The Development of Catalytic Nucleophilic Additions of Terminal Alkynes in Water
One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their n...
Saved in:
Published in | Accounts of chemical research Vol. 43; no. 4; pp. 581 - 590 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
20.04.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their native states into useful chemical products, thus avoiding the need for protecting groups. The nucleophilic addition of terminal alkynes to various unsaturated electrophiles is a classical (textbook) reaction in organic chemistry, allowing the formation of a C−C bond while simultaneously introducing the alkyne functionality. A prerequisite of this classical reaction is the stoichiometric generation of highly reactive metal acetylides. Over the past decade, our laboratory and others have been exploring an alternative, the catalytic and direct nucleophilic addition of terminal alkynes to unsaturated electrophiles in water. We found that various terminal alkynes can react efficiently with a wide range of such electrophiles in water (or organic solvent) in the presence of simple and readily available catalysts, such as copper, silver, gold, iron, palladium, and others. In this Account, we describe the development of these synthetic methods, focusing primarily on results from our laboratory. Our studies include the following: (i) catalytic reaction of terminal alkynes with acid chloride, (ii) catalytic addition of terminal alkynes to aldehydes and ketones, (iii) catalytic addition of alkynes to CN bonds, and (iv) catalytic conjugate additions. Most importantly, these reactions can tolerate various functional groups and, in many cases, perform better in water than in organic solvents, clearly defying classical reactivities predicated on the relative acidities of water, alcohols, and terminal alkynes. We further discuss multicomponent and enantioselective reactions that were developed. These methods provide an alternative to the traditional requirement of separate steps in classical alkyne reactions, including the pregeneration of metal acetylides with stoichiometric, highly basic reagents and the preprotection of sensitive functional groups. Accordingly, these techniques have greatly enhanced overall synthetic efficiencies and furthered our long-term objective of developing Grignard-type reactions in water. |
---|---|
AbstractList | One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their native states into useful chemical products, thus avoiding the need for protecting groups. The nucleophilic addition of terminal alkynes to various unsaturated electrophiles is a classical (textbook) reaction in organic chemistry, allowing the formation of a C-C bond while simultaneously introducing the alkyne functionality. A prerequisite of this classical reaction is the stoichiometric generation of highly reactive metal acetylides. Over the past decade, our laboratory and others have been exploring an alternative, the catalytic and direct nucleophilic addition of terminal alkynes to unsaturated electrophiles in water. We found that various terminal alkynes can react efficiently with a wide range of such electrophiles in water (or organic solvent) in the presence of simple and readily available catalysts, such as copper, silver, gold, iron, palladium, and others. In this Account, we describe the development of these synthetic methods, focusing primarily on results from our laboratory. Our studies include the following: (i) catalytic reaction of terminal alkynes with acid chloride, (ii) catalytic addition of terminal alkynes to aldehydes and ketones, (iii) catalytic addition of alkynes to C=N bonds, and (iv) catalytic conjugate additions. Most importantly, these reactions can tolerate various functional groups and, in many cases, perform better in water than in organic solvents, clearly defying classical reactivities predicated on the relative acidities of water, alcohols, and terminal alkynes. We further discuss multicomponent and enantioselective reactions that were developed. These methods provide an alternative to the traditional requirement of separate steps in classical alkyne reactions, including the pregeneration of metal acetylides with stoichiometric, highly basic reagents and the preprotection of sensitive functional groups. Accordingly, these techniques have greatly enhanced overall synthetic efficiencies and furthered our long-term objective of developing Grignard-type reactions in water. One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their native states into useful chemical products, thus avoiding the need for protecting groups. The nucleophilic addition of terminal alkynes to various unsaturated electrophiles is a classical (textbook) reaction in organic chemistry, allowing the formation of a C−C bond while simultaneously introducing the alkyne functionality. A prerequisite of this classical reaction is the stoichiometric generation of highly reactive metal acetylides. Over the past decade, our laboratory and others have been exploring an alternative, the catalytic and direct nucleophilic addition of terminal alkynes to unsaturated electrophiles in water. We found that various terminal alkynes can react efficiently with a wide range of such electrophiles in water (or organic solvent) in the presence of simple and readily available catalysts, such as copper, silver, gold, iron, palladium, and others. In this Account, we describe the development of these synthetic methods, focusing primarily on results from our laboratory. Our studies include the following: (i) catalytic reaction of terminal alkynes with acid chloride, (ii) catalytic addition of terminal alkynes to aldehydes and ketones, (iii) catalytic addition of alkynes to CN bonds, and (iv) catalytic conjugate additions. Most importantly, these reactions can tolerate various functional groups and, in many cases, perform better in water than in organic solvents, clearly defying classical reactivities predicated on the relative acidities of water, alcohols, and terminal alkynes. We further discuss multicomponent and enantioselective reactions that were developed. These methods provide an alternative to the traditional requirement of separate steps in classical alkyne reactions, including the pregeneration of metal acetylides with stoichiometric, highly basic reagents and the preprotection of sensitive functional groups. Accordingly, these techniques have greatly enhanced overall synthetic efficiencies and furthered our long-term objective of developing Grignard-type reactions in water. One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their native states into useful chemical products, thus avoiding the need for protecting groups. The nucleophilic addition of terminal alkynes to various unsaturated electrophiles is a classical (textbook) reaction in organic chemistry, allowing the formation of a C-C bond while simultaneously introducing the alkyne functionality. A prerequisite of this classical reaction is the stoichiometric generation of highly reactive metal acetylides. Over the past decade, our laboratory and others have been exploring an alternative, the catalytic and direct nucleophilic addition of terminal alkynes to unsaturated electrophiles in water. We found that various terminal alkynes can react efficiently with a wide range of such electrophiles in water (or organic solvent) in the presence of simple and readily available catalysts, such as copper, silver, gold, iron, palladium, and others. In this Account, we describe the development of these synthetic methods, focusing primarily on results from our laboratory. Our studies include the following: (i) catalytic reaction of terminal alkynes with acid chloride, (ii) catalytic addition of terminal alkynes to aldehydes and ketones, (iii) catalytic addition of alkynes to C=N bonds, and (iv) catalytic conjugate additions. Most importantly, these reactions can tolerate various functional groups and, in many cases, perform better in water than in organic solvents, clearly defying classical reactivities predicated on the relative acidities of water, alcohols, and terminal alkynes. We further discuss multicomponent and enantioselective reactions that were developed. These methods provide an alternative to the traditional requirement of separate steps in classical alkyne reactions, including the pregeneration of metal acetylides with stoichiometric, highly basic reagents and the preprotection of sensitive functional groups. Accordingly, these techniques have greatly enhanced overall synthetic efficiencies and furthered our long-term objective of developing Grignard-type reactions in water.One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their native states into useful chemical products, thus avoiding the need for protecting groups. The nucleophilic addition of terminal alkynes to various unsaturated electrophiles is a classical (textbook) reaction in organic chemistry, allowing the formation of a C-C bond while simultaneously introducing the alkyne functionality. A prerequisite of this classical reaction is the stoichiometric generation of highly reactive metal acetylides. Over the past decade, our laboratory and others have been exploring an alternative, the catalytic and direct nucleophilic addition of terminal alkynes to unsaturated electrophiles in water. We found that various terminal alkynes can react efficiently with a wide range of such electrophiles in water (or organic solvent) in the presence of simple and readily available catalysts, such as copper, silver, gold, iron, palladium, and others. In this Account, we describe the development of these synthetic methods, focusing primarily on results from our laboratory. Our studies include the following: (i) catalytic reaction of terminal alkynes with acid chloride, (ii) catalytic addition of terminal alkynes to aldehydes and ketones, (iii) catalytic addition of alkynes to C=N bonds, and (iv) catalytic conjugate additions. Most importantly, these reactions can tolerate various functional groups and, in many cases, perform better in water than in organic solvents, clearly defying classical reactivities predicated on the relative acidities of water, alcohols, and terminal alkynes. We further discuss multicomponent and enantioselective reactions that were developed. These methods provide an alternative to the traditional requirement of separate steps in classical alkyne reactions, including the pregeneration of metal acetylides with stoichiometric, highly basic reagents and the preprotection of sensitive functional groups. Accordingly, these techniques have greatly enhanced overall synthetic efficiencies and furthered our long-term objective of developing Grignard-type reactions in water. |
Author | Li, Chao-Jun |
Author_xml | – sequence: 1 givenname: Chao-Jun surname: Li fullname: Li, Chao-Jun email: cj.li@mcgill.ca |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20095650$$D View this record in MEDLINE/PubMed |
BookMark | eNptkE1Lw0AQhhep2A89-AckFxEPsbv53BxL_YSiHioewySZ0K2bbNzdCP33bmntQXoYZl54ZgaeMRm0qkVCLhm9YzRgU9AZpUHM0xMyYnFA_YhnfEBGlFLm5igYkrExaxeDKEnPyDCgNIuTmI7I-3KF3j3-oFRdg631VO3NwYLcWFF6r30pUXUrIV2YVZWwQrVmyyxRN6IF6c3k16ZF44nW-wSL-pyc1iANXuz7hHw8Piznz_7i7ellPlv4EHJq_TDhkKRFkqWcYYm84lmdVHHN0qpKo4LxIsSU0ppFpasoqWMAoEHGMlZDESfhhNzs7nZaffdobN4IU6KU0KLqTZ6GIQsD98aRV3uyLxqs8k6LBvQm_5PggNsdUGpljMb6gDCabwXnB8GOnf5jS2Fhq8VqEPLoxvVuA0qTr1WvnTVzhPsFeQ6HQQ |
CitedBy_id | crossref_primary_10_1039_C5CC08386A crossref_primary_10_1007_s10562_021_03882_4 crossref_primary_10_1002_adsc_201500465 crossref_primary_10_1002_anie_201200698 crossref_primary_10_1002_ajoc_202300124 crossref_primary_10_1002_slct_202001660 crossref_primary_10_1016_j_colsurfa_2011_10_004 crossref_primary_10_1021_jo501872h crossref_primary_10_1002_jhet_4184 crossref_primary_10_1002_ejoc_201402338 crossref_primary_10_1039_c3gc40896e crossref_primary_10_1002_adsc_202001575 crossref_primary_10_1002_ejoc_201500209 crossref_primary_10_1016_j_catcom_2014_09_011 crossref_primary_10_1002_ange_201916088 crossref_primary_10_1021_acs_joc_8b00203 crossref_primary_10_1039_c2ob26903a crossref_primary_10_1039_C5GC00926J crossref_primary_10_1016_j_tetlet_2014_02_030 crossref_primary_10_1039_C7SC02556D crossref_primary_10_1021_ja3022818 crossref_primary_10_1002_ajoc_201700049 crossref_primary_10_1021_ja4052685 crossref_primary_10_1039_c2cy20111a crossref_primary_10_1016_j_tet_2017_01_023 crossref_primary_10_1039_C4RA16005C crossref_primary_10_1039_C5RA05377C crossref_primary_10_1021_ol102759w crossref_primary_10_1021_ol300811e crossref_primary_10_1039_C1CS15222J crossref_primary_10_1002_cssc_201902817 crossref_primary_10_1021_om1010325 crossref_primary_10_1002_cctc_201902150 crossref_primary_10_1021_jo501884v crossref_primary_10_1039_C1RA00720C crossref_primary_10_1002_ange_201505830 crossref_primary_10_1021_acs_joc_8b02738 crossref_primary_10_1039_c1sc00160d crossref_primary_10_1016_j_cclet_2015_05_021 crossref_primary_10_1007_s41061_017_0157_0 crossref_primary_10_1039_C7GC02823G crossref_primary_10_1002_adsc_201800301 crossref_primary_10_1070_RC2014v083n07ABEH004425 crossref_primary_10_1002_cssc_202000277 crossref_primary_10_1039_C8OB02359J crossref_primary_10_1002_ejoc_201301189 crossref_primary_10_1016_j_molcata_2015_03_013 crossref_primary_10_1039_c1cc14242a crossref_primary_10_1039_c3gc40397a crossref_primary_10_1039_C7RA06727E crossref_primary_10_1007_s11426_011_4414_8 crossref_primary_10_1039_C2CC36417D crossref_primary_10_1021_jo401744b crossref_primary_10_1002_adsc_201400395 crossref_primary_10_1021_ol300671y crossref_primary_10_1002_ange_201310280 crossref_primary_10_1021_ol3019242 crossref_primary_10_1039_C8CC08274J crossref_primary_10_1039_C7GC00267J crossref_primary_10_1002_anie_201101948 crossref_primary_10_1021_acs_orglett_0c03451 crossref_primary_10_1002_adsc_201100327 crossref_primary_10_1039_D0CC04221H crossref_primary_10_1021_jacs_5b02071 crossref_primary_10_1039_c3cp52924j crossref_primary_10_1039_c3ra43175d crossref_primary_10_1021_acs_joc_5b01703 crossref_primary_10_1021_jo500199v crossref_primary_10_1002_chem_201406581 crossref_primary_10_1016_j_mcat_2021_111518 crossref_primary_10_1039_C7OB00572E crossref_primary_10_7868_S0514749218090261 crossref_primary_10_1016_j_cclet_2019_09_017 crossref_primary_10_1002_chem_201301633 crossref_primary_10_1039_c1gc15029d crossref_primary_10_1002_adsc_201400169 crossref_primary_10_1002_adsc_201600072 crossref_primary_10_1002_cctc_201300870 crossref_primary_10_1039_C6OB01216G crossref_primary_10_5155_eurjchem_2_1_100_103_175 crossref_primary_10_1002_adsc_201500787 crossref_primary_10_1021_cr300389u crossref_primary_10_1021_ol201054z crossref_primary_10_1002_adsc_201300802 crossref_primary_10_1016_j_cclet_2014_01_021 crossref_primary_10_1021_ja209244m crossref_primary_10_1002_anie_201408826 crossref_primary_10_1021_acs_joc_3c02807 crossref_primary_10_1039_C5NJ03272E crossref_primary_10_3390_nano9081137 crossref_primary_10_1002_adsc_201300005 crossref_primary_10_1080_10610278_2018_1529315 crossref_primary_10_1021_acs_joc_7b01489 crossref_primary_10_1021_acs_organomet_1c00624 crossref_primary_10_1039_C4RA14322A crossref_primary_10_1021_acs_orglett_6b03888 crossref_primary_10_1021_jacs_8b13055 crossref_primary_10_1039_D4QO01272K crossref_primary_10_1002_tcr_201700100 crossref_primary_10_1002_marc_201200180 crossref_primary_10_1039_C9GC04445K crossref_primary_10_1021_acscatal_3c02199 crossref_primary_10_1021_acs_organomet_9b00343 crossref_primary_10_1021_ol203309y crossref_primary_10_1016_j_jorganchem_2024_123442 crossref_primary_10_1002_chem_201303149 crossref_primary_10_1039_D1GC01234G crossref_primary_10_1039_C6CC05318A crossref_primary_10_1002_anie_201400557 crossref_primary_10_1039_c1gc15183e crossref_primary_10_1016_j_catcom_2016_01_020 crossref_primary_10_1039_c3gc41383g crossref_primary_10_1021_jo300237s crossref_primary_10_1039_c3ob40652k crossref_primary_10_1016_j_tetlet_2012_08_136 crossref_primary_10_1039_D4QO00602J crossref_primary_10_1039_c2cs15356d crossref_primary_10_1039_c3cs60020c crossref_primary_10_1016_j_apcata_2013_03_008 crossref_primary_10_1002_ange_201400557 crossref_primary_10_1016_j_tetlet_2019_151288 crossref_primary_10_1007_s10562_018_2449_6 crossref_primary_10_1007_s10570_023_05370_x crossref_primary_10_1021_acs_joc_0c01548 crossref_primary_10_1016_j_catcom_2015_09_028 crossref_primary_10_1002_anie_202201099 crossref_primary_10_1002_cssc_202001165 crossref_primary_10_1039_C7GC03618C crossref_primary_10_1002_chem_201801109 crossref_primary_10_1007_s10562_018_2540_z crossref_primary_10_1002_ejoc_201403085 crossref_primary_10_1039_C5QO00282F crossref_primary_10_1002_ange_201304268 crossref_primary_10_1002_chem_201600635 crossref_primary_10_1039_D0OB01902J crossref_primary_10_1016_j_tet_2023_133440 crossref_primary_10_1021_acs_joc_7b01828 crossref_primary_10_1021_ol200849k crossref_primary_10_1021_acs_joc_0c01654 crossref_primary_10_1016_j_tet_2017_09_034 crossref_primary_10_1021_jo201059h crossref_primary_10_1016_j_poly_2017_06_053 crossref_primary_10_1002_ange_201408826 crossref_primary_10_1002_cjoc_201200598 crossref_primary_10_1021_ja204817y crossref_primary_10_1021_ol503025n crossref_primary_10_1039_C1OB06429K crossref_primary_10_1021_ol203072u crossref_primary_10_1039_C8SC04271C crossref_primary_10_3987_COM_15_13176 crossref_primary_10_1002_ejoc_201200990 crossref_primary_10_1002_chem_201201720 crossref_primary_10_1039_C6QO00207B crossref_primary_10_1002_tcr_201500250 crossref_primary_10_1021_jacs_7b00363 crossref_primary_10_1016_j_tetlet_2015_02_048 crossref_primary_10_46632_jmc_1_1_3 crossref_primary_10_1007_s13738_013_0362_x crossref_primary_10_1016_j_molcata_2015_01_021 crossref_primary_10_1021_acs_chemrev_7b00343 crossref_primary_10_1002_cjoc_202300449 crossref_primary_10_1039_c3cc38287g crossref_primary_10_1021_ol202883v crossref_primary_10_1002_cjoc_202100796 crossref_primary_10_1021_ol4000108 crossref_primary_10_1002_anie_201209312 crossref_primary_10_1039_C7RA00249A crossref_primary_10_1039_C6QO00545D crossref_primary_10_1021_ol201563r crossref_primary_10_1039_C4GC00774C crossref_primary_10_1002_ange_202201099 crossref_primary_10_1002_ejoc_201200090 crossref_primary_10_3390_app3010055 crossref_primary_10_1002_slct_201901946 crossref_primary_10_1021_ja401466y crossref_primary_10_1021_jacs_2c09572 crossref_primary_10_1021_acs_orglett_1c03707 crossref_primary_10_1016_j_tetlet_2013_03_098 crossref_primary_10_1002_ajoc_201600623 crossref_primary_10_1039_c2gc35293a crossref_primary_10_1016_j_gresc_2020_06_002 crossref_primary_10_1016_j_chempr_2016_08_007 crossref_primary_10_1002_cjoc_201180364 crossref_primary_10_1002_jhet_1988 crossref_primary_10_1021_jo401604n crossref_primary_10_1002_anie_201304268 crossref_primary_10_1039_c2ob25487e crossref_primary_10_1021_acs_orglett_5b01628 crossref_primary_10_1002_poc_3669 crossref_primary_10_1021_acscatal_8b02617 crossref_primary_10_1016_j_cclet_2019_07_030 crossref_primary_10_1021_jacs_6b10415 crossref_primary_10_1021_cr100414u crossref_primary_10_1039_c2cc32205f crossref_primary_10_1021_acs_orglett_4c04180 crossref_primary_10_1021_ol202861k crossref_primary_10_1134_S1070428018090269 crossref_primary_10_1002_ijch_201700021 crossref_primary_10_1002_adsc_201300988 crossref_primary_10_1002_chem_201200050 crossref_primary_10_1039_C7DT00058H crossref_primary_10_1021_acs_joc_6b01647 crossref_primary_10_1021_ol200638z crossref_primary_10_1055_s_0042_1751506 crossref_primary_10_1039_C5RA24541A crossref_primary_10_1039_c3ob40760h crossref_primary_10_1139_cjc_2017_0640 crossref_primary_10_1002_adsc_202000189 crossref_primary_10_1021_acs_inorgchem_0c03695 crossref_primary_10_1002_ange_201200698 crossref_primary_10_1002_ange_201101948 crossref_primary_10_1002_anie_201505830 crossref_primary_10_1002_slct_202001157 crossref_primary_10_1021_jo501890z crossref_primary_10_1021_jacs_0c05373 crossref_primary_10_1039_D2NJ06140F crossref_primary_10_1039_D4OB01446D crossref_primary_10_1002_masy_201251125 crossref_primary_10_1039_C9OB00524B crossref_primary_10_1039_C5RA08038J crossref_primary_10_1021_acs_orglett_7b01224 crossref_primary_10_1002_anie_201310280 crossref_primary_10_1002_anie_201412399 crossref_primary_10_1002_ejoc_201701033 crossref_primary_10_1002_chem_201103987 crossref_primary_10_1002_chem_201402815 crossref_primary_10_1002_cjoc_201600526 crossref_primary_10_1016_j_tet_2011_11_050 crossref_primary_10_1039_C9QO00260J crossref_primary_10_1016_j_tetlet_2011_05_056 crossref_primary_10_1007_s10876_016_0994_y crossref_primary_10_1039_c0gc00807a crossref_primary_10_1002_asia_201800373 crossref_primary_10_1021_acssuschemeng_7b00103 crossref_primary_10_1002_chem_201503047 crossref_primary_10_1002_aoc_4203 crossref_primary_10_1021_acs_orglett_1c00768 crossref_primary_10_1016_j_tetlet_2011_09_075 crossref_primary_10_1002_ijch_201100164 crossref_primary_10_1039_c3ra41991f crossref_primary_10_1021_om401141r crossref_primary_10_1002_ejoc_201601103 crossref_primary_10_1016_j_ica_2010_09_056 crossref_primary_10_1016_j_rechem_2021_100279 crossref_primary_10_1055_s_0037_1610787 crossref_primary_10_1039_c2sc20590d crossref_primary_10_1039_C5RA05546F crossref_primary_10_1002_ange_201412399 crossref_primary_10_1021_acs_analchem_7b03601 crossref_primary_10_1055_a_2030_6797 crossref_primary_10_1021_acs_organomet_6b00529 crossref_primary_10_1021_ma501477w crossref_primary_10_1002_asia_201100050 crossref_primary_10_1002_jhet_995 crossref_primary_10_1016_j_tetlet_2017_01_035 crossref_primary_10_1021_ol401810b crossref_primary_10_1139_cjc_2018_0357 crossref_primary_10_1021_om1007192 crossref_primary_10_1002_ejoc_201201673 crossref_primary_10_1039_C4RA03232B crossref_primary_10_1021_acs_joc_0c01833 crossref_primary_10_1021_ol401369d crossref_primary_10_1021_om500086u crossref_primary_10_1021_acs_orglett_8b00949 crossref_primary_10_1016_j_tet_2015_03_051 crossref_primary_10_1039_C3SC53115E crossref_primary_10_1002_chem_201203010 crossref_primary_10_1039_c3gc41126e crossref_primary_10_1002_ange_201405058 crossref_primary_10_1002_adsc_202400856 crossref_primary_10_1002_anie_201916088 crossref_primary_10_1002_anie_201405058 crossref_primary_10_1016_j_cogsc_2023_100760 crossref_primary_10_3762_bjoc_9_155 crossref_primary_10_1016_j_apcata_2013_01_023 crossref_primary_10_1021_acs_joc_7b02868 crossref_primary_10_1021_acs_joc_3c02772 crossref_primary_10_3987_COM_11_S_P_53 crossref_primary_10_1002_ejoc_201801227 crossref_primary_10_1016_j_rechem_2023_100939 crossref_primary_10_1039_c3sc22227f crossref_primary_10_1039_C4SC00983E crossref_primary_10_1002_adsc_201701475 crossref_primary_10_1002_ange_201500220 crossref_primary_10_1002_ange_201209312 crossref_primary_10_1016_j_cogsc_2023_100766 crossref_primary_10_1039_C4GC02287D crossref_primary_10_1002_ejoc_201800361 crossref_primary_10_1039_C3GC41946K crossref_primary_10_1002_anie_201203107 crossref_primary_10_1039_D3RE00131H crossref_primary_10_1002_slct_201702454 crossref_primary_10_1002_anie_201601792 crossref_primary_10_1039_C5GC02621K crossref_primary_10_1002_adsc_201500282 crossref_primary_10_1016_j_tet_2011_05_002 crossref_primary_10_1021_jo200070d crossref_primary_10_1139_cjc_2021_0053 crossref_primary_10_1002_cctc_201700515 crossref_primary_10_1002_adsc_201000379 crossref_primary_10_1021_acs_joc_2c00274 crossref_primary_10_1039_c3ob42434k crossref_primary_10_1021_acs_accounts_9b00623 crossref_primary_10_1039_c2ob25941a crossref_primary_10_1002_ejoc_201402275 crossref_primary_10_1021_jacs_7b12054 crossref_primary_10_1002_adsc_201200589 crossref_primary_10_1039_D3CC00410D crossref_primary_10_1021_ol203251s crossref_primary_10_3390_catal12070758 crossref_primary_10_1039_C5SC02933C crossref_primary_10_1002_anie_201500220 crossref_primary_10_1021_ol301017q crossref_primary_10_1002_aoc_2976 crossref_primary_10_1016_j_ccr_2017_10_004 crossref_primary_10_1002_adsc_201200574 crossref_primary_10_1039_C1SC00164G crossref_primary_10_1039_C6CC01828A crossref_primary_10_1002_ange_201203107 crossref_primary_10_1039_C7CS00065K crossref_primary_10_1039_c3ra42119h crossref_primary_10_1002_ange_201601792 crossref_primary_10_1002_ajoc_201200113 crossref_primary_10_1002_jccs_201500519 crossref_primary_10_1016_j_catcom_2017_12_020 crossref_primary_10_1139_v11_108 crossref_primary_10_1246_bcsj_20200352 crossref_primary_10_1039_C8QO01028E crossref_primary_10_1016_j_ccr_2020_213603 crossref_primary_10_1021_acs_accounts_0c00479 crossref_primary_10_1021_acscatal_8b05001 crossref_primary_10_1021_acsomega_6b00432 crossref_primary_10_1016_j_tet_2013_06_098 crossref_primary_10_1002_ajoc_201500192 crossref_primary_10_1021_acscatal_6b03404 crossref_primary_10_1002_ejoc_201500634 crossref_primary_10_1016_j_gee_2020_11_028 |
Cites_doi | 10.1021/ol035781y 10.1016/j.tetlet.2004.01.044 10.1021/ol049936t 10.1002/adsc.200606118 10.1021/ol051575+ 10.1016/S0040-4039(02)01197-8 10.1016/j.tetlet.2004.02.038 10.1016/j.tet.2005.08.064 10.1021/ol047814v 10.1002/qsar.200420034 10.1021/ol060645p 10.1021/jo00125a041 10.1002/anie.200352578 10.1021/ol036462+ 10.1002/chem.200901416 10.1021/ja026007t 10.1002/anie.200701098 10.1021/ol071003k 10.1021/ja9624937 10.1039/B607986P 10.1021/jo900079u 10.1021/ja0359299 10.1039/b110102c 10.1002/9783527615278 10.1016/0040-4020(95)01056-4 10.1002/adsc.200700500 10.1002/anie.200801367 10.1021/ar990078o 10.1073/pnas.0809052106 10.1021/ja981020s 10.1073/pnas.0307150101 10.2174/1570178054405959 10.1021/jo702197b 10.1016/j.jorganchem.2008.12.008 10.1002/anie.200702439 10.1039/b404430d 10.2174/0929867033456468 10.1021/ol017022q 10.1055/s-2001-13376 10.1016/j.tetlet.2005.08.047 10.1002/anie.199502591 10.1016/S0040-4039(97)01460-3 10.1002/anie.200805122 10.1002/chem.200802643 10.1002/anie.200502735 10.1021/ja993074n 10.1021/ol049578u 10.1039/b805946m 10.1016/S0040-4020(99)00641-9 10.1039/b407936a 10.1021/ar800164n 10.1016/j.tet.2008.03.083 10.1039/CC9960002315 10.1016/j.tetlet.2004.07.036 10.1021/ja035311z 10.1039/B416268D 10.1016/j.tetlet.2004.09.079 10.1002/anie.200904486 10.1002/anie.200461286 10.1016/j.tetlet.2009.03.182 10.1021/jo00013a003 10.1021/ol015830b 10.1021/ol050826b 10.1021/ol048789w 10.1016/0040-4039(95)01565-Y 10.1002/adsc.200800232 10.1021/ja052411r 10.1007/978-3-662-04164-2 10.1016/j.tet.2007.11.043 10.1002/adsc.200800776 10.1002/1521-3773(20010702)40:13<2534::AID-ANIE2534>3.0.CO;2-2 10.1039/B613596J 10.1021/jo00121a018 10.1016/S0040-4039(02)00082-5 10.1002/chem.200501233 10.1016/j.tetasy.2006.02.007 10.1126/science.1962206 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/ar9002587 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Catalytic Nucleophilic Additions of Terminal Alkynes |
EISSN | 1520-4898 |
EndPage | 590 |
ExternalDocumentID | 20095650 10_1021_ar9002587 c584665246 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 23M 4.4 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a380t-368a67b69781ece8d89f6d5f17dd74b18b3e700f14cf1446f5aaa029191fab563 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Fri Jul 11 06:12:50 EDT 2025 Mon Jul 21 05:59:13 EDT 2025 Thu Apr 24 23:03:36 EDT 2025 Tue Jul 01 04:04:07 EDT 2025 Thu Aug 27 13:42:22 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a380t-368a67b69781ece8d89f6d5f17dd74b18b3e700f14cf1446f5aaa029191fab563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20095650 |
PQID | 733132368 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_733132368 pubmed_primary_20095650 crossref_primary_10_1021_ar9002587 crossref_citationtrail_10_1021_ar9002587 acs_journals_10_1021_ar9002587 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-04-20 |
PublicationDateYYYYMMDD | 2010-04-20 |
PublicationDate_xml | – month: 04 year: 2010 text: 2010-04-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Anastas P. T. (ref5/cit5) 1998 Gommermann N. (ref53/cit53) 2006; 12 Sreedhar B. (ref60/cit60) 2005; 46 Chen L. (ref81/cit81) 2004 Bieber L. W. (ref59/cit59) 2004; 45 Yao X. (ref27/cit27) 2006; 8 Chen W. W. (ref67/cit67) 2009; 50 Zhang J. (ref69/cit69) 2002; 43 Li C.-J. (ref17/cit17) 1998 Skouta R. (ref46/cit46) 2008; 64 Dillinger S. (ref21/cit21) 2001; 3 Sakaguchi S. (ref36/cit36) 2004 Hashmi A. S. K. (ref28/cit28a) 2005; 44 Fischer C. (ref71/cit71) 2004; 6 Carreira E. M. (ref77/cit77) 2003; 125 Satoshi S. (ref35/cit35) 2001; 40 Trost B. M. (ref4/cit4) 1991; 254 Fischer C. (ref38/cit38) 2004 Li C.-J. (ref34/cit34) 2002 Zhou L. (ref66/cit66) 2009 Zhou L. (ref84/cit84) 2009; 15 Knopfel T. F. (ref78/cit78) 2005; 127 Li C.-J. (ref16/cit16) 1998; 120 Kabalka G. W. (ref44/cit44) 2001 Boumendjel A. (ref23/cit23a) 2003; 10 Trost B. M. (ref6/cit6) 1997; 119 Li Z. (ref49/cit49) 2004; 45 Yu M. (ref26/cit26) 2009; 74 Li Z. (ref65/cit65) 2004; 6 Gommermann N. (ref52/cit52) 2003; 42 Li C.-J. (ref19/cit19) 1999; 55 Yamaguchi M. (ref8/cit8) 1991; 56 Wei C. (ref13/cit13) 2004 Gommermann N. (ref54/cit54) 2005; 61 Hiyama T. (ref31/cit31) 2000 Black A. D. (ref70/cit70) 2004; 6 Motoki R. (ref33/cit33) 2007; 9 Trost B. M. (ref3/cit3) 1995; 34 Wei C. M. (ref48/cit48) 2003; 5 Nishimura T. (ref7/cit7) 2009; 48 Chen L. (ref30/cit30) 2004; 6 Han Y. (ref9/cit9) 1995; 36 Wei C. (ref72/cit72) 2005; 2 Deng G. (ref32/cit32) 2008 Luo Y. (ref42/cit42) 2005; 7 Zhao L. (ref74/cit74) 2009; 106 Li C.-J. (ref15/cit15) 1996; 52 Zhao L. (ref73/cit73) 2008; 47 Lerum R. V. (ref82/cit82) 2004; 45 Knopfel T. F. (ref55/cit55) 2004; 43 Wei C. (ref45/cit45) 2003; 125 Trost B. M. (ref2/cit2) 2009; 351 Carreira E. M. (ref37/cit37) 2001; 3 Wei C. (ref39/cit39) 2002; 124 Yoo W.-J. (ref41/cit41) 2008; 350 Rueping M. (ref51/cit51) 2007; 46 Park S. B. (ref58/cit58) 2005 Carreira E. M. (ref10/cit10) 2000; 33 Huang B. (ref61/cit61) 2006; 348 Lo V. K.-Y. (ref47/cit47) 2009; 694 Wei C. (ref40/cit40) 2004; 101 Wei C. (ref20/cit20) 2002; 4 Bonfield E. R. (ref76/cit76) 2008; 350 Viswanathan G. S. (ref29/cit29) 2002; 43 Shi L. (ref56/cit56) 2004; 6 Li C.-J. (ref63/cit63) 2009; 42 Yao X. (ref22/cit22) 2005; 7 Ju Y. (ref57/cit57) 2004; 23 Miura M. (ref11/cit11) 1995; 60 Maggi R. (ref50/cit50) 2008; 64 Zhou L. (ref83/cit83) 2008; 6 Youngman M. A. (ref43/cit43) 1997; 38 Thakkar K. (ref24/cit24a) 1995; 60 Li Z. (ref64/cit64) 2006; 17 Harkat H. (ref25/cit25) 2008; 73 Frantz D. E. (ref12/cit12) 1999; 121 Zani L. (ref14/cit14) 2006 Bonfield E. R. (ref75/cit75) 2007; 5 Li P. (ref68/cit68) 2009; 15 Chen L. (ref80/cit80) 2004; 45 Loh T. P. (ref18/cit18) 1996 Bi H. P. (ref62/cit62) 2009; 48 Fujimori S. (ref79/cit79) 2007; 46 Stang P. J. (ref1/cit1) 1995 |
References_xml | – start-page: 1497 year: 2004 ident: ref38/cit38 publication-title: Synthesis – volume: 5 start-page: 4473 year: 2003 ident: ref48/cit48 publication-title: Org. Lett. doi: 10.1021/ol035781y – volume: 45 start-page: 2443 year: 2004 ident: ref49/cit49 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2004.01.044 – volume: 6 start-page: 1001 year: 2004 ident: ref56/cit56 publication-title: Org. Lett. doi: 10.1021/ol049936t – volume: 348 start-page: 1528 year: 2006 ident: ref61/cit61 publication-title: Adv. Catal. Synth. doi: 10.1002/adsc.200606118 – volume: 7 start-page: 4395 year: 2005 ident: ref22/cit22 publication-title: Org. Lett. doi: 10.1021/ol051575+ – start-page: 1571 year: 2008 ident: ref32/cit32 publication-title: Synlett – volume: 43 start-page: 5731 year: 2002 ident: ref69/cit69 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(02)01197-8 – volume: 45 start-page: 2771 year: 2004 ident: ref80/cit80 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2004.02.038 – volume: 61 start-page: 11418 year: 2005 ident: ref54/cit54 publication-title: Tetrahedron doi: 10.1016/j.tet.2005.08.064 – volume: 6 start-page: 4997 year: 2004 ident: ref65/cit65 publication-title: Org. Lett. doi: 10.1021/ol047814v – start-page: 268 year: 2002 ident: ref34/cit34 publication-title: Chem. Commun. – volume: 23 start-page: 891 year: 2004 ident: ref57/cit57 publication-title: QSAR Comb. Sci. doi: 10.1002/qsar.200420034 – volume: 8 start-page: 1953 year: 2006 ident: ref27/cit27 publication-title: Org. Lett. doi: 10.1021/ol060645p – volume: 60 start-page: 6499 year: 1995 ident: ref24/cit24a publication-title: J. Org. Chem. doi: 10.1021/jo00125a041 – volume: 42 start-page: 5763 year: 2003 ident: ref52/cit52 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200352578 – volume: 6 start-page: 1107 year: 2004 ident: ref70/cit70 publication-title: Org. Lett. doi: 10.1021/ol036462+ – volume: 15 start-page: 11668 year: 2009 ident: ref84/cit84 publication-title: Chem.—Eur. J. doi: 10.1002/chem.200901416 – volume: 124 start-page: 5638 year: 2002 ident: ref39/cit39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja026007t – volume: 46 start-page: 4964 year: 2007 ident: ref79/cit79 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200701098 – volume: 9 start-page: 2997 year: 2007 ident: ref33/cit33 publication-title: Org. Lett. doi: 10.1021/ol071003k – volume: 119 start-page: 698 year: 1997 ident: ref6/cit6 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9624937 – start-page: 4263 year: 2006 ident: ref14/cit14 publication-title: Chem. Commun. doi: 10.1039/B607986P – start-page: 1472 year: 2004 ident: ref13/cit13 publication-title: Synlett – volume: 74 start-page: 3378 year: 2009 ident: ref26/cit26 publication-title: J. Org. Chem. doi: 10.1021/jo900079u – volume: 125 start-page: 9584 year: 2003 ident: ref45/cit45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0359299 – volume: 4 start-page: 39 year: 2002 ident: ref20/cit20 publication-title: Green Chem. doi: 10.1039/b110102c – volume-title: Modern Acetylene Chemistry year: 1995 ident: ref1/cit1 doi: 10.1002/9783527615278 – volume: 52 start-page: 5643 year: 1996 ident: ref15/cit15 publication-title: Tetrahedron doi: 10.1016/0040-4020(95)01056-4 – volume: 350 start-page: 370 year: 2008 ident: ref76/cit76 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.200700500 – volume: 47 start-page: 7075 year: 2008 ident: ref73/cit73 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200801367 – volume: 33 start-page: 373 year: 2000 ident: ref10/cit10 publication-title: Acc. Chem. Res. doi: 10.1021/ar990078o – volume: 106 start-page: 4106 year: 2009 ident: ref74/cit74 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0809052106 – volume: 120 start-page: 9102 year: 1998 ident: ref16/cit16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja981020s – volume: 101 start-page: 5749 year: 2004 ident: ref40/cit40 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0307150101 – volume: 2 start-page: 410 year: 2005 ident: ref72/cit72 publication-title: Lett. Org. Chem. doi: 10.2174/1570178054405959 – volume: 73 start-page: 1620 year: 2008 ident: ref25/cit25 publication-title: J. Org. Chem. doi: 10.1021/jo702197b – volume: 694 start-page: 583 year: 2009 ident: ref47/cit47 publication-title: J. Organomet. Chem. doi: 10.1016/j.jorganchem.2008.12.008 – volume: 46 start-page: 6903 year: 2007 ident: ref51/cit51 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200702439 – start-page: 1638 year: 2004 ident: ref36/cit36 publication-title: Chem. Commun. doi: 10.1039/b404430d – volume: 10 start-page: 2621 year: 2003 ident: ref23/cit23a publication-title: Curr. Med. Chem. doi: 10.2174/0929867033456468 – volume: 3 start-page: 4319 year: 2001 ident: ref37/cit37 publication-title: Org. Lett. doi: 10.1021/ol017022q – start-page: 676 year: 2001 ident: ref44/cit44 publication-title: Synlett. doi: 10.1055/s-2001-13376 – volume: 46 start-page: 7019 year: 2005 ident: ref60/cit60 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2005.08.047 – volume: 34 start-page: 259 year: 1995 ident: ref3/cit3 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199502591 – volume-title: Green Chemistry: Theory and Practice year: 1998 ident: ref5/cit5 – volume: 38 start-page: 6347 year: 1997 ident: ref43/cit43 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(97)01460-3 – volume: 48 start-page: 792 year: 2009 ident: ref62/cit62 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200805122 – volume: 15 start-page: 2045 year: 2009 ident: ref68/cit68 publication-title: Chem.—Eur. J. doi: 10.1002/chem.200802643 – volume: 44 start-page: 6990 year: 2005 ident: ref28/cit28a publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200502735 – volume: 121 start-page: 11245 year: 1999 ident: ref12/cit12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja993074n – volume: 6 start-page: 1497 year: 2004 ident: ref71/cit71 publication-title: Org. Lett. doi: 10.1021/ol049578u – volume: 6 start-page: 2969 year: 2008 ident: ref83/cit83 publication-title: Org. Biomol. Chem. doi: 10.1039/b805946m – volume: 55 start-page: 11149 year: 1999 ident: ref19/cit19 publication-title: Tetrahedron doi: 10.1016/S0040-4020(99)00641-9 – start-page: 2362 year: 2004 ident: ref81/cit81 publication-title: Chem. Commun. doi: 10.1039/b407936a – volume: 42 start-page: 335 year: 2009 ident: ref63/cit63 publication-title: Acc. Chem. Res. doi: 10.1021/ar800164n – start-page: 937 year: 2009 ident: ref66/cit66 publication-title: Synlett – volume: 64 start-page: 4917 year: 2008 ident: ref46/cit46 publication-title: Tetrahedron doi: 10.1016/j.tet.2008.03.083 – start-page: 2315 year: 1996 ident: ref18/cit18 publication-title: Chem. Commun. doi: 10.1039/CC9960002315 – volume: 45 start-page: 6591 year: 2004 ident: ref82/cit82 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2004.07.036 – volume: 125 start-page: 6054 year: 2003 ident: ref77/cit77 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja035311z – start-page: 1351 year: 1998 ident: ref17/cit17 publication-title: Chem. Commun. – start-page: 1315 year: 2005 ident: ref58/cit58 publication-title: Chem. Commun. doi: 10.1039/B416268D – volume: 45 start-page: 8281 year: 2004 ident: ref59/cit59 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2004.09.079 – volume: 48 start-page: 8057 year: 2009 ident: ref7/cit7 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200904486 – volume: 43 start-page: 5971 year: 2004 ident: ref55/cit55 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200461286 – volume: 50 start-page: 2895 year: 2009 ident: ref67/cit67 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2009.03.182 – volume: 56 start-page: 4091 year: 1991 ident: ref8/cit8 publication-title: J. Org. Chem. doi: 10.1021/jo00013a003 – volume: 3 start-page: 1661 year: 2001 ident: ref21/cit21 publication-title: Org. Lett. doi: 10.1021/ol015830b – volume: 7 start-page: 2675 year: 2005 ident: ref42/cit42 publication-title: Org. Lett. doi: 10.1021/ol050826b – volume: 6 start-page: 3151 year: 2004 ident: ref30/cit30 publication-title: Org. Lett. doi: 10.1021/ol048789w – volume: 36 start-page: 7277 year: 1995 ident: ref9/cit9 publication-title: Tetrahedron Lett. doi: 10.1016/0040-4039(95)01565-Y – volume: 350 start-page: 1503 year: 2008 ident: ref41/cit41 publication-title: Adv. Syn. Catal. doi: 10.1002/adsc.200800232 – volume: 127 start-page: 9682 year: 2005 ident: ref78/cit78 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja052411r – volume-title: Organo Fluorine Compounds: Chemistry and Applications year: 2000 ident: ref31/cit31 doi: 10.1007/978-3-662-04164-2 – volume: 64 start-page: 1435 year: 2008 ident: ref50/cit50 publication-title: Tetrahedron doi: 10.1016/j.tet.2007.11.043 – volume: 351 start-page: 963 year: 2009 ident: ref2/cit2 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.200800776 – volume: 40 start-page: 2534 year: 2001 ident: ref35/cit35 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20010702)40:13<2534::AID-ANIE2534>3.0.CO;2-2 – volume: 5 start-page: 435 year: 2007 ident: ref75/cit75 publication-title: Org. Biomol. Chem. doi: 10.1039/B613596J – volume: 60 start-page: 4999 year: 1995 ident: ref11/cit11 publication-title: J. Org. Chem. doi: 10.1021/jo00121a018 – volume: 43 start-page: 1613 year: 2002 ident: ref29/cit29 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(02)00082-5 – volume: 12 start-page: 4380 year: 2006 ident: ref53/cit53 publication-title: Chem.—Eur. J. doi: 10.1002/chem.200501233 – volume: 17 start-page: 590 year: 2006 ident: ref64/cit64 publication-title: Tetrahedron: Asymmetry doi: 10.1016/j.tetasy.2006.02.007 – volume: 254 start-page: 1471 year: 1991 ident: ref4/cit4 publication-title: Science doi: 10.1126/science.1962206 |
SSID | ssj0002467 |
Score | 2.4943404 |
Snippet | One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 581 |
SubjectTerms | Aldehydes - chemistry Alkylation Alkynes - chemistry Catalysis Ketones - chemistry Water - chemistry |
Title | The Development of Catalytic Nucleophilic Additions of Terminal Alkynes in Water |
URI | http://dx.doi.org/10.1021/ar9002587 https://www.ncbi.nlm.nih.gov/pubmed/20095650 https://www.proquest.com/docview/733132368 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEB6qHvTi-1FfBPXgZetuks1mj2VVRFAEW-xtyROkZSt9HPTXm3S7i2LV-yQkk8k8MpNvAC5io7jkJgpsSkRA0wgHqSI6UFpThVXItfUfhR8e2V2X3vfiXgPOf8ng4-hKjFJvmHmyBCuY8cRHWO3suVa3mLISGNPFxZRTXMEHfR3qTY8afzc9v_iTM7tyuwHX1e-cspyk35pOZEt9_ARr_GvJm7A-9ytRuxSELWiYYhtWs6qd2w48OYFAX0qE0NCizL_dvLsR6NHDGg_f_OuKQm2ty0IuT9Mpq2Xc1IP-u9OL6LVAL85BHe1C9_amk90F83YKgSA8nASEccESyTzKlVGGa55apmMbJVonVEZcEpOEoY2osj5KtLEQIsSpi-iskDEje7BcDAtzAMhyZkLhfEHtc8OpFZZIIYk1ihFBcdiEU8fvfH4dxvks042jvGZMEy6ro8jVHIzc98QYLCI9q0nfSgSORUSoOs_c8dUnPURhhtNx7ntSEuz23oT98pzrWXxiyO0hPPxvtUewVhYNUKdUjmF5MpqaE-eLTOTpTBY_AZxn1nw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcigX3o_lUSwEEpe0ie04zoHDaku1pe0Kia3oLfgpoVbZarMrtPwU_kr_XMd50aIiTpW4T0Z-fPbMZMbfALxNnZFauiTyOVMRzxMa5YbZyFjLDTWxtD48FD6ciPER_3ScHq_Br-4tDA6iQk1VncT_zS6QbKt5HuyzzNoCyn23-oHhWfVhbwf38h2lux-no3HUdhCIFJPxImJCKpFpEYidnHHSytwLm_okszbjOpGauSyOfcKND4GRT5VSMc0xiPFKp4Kh3ltwG50eGgK74ehLf8tTLho-TgzHueS0Yy26PNRg8Ux11eL9xY2tzdnuPTjvF6KuYjnZWi70lvn5B0fk_7lS9-Fu60WTYQP7B7DmyoewMeqa1z2Czwh_cqkgisw8GYU_VSv8gkwCifPsLPxLMmRobVO2FmSmTW0Qqj49WaEVIN9L8hXd8fljOLqRCT2B9XJWumdAvBQuVggCGzLhuVeeaaWZd0YwxWk8gE3ch6I9_FVR5_VpUvQbMYD3HQIK01Kvhw4gp9eJvulFzxq-keuESAejAtc1pHhU6WbLqggdOBnFuQ_gaQOvXktIg-Ec4uf_Gu1r2BhPDw-Kg73J_gu405RLcLxOX8L6Yr50r9ALW-jN-jgQ-HbTqLoAniU4-g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxQxDLZKkaAX3pSFUiIEEpcpM0kmkzn0sNqyaimsKtGK3oY8JdRqdrWzK7T8GP5K_1qdeamgIk6VuDuWkzixHTufAd6kzkgtXRL5nKmI5wmNcsNsZKzlhppYWh8-Cn-eiP0T_vE0PV2DX91fGBSiQk5VncQPp3pmfYswkLxX8zzYaJm1RZSHbvUDQ7Rq92AP9_MtpeMPx6P9qO0iECkm40XEhFQi0yKAOznjpJW5Fzb1SWZtxnUiNXNZHPuEGx-CI58qpWKaYyDjlU4FQ7634HZID4bgbjj60t_0lIsGkxNDci457ZCLrooarJ6pfrd6f3Fla5M2vg8X_WLUlSxnO8uF3jE__8CJ_H9X6wHca71pMmzU_yGsufIR3B11TewewxEeA3KlMIpMPRmFF6sVjiCTAOY8nYU3JUOG1jbla4HmuKkRQtbnZyu0BuR7Sb6iWz5_Aic3MqGnsF5OS_cMiJfCxQoVwYaMeO6VZ1pp5p0RTHEaD2Ab96JoL4GqqPP7NCn6jRjAu04LCtNCsIdOIOfXkb7uSWcN7sh1RKRTpQLXNaR6VOmmy6oInTgZxbkPYLNRsZ5LSIfhHOLn_5L2Fdw52hsXnw4mhy9go6ma4HirbsH6Yr50L9EZW-jt-kQQ-HbTSnUJKts7fQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Development+of+Catalytic+Nucleophilic+Additions+of+Terminal+Alkynes+in+Water&rft.jtitle=Accounts+of+chemical+research&rft.au=Li%2C+Chao-Jun&rft.date=2010-04-20&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=43&rft.issue=4&rft.spage=581&rft.epage=590&rft_id=info:doi/10.1021%2Far9002587&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ar9002587 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |