Metallization of Branched DNA Origami for Nanoelectronic Circuit Fabrication
This work examines the metallization of folded DNA, known as DNA origami, as an enabling step toward the use of such DNA as templates for nanoelectronic circuits. DNA origami, a simple and robust method for creating a wide variety of shapes and patterns, makes possible the increased complexity and f...
Saved in:
Published in | ACS nano Vol. 5; no. 3; pp. 2240 - 2247 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.03.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work examines the metallization of folded DNA, known as DNA origami, as an enabling step toward the use of such DNA as templates for nanoelectronic circuits. DNA origami, a simple and robust method for creating a wide variety of shapes and patterns, makes possible the increased complexity and flexibility needed for both the design and assembly of useful circuit templates. In addition, selective metallization of the DNA template is essential for circuit fabrication. Metallization of DNA origami presents several challenges over and above those associated with the metallization of other DNA templates such as λ-DNA. These challenges include (1) the stability of the origami in the processes used for metallization, (2) the enhanced selectivity required to metallize small origami structures, (3) the increased difficulty of adhering small structures to the surface so that they will not be removed when subject to multiple metallization steps, and (4) the influence of excess staple strands present with the origami. This paper describes our efforts to understand and address these challenges. Specifically, the influence of experimental conditions on template stability and on the selectivity of metal deposition was investigated for small DNA origami templates. These templates were seeded with Ag and then plated with Au via an electroless deposition process. Both staple strand concentration and the concentration of ions in solution were found to have a significant impact. Selective continuous metal deposition was achieved, with an average metallized height as small as 32 nm. The shape of branched origami was also retained after metallization. These results represent important progress toward the realization of DNA-templated nanocircuits. |
---|---|
AbstractList | This work examines the metallization of folded DNA, known as DNA origami, as an enabling step toward the use of such DNA as templates for nanoelectronic circuits. DNA origami, a simple and robust method for creating a wide variety of shapes and patterns, makes possible the increased complexity and flexibility needed for both the design and assembly of useful circuit templates. In addition, selective metallization of the DNA template is essential for circuit fabrication. Metallization of DNA origami presents several challenges over and above those associated with the metallization of other DNA templates such as λ-DNA. These challenges include (1) the stability of the origami in the processes used for metallization, (2) the enhanced selectivity required to metallize small origami structures, (3) the increased difficulty of adhering small structures to the surface so that they will not be removed when subject to multiple metallization steps, and (4) the influence of excess staple strands present with the origami. This paper describes our efforts to understand and address these challenges. Specifically, the influence of experimental conditions on template stability and on the selectivity of metal deposition was investigated for small DNA origami templates. These templates were seeded with Ag and then plated with Au via an electroless deposition process. Both staple strand concentration and the concentration of ions in solution were found to have a significant impact. Selective continuous metal deposition was achieved, with an average metallized height as small as 32 nm. The shape of branched origami was also retained after metallization. These results represent important progress toward the realization of DNA-templated nanocircuits.This work examines the metallization of folded DNA, known as DNA origami, as an enabling step toward the use of such DNA as templates for nanoelectronic circuits. DNA origami, a simple and robust method for creating a wide variety of shapes and patterns, makes possible the increased complexity and flexibility needed for both the design and assembly of useful circuit templates. In addition, selective metallization of the DNA template is essential for circuit fabrication. Metallization of DNA origami presents several challenges over and above those associated with the metallization of other DNA templates such as λ-DNA. These challenges include (1) the stability of the origami in the processes used for metallization, (2) the enhanced selectivity required to metallize small origami structures, (3) the increased difficulty of adhering small structures to the surface so that they will not be removed when subject to multiple metallization steps, and (4) the influence of excess staple strands present with the origami. This paper describes our efforts to understand and address these challenges. Specifically, the influence of experimental conditions on template stability and on the selectivity of metal deposition was investigated for small DNA origami templates. These templates were seeded with Ag and then plated with Au via an electroless deposition process. Both staple strand concentration and the concentration of ions in solution were found to have a significant impact. Selective continuous metal deposition was achieved, with an average metallized height as small as 32 nm. The shape of branched origami was also retained after metallization. These results represent important progress toward the realization of DNA-templated nanocircuits. This work examines the metallization of folded DNA, known as DNA origami, as an enabling step toward the use of such DNA as templates for nanoelectronic circuits. DNA origami, a simple and robust method for creating a wide variety of shapes and patterns, makes possible the increased complexity and flexibility needed for both the design and assembly of useful circuit templates. In addition, selective metallization of the DNA template is essential for circuit fabrication. Metallization of DNA origami presents several challenges over and above those associated with the metallization of other DNA templates such as λ-DNA. These challenges include (1) the stability of the origami in the processes used for metallization, (2) the enhanced selectivity required to metallize small origami structures, (3) the increased difficulty of adhering small structures to the surface so that they will not be removed when subject to multiple metallization steps, and (4) the influence of excess staple strands present with the origami. This paper describes our efforts to understand and address these challenges. Specifically, the influence of experimental conditions on template stability and on the selectivity of metal deposition was investigated for small DNA origami templates. These templates were seeded with Ag and then plated with Au via an electroless deposition process. Both staple strand concentration and the concentration of ions in solution were found to have a significant impact. Selective continuous metal deposition was achieved, with an average metallized height as small as 32 nm. The shape of branched origami was also retained after metallization. These results represent important progress toward the realization of DNA-templated nanocircuits. |
Author | Geng, Yanli Pound, Elisabeth Hickey, John Harb, John N Ashton, Jeffrey R Gyawali, Shailendra Liu, Jianfei Woolley, Adam T |
AuthorAffiliation | Brigham Young University |
AuthorAffiliation_xml | – name: Brigham Young University |
Author_xml | – sequence: 1 givenname: Jianfei surname: Liu fullname: Liu, Jianfei – sequence: 2 givenname: Yanli surname: Geng fullname: Geng, Yanli – sequence: 3 givenname: Elisabeth surname: Pound fullname: Pound, Elisabeth – sequence: 4 givenname: Shailendra surname: Gyawali fullname: Gyawali, Shailendra – sequence: 5 givenname: Jeffrey R surname: Ashton fullname: Ashton, Jeffrey R – sequence: 6 givenname: John surname: Hickey fullname: Hickey, John – sequence: 7 givenname: Adam T surname: Woolley fullname: Woolley, Adam T – sequence: 8 givenname: John N surname: Harb fullname: Harb, John N email: john_harb@byu.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21323323$$D View this record in MEDLINE/PubMed |
BookMark | eNptkE1LAzEQhoMo9kMP_gHJRcTD2mTT3WyPtVoVantR8LbMZhNN2U1qkj3or3f7YQ9SGJhheN6BeXro2FgjEbqg5JaSmA6MoYQlhCdHqEtHLI1Ilr4f7-eEdlDP-yUhCc94eoo6MWUxa6uLZi8yQFXpHwjaGmwVvnNgxKcs8f18jBdOf0CtsbIOz8FYWUkRnDVa4Il2otEBT6FwWmziZ-hEQeXl-a730dv04XXyFM0Wj8-T8SwClpEQMaCClrTkipVkVEjBS6KU5GSUxBTiJJOgeAqkUFLFVA5JXMJQCLbeCV4w1kfX27srZ78a6UNeay9kVYGRtvF5lmRxRhjjLXm5I5uilmW-croG953_CWiBmy0gnPXeSbVHKMnXcvO93JYd_GOFDpvHgwNdHUxcbRMgfL60jTOtlgPcLyZ2ht4 |
CitedBy_id | crossref_primary_10_1021_ja406965f crossref_primary_10_1021_la305155u crossref_primary_10_1002_cbic_201402014 crossref_primary_10_1021_acsami_1c13173 crossref_primary_10_1134_S1811238212070077 crossref_primary_10_1039_C5AN00861A crossref_primary_10_1002_sstr_202200376 crossref_primary_10_1021_cm5044914 crossref_primary_10_1016_j_pmatsci_2017_04_001 crossref_primary_10_1039_C3NR06767J crossref_primary_10_1021_acs_langmuir_6b04097 crossref_primary_10_1002_smll_201601926 crossref_primary_10_1002_ijch_201500031 crossref_primary_10_1039_c3nr02362a crossref_primary_10_1021_acsnano_5b05159 crossref_primary_10_1021_acs_nanolett_9b00740 crossref_primary_10_1021_acsami_8b16194 crossref_primary_10_1016_j_ymeth_2013_10_006 crossref_primary_10_1038_s43586_020_00009_8 crossref_primary_10_1021_nl202066c crossref_primary_10_1088_1361_6528_acb4f2 crossref_primary_10_7498_aps_66_147101 crossref_primary_10_1002_anie_201105846 crossref_primary_10_3390_nano6080146 crossref_primary_10_1021_jp302316p crossref_primary_10_1021_nl503441v crossref_primary_10_1021_acs_chemrev_6b00825 crossref_primary_10_1016_j_ultramic_2019_01_001 crossref_primary_10_1080_10408347_2014_910636 crossref_primary_10_1088_1367_2630_18_2_025016 crossref_primary_10_1002_ange_201106198 crossref_primary_10_1002_sstr_202200361 crossref_primary_10_1039_c2jm31839c crossref_primary_10_1116_1_4879417 crossref_primary_10_1126_sciadv_abf0617 crossref_primary_10_3390_nano11071655 crossref_primary_10_1038_s41467_019_13507_5 crossref_primary_10_1021_acs_langmuir_6b01830 crossref_primary_10_1021_acsami_9b23608 crossref_primary_10_1039_C5NR02300A crossref_primary_10_1021_cm5019663 crossref_primary_10_1002_cphc_201701228 crossref_primary_10_3390_ijms13067149 crossref_primary_10_1021_jacs_6b03966 crossref_primary_10_1021_acs_langmuir_6b01961 crossref_primary_10_1021_jacs_1c00363 crossref_primary_10_1039_c1jm11932j crossref_primary_10_1016_j_biomaterials_2022_121532 crossref_primary_10_1039_D1OB01621K crossref_primary_10_1002_ange_201600924 crossref_primary_10_1021_acs_langmuir_8b02225 crossref_primary_10_1039_C3NR04627C crossref_primary_10_1021_acscentsci_1c01272 crossref_primary_10_1021_la402678j crossref_primary_10_1021_acs_orglett_5b00035 crossref_primary_10_3390_s150819912 crossref_primary_10_1007_s11051_018_4225_3 crossref_primary_10_1021_ja500439v crossref_primary_10_1021_acssensors_9b00877 crossref_primary_10_1002_smtd_202400694 crossref_primary_10_1007_s41061_020_0301_0 crossref_primary_10_1021_acs_nanolett_8b00344 crossref_primary_10_1039_C2CS35302D crossref_primary_10_1021_acs_nanolett_0c02511 crossref_primary_10_1021_acs_jpcb_4c00445 crossref_primary_10_1002_chem_201705131 crossref_primary_10_1021_ar400305g crossref_primary_10_3762_bjnano_6_148 crossref_primary_10_1007_s12274_015_0724_z crossref_primary_10_1021_acssensors_9b01053 crossref_primary_10_1126_science_1258361 crossref_primary_10_1039_C6SC01306F crossref_primary_10_1042_BST20150077 crossref_primary_10_3390_molecules23040828 crossref_primary_10_1002_anie_201600924 crossref_primary_10_1016_j_chempr_2020_06_012 crossref_primary_10_1063_1_4871102 crossref_primary_10_1002_smll_202003662 crossref_primary_10_1002_adfm_201303818 crossref_primary_10_1002_smll_202103877 crossref_primary_10_1002_ange_201105846 crossref_primary_10_1541_ieejsmas_136_425 crossref_primary_10_1063_5_0025776 crossref_primary_10_1002_elan_201501050 crossref_primary_10_1002_adma_201204944 crossref_primary_10_1021_la403617r crossref_primary_10_1039_C6RA03810G crossref_primary_10_1038_s41467_023_37333_y crossref_primary_10_1002_adom_201901794 crossref_primary_10_1002_cbic_202401067 crossref_primary_10_1039_c3cc45834b crossref_primary_10_1002_anie_201106198 crossref_primary_10_1016_j_mser_2019_06_003 crossref_primary_10_1039_C3NR06913C crossref_primary_10_1016_j_snb_2020_128263 crossref_primary_10_1021_acsnano_3c12535 crossref_primary_10_1002_smll_201300458 crossref_primary_10_1557_mrs_2017_275 crossref_primary_10_1021_acsphotonics_7b01580 crossref_primary_10_1021_acsabm_9b01178 crossref_primary_10_1021_acs_jpcc_3c07020 crossref_primary_10_34133_2022_9840131 crossref_primary_10_1002_cphc_202400863 crossref_primary_10_4061_2011_360954 crossref_primary_10_7498_aps_70_20201437 crossref_primary_10_1002_adma_202212024 crossref_primary_10_1021_nn303767b crossref_primary_10_1016_j_asems_2024_100133 crossref_primary_10_1002_cjoc_201800173 crossref_primary_10_1002_adma_202100381 crossref_primary_10_1002_adtp_201800042 crossref_primary_10_1088_0957_4484_23_50_505603 crossref_primary_10_1021_acs_chemmater_6b04150 crossref_primary_10_1002_9780470559277_ch130187 crossref_primary_10_1002_adfm_202112331 crossref_primary_10_1002_ange_201304631 crossref_primary_10_1007_s40242_020_9035_3 crossref_primary_10_1021_acsnano_7b06470 crossref_primary_10_1039_C4TC00460D crossref_primary_10_1002_smll_201805428 crossref_primary_10_7498_aps_70_20201689 crossref_primary_10_1016_j_nanoen_2014_05_007 crossref_primary_10_1021_am5008886 crossref_primary_10_1021_acsbiomaterials_9b00907 crossref_primary_10_1002_admi_201500156 crossref_primary_10_1021_acs_chemrev_8b00570 crossref_primary_10_1039_C5CC09853J crossref_primary_10_1002_cplu_201200096 crossref_primary_10_1021_nn202074v crossref_primary_10_3762_bjnano_8_236 crossref_primary_10_1016_j_elecom_2012_12_010 crossref_primary_10_1021_acs_analchem_6b04033 crossref_primary_10_1038_pj_2017_63 crossref_primary_10_1039_C8CS00011E crossref_primary_10_1007_s00396_018_4432_6 crossref_primary_10_1111_php_12118 crossref_primary_10_1039_c3sm50710f crossref_primary_10_1016_j_nantod_2019_03_004 crossref_primary_10_1007_s12274_020_2672_5 crossref_primary_10_1038_ncomms2690 crossref_primary_10_1111_php_12232 crossref_primary_10_1002_anie_201304631 crossref_primary_10_1021_ja3076692 crossref_primary_10_1039_C5CC01131K crossref_primary_10_1088_2399_1984_aaf7d5 crossref_primary_10_1039_c1ic90017j crossref_primary_10_1016_j_cocis_2018_09_006 crossref_primary_10_1021_acs_bioconjchem_5b00352 crossref_primary_10_1021_acsabm_4c00124 crossref_primary_10_1021_nn405281s crossref_primary_10_1038_nnano_2011_187 crossref_primary_10_7498_aps_70_20201430 crossref_primary_10_1007_s41315_018_0074_6 crossref_primary_10_1016_j_cis_2011_11_001 crossref_primary_10_1016_j_snb_2017_10_021 crossref_primary_10_1002_smll_201100465 crossref_primary_10_1088_0957_4484_25_2_025707 crossref_primary_10_3390_ijms19103019 crossref_primary_10_1007_s40242_020_9073_x crossref_primary_10_1039_c1cs15057j crossref_primary_10_1080_20022727_2018_1430976 |
Cites_doi | 10.1021/nl034720q 10.1021/nl902535q 10.1039/B718440A 10.1063/1.1338967 10.1038/nature08016 10.3390/s8010290 10.1002/1521-3773(20020703)41:13<2323::AID-ANIE2323>3.0.CO;2-H 10.1021/nl025612r 10.1002/anie.200504022 10.1016/j.matlet.2008.01.131 10.1038/nnano.2009.450 10.1021/nl035124z 10.1038/nature04586 10.1038/35826 10.1038/nnano.2009.220 10.1021/la061740+ 10.1002/smll.200600534 10.1021/nl050108i 10.1002/1521-4095(200112)13:23<1793::AID-ADMA1793>3.0.CO;2-V 10.1021/nl034016+ 10.1088/0957-4484/18/12/125205 10.1038/nature01406 10.1021/jp037800r 10.1126/science.1091022 10.1073/pnas.83.15.5469 10.1021/bi00312a022 10.1063/1.2234282 10.1126/science.1089389 10.1073/pnas.0305860101 10.1021/nl020259a 10.1007/s003390201289 10.1021/la801633r 10.1126/science.1071247 10.1021/cm047970w 10.1021/la900939c 10.1021/nl1033073 10.1002/adma.200701803 10.1016/j.physe.2005.11.010 |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Chemical Society |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/nn1035075 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 2247 |
ExternalDocumentID | 21323323 10_1021_nn1035075 a214381271 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a380t-3a1c1d1d7f3d09bec7d0ffe709521a258eaf76a0bfef21e402da4cc376a0c7b33 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 05:57:17 EDT 2025 Thu Apr 03 07:02:08 EDT 2025 Tue Jul 01 03:03:53 EDT 2025 Thu Apr 24 23:00:01 EDT 2025 Thu Aug 27 13:42:35 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | DNA origami DNA metallization nanoelectronic circuits Au electroless deposition nanowire |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a380t-3a1c1d1d7f3d09bec7d0ffe709521a258eaf76a0bfef21e402da4cc376a0c7b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21323323 |
PQID | 858280337 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_858280337 pubmed_primary_21323323 crossref_primary_10_1021_nn1035075 crossref_citationtrail_10_1021_nn1035075 acs_journals_10_1021_nn1035075 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-03-22 |
PublicationDateYYYYMMDD | 2011-03-22 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Harnack O. (ref15/cit15) 2002; 2 Patolsky F. (ref35/cit35) 2002; 41 Hertzberg R. P. (ref37/cit37) 1984; 23 Ding B. Q. (ref6/cit6) 2010; 10 Gu Q. (ref31/cit31) 2006; 33 Kundu S. (ref25/cit25) 2009; 25 Ford W. E. (ref26/cit26) 2001; 13 Tullius T. D. (ref36/cit36) 1986; 83 Keren K. (ref2/cit2) 2003; 302 Monson C. F. (ref29/cit29) 2003; 3 Becerril H. A. (ref34/cit34) 2009; 38 Yan H. (ref10/cit10) 2003; 301 Kershner R. J. (ref7/cit7) 2009; 4 Kundu S. (ref19/cit19) 2008; 24 Aherne D. (ref14/cit14) 2007; 18 Nguyen K. (ref24/cit24) 2008; 20 Hung A. M. (ref8/cit8) 2010; 5 Liu D. (ref11/cit11) 2004; 101 Ongaro A. (ref18/cit18) 2005; 17 Yogeswaran U. (ref38/cit38) 2008; 8 Seidel R. (ref27/cit27) 2004; 108 Richter J. (ref20/cit20) 2001; 78 Seeman N. C. (ref1/cit1) 2003; 421 Keren K. (ref16/cit16) 2004; 4 Deng Z. X. (ref22/cit22) 2003; 3 Rothemund P. W. K. (ref3/cit3) 2006; 440 Park S. H. (ref12/cit12) 2005; 5 Douglas S. M. (ref4/cit4) 2009; 459 Mertig M. (ref28/cit28) 2002; 2 Park S. H. (ref13/cit13) 2006; 89 Gu Q. (ref32/cit32) 2008; 62 Fischler M. (ref33/cit33) 2007; 3 Pound E. (ref5/cit5) 2009; 9 Liu H. P. (ref23/cit23) 2006; 45 Keren K. (ref17/cit17) 2002; 297 Braun E. (ref9/cit9) 1998; 391 Becerril H. A. (ref30/cit30) 2006; 22 Richter J. (ref21/cit21) 2002; 74 |
References_xml | – volume: 3 start-page: 1545 year: 2003 ident: ref22/cit22 publication-title: Nano Lett. doi: 10.1021/nl034720q – volume: 9 start-page: 4302 year: 2009 ident: ref5/cit5 publication-title: Nano Lett. doi: 10.1021/nl902535q – volume: 38 start-page: 329 year: 2009 ident: ref34/cit34 publication-title: Chem. Soc. Rev. doi: 10.1039/B718440A – volume: 78 start-page: 536 year: 2001 ident: ref20/cit20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1338967 – volume: 459 start-page: 414 year: 2009 ident: ref4/cit4 publication-title: Nature doi: 10.1038/nature08016 – volume: 8 start-page: 290 year: 2008 ident: ref38/cit38 publication-title: Sensors doi: 10.3390/s8010290 – volume: 41 start-page: 2323 year: 2002 ident: ref35/cit35 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20020703)41:13<2323::AID-ANIE2323>3.0.CO;2-H – volume: 2 start-page: 841 year: 2002 ident: ref28/cit28 publication-title: Nano Lett. doi: 10.1021/nl025612r – volume: 45 start-page: 1942 year: 2006 ident: ref23/cit23 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200504022 – volume: 62 start-page: 3047 year: 2008 ident: ref32/cit32 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2008.01.131 – volume: 5 start-page: 121 year: 2010 ident: ref8/cit8 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.450 – volume: 4 start-page: 323 year: 2004 ident: ref16/cit16 publication-title: Nano Lett. doi: 10.1021/nl035124z – volume: 440 start-page: 297 year: 2006 ident: ref3/cit3 publication-title: Nature doi: 10.1038/nature04586 – volume: 391 start-page: 775 year: 1998 ident: ref9/cit9 publication-title: Nature doi: 10.1038/35826 – volume: 4 start-page: 557 year: 2009 ident: ref7/cit7 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.220 – volume: 22 start-page: 10140 year: 2006 ident: ref30/cit30 publication-title: Langmuir doi: 10.1021/la061740+ – volume: 3 start-page: 1049 year: 2007 ident: ref33/cit33 publication-title: Small doi: 10.1002/smll.200600534 – volume: 5 start-page: 693 year: 2005 ident: ref12/cit12 publication-title: Nano Lett. doi: 10.1021/nl050108i – volume: 13 start-page: 1793 year: 2001 ident: ref26/cit26 publication-title: Adv. Mater. doi: 10.1002/1521-4095(200112)13:23<1793::AID-ADMA1793>3.0.CO;2-V – volume: 3 start-page: 359 year: 2003 ident: ref29/cit29 publication-title: Nano Lett. doi: 10.1021/nl034016+ – volume: 18 start-page: 125205 year: 2007 ident: ref14/cit14 publication-title: Nanotechnology doi: 10.1088/0957-4484/18/12/125205 – volume: 421 start-page: 427 year: 2003 ident: ref1/cit1 publication-title: Nature doi: 10.1038/nature01406 – volume: 108 start-page: 10801 year: 2004 ident: ref27/cit27 publication-title: J. Phys. Chem. B doi: 10.1021/jp037800r – volume: 302 start-page: 1380 year: 2003 ident: ref2/cit2 publication-title: Science doi: 10.1126/science.1091022 – volume: 83 start-page: 5469 year: 1986 ident: ref36/cit36 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.83.15.5469 – volume: 23 start-page: 3934 year: 1984 ident: ref37/cit37 publication-title: Biochemistry doi: 10.1021/bi00312a022 – volume: 89 start-page: 033901 year: 2006 ident: ref13/cit13 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2234282 – volume: 301 start-page: 1882 year: 2003 ident: ref10/cit10 publication-title: Science doi: 10.1126/science.1089389 – volume: 101 start-page: 717 year: 2004 ident: ref11/cit11 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0305860101 – volume: 2 start-page: 919 year: 2002 ident: ref15/cit15 publication-title: Nano Lett. doi: 10.1021/nl020259a – volume: 74 start-page: 725 year: 2002 ident: ref21/cit21 publication-title: Appl. Phys. A doi: 10.1007/s003390201289 – volume: 24 start-page: 9668 year: 2008 ident: ref19/cit19 publication-title: Langmuir doi: 10.1021/la801633r – volume: 297 start-page: 72 year: 2002 ident: ref17/cit17 publication-title: Science doi: 10.1126/science.1071247 – volume: 17 start-page: 1959 year: 2005 ident: ref18/cit18 publication-title: Chem. Mater. doi: 10.1021/cm047970w – volume: 25 start-page: 10146 year: 2009 ident: ref25/cit25 publication-title: Langmuir doi: 10.1021/la900939c – volume: 10 start-page: 5065 year: 2010 ident: ref6/cit6 publication-title: Nano Lett. doi: 10.1021/nl1033073 – volume: 20 start-page: 1099 year: 2008 ident: ref24/cit24 publication-title: Adv. Mater. doi: 10.1002/adma.200701803 – volume: 33 start-page: 92 year: 2006 ident: ref31/cit31 publication-title: Physica E doi: 10.1016/j.physe.2005.11.010 |
SSID | ssj0057876 |
Score | 2.4362655 |
Snippet | This work examines the metallization of folded DNA, known as DNA origami, as an enabling step toward the use of such DNA as templates for nanoelectronic... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2240 |
SubjectTerms | DNA - chemistry DNA - ultrastructure Electronics - instrumentation Equipment Design Equipment Failure Analysis Metals - chemistry Nanostructures - chemistry Nanostructures - ultrastructure Nanotechnology - instrumentation Particle Size |
Title | Metallization of Branched DNA Origami for Nanoelectronic Circuit Fabrication |
URI | http://dx.doi.org/10.1021/nn1035075 https://www.ncbi.nlm.nih.gov/pubmed/21323323 https://www.proquest.com/docview/858280337 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JT-swEB6xXB4HtsdSNlnAgUvASxKbYylUCLEcHkjcIseLqIAUtemFX8-4SQpPbFJOkeNYnvHMN_7sGYB96kJRQh8iVcsjtJIqUpomkUpjFSNAMdSPD8hep-d38cV9cj8Fe98w-JwdFQUL7JdMpmGWp0qGCKvd-deY26BxaUUd4w8RPzTpgz5-GlyPGf7ver7Bk2O_0l2A0-Z2TnWc5PFwVOaH5vVzssafhrwI8zWuJO1KEZZgyhXLMPch2-BfuLxyiLSf6ouXpO_JSaiq8eAsOb1ukxuM0_VzjyCKJWhz--8FckinNzCjXkm6Oh_Ue3wrcNc9u-2cR3UxhUgLRctIaGaYZVZ6YekxSk5a6r2TCLE40zxRTnuZapp75zlzGFZaHRsjwjsjcyFWYaboF24diPWeKuxAJvlxnDCDEFDGJrYil9YyR1uwg7Od1YthmI15bs6yybS04KARRGbqVOShIsbTV013J01fqvwbXzUijTQzXB2B8tCF64-GmQqsIBVCtmCtkvKkF45xuMBn47fRbsKfaiNZRJxvwUw5GLltRCJlvjPWxDeQ6tS7 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDsCBfSlLsRAHLgEvSZ0eS6EqUMoBKnGLHC-iAlLUpBe-nnGSlkVFIOUUOc7IY8-88dhvEDomxhUltC5S1cwDKxl6oSSBF9b80AeAoojND8h2a-2ef_0YPJY0Oe4uDAiRQk9pnsT_ZBegZ0lCXRJMBLNoHkAIc4FWo3k_trpu4tWKDDL8F2DEmEXo66fOA6n0uwf6BVbm7qW1UtQpygXLT5U8n46y-FS9_-Bs_J_kq2i5RJm4UUyLNTRjknW09IV7cAN1bg3g7pfyGiYeWHzuamw8GY0vug18B1G7fO1jwLQYLPDgs1wObvaHatTPcEvGw3LHbxP1WpcPzbZXllbwJA9J5nFJFdVUC8s1qYMehSbWGgGAi1HJgtBIK2qSxNZYRg0EmVr6SnH3TomY8y00lwwSs4OwtpaE0IEI4rofUAWAUPjK1zwWWlNDKqgKoxKVSyON8qw3o9FkWCroZKyPSJXE5K4-xsu0pkeTpm8FG8e0Rnis1AjWikuAyMQMRmkUuhwh4VxU0Hah7EkvDKJyDs_uX9IeooX2w20n6lx1b_bQYrHFzD3G9tFcNhyZA8AoWVzNJ-cH84PdHA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xSAgO7EtZLcSBS8COkzocS6FiLUiAxC1yvIiKkqImvfD1jJO0LAKBlFPkOCPPjP3Gz54B2KPGFSW0LlLVvoezZORFkoZeVA-iAAGKorY4INuunz0EF4_hYxUourswKESGPWUFie-8-lXbKsMAO0xT5ogwEY7DpKPrXLDVaN4NZ15nfPWSRcZ_I5QYZhL6_KlbhVT2dRX6BVoWS0xrDm5GwhUnS54PBnlyoN6-5W38v_TzMFuhTdIozWMBxky6CDOfchAuwdW1Qfzdra5jkp4lx67WxpPR5KTdIDcYvcuXDkFsS3Am7n2UzSHNTl8NOjlpyaRf7fwtw0Pr9L555lUlFjzJI5p7XDLFNNPCck2PUJ9CU2uNQODlM-mHkZFW1CVNrLE-Mxhsahkoxd07JRLOV2Ai7aVmDYi2lkbYgQiToyBkCoGhCFSgeSK0ZobWYBtHJq5cJIsL9ttn8WhYarA_1EmsqgTlrk5G96emu6Omr2VWjp8akaFiY_QZR4TI1PQGWRw5rpByLmqwWip81IuP0TnHZ_0vaXdg6vakFV-dty83YLrcaeae72_CRN4fmC2EKnmyXdjnO1AY358 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metallization+of+branched+DNA+origami+for+nanoelectronic+circuit+fabrication&rft.jtitle=ACS+nano&rft.au=Liu%2C+Jianfei&rft.au=Geng%2C+Yanli&rft.au=Pound%2C+Elisabeth&rft.au=Gyawali%2C+Shailendra&rft.date=2011-03-22&rft.eissn=1936-086X&rft.volume=5&rft.issue=3&rft.spage=2240&rft_id=info:doi/10.1021%2Fnn1035075&rft_id=info%3Apmid%2F21323323&rft.externalDocID=21323323 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |