Metallization of Branched DNA Origami for Nanoelectronic Circuit Fabrication

This work examines the metallization of folded DNA, known as DNA origami, as an enabling step toward the use of such DNA as templates for nanoelectronic circuits. DNA origami, a simple and robust method for creating a wide variety of shapes and patterns, makes possible the increased complexity and f...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 5; no. 3; pp. 2240 - 2247
Main Authors Liu, Jianfei, Geng, Yanli, Pound, Elisabeth, Gyawali, Shailendra, Ashton, Jeffrey R, Hickey, John, Woolley, Adam T, Harb, John N
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.03.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work examines the metallization of folded DNA, known as DNA origami, as an enabling step toward the use of such DNA as templates for nanoelectronic circuits. DNA origami, a simple and robust method for creating a wide variety of shapes and patterns, makes possible the increased complexity and flexibility needed for both the design and assembly of useful circuit templates. In addition, selective metallization of the DNA template is essential for circuit fabrication. Metallization of DNA origami presents several challenges over and above those associated with the metallization of other DNA templates such as λ-DNA. These challenges include (1) the stability of the origami in the processes used for metallization, (2) the enhanced selectivity required to metallize small origami structures, (3) the increased difficulty of adhering small structures to the surface so that they will not be removed when subject to multiple metallization steps, and (4) the influence of excess staple strands present with the origami. This paper describes our efforts to understand and address these challenges. Specifically, the influence of experimental conditions on template stability and on the selectivity of metal deposition was investigated for small DNA origami templates. These templates were seeded with Ag and then plated with Au via an electroless deposition process. Both staple strand concentration and the concentration of ions in solution were found to have a significant impact. Selective continuous metal deposition was achieved, with an average metallized height as small as 32 nm. The shape of branched origami was also retained after metallization. These results represent important progress toward the realization of DNA-templated nanocircuits.
AbstractList This work examines the metallization of folded DNA, known as DNA origami, as an enabling step toward the use of such DNA as templates for nanoelectronic circuits. DNA origami, a simple and robust method for creating a wide variety of shapes and patterns, makes possible the increased complexity and flexibility needed for both the design and assembly of useful circuit templates. In addition, selective metallization of the DNA template is essential for circuit fabrication. Metallization of DNA origami presents several challenges over and above those associated with the metallization of other DNA templates such as λ-DNA. These challenges include (1) the stability of the origami in the processes used for metallization, (2) the enhanced selectivity required to metallize small origami structures, (3) the increased difficulty of adhering small structures to the surface so that they will not be removed when subject to multiple metallization steps, and (4) the influence of excess staple strands present with the origami. This paper describes our efforts to understand and address these challenges. Specifically, the influence of experimental conditions on template stability and on the selectivity of metal deposition was investigated for small DNA origami templates. These templates were seeded with Ag and then plated with Au via an electroless deposition process. Both staple strand concentration and the concentration of ions in solution were found to have a significant impact. Selective continuous metal deposition was achieved, with an average metallized height as small as 32 nm. The shape of branched origami was also retained after metallization. These results represent important progress toward the realization of DNA-templated nanocircuits.This work examines the metallization of folded DNA, known as DNA origami, as an enabling step toward the use of such DNA as templates for nanoelectronic circuits. DNA origami, a simple and robust method for creating a wide variety of shapes and patterns, makes possible the increased complexity and flexibility needed for both the design and assembly of useful circuit templates. In addition, selective metallization of the DNA template is essential for circuit fabrication. Metallization of DNA origami presents several challenges over and above those associated with the metallization of other DNA templates such as λ-DNA. These challenges include (1) the stability of the origami in the processes used for metallization, (2) the enhanced selectivity required to metallize small origami structures, (3) the increased difficulty of adhering small structures to the surface so that they will not be removed when subject to multiple metallization steps, and (4) the influence of excess staple strands present with the origami. This paper describes our efforts to understand and address these challenges. Specifically, the influence of experimental conditions on template stability and on the selectivity of metal deposition was investigated for small DNA origami templates. These templates were seeded with Ag and then plated with Au via an electroless deposition process. Both staple strand concentration and the concentration of ions in solution were found to have a significant impact. Selective continuous metal deposition was achieved, with an average metallized height as small as 32 nm. The shape of branched origami was also retained after metallization. These results represent important progress toward the realization of DNA-templated nanocircuits.
This work examines the metallization of folded DNA, known as DNA origami, as an enabling step toward the use of such DNA as templates for nanoelectronic circuits. DNA origami, a simple and robust method for creating a wide variety of shapes and patterns, makes possible the increased complexity and flexibility needed for both the design and assembly of useful circuit templates. In addition, selective metallization of the DNA template is essential for circuit fabrication. Metallization of DNA origami presents several challenges over and above those associated with the metallization of other DNA templates such as λ-DNA. These challenges include (1) the stability of the origami in the processes used for metallization, (2) the enhanced selectivity required to metallize small origami structures, (3) the increased difficulty of adhering small structures to the surface so that they will not be removed when subject to multiple metallization steps, and (4) the influence of excess staple strands present with the origami. This paper describes our efforts to understand and address these challenges. Specifically, the influence of experimental conditions on template stability and on the selectivity of metal deposition was investigated for small DNA origami templates. These templates were seeded with Ag and then plated with Au via an electroless deposition process. Both staple strand concentration and the concentration of ions in solution were found to have a significant impact. Selective continuous metal deposition was achieved, with an average metallized height as small as 32 nm. The shape of branched origami was also retained after metallization. These results represent important progress toward the realization of DNA-templated nanocircuits.
Author Geng, Yanli
Pound, Elisabeth
Hickey, John
Harb, John N
Ashton, Jeffrey R
Gyawali, Shailendra
Liu, Jianfei
Woolley, Adam T
AuthorAffiliation Brigham Young University
AuthorAffiliation_xml – name: Brigham Young University
Author_xml – sequence: 1
  givenname: Jianfei
  surname: Liu
  fullname: Liu, Jianfei
– sequence: 2
  givenname: Yanli
  surname: Geng
  fullname: Geng, Yanli
– sequence: 3
  givenname: Elisabeth
  surname: Pound
  fullname: Pound, Elisabeth
– sequence: 4
  givenname: Shailendra
  surname: Gyawali
  fullname: Gyawali, Shailendra
– sequence: 5
  givenname: Jeffrey R
  surname: Ashton
  fullname: Ashton, Jeffrey R
– sequence: 6
  givenname: John
  surname: Hickey
  fullname: Hickey, John
– sequence: 7
  givenname: Adam T
  surname: Woolley
  fullname: Woolley, Adam T
– sequence: 8
  givenname: John N
  surname: Harb
  fullname: Harb, John N
  email: john_harb@byu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21323323$$D View this record in MEDLINE/PubMed
BookMark eNptkE1LAzEQhoMo9kMP_gHJRcTD2mTT3WyPtVoVantR8LbMZhNN2U1qkj3or3f7YQ9SGJhheN6BeXro2FgjEbqg5JaSmA6MoYQlhCdHqEtHLI1Ilr4f7-eEdlDP-yUhCc94eoo6MWUxa6uLZi8yQFXpHwjaGmwVvnNgxKcs8f18jBdOf0CtsbIOz8FYWUkRnDVa4Il2otEBT6FwWmziZ-hEQeXl-a730dv04XXyFM0Wj8-T8SwClpEQMaCClrTkipVkVEjBS6KU5GSUxBTiJJOgeAqkUFLFVA5JXMJQCLbeCV4w1kfX27srZ78a6UNeay9kVYGRtvF5lmRxRhjjLXm5I5uilmW-croG953_CWiBmy0gnPXeSbVHKMnXcvO93JYd_GOFDpvHgwNdHUxcbRMgfL60jTOtlgPcLyZ2ht4
CitedBy_id crossref_primary_10_1021_ja406965f
crossref_primary_10_1021_la305155u
crossref_primary_10_1002_cbic_201402014
crossref_primary_10_1021_acsami_1c13173
crossref_primary_10_1134_S1811238212070077
crossref_primary_10_1039_C5AN00861A
crossref_primary_10_1002_sstr_202200376
crossref_primary_10_1021_cm5044914
crossref_primary_10_1016_j_pmatsci_2017_04_001
crossref_primary_10_1039_C3NR06767J
crossref_primary_10_1021_acs_langmuir_6b04097
crossref_primary_10_1002_smll_201601926
crossref_primary_10_1002_ijch_201500031
crossref_primary_10_1039_c3nr02362a
crossref_primary_10_1021_acsnano_5b05159
crossref_primary_10_1021_acs_nanolett_9b00740
crossref_primary_10_1021_acsami_8b16194
crossref_primary_10_1016_j_ymeth_2013_10_006
crossref_primary_10_1038_s43586_020_00009_8
crossref_primary_10_1021_nl202066c
crossref_primary_10_1088_1361_6528_acb4f2
crossref_primary_10_7498_aps_66_147101
crossref_primary_10_1002_anie_201105846
crossref_primary_10_3390_nano6080146
crossref_primary_10_1021_jp302316p
crossref_primary_10_1021_nl503441v
crossref_primary_10_1021_acs_chemrev_6b00825
crossref_primary_10_1016_j_ultramic_2019_01_001
crossref_primary_10_1080_10408347_2014_910636
crossref_primary_10_1088_1367_2630_18_2_025016
crossref_primary_10_1002_ange_201106198
crossref_primary_10_1002_sstr_202200361
crossref_primary_10_1039_c2jm31839c
crossref_primary_10_1116_1_4879417
crossref_primary_10_1126_sciadv_abf0617
crossref_primary_10_3390_nano11071655
crossref_primary_10_1038_s41467_019_13507_5
crossref_primary_10_1021_acs_langmuir_6b01830
crossref_primary_10_1021_acsami_9b23608
crossref_primary_10_1039_C5NR02300A
crossref_primary_10_1021_cm5019663
crossref_primary_10_1002_cphc_201701228
crossref_primary_10_3390_ijms13067149
crossref_primary_10_1021_jacs_6b03966
crossref_primary_10_1021_acs_langmuir_6b01961
crossref_primary_10_1021_jacs_1c00363
crossref_primary_10_1039_c1jm11932j
crossref_primary_10_1016_j_biomaterials_2022_121532
crossref_primary_10_1039_D1OB01621K
crossref_primary_10_1002_ange_201600924
crossref_primary_10_1021_acs_langmuir_8b02225
crossref_primary_10_1039_C3NR04627C
crossref_primary_10_1021_acscentsci_1c01272
crossref_primary_10_1021_la402678j
crossref_primary_10_1021_acs_orglett_5b00035
crossref_primary_10_3390_s150819912
crossref_primary_10_1007_s11051_018_4225_3
crossref_primary_10_1021_ja500439v
crossref_primary_10_1021_acssensors_9b00877
crossref_primary_10_1002_smtd_202400694
crossref_primary_10_1007_s41061_020_0301_0
crossref_primary_10_1021_acs_nanolett_8b00344
crossref_primary_10_1039_C2CS35302D
crossref_primary_10_1021_acs_nanolett_0c02511
crossref_primary_10_1021_acs_jpcb_4c00445
crossref_primary_10_1002_chem_201705131
crossref_primary_10_1021_ar400305g
crossref_primary_10_3762_bjnano_6_148
crossref_primary_10_1007_s12274_015_0724_z
crossref_primary_10_1021_acssensors_9b01053
crossref_primary_10_1126_science_1258361
crossref_primary_10_1039_C6SC01306F
crossref_primary_10_1042_BST20150077
crossref_primary_10_3390_molecules23040828
crossref_primary_10_1002_anie_201600924
crossref_primary_10_1016_j_chempr_2020_06_012
crossref_primary_10_1063_1_4871102
crossref_primary_10_1002_smll_202003662
crossref_primary_10_1002_adfm_201303818
crossref_primary_10_1002_smll_202103877
crossref_primary_10_1002_ange_201105846
crossref_primary_10_1541_ieejsmas_136_425
crossref_primary_10_1063_5_0025776
crossref_primary_10_1002_elan_201501050
crossref_primary_10_1002_adma_201204944
crossref_primary_10_1021_la403617r
crossref_primary_10_1039_C6RA03810G
crossref_primary_10_1038_s41467_023_37333_y
crossref_primary_10_1002_adom_201901794
crossref_primary_10_1002_cbic_202401067
crossref_primary_10_1039_c3cc45834b
crossref_primary_10_1002_anie_201106198
crossref_primary_10_1016_j_mser_2019_06_003
crossref_primary_10_1039_C3NR06913C
crossref_primary_10_1016_j_snb_2020_128263
crossref_primary_10_1021_acsnano_3c12535
crossref_primary_10_1002_smll_201300458
crossref_primary_10_1557_mrs_2017_275
crossref_primary_10_1021_acsphotonics_7b01580
crossref_primary_10_1021_acsabm_9b01178
crossref_primary_10_1021_acs_jpcc_3c07020
crossref_primary_10_34133_2022_9840131
crossref_primary_10_1002_cphc_202400863
crossref_primary_10_4061_2011_360954
crossref_primary_10_7498_aps_70_20201437
crossref_primary_10_1002_adma_202212024
crossref_primary_10_1021_nn303767b
crossref_primary_10_1016_j_asems_2024_100133
crossref_primary_10_1002_cjoc_201800173
crossref_primary_10_1002_adma_202100381
crossref_primary_10_1002_adtp_201800042
crossref_primary_10_1088_0957_4484_23_50_505603
crossref_primary_10_1021_acs_chemmater_6b04150
crossref_primary_10_1002_9780470559277_ch130187
crossref_primary_10_1002_adfm_202112331
crossref_primary_10_1002_ange_201304631
crossref_primary_10_1007_s40242_020_9035_3
crossref_primary_10_1021_acsnano_7b06470
crossref_primary_10_1039_C4TC00460D
crossref_primary_10_1002_smll_201805428
crossref_primary_10_7498_aps_70_20201689
crossref_primary_10_1016_j_nanoen_2014_05_007
crossref_primary_10_1021_am5008886
crossref_primary_10_1021_acsbiomaterials_9b00907
crossref_primary_10_1002_admi_201500156
crossref_primary_10_1021_acs_chemrev_8b00570
crossref_primary_10_1039_C5CC09853J
crossref_primary_10_1002_cplu_201200096
crossref_primary_10_1021_nn202074v
crossref_primary_10_3762_bjnano_8_236
crossref_primary_10_1016_j_elecom_2012_12_010
crossref_primary_10_1021_acs_analchem_6b04033
crossref_primary_10_1038_pj_2017_63
crossref_primary_10_1039_C8CS00011E
crossref_primary_10_1007_s00396_018_4432_6
crossref_primary_10_1111_php_12118
crossref_primary_10_1039_c3sm50710f
crossref_primary_10_1016_j_nantod_2019_03_004
crossref_primary_10_1007_s12274_020_2672_5
crossref_primary_10_1038_ncomms2690
crossref_primary_10_1111_php_12232
crossref_primary_10_1002_anie_201304631
crossref_primary_10_1021_ja3076692
crossref_primary_10_1039_C5CC01131K
crossref_primary_10_1088_2399_1984_aaf7d5
crossref_primary_10_1039_c1ic90017j
crossref_primary_10_1016_j_cocis_2018_09_006
crossref_primary_10_1021_acs_bioconjchem_5b00352
crossref_primary_10_1021_acsabm_4c00124
crossref_primary_10_1021_nn405281s
crossref_primary_10_1038_nnano_2011_187
crossref_primary_10_7498_aps_70_20201430
crossref_primary_10_1007_s41315_018_0074_6
crossref_primary_10_1016_j_cis_2011_11_001
crossref_primary_10_1016_j_snb_2017_10_021
crossref_primary_10_1002_smll_201100465
crossref_primary_10_1088_0957_4484_25_2_025707
crossref_primary_10_3390_ijms19103019
crossref_primary_10_1007_s40242_020_9073_x
crossref_primary_10_1039_c1cs15057j
crossref_primary_10_1080_20022727_2018_1430976
Cites_doi 10.1021/nl034720q
10.1021/nl902535q
10.1039/B718440A
10.1063/1.1338967
10.1038/nature08016
10.3390/s8010290
10.1002/1521-3773(20020703)41:13<2323::AID-ANIE2323>3.0.CO;2-H
10.1021/nl025612r
10.1002/anie.200504022
10.1016/j.matlet.2008.01.131
10.1038/nnano.2009.450
10.1021/nl035124z
10.1038/nature04586
10.1038/35826
10.1038/nnano.2009.220
10.1021/la061740+
10.1002/smll.200600534
10.1021/nl050108i
10.1002/1521-4095(200112)13:23<1793::AID-ADMA1793>3.0.CO;2-V
10.1021/nl034016+
10.1088/0957-4484/18/12/125205
10.1038/nature01406
10.1021/jp037800r
10.1126/science.1091022
10.1073/pnas.83.15.5469
10.1021/bi00312a022
10.1063/1.2234282
10.1126/science.1089389
10.1073/pnas.0305860101
10.1021/nl020259a
10.1007/s003390201289
10.1021/la801633r
10.1126/science.1071247
10.1021/cm047970w
10.1021/la900939c
10.1021/nl1033073
10.1002/adma.200701803
10.1016/j.physe.2005.11.010
ContentType Journal Article
Copyright Copyright © 2011 American Chemical Society
Copyright_xml – notice: Copyright © 2011 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/nn1035075
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 2247
ExternalDocumentID 21323323
10_1021_nn1035075
a214381271
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a380t-3a1c1d1d7f3d09bec7d0ffe709521a258eaf76a0bfef21e402da4cc376a0c7b33
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 05:57:17 EDT 2025
Thu Apr 03 07:02:08 EDT 2025
Tue Jul 01 03:03:53 EDT 2025
Thu Apr 24 23:00:01 EDT 2025
Thu Aug 27 13:42:35 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords DNA origami
DNA metallization
nanoelectronic circuits
Au
electroless deposition
nanowire
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a380t-3a1c1d1d7f3d09bec7d0ffe709521a258eaf76a0bfef21e402da4cc376a0c7b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21323323
PQID 858280337
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_858280337
pubmed_primary_21323323
crossref_primary_10_1021_nn1035075
crossref_citationtrail_10_1021_nn1035075
acs_journals_10_1021_nn1035075
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-22
PublicationDateYYYYMMDD 2011-03-22
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2011
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Harnack O. (ref15/cit15) 2002; 2
Patolsky F. (ref35/cit35) 2002; 41
Hertzberg R. P. (ref37/cit37) 1984; 23
Ding B. Q. (ref6/cit6) 2010; 10
Gu Q. (ref31/cit31) 2006; 33
Kundu S. (ref25/cit25) 2009; 25
Ford W. E. (ref26/cit26) 2001; 13
Tullius T. D. (ref36/cit36) 1986; 83
Keren K. (ref2/cit2) 2003; 302
Monson C. F. (ref29/cit29) 2003; 3
Becerril H. A. (ref34/cit34) 2009; 38
Yan H. (ref10/cit10) 2003; 301
Kershner R. J. (ref7/cit7) 2009; 4
Kundu S. (ref19/cit19) 2008; 24
Aherne D. (ref14/cit14) 2007; 18
Nguyen K. (ref24/cit24) 2008; 20
Hung A. M. (ref8/cit8) 2010; 5
Liu D. (ref11/cit11) 2004; 101
Ongaro A. (ref18/cit18) 2005; 17
Yogeswaran U. (ref38/cit38) 2008; 8
Seidel R. (ref27/cit27) 2004; 108
Richter J. (ref20/cit20) 2001; 78
Seeman N. C. (ref1/cit1) 2003; 421
Keren K. (ref16/cit16) 2004; 4
Deng Z. X. (ref22/cit22) 2003; 3
Rothemund P. W. K. (ref3/cit3) 2006; 440
Park S. H. (ref12/cit12) 2005; 5
Douglas S. M. (ref4/cit4) 2009; 459
Mertig M. (ref28/cit28) 2002; 2
Park S. H. (ref13/cit13) 2006; 89
Gu Q. (ref32/cit32) 2008; 62
Fischler M. (ref33/cit33) 2007; 3
Pound E. (ref5/cit5) 2009; 9
Liu H. P. (ref23/cit23) 2006; 45
Keren K. (ref17/cit17) 2002; 297
Braun E. (ref9/cit9) 1998; 391
Becerril H. A. (ref30/cit30) 2006; 22
Richter J. (ref21/cit21) 2002; 74
References_xml – volume: 3
  start-page: 1545
  year: 2003
  ident: ref22/cit22
  publication-title: Nano Lett.
  doi: 10.1021/nl034720q
– volume: 9
  start-page: 4302
  year: 2009
  ident: ref5/cit5
  publication-title: Nano Lett.
  doi: 10.1021/nl902535q
– volume: 38
  start-page: 329
  year: 2009
  ident: ref34/cit34
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B718440A
– volume: 78
  start-page: 536
  year: 2001
  ident: ref20/cit20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1338967
– volume: 459
  start-page: 414
  year: 2009
  ident: ref4/cit4
  publication-title: Nature
  doi: 10.1038/nature08016
– volume: 8
  start-page: 290
  year: 2008
  ident: ref38/cit38
  publication-title: Sensors
  doi: 10.3390/s8010290
– volume: 41
  start-page: 2323
  year: 2002
  ident: ref35/cit35
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20020703)41:13<2323::AID-ANIE2323>3.0.CO;2-H
– volume: 2
  start-page: 841
  year: 2002
  ident: ref28/cit28
  publication-title: Nano Lett.
  doi: 10.1021/nl025612r
– volume: 45
  start-page: 1942
  year: 2006
  ident: ref23/cit23
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200504022
– volume: 62
  start-page: 3047
  year: 2008
  ident: ref32/cit32
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2008.01.131
– volume: 5
  start-page: 121
  year: 2010
  ident: ref8/cit8
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.450
– volume: 4
  start-page: 323
  year: 2004
  ident: ref16/cit16
  publication-title: Nano Lett.
  doi: 10.1021/nl035124z
– volume: 440
  start-page: 297
  year: 2006
  ident: ref3/cit3
  publication-title: Nature
  doi: 10.1038/nature04586
– volume: 391
  start-page: 775
  year: 1998
  ident: ref9/cit9
  publication-title: Nature
  doi: 10.1038/35826
– volume: 4
  start-page: 557
  year: 2009
  ident: ref7/cit7
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.220
– volume: 22
  start-page: 10140
  year: 2006
  ident: ref30/cit30
  publication-title: Langmuir
  doi: 10.1021/la061740+
– volume: 3
  start-page: 1049
  year: 2007
  ident: ref33/cit33
  publication-title: Small
  doi: 10.1002/smll.200600534
– volume: 5
  start-page: 693
  year: 2005
  ident: ref12/cit12
  publication-title: Nano Lett.
  doi: 10.1021/nl050108i
– volume: 13
  start-page: 1793
  year: 2001
  ident: ref26/cit26
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200112)13:23<1793::AID-ADMA1793>3.0.CO;2-V
– volume: 3
  start-page: 359
  year: 2003
  ident: ref29/cit29
  publication-title: Nano Lett.
  doi: 10.1021/nl034016+
– volume: 18
  start-page: 125205
  year: 2007
  ident: ref14/cit14
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/12/125205
– volume: 421
  start-page: 427
  year: 2003
  ident: ref1/cit1
  publication-title: Nature
  doi: 10.1038/nature01406
– volume: 108
  start-page: 10801
  year: 2004
  ident: ref27/cit27
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp037800r
– volume: 302
  start-page: 1380
  year: 2003
  ident: ref2/cit2
  publication-title: Science
  doi: 10.1126/science.1091022
– volume: 83
  start-page: 5469
  year: 1986
  ident: ref36/cit36
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.83.15.5469
– volume: 23
  start-page: 3934
  year: 1984
  ident: ref37/cit37
  publication-title: Biochemistry
  doi: 10.1021/bi00312a022
– volume: 89
  start-page: 033901
  year: 2006
  ident: ref13/cit13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2234282
– volume: 301
  start-page: 1882
  year: 2003
  ident: ref10/cit10
  publication-title: Science
  doi: 10.1126/science.1089389
– volume: 101
  start-page: 717
  year: 2004
  ident: ref11/cit11
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0305860101
– volume: 2
  start-page: 919
  year: 2002
  ident: ref15/cit15
  publication-title: Nano Lett.
  doi: 10.1021/nl020259a
– volume: 74
  start-page: 725
  year: 2002
  ident: ref21/cit21
  publication-title: Appl. Phys. A
  doi: 10.1007/s003390201289
– volume: 24
  start-page: 9668
  year: 2008
  ident: ref19/cit19
  publication-title: Langmuir
  doi: 10.1021/la801633r
– volume: 297
  start-page: 72
  year: 2002
  ident: ref17/cit17
  publication-title: Science
  doi: 10.1126/science.1071247
– volume: 17
  start-page: 1959
  year: 2005
  ident: ref18/cit18
  publication-title: Chem. Mater.
  doi: 10.1021/cm047970w
– volume: 25
  start-page: 10146
  year: 2009
  ident: ref25/cit25
  publication-title: Langmuir
  doi: 10.1021/la900939c
– volume: 10
  start-page: 5065
  year: 2010
  ident: ref6/cit6
  publication-title: Nano Lett.
  doi: 10.1021/nl1033073
– volume: 20
  start-page: 1099
  year: 2008
  ident: ref24/cit24
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200701803
– volume: 33
  start-page: 92
  year: 2006
  ident: ref31/cit31
  publication-title: Physica E
  doi: 10.1016/j.physe.2005.11.010
SSID ssj0057876
Score 2.4362655
Snippet This work examines the metallization of folded DNA, known as DNA origami, as an enabling step toward the use of such DNA as templates for nanoelectronic...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2240
SubjectTerms DNA - chemistry
DNA - ultrastructure
Electronics - instrumentation
Equipment Design
Equipment Failure Analysis
Metals - chemistry
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology - instrumentation
Particle Size
Title Metallization of Branched DNA Origami for Nanoelectronic Circuit Fabrication
URI http://dx.doi.org/10.1021/nn1035075
https://www.ncbi.nlm.nih.gov/pubmed/21323323
https://www.proquest.com/docview/858280337
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JT-swEB6xXB4HtsdSNlnAgUvASxKbYylUCLEcHkjcIseLqIAUtemFX8-4SQpPbFJOkeNYnvHMN_7sGYB96kJRQh8iVcsjtJIqUpomkUpjFSNAMdSPD8hep-d38cV9cj8Fe98w-JwdFQUL7JdMpmGWp0qGCKvd-deY26BxaUUd4w8RPzTpgz5-GlyPGf7ver7Bk2O_0l2A0-Z2TnWc5PFwVOaH5vVzssafhrwI8zWuJO1KEZZgyhXLMPch2-BfuLxyiLSf6ouXpO_JSaiq8eAsOb1ukxuM0_VzjyCKJWhz--8FckinNzCjXkm6Oh_Ue3wrcNc9u-2cR3UxhUgLRctIaGaYZVZ6YekxSk5a6r2TCLE40zxRTnuZapp75zlzGFZaHRsjwjsjcyFWYaboF24diPWeKuxAJvlxnDCDEFDGJrYil9YyR1uwg7Od1YthmI15bs6yybS04KARRGbqVOShIsbTV013J01fqvwbXzUijTQzXB2B8tCF64-GmQqsIBVCtmCtkvKkF45xuMBn47fRbsKfaiNZRJxvwUw5GLltRCJlvjPWxDeQ6tS7
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDsCBfSlLsRAHLgEvSZ0eS6EqUMoBKnGLHC-iAlLUpBe-nnGSlkVFIOUUOc7IY8-88dhvEDomxhUltC5S1cwDKxl6oSSBF9b80AeAoojND8h2a-2ef_0YPJY0Oe4uDAiRQk9pnsT_ZBegZ0lCXRJMBLNoHkAIc4FWo3k_trpu4tWKDDL8F2DEmEXo66fOA6n0uwf6BVbm7qW1UtQpygXLT5U8n46y-FS9_-Bs_J_kq2i5RJm4UUyLNTRjknW09IV7cAN1bg3g7pfyGiYeWHzuamw8GY0vug18B1G7fO1jwLQYLPDgs1wObvaHatTPcEvGw3LHbxP1WpcPzbZXllbwJA9J5nFJFdVUC8s1qYMehSbWGgGAi1HJgtBIK2qSxNZYRg0EmVr6SnH3TomY8y00lwwSs4OwtpaE0IEI4rofUAWAUPjK1zwWWlNDKqgKoxKVSyON8qw3o9FkWCroZKyPSJXE5K4-xsu0pkeTpm8FG8e0Rnis1AjWikuAyMQMRmkUuhwh4VxU0Hah7EkvDKJyDs_uX9IeooX2w20n6lx1b_bQYrHFzD3G9tFcNhyZA8AoWVzNJ-cH84PdHA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xSAgO7EtZLcSBS8COkzocS6FiLUiAxC1yvIiKkqImvfD1jJO0LAKBlFPkOCPPjP3Gz54B2KPGFSW0LlLVvoezZORFkoZeVA-iAAGKorY4INuunz0EF4_hYxUourswKESGPWUFie-8-lXbKsMAO0xT5ogwEY7DpKPrXLDVaN4NZ15nfPWSRcZ_I5QYZhL6_KlbhVT2dRX6BVoWS0xrDm5GwhUnS54PBnlyoN6-5W38v_TzMFuhTdIozWMBxky6CDOfchAuwdW1Qfzdra5jkp4lx67WxpPR5KTdIDcYvcuXDkFsS3Am7n2UzSHNTl8NOjlpyaRf7fwtw0Pr9L555lUlFjzJI5p7XDLFNNPCck2PUJ9CU2uNQODlM-mHkZFW1CVNrLE-Mxhsahkoxd07JRLOV2Ai7aVmDYi2lkbYgQiToyBkCoGhCFSgeSK0ZobWYBtHJq5cJIsL9ttn8WhYarA_1EmsqgTlrk5G96emu6Omr2VWjp8akaFiY_QZR4TI1PQGWRw5rpByLmqwWip81IuP0TnHZ_0vaXdg6vakFV-dty83YLrcaeae72_CRN4fmC2EKnmyXdjnO1AY358
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metallization+of+branched+DNA+origami+for+nanoelectronic+circuit+fabrication&rft.jtitle=ACS+nano&rft.au=Liu%2C+Jianfei&rft.au=Geng%2C+Yanli&rft.au=Pound%2C+Elisabeth&rft.au=Gyawali%2C+Shailendra&rft.date=2011-03-22&rft.eissn=1936-086X&rft.volume=5&rft.issue=3&rft.spage=2240&rft_id=info:doi/10.1021%2Fnn1035075&rft_id=info%3Apmid%2F21323323&rft.externalDocID=21323323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon