossref_primary_10_1016_j_cej_2024_148885 crossref_primary_10_1016_j_apcatb_2022_121543 crossref_primary_10_1088_0953_8984_27_44_445502 crossref_primary_10_1021_acs_jpcc_3c03619 crossref_primary_10_1021_acs_chemrev_9b00209 crossref_primary_10_1016_j_molcata_2012_07_003 crossref_primary_10_4028_www_scientific_net_AMR_726_731_429 crossref_primary_10_1155_2016_3967156 crossref_primary_10_1016_j_diamond_2024_111904 crossref_primary_10_1016_j_apcatb_2014_05_021 crossref_primary_10_1016_j_molcata_2012_07_019 crossref_primary_10_1063_1_4972793 crossref_primary_10_1016_j_ceramint_2019_04_058 crossref_primary_10_1016_j_jcis_2014_04_022 crossref_primary_10_1007_s10853_016_9990_8 crossref_primary_10_1016_j_apcata_2018_05_021 crossref_primary_10_1039_D0NR00992J crossref_primary_10_1016_j_apsusc_2013_01_120 crossref_primary_10_1038_srep20335 crossref_primary_10_1002_cctc_201300527 crossref_primary_10_1039_C9NR10795A crossref_primary_10_1007_s10853_012_6553_5 crossref_primary_10_1039_c2ic90014a crossref_primary_10_1016_j_jhazmat_2020_123461 crossref_primary_10_1007_s11164_013_1416_5 crossref_primary_10_1021_acssuschemeng_5b01511 crossref_primary_10_1016_j_carbon_2021_04_101 crossref_primary_10_1016_j_apsusc_2020_145359 crossref_primary_10_1021_am508554t crossref_primary_10_1039_C3TA13878J crossref_primary_10_1039_C4RA17002D crossref_primary_10_1039_C4CE00987H crossref_primary_10_1016_j_ceramint_2018_01_257 crossref_primary_10_1021_acssuschemeng_6b02650 crossref_primary_10_1039_C3TA14047D crossref_primary_10_1039_c3cp53325e crossref_primary_10_1021_acs_jpcc_1c06655 crossref_primary_10_1016_j_cej_2023_144861 crossref_primary_10_1016_j_watres_2018_05_036 crossref_primary_10_1021_am3019965 crossref_primary_10_1016_j_hazadv_2022_100065 crossref_primary_10_1002_advs_201600113 crossref_primary_10_1016_j_synthmet_2019_03_012 crossref_primary_10_1016_j_cej_2012_08_102 crossref_primary_10_1007_s11814_021_0843_z crossref_primary_10_1039_c3cp55191a crossref_primary_10_1021_jacs_6b08082 crossref_primary_10_1016_j_apcatb_2017_01_002 |
Cites_doi | 10.1002/adma.200802738 10.1021/ja8008192 10.1002/cssc.201000324 10.1126/science.261.5128.1545 10.1021/nn901221k 10.1002/1521-4095(20021002)14:19<1399::AID-ADMA1399>3.0.CO;2-C 10.1007/s11671-009-9513-5 10.1038/nmat1734 10.1021/ja907923r 10.1021/cr970102g 10.1021/ic0011359 10.1016/S1381-1169(00)00362-9 10.1038/238037a0 10.1088/0957-4484/20/12/125603 10.1063/1.3454908 10.1016/S0045-6535(02)00486-1 10.1002/anie.200805273 10.1021/jp060082z 10.1557/JMR.1990.1246 10.1039/b810994j 10.1021/ja711023z 10.1021/ja0713072 10.1063/1.2061894 10.1021/jp7118422 10.1016/j.carbon.2010.10.010 10.1002/adfm.200701478 10.1002/adma.200702835 10.1021/j100102a038 10.1002/jrs.1250070606 10.1021/ja103843d 10.1016/0008-6223(95)00035-C 10.1038/nmat1916 10.1126/science.274.5294.1897 10.1063/1.104274 |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Chemical Society |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/ja205997x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 14899 |
ExternalDocumentID | 21894970 10_1021_ja205997x c332036092 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a380t-4603560698f0ca84e8dd61aa165e80638496c92b672cccfca94138879693f11e3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 09:20:51 EDT 2025 Mon Jul 21 06:03:19 EDT 2025 Tue Jul 01 02:08:12 EDT 2025 Thu Apr 24 23:01:43 EDT 2025 Thu Aug 27 13:41:58 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a380t-4603560698f0ca84e8dd61aa165e80638496c92b672cccfca94138879693f11e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21894970 |
PQID | 893719810 |
PQPubID | 23479 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_893719810 pubmed_primary_21894970 crossref_citationtrail_10_1021_ja205997x crossref_primary_10_1021_ja205997x acs_journals_10_1021_ja205997x |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-09-28 |
PublicationDateYYYYMMDD | 2011-09-28 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Fujishima A. (ref1/cit1) 1972; 238 Justicia I. (ref32/cit32) 2002; 14 Wang X. H. (ref29/cit29) 2006; 110 Oh W. C. (ref15/cit15) 2010; 11 Eklund P. C. (ref17/cit17) 1995; 33 Su W. (ref19/cit19) 2008; 112 Xie Y. (ref21/cit21) 2010; 5 Bassi A. L. (ref26/cit26) 2005; 98 Pan X. (ref12/cit12) 2007; 6 Chen W. (ref22/cit22) 2007; 129 Parker J. C. (ref25/cit25) 1990; 5 Zhang L. W. (ref16/cit16) 2008; 18 Zhang H. (ref14/cit14) 2011; 4 Chen W. (ref13/cit13) 2008; 130 Tada H. (ref4/cit4) 2006; 5 Liu H. (ref28/cit28) 2003; 50 Leary R. (ref8/cit8) 2011; 49 Reisner E. (ref5/cit5) 2009; 131 Zuo F. (ref30/cit30) 2010; 132 Woan K. (ref7/cit7a) 2009; 21 Eder D. (ref7/cit7c) 2008; 20 Ugarte D. (ref24/cit24) 1996; 274 Choi W. (ref2/cit2) 1994; 98 Parker J. C. (ref20/cit20) 1990; 57 Dai K. (ref7/cit7b) 2009; 20 Ajayan P. M. (ref9/cit9) 1999; 99 Pan X. (ref10/cit10) 2008 Zhang H. (ref6/cit6) 2010; 4 Nakamura I. (ref31/cit31) 2000; 161 Vettraino M. (ref27/cit27) 2001; 40 Castillejos E. (ref11/cit11) 2009; 48 Ohsaka T. (ref18/cit18) 1978; 7 Chen X. (ref3/cit3) 2008; 130 Lu S.-Y. (ref7/cit7d) 2010; 96 Haddon R. C. (ref23/cit23) 1993; 261 |
References_xml | – volume: 21 start-page: 2233 year: 2009 ident: ref7/cit7a publication-title: Adv. Mater. doi: 10.1002/adma.200802738 – volume: 130 start-page: 9414 year: 2008 ident: ref13/cit13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8008192 – volume: 4 start-page: 975 year: 2011 ident: ref14/cit14 publication-title: ChemSusChem doi: 10.1002/cssc.201000324 – volume: 261 start-page: 1545 year: 1993 ident: ref23/cit23 publication-title: Science doi: 10.1126/science.261.5128.1545 – volume: 4 start-page: 380 year: 2010 ident: ref6/cit6 publication-title: ACS Nano doi: 10.1021/nn901221k – volume: 14 start-page: 1399 year: 2002 ident: ref32/cit32 publication-title: Adv. Mater. doi: 10.1002/1521-4095(20021002)14:19<1399::AID-ADMA1399>3.0.CO;2-C – volume: 5 start-page: 603 year: 2010 ident: ref21/cit21 publication-title: Nanoscale Res. Lett. doi: 10.1007/s11671-009-9513-5 – volume: 5 start-page: 782 year: 2006 ident: ref4/cit4 publication-title: Nat. Mater. doi: 10.1038/nmat1734 – volume: 131 start-page: 18457 year: 2009 ident: ref5/cit5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja907923r – volume: 99 start-page: 1787 year: 1999 ident: ref9/cit9 publication-title: Chem. Rev. doi: 10.1021/cr970102g – volume: 40 start-page: 2088 year: 2001 ident: ref27/cit27 publication-title: Inorg. Chem. doi: 10.1021/ic0011359 – volume: 161 start-page: 205 year: 2000 ident: ref31/cit31 publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/S1381-1169(00)00362-9 – volume: 238 start-page: 37 year: 1972 ident: ref1/cit1 publication-title: Nature doi: 10.1038/238037a0 – volume: 20 start-page: 125603 year: 2009 ident: ref7/cit7b publication-title: Nanotechnology doi: 10.1088/0957-4484/20/12/125603 – volume: 96 start-page: 231915 year: 2010 ident: ref7/cit7d publication-title: Appl. Phys. Lett. doi: 10.1063/1.3454908 – volume: 50 start-page: 39 year: 2003 ident: ref28/cit28 publication-title: Chemosphere doi: 10.1016/S0045-6535(02)00486-1 – volume: 48 start-page: 2529 year: 2009 ident: ref11/cit11 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200805273 – volume: 110 start-page: 6804 year: 2006 ident: ref29/cit29 publication-title: J. Phys. Chem. B doi: 10.1021/jp060082z – volume: 5 start-page: 1246 year: 1990 ident: ref25/cit25 publication-title: J. Mater. Res. doi: 10.1557/JMR.1990.1246 – start-page: 6271 year: 2008 ident: ref10/cit10 publication-title: Chem. Commun. doi: 10.1039/b810994j – volume: 130 start-page: 5018 year: 2008 ident: ref3/cit3 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja711023z – volume: 129 start-page: 7421 year: 2007 ident: ref22/cit22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0713072 – volume: 98 start-page: 074305 year: 2005 ident: ref26/cit26 publication-title: J. Appl. Phys. doi: 10.1063/1.2061894 – volume: 112 start-page: 7710 year: 2008 ident: ref19/cit19 publication-title: J. Phys. Chem. C doi: 10.1021/jp7118422 – volume: 49 start-page: 741 year: 2011 ident: ref8/cit8 publication-title: Carbon doi: 10.1016/j.carbon.2010.10.010 – volume: 18 start-page: 2180 year: 2008 ident: ref16/cit16 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200701478 – volume: 20 start-page: 1787 year: 2008 ident: ref7/cit7c publication-title: Adv. Mater. doi: 10.1002/adma.200702835 – volume: 98 start-page: 13669 year: 1994 ident: ref2/cit2 publication-title: J. Phys. Chem. doi: 10.1021/j100102a038 – volume: 7 start-page: 321 year: 1978 ident: ref18/cit18 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.1250070606 – volume: 132 start-page: 11856 year: 2010 ident: ref30/cit30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103843d – volume: 33 start-page: 959 year: 1995 ident: ref17/cit17 publication-title: Carbon doi: 10.1016/0008-6223(95)00035-C – volume: 6 start-page: 507 year: 2007 ident: ref12/cit12 publication-title: Nat. Mater. doi: 10.1038/nmat1916 – volume: 11 start-page: 479 year: 2010 ident: ref15/cit15 publication-title: J. Ceram. Process. Res. – volume: 274 start-page: 1897 year: 1996 ident: ref24/cit24 publication-title: Science doi: 10.1126/science.274.5294.1897 – volume: 57 start-page: 943 year: 1990 ident: ref20/cit20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.104274 |
SSID | ssj0004281 |
Score | 2.3784976 |
Snippet | Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14896 |
SubjectTerms | Light Nanotubes, Carbon - chemistry Particle Size Surface Properties Titanium - chemistry |
Title | Enhanced Visible-Light Activity of Titania via Confinement inside Carbon Nanotubes |
URI | http://dx.doi.org/10.1021/ja205997x https://www.ncbi.nlm.nih.gov/pubmed/21894970 https://www.proquest.com/docview/893719810 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ07T8MwEICtqgyw8H6UR2UBA0uq2Ekce6xCqwohBmhRt8hxHFFRJahNGfj1nPMoIFoYsl0sy6_7zue7Q-jac2Jb256ymPYVGChCW5wUDsdYKBOLSePigewDG4zcu7E3bqCrNR58avIDUZNDxAdQ3KCM-8bC6gZPX8GPlJOacX3OnDp90PdfjepR85-qZw1PFnqlv4Nu6-ic8jnJa2eRRx318TtZ419d3kXbFVfibrkQ9lBDp_toM6jLuR2gx176Unj78fMEtsFUW_fGLsddVdaPwFmChxNAxYnE7_CZUEAgUHN5iCdFUU8cyFmUpRgO5CxfRHp-iEb93jAYWFVBBUs63M4tl9kOEA4TPLGV5K7mccyIlIR5mht2cQVTgkbMp0qpREkBKg5OIcGEkxCinSPUTLNUnyAMGo9Ij8aeiMC4Fh5PlA-s5TAmgMmE30JtGPGw2hDzsPB1U7A16qFpoZt6MkJVpSM3VTGmq0Qvl6JvZQ6OVUK4ntEQRta4PWSqs8U8NERGBCd2Cx2XM71sBfhGuMK3T__r7RnaKi-ThUX5OWrms4W-ABrJo3axGj8BUNPVXg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB4BPcCltOXR7QOsqkhcgmIncexDD6staIEth7IgbsFxHHVVlFQkSx8_pX-lf65jJ1laBOKExCE3y3LsGX_feF4A76Mg840faY-bWKOBIo0nqHM4ZlLbXEyWuQDZIz48CQ_OorM5-N3lwuAiKpypck786-oCtkwQs6VE4h9tAOWh-fkdzbPqw_5HPMstxvZ2x4Oh13YQ8FQg_NoLuR8gpHMpcl8rERqRZZwqRXlkhAXrUHItWcpjprXOtZJ4p6PaSS6DnFIT4Lzz8ARJD7OGXX9wfJ1zyQTtqHUseNBVLfp3qRbxdPU_4t1BYx2c7S3Dn9lGuCiWrzvTOt3Rv27UiHycO_UMnrYsmvQbsX8Oc6Z4AYuDrnndCnzeLb642AZyOkGlvzDeyL5CkL5uumWQMifjCRLjiSJX-NnER-Tb9qmUTFwLUzJQl2lZEISfsp6mplqFkwf5pTVYKMrCvASC-E5VxLJIpjECeCRyHSOzDDiXyEBl3IMNPImkVf8qcZ59hpZVdxQ92O5kINFt8XXbA-TitqHvZkO_NRVHbhtEOkFKcGetk0cVppxWieWfVArq92C9EbDZLMjmZChj_9V9q92ExeH40ygZ7R8dvoal5hldeky8gYX6cmreIg-r0w2nEATOH1qu_gLpxjUt |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB5RKlEutKU8tg9qVa3US1axkzj2oYfVwgoKQhWPiltwHEesQAkiWaD8GP5K_1rHTrItiKonpB5ysyzHnvH3jecF8DEKMt_4kfa4iTUaKNJ4gjqHYya1zcVkmQuQ3eWbh-HXo-hoBm67XBhcRIUzVc6Jb7X6PMvbCgO2VBCz5UTi6zaIctv8uEITrfqytY7n-Ymx0cbBcNNruwh4KhB-7YXcDxDWuRS5r5UIjcgyTpWiPDLCAnYouZYs5THTWudaSbzXUfUkl0FOqQlw3ifw1LoHrXE3GO7_zrtkgnb0OhY86CoX_blUi3q6uot6f6GyDtJGz-HndDNcJMtpf1KnfX1zr07k_7tbL2ChZdNk0Ij_S5gxxSI8G3ZN7F7B3kZx4mIcyPcxKv-Z8XbsawQZ6KZrBilzcjBGgjxW5BI_mwCJvNs-mZKxa2VKhuoiLQuCMFTWk9RUS3D4KL-0DLNFWZhVIIjzVEUsi2QaI5BHItcxMsyAc4lMVMY9WMPTSNproEqch5-hhdUdRQ8-d3KQ6LYIu-0FcvbQ0A_ToedN5ZGHBpFOmBLcWevsUYUpJ1VieSiVgvo9WGmEbDoLsjoZyth__a_Vvoe5b-ujZGdrd_sNzDev6dJj4i3M1hcT8w7pWJ2uOZ0gcPzYYvULcvg3sA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Visible-Light+Activity+of+Titania+via+Confinement+inside+Carbon+Nanotubes&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Chen%2C+Wei&rft.au=Fan%2C+Zhongli&rft.au=Zhang%2C+Bei&rft.au=Ma%2C+Guijun&rft.date=2011-09-28&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=133&rft.issue=38&rft.spage=14896&rft.epage=14899&rft_id=info:doi/10.1021%2Fja205997x&rft.externalDocID=c332036092 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |