The Development of Catalytic Nucleophilic Additions of Terminal Alkynes in Water

One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their n...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 43; no. 4; pp. 581 - 590
Main Author Li, Chao-Jun
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.04.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their native states into useful chemical products, thus avoiding the need for protecting groups. The nucleophilic addition of terminal alkynes to various unsaturated electrophiles is a classical (textbook) reaction in organic chemistry, allowing the formation of a C−C bond while simultaneously introducing the alkyne functionality. A prerequisite of this classical reaction is the stoichiometric generation of highly reactive metal acetylides. Over the past decade, our laboratory and others have been exploring an alternative, the catalytic and direct nucleophilic addition of terminal alkynes to unsaturated electrophiles in water. We found that various terminal alkynes can react efficiently with a wide range of such electrophiles in water (or organic solvent) in the presence of simple and readily available catalysts, such as copper, silver, gold, iron, palladium, and others. In this Account, we describe the development of these synthetic methods, focusing primarily on results from our laboratory. Our studies include the following: (i) catalytic reaction of terminal alkynes with acid chloride, (ii) catalytic addition of terminal alkynes to aldehydes and ketones, (iii) catalytic addition of alkynes to CN bonds, and (iv) catalytic conjugate additions. Most importantly, these reactions can tolerate various functional groups and, in many cases, perform better in water than in organic solvents, clearly defying classical reactivities predicated on the relative acidities of water, alcohols, and terminal alkynes. We further discuss multicomponent and enantioselective reactions that were developed. These methods provide an alternative to the traditional requirement of separate steps in classical alkyne reactions, including the pregeneration of metal acetylides with stoichiometric, highly basic reagents and the preprotection of sensitive functional groups. Accordingly, these techniques have greatly enhanced overall synthetic efficiencies and furthered our long-term objective of developing Grignard-type reactions in water.
AbstractList One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their native states into useful chemical products, thus avoiding the need for protecting groups. The nucleophilic addition of terminal alkynes to various unsaturated electrophiles is a classical (textbook) reaction in organic chemistry, allowing the formation of a C-C bond while simultaneously introducing the alkyne functionality. A prerequisite of this classical reaction is the stoichiometric generation of highly reactive metal acetylides. Over the past decade, our laboratory and others have been exploring an alternative, the catalytic and direct nucleophilic addition of terminal alkynes to unsaturated electrophiles in water. We found that various terminal alkynes can react efficiently with a wide range of such electrophiles in water (or organic solvent) in the presence of simple and readily available catalysts, such as copper, silver, gold, iron, palladium, and others. In this Account, we describe the development of these synthetic methods, focusing primarily on results from our laboratory. Our studies include the following: (i) catalytic reaction of terminal alkynes with acid chloride, (ii) catalytic addition of terminal alkynes to aldehydes and ketones, (iii) catalytic addition of alkynes to C=N bonds, and (iv) catalytic conjugate additions. Most importantly, these reactions can tolerate various functional groups and, in many cases, perform better in water than in organic solvents, clearly defying classical reactivities predicated on the relative acidities of water, alcohols, and terminal alkynes. We further discuss multicomponent and enantioselective reactions that were developed. These methods provide an alternative to the traditional requirement of separate steps in classical alkyne reactions, including the pregeneration of metal acetylides with stoichiometric, highly basic reagents and the preprotection of sensitive functional groups. Accordingly, these techniques have greatly enhanced overall synthetic efficiencies and furthered our long-term objective of developing Grignard-type reactions in water.
One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their native states into useful chemical products, thus avoiding the need for protecting groups. The nucleophilic addition of terminal alkynes to various unsaturated electrophiles is a classical (textbook) reaction in organic chemistry, allowing the formation of a C−C bond while simultaneously introducing the alkyne functionality. A prerequisite of this classical reaction is the stoichiometric generation of highly reactive metal acetylides. Over the past decade, our laboratory and others have been exploring an alternative, the catalytic and direct nucleophilic addition of terminal alkynes to unsaturated electrophiles in water. We found that various terminal alkynes can react efficiently with a wide range of such electrophiles in water (or organic solvent) in the presence of simple and readily available catalysts, such as copper, silver, gold, iron, palladium, and others. In this Account, we describe the development of these synthetic methods, focusing primarily on results from our laboratory. Our studies include the following: (i) catalytic reaction of terminal alkynes with acid chloride, (ii) catalytic addition of terminal alkynes to aldehydes and ketones, (iii) catalytic addition of alkynes to CN bonds, and (iv) catalytic conjugate additions. Most importantly, these reactions can tolerate various functional groups and, in many cases, perform better in water than in organic solvents, clearly defying classical reactivities predicated on the relative acidities of water, alcohols, and terminal alkynes. We further discuss multicomponent and enantioselective reactions that were developed. These methods provide an alternative to the traditional requirement of separate steps in classical alkyne reactions, including the pregeneration of metal acetylides with stoichiometric, highly basic reagents and the preprotection of sensitive functional groups. Accordingly, these techniques have greatly enhanced overall synthetic efficiencies and furthered our long-term objective of developing Grignard-type reactions in water.
One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their native states into useful chemical products, thus avoiding the need for protecting groups. The nucleophilic addition of terminal alkynes to various unsaturated electrophiles is a classical (textbook) reaction in organic chemistry, allowing the formation of a C-C bond while simultaneously introducing the alkyne functionality. A prerequisite of this classical reaction is the stoichiometric generation of highly reactive metal acetylides. Over the past decade, our laboratory and others have been exploring an alternative, the catalytic and direct nucleophilic addition of terminal alkynes to unsaturated electrophiles in water. We found that various terminal alkynes can react efficiently with a wide range of such electrophiles in water (or organic solvent) in the presence of simple and readily available catalysts, such as copper, silver, gold, iron, palladium, and others. In this Account, we describe the development of these synthetic methods, focusing primarily on results from our laboratory. Our studies include the following: (i) catalytic reaction of terminal alkynes with acid chloride, (ii) catalytic addition of terminal alkynes to aldehydes and ketones, (iii) catalytic addition of alkynes to C=N bonds, and (iv) catalytic conjugate additions. Most importantly, these reactions can tolerate various functional groups and, in many cases, perform better in water than in organic solvents, clearly defying classical reactivities predicated on the relative acidities of water, alcohols, and terminal alkynes. We further discuss multicomponent and enantioselective reactions that were developed. These methods provide an alternative to the traditional requirement of separate steps in classical alkyne reactions, including the pregeneration of metal acetylides with stoichiometric, highly basic reagents and the preprotection of sensitive functional groups. Accordingly, these techniques have greatly enhanced overall synthetic efficiencies and furthered our long-term objective of developing Grignard-type reactions in water.One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their native states into useful chemical products, thus avoiding the need for protecting groups. The nucleophilic addition of terminal alkynes to various unsaturated electrophiles is a classical (textbook) reaction in organic chemistry, allowing the formation of a C-C bond while simultaneously introducing the alkyne functionality. A prerequisite of this classical reaction is the stoichiometric generation of highly reactive metal acetylides. Over the past decade, our laboratory and others have been exploring an alternative, the catalytic and direct nucleophilic addition of terminal alkynes to unsaturated electrophiles in water. We found that various terminal alkynes can react efficiently with a wide range of such electrophiles in water (or organic solvent) in the presence of simple and readily available catalysts, such as copper, silver, gold, iron, palladium, and others. In this Account, we describe the development of these synthetic methods, focusing primarily on results from our laboratory. Our studies include the following: (i) catalytic reaction of terminal alkynes with acid chloride, (ii) catalytic addition of terminal alkynes to aldehydes and ketones, (iii) catalytic addition of alkynes to C=N bonds, and (iv) catalytic conjugate additions. Most importantly, these reactions can tolerate various functional groups and, in many cases, perform better in water than in organic solvents, clearly defying classical reactivities predicated on the relative acidities of water, alcohols, and terminal alkynes. We further discuss multicomponent and enantioselective reactions that were developed. These methods provide an alternative to the traditional requirement of separate steps in classical alkyne reactions, including the pregeneration of metal acetylides with stoichiometric, highly basic reagents and the preprotection of sensitive functional groups. Accordingly, these techniques have greatly enhanced overall synthetic efficiencies and furthered our long-term objective of developing Grignard-type reactions in water.
Author Li, Chao-Jun
Author_xml – sequence: 1
  givenname: Chao-Jun
  surname: Li
  fullname: Li, Chao-Jun
  email: cj.li@mcgill.ca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20095650$$D View this record in MEDLINE/PubMed
BookMark eNptkE1Lw0AQhhep2A89-AckFxEPsbv53BxL_YSiHioewySZ0K2bbNzdCP33bmntQXoYZl54ZgaeMRm0qkVCLhm9YzRgU9AZpUHM0xMyYnFA_YhnfEBGlFLm5igYkrExaxeDKEnPyDCgNIuTmI7I-3KF3j3-oFRdg631VO3NwYLcWFF6r30pUXUrIV2YVZWwQrVmyyxRN6IF6c3k16ZF44nW-wSL-pyc1iANXuz7hHw8Piznz_7i7ellPlv4EHJq_TDhkKRFkqWcYYm84lmdVHHN0qpKo4LxIsSU0ppFpasoqWMAoEHGMlZDESfhhNzs7nZaffdobN4IU6KU0KLqTZ6GIQsD98aRV3uyLxqs8k6LBvQm_5PggNsdUGpljMb6gDCabwXnB8GOnf5jS2Fhq8VqEPLoxvVuA0qTr1WvnTVzhPsFeQ6HQQ
CitedBy_id crossref_primary_10_1039_C5CC08386A
crossref_primary_10_1007_s10562_021_03882_4
crossref_primary_10_1002_adsc_201500465
crossref_primary_10_1002_anie_201200698
crossref_primary_10_1002_ajoc_202300124
crossref_primary_10_1002_slct_202001660
crossref_primary_10_1016_j_colsurfa_2011_10_004
crossref_primary_10_1021_jo501872h
crossref_primary_10_1002_jhet_4184
crossref_primary_10_1002_ejoc_201402338
crossref_primary_10_1039_c3gc40896e
crossref_primary_10_1002_adsc_202001575
crossref_primary_10_1002_ejoc_201500209
crossref_primary_10_1016_j_catcom_2014_09_011
crossref_primary_10_1002_ange_201916088
crossref_primary_10_1021_acs_joc_8b00203
crossref_primary_10_1039_c2ob26903a
crossref_primary_10_1039_C5GC00926J
crossref_primary_10_1016_j_tetlet_2014_02_030
crossref_primary_10_1039_C7SC02556D
crossref_primary_10_1021_ja3022818
crossref_primary_10_1002_ajoc_201700049
crossref_primary_10_1021_ja4052685
crossref_primary_10_1039_c2cy20111a
crossref_primary_10_1016_j_tet_2017_01_023
crossref_primary_10_1039_C4RA16005C
crossref_primary_10_1039_C5RA05377C
crossref_primary_10_1021_ol102759w
crossref_primary_10_1021_ol300811e
crossref_primary_10_1039_C1CS15222J
crossref_primary_10_1002_cssc_201902817
crossref_primary_10_1021_om1010325
crossref_primary_10_1002_cctc_201902150
crossref_primary_10_1021_jo501884v
crossref_primary_10_1039_C1RA00720C
crossref_primary_10_1002_ange_201505830
crossref_primary_10_1021_acs_joc_8b02738
crossref_primary_10_1039_c1sc00160d
crossref_primary_10_1016_j_cclet_2015_05_021
crossref_primary_10_1007_s41061_017_0157_0
crossref_primary_10_1039_C7GC02823G
crossref_primary_10_1002_adsc_201800301
crossref_primary_10_1070_RC2014v083n07ABEH004425
crossref_primary_10_1002_cssc_202000277
crossref_primary_10_1039_C8OB02359J
crossref_primary_10_1002_ejoc_201301189
crossref_primary_10_1016_j_molcata_2015_03_013
crossref_primary_10_1039_c1cc14242a
crossref_primary_10_1039_c3gc40397a
crossref_primary_10_1039_C7RA06727E
crossref_primary_10_1007_s11426_011_4414_8
crossref_primary_10_1039_C2CC36417D
crossref_primary_10_1021_jo401744b
crossref_primary_10_1002_adsc_201400395
crossref_primary_10_1021_ol300671y
crossref_primary_10_1002_ange_201310280
crossref_primary_10_1021_ol3019242
crossref_primary_10_1039_C8CC08274J
crossref_primary_10_1039_C7GC00267J
crossref_primary_10_1002_anie_201101948
crossref_primary_10_1021_acs_orglett_0c03451
crossref_primary_10_1002_adsc_201100327
crossref_primary_10_1039_D0CC04221H
crossref_primary_10_1021_jacs_5b02071
crossref_primary_10_1039_c3cp52924j
crossref_primary_10_1039_c3ra43175d
crossref_primary_10_1021_acs_joc_5b01703
crossref_primary_10_1021_jo500199v
crossref_primary_10_1002_chem_201406581
crossref_primary_10_1016_j_mcat_2021_111518
crossref_primary_10_1039_C7OB00572E
crossref_primary_10_7868_S0514749218090261
crossref_primary_10_1016_j_cclet_2019_09_017
crossref_primary_10_1002_chem_201301633
crossref_primary_10_1039_c1gc15029d
crossref_primary_10_1002_adsc_201400169
crossref_primary_10_1002_adsc_201600072
crossref_primary_10_1002_cctc_201300870
crossref_primary_10_1039_C6OB01216G
crossref_primary_10_5155_eurjchem_2_1_100_103_175
crossref_primary_10_1002_adsc_201500787
crossref_primary_10_1021_cr300389u
crossref_primary_10_1021_ol201054z
crossref_primary_10_1002_adsc_201300802
crossref_primary_10_1016_j_cclet_2014_01_021
crossref_primary_10_1021_ja209244m
crossref_primary_10_1002_anie_201408826
crossref_primary_10_1021_acs_joc_3c02807
crossref_primary_10_1039_C5NJ03272E
crossref_primary_10_3390_nano9081137
crossref_primary_10_1002_adsc_201300005
crossref_primary_10_1080_10610278_2018_1529315
crossref_primary_10_1021_acs_joc_7b01489
crossref_primary_10_1021_acs_organomet_1c00624
crossref_primary_10_1039_C4RA14322A
crossref_primary_10_1021_acs_orglett_6b03888
crossref_primary_10_1021_jacs_8b13055
crossref_primary_10_1039_D4QO01272K
crossref_primary_10_1002_tcr_201700100
crossref_primary_10_1002_marc_201200180
crossref_primary_10_1039_C9GC04445K
crossref_primary_10_1021_acscatal_3c02199
crossref_primary_10_1021_acs_organomet_9b00343
crossref_primary_10_1021_ol203309y
crossref_primary_10_1016_j_jorganchem_2024_123442
crossref_primary_10_1002_chem_201303149
crossref_primary_10_1039_D1GC01234G
crossref_primary_10_1039_C6CC05318A
crossref_primary_10_1002_anie_201400557
crossref_primary_10_1039_c1gc15183e
crossref_primary_10_1016_j_catcom_2016_01_020
crossref_primary_10_1039_c3gc41383g
crossref_primary_10_1021_jo300237s
crossref_primary_10_1039_c3ob40652k
crossref_primary_10_1016_j_tetlet_2012_08_136
crossref_primary_10_1039_D4QO00602J
crossref_primary_10_1039_c2cs15356d
crossref_primary_10_1039_c3cs60020c
crossref_primary_10_1016_j_apcata_2013_03_008
crossref_primary_10_1002_ange_201400557
crossref_primary_10_1016_j_tetlet_2019_151288
crossref_primary_10_1007_s10562_018_2449_6
crossref_primary_10_1007_s10570_023_05370_x
crossref_primary_10_1021_acs_joc_0c01548
crossref_primary_10_1016_j_catcom_2015_09_028
crossref_primary_10_1002_anie_202201099
crossref_primary_10_1002_cssc_202001165
crossref_primary_10_1039_C7GC03618C
crossref_primary_10_1002_chem_201801109
crossref_primary_10_1007_s10562_018_2540_z
crossref_primary_10_1002_ejoc_201403085
crossref_primary_10_1039_C5QO00282F
crossref_primary_10_1002_ange_201304268
crossref_primary_10_1002_chem_201600635
crossref_primary_10_1039_D0OB01902J
crossref_primary_10_1016_j_tet_2023_133440
crossref_primary_10_1021_acs_joc_7b01828
crossref_primary_10_1021_ol200849k
crossref_primary_10_1021_acs_joc_0c01654
crossref_primary_10_1016_j_tet_2017_09_034
crossref_primary_10_1021_jo201059h
crossref_primary_10_1016_j_poly_2017_06_053
crossref_primary_10_1002_ange_201408826
crossref_primary_10_1002_cjoc_201200598
crossref_primary_10_1021_ja204817y
crossref_primary_10_1021_ol503025n
crossref_primary_10_1039_C1OB06429K
crossref_primary_10_1021_ol203072u
crossref_primary_10_1039_C8SC04271C
crossref_primary_10_3987_COM_15_13176
crossref_primary_10_1002_ejoc_201200990
crossref_primary_10_1002_chem_201201720
crossref_primary_10_1039_C6QO00207B
crossref_primary_10_1002_tcr_201500250
crossref_primary_10_1021_jacs_7b00363
crossref_primary_10_1016_j_tetlet_2015_02_048
crossref_primary_10_46632_jmc_1_1_3
crossref_primary_10_1007_s13738_013_0362_x
crossref_primary_10_1016_j_molcata_2015_01_021
crossref_primary_10_1021_acs_chemrev_7b00343
crossref_primary_10_1002_cjoc_202300449
crossref_primary_10_1039_c3cc38287g
crossref_primary_10_1021_ol202883v
crossref_primary_10_1002_cjoc_202100796
crossref_primary_10_1021_ol4000108
crossref_primary_10_1002_anie_201209312
crossref_primary_10_1039_C7RA00249A
crossref_primary_10_1039_C6QO00545D
crossref_primary_10_1021_ol201563r
crossref_primary_10_1039_C4GC00774C
crossref_primary_10_1002_ange_202201099
crossref_primary_10_1002_ejoc_201200090
crossref_primary_10_3390_app3010055
crossref_primary_10_1002_slct_201901946
crossref_primary_10_1021_ja401466y
crossref_primary_10_1021_jacs_2c09572
crossref_primary_10_1021_acs_orglett_1c03707
crossref_primary_10_1016_j_tetlet_2013_03_098
crossref_primary_10_1002_ajoc_201600623
crossref_primary_10_1039_c2gc35293a
crossref_primary_10_1016_j_gresc_2020_06_002
crossref_primary_10_1016_j_chempr_2016_08_007
crossref_primary_10_1002_cjoc_201180364
crossref_primary_10_1002_jhet_1988
crossref_primary_10_1021_jo401604n
crossref_primary_10_1002_anie_201304268
crossref_primary_10_1039_c2ob25487e
crossref_primary_10_1021_acs_orglett_5b01628
crossref_primary_10_1002_poc_3669
crossref_primary_10_1021_acscatal_8b02617
crossref_primary_10_1016_j_cclet_2019_07_030
crossref_primary_10_1021_jacs_6b10415
crossref_primary_10_1021_cr100414u
crossref_primary_10_1039_c2cc32205f
crossref_primary_10_1021_acs_orglett_4c04180
crossref_primary_10_1021_ol202861k
crossref_primary_10_1134_S1070428018090269
crossref_primary_10_1002_ijch_201700021
crossref_primary_10_1002_adsc_201300988
crossref_primary_10_1002_chem_201200050
crossref_primary_10_1039_C7DT00058H
crossref_primary_10_1021_acs_joc_6b01647
crossref_primary_10_1021_ol200638z
crossref_primary_10_1055_s_0042_1751506
crossref_primary_10_1039_C5RA24541A
crossref_primary_10_1039_c3ob40760h
crossref_primary_10_1139_cjc_2017_0640
crossref_primary_10_1002_adsc_202000189
crossref_primary_10_1021_acs_inorgchem_0c03695
crossref_primary_10_1002_ange_201200698
crossref_primary_10_1002_ange_201101948
crossref_primary_10_1002_anie_201505830
crossref_primary_10_1002_slct_202001157
crossref_primary_10_1021_jo501890z
crossref_primary_10_1021_jacs_0c05373
crossref_primary_10_1039_D2NJ06140F
crossref_primary_10_1039_D4OB01446D
crossref_primary_10_1002_masy_201251125
crossref_primary_10_1039_C9OB00524B
crossref_primary_10_1039_C5RA08038J
crossref_primary_10_1021_acs_orglett_7b01224
crossref_primary_10_1002_anie_201310280
crossref_primary_10_1002_anie_201412399
crossref_primary_10_1002_ejoc_201701033
crossref_primary_10_1002_chem_201103987
crossref_primary_10_1002_chem_201402815
crossref_primary_10_1002_cjoc_201600526
crossref_primary_10_1016_j_tet_2011_11_050
crossref_primary_10_1039_C9QO00260J
crossref_primary_10_1016_j_tetlet_2011_05_056
crossref_primary_10_1007_s10876_016_0994_y
crossref_primary_10_1039_c0gc00807a
crossref_primary_10_1002_asia_201800373
crossref_primary_10_1021_acssuschemeng_7b00103
crossref_primary_10_1002_chem_201503047
crossref_primary_10_1002_aoc_4203
crossref_primary_10_1021_acs_orglett_1c00768
crossref_primary_10_1016_j_tetlet_2011_09_075
crossref_primary_10_1002_ijch_201100164
crossref_primary_10_1039_c3ra41991f
crossref_primary_10_1021_om401141r
crossref_primary_10_1002_ejoc_201601103
crossref_primary_10_1016_j_ica_2010_09_056
crossref_primary_10_1016_j_rechem_2021_100279
crossref_primary_10_1055_s_0037_1610787
crossref_primary_10_1039_c2sc20590d
crossref_primary_10_1039_C5RA05546F
crossref_primary_10_1002_ange_201412399
crossref_primary_10_1021_acs_analchem_7b03601
crossref_primary_10_1055_a_2030_6797
crossref_primary_10_1021_acs_organomet_6b00529
crossref_primary_10_1021_ma501477w
crossref_primary_10_1002_asia_201100050
crossref_primary_10_1002_jhet_995
crossref_primary_10_1016_j_tetlet_2017_01_035
crossref_primary_10_1021_ol401810b
crossref_primary_10_1139_cjc_2018_0357
crossref_primary_10_1021_om1007192
crossref_primary_10_1002_ejoc_201201673
crossref_primary_10_1039_C4RA03232B
crossref_primary_10_1021_acs_joc_0c01833
crossref_primary_10_1021_ol401369d
crossref_primary_10_1021_om500086u
crossref_primary_10_1021_acs_orglett_8b00949
crossref_primary_10_1016_j_tet_2015_03_051
crossref_primary_10_1039_C3SC53115E
crossref_primary_10_1002_chem_201203010
crossref_primary_10_1039_c3gc41126e
crossref_primary_10_1002_ange_201405058
crossref_primary_10_1002_adsc_202400856
crossref_primary_10_1002_anie_201916088
crossref_primary_10_1002_anie_201405058
crossref_primary_10_1016_j_cogsc_2023_100760
crossref_primary_10_3762_bjoc_9_155
crossref_primary_10_1016_j_apcata_2013_01_023
crossref_primary_10_1021_acs_joc_7b02868
crossref_primary_10_1021_acs_joc_3c02772
crossref_primary_10_3987_COM_11_S_P_53
crossref_primary_10_1002_ejoc_201801227
crossref_primary_10_1016_j_rechem_2023_100939
crossref_primary_10_1039_c3sc22227f
crossref_primary_10_1039_C4SC00983E
crossref_primary_10_1002_adsc_201701475
crossref_primary_10_1002_ange_201500220
crossref_primary_10_1002_ange_201209312
crossref_primary_10_1016_j_cogsc_2023_100766
crossref_primary_10_1039_C4GC02287D
crossref_primary_10_1002_ejoc_201800361
crossref_primary_10_1039_C3GC41946K
crossref_primary_10_1002_anie_201203107
crossref_primary_10_1039_D3RE00131H
crossref_primary_10_1002_slct_201702454
crossref_primary_10_1002_anie_201601792
crossref_primary_10_1039_C5GC02621K
crossref_primary_10_1002_adsc_201500282
crossref_primary_10_1016_j_tet_2011_05_002
crossref_primary_10_1021_jo200070d
crossref_primary_10_1139_cjc_2021_0053
crossref_primary_10_1002_cctc_201700515
crossref_primary_10_1002_adsc_201000379
crossref_primary_10_1021_acs_joc_2c00274
crossref_primary_10_1039_c3ob42434k
crossref_primary_10_1021_acs_accounts_9b00623
crossref_primary_10_1039_c2ob25941a
crossref_primary_10_1002_ejoc_201402275
crossref_primary_10_1021_jacs_7b12054
crossref_primary_10_1002_adsc_201200589
crossref_primary_10_1039_D3CC00410D
crossref_primary_10_1021_ol203251s
crossref_primary_10_3390_catal12070758
crossref_primary_10_1039_C5SC02933C
crossref_primary_10_1002_anie_201500220
crossref_primary_10_1021_ol301017q
crossref_primary_10_1002_aoc_2976
crossref_primary_10_1016_j_ccr_2017_10_004
crossref_primary_10_1002_adsc_201200574
crossref_primary_10_1039_C1SC00164G
crossref_primary_10_1039_C6CC01828A
crossref_primary_10_1002_ange_201203107
crossref_primary_10_1039_C7CS00065K
crossref_primary_10_1039_c3ra42119h
crossref_primary_10_1002_ange_201601792
crossref_primary_10_1002_ajoc_201200113
crossref_primary_10_1002_jccs_201500519
crossref_primary_10_1016_j_catcom_2017_12_020
crossref_primary_10_1139_v11_108
crossref_primary_10_1246_bcsj_20200352
crossref_primary_10_1039_C8QO01028E
crossref_primary_10_1016_j_ccr_2020_213603
crossref_primary_10_1021_acs_accounts_0c00479
crossref_primary_10_1021_acscatal_8b05001
crossref_primary_10_1021_acsomega_6b00432
crossref_primary_10_1016_j_tet_2013_06_098
crossref_primary_10_1002_ajoc_201500192
crossref_primary_10_1021_acscatal_6b03404
crossref_primary_10_1002_ejoc_201500634
crossref_primary_10_1016_j_gee_2020_11_028
Cites_doi 10.1021/ol035781y
10.1016/j.tetlet.2004.01.044
10.1021/ol049936t
10.1002/adsc.200606118
10.1021/ol051575+
10.1016/S0040-4039(02)01197-8
10.1016/j.tetlet.2004.02.038
10.1016/j.tet.2005.08.064
10.1021/ol047814v
10.1002/qsar.200420034
10.1021/ol060645p
10.1021/jo00125a041
10.1002/anie.200352578
10.1021/ol036462+
10.1002/chem.200901416
10.1021/ja026007t
10.1002/anie.200701098
10.1021/ol071003k
10.1021/ja9624937
10.1039/B607986P
10.1021/jo900079u
10.1021/ja0359299
10.1039/b110102c
10.1002/9783527615278
10.1016/0040-4020(95)01056-4
10.1002/adsc.200700500
10.1002/anie.200801367
10.1021/ar990078o
10.1073/pnas.0809052106
10.1021/ja981020s
10.1073/pnas.0307150101
10.2174/1570178054405959
10.1021/jo702197b
10.1016/j.jorganchem.2008.12.008
10.1002/anie.200702439
10.1039/b404430d
10.2174/0929867033456468
10.1021/ol017022q
10.1055/s-2001-13376
10.1016/j.tetlet.2005.08.047
10.1002/anie.199502591
10.1016/S0040-4039(97)01460-3
10.1002/anie.200805122
10.1002/chem.200802643
10.1002/anie.200502735
10.1021/ja993074n
10.1021/ol049578u
10.1039/b805946m
10.1016/S0040-4020(99)00641-9
10.1039/b407936a
10.1021/ar800164n
10.1016/j.tet.2008.03.083
10.1039/CC9960002315
10.1016/j.tetlet.2004.07.036
10.1021/ja035311z
10.1039/B416268D
10.1016/j.tetlet.2004.09.079
10.1002/anie.200904486
10.1002/anie.200461286
10.1016/j.tetlet.2009.03.182
10.1021/jo00013a003
10.1021/ol015830b
10.1021/ol050826b
10.1021/ol048789w
10.1016/0040-4039(95)01565-Y
10.1002/adsc.200800232
10.1021/ja052411r
10.1007/978-3-662-04164-2
10.1016/j.tet.2007.11.043
10.1002/adsc.200800776
10.1002/1521-3773(20010702)40:13<2534::AID-ANIE2534>3.0.CO;2-2
10.1039/B613596J
10.1021/jo00121a018
10.1016/S0040-4039(02)00082-5
10.1002/chem.200501233
10.1016/j.tetasy.2006.02.007
10.1126/science.1962206
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
Copyright_xml – notice: Copyright © 2010 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/ar9002587
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Catalytic Nucleophilic Additions of Terminal Alkynes
EISSN 1520-4898
EndPage 590
ExternalDocumentID 20095650
10_1021_ar9002587
c584665246
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
23M
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a380t-368a67b69781ece8d89f6d5f17dd74b18b3e700f14cf1446f5aaa029191fab563
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Fri Jul 11 06:12:50 EDT 2025
Mon Jul 21 05:59:13 EDT 2025
Thu Apr 24 23:03:36 EDT 2025
Tue Jul 01 04:04:07 EDT 2025
Thu Aug 27 13:42:22 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a380t-368a67b69781ece8d89f6d5f17dd74b18b3e700f14cf1446f5aaa029191fab563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20095650
PQID 733132368
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_733132368
pubmed_primary_20095650
crossref_primary_10_1021_ar9002587
crossref_citationtrail_10_1021_ar9002587
acs_journals_10_1021_ar9002587
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-04-20
PublicationDateYYYYMMDD 2010-04-20
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Anastas P. T. (ref5/cit5) 1998
Gommermann N. (ref53/cit53) 2006; 12
Sreedhar B. (ref60/cit60) 2005; 46
Chen L. (ref81/cit81) 2004
Bieber L. W. (ref59/cit59) 2004; 45
Yao X. (ref27/cit27) 2006; 8
Chen W. W. (ref67/cit67) 2009; 50
Zhang J. (ref69/cit69) 2002; 43
Li C.-J. (ref17/cit17) 1998
Skouta R. (ref46/cit46) 2008; 64
Dillinger S. (ref21/cit21) 2001; 3
Sakaguchi S. (ref36/cit36) 2004
Hashmi A. S. K. (ref28/cit28a) 2005; 44
Fischer C. (ref71/cit71) 2004; 6
Carreira E. M. (ref77/cit77) 2003; 125
Satoshi S. (ref35/cit35) 2001; 40
Trost B. M. (ref4/cit4) 1991; 254
Fischer C. (ref38/cit38) 2004
Li C.-J. (ref34/cit34) 2002
Zhou L. (ref66/cit66) 2009
Zhou L. (ref84/cit84) 2009; 15
Knopfel T. F. (ref78/cit78) 2005; 127
Li C.-J. (ref16/cit16) 1998; 120
Kabalka G. W. (ref44/cit44) 2001
Boumendjel A. (ref23/cit23a) 2003; 10
Trost B. M. (ref6/cit6) 1997; 119
Li Z. (ref49/cit49) 2004; 45
Yu M. (ref26/cit26) 2009; 74
Li Z. (ref65/cit65) 2004; 6
Gommermann N. (ref52/cit52) 2003; 42
Li C.-J. (ref19/cit19) 1999; 55
Yamaguchi M. (ref8/cit8) 1991; 56
Wei C. (ref13/cit13) 2004
Gommermann N. (ref54/cit54) 2005; 61
Hiyama T. (ref31/cit31) 2000
Black A. D. (ref70/cit70) 2004; 6
Motoki R. (ref33/cit33) 2007; 9
Trost B. M. (ref3/cit3) 1995; 34
Wei C. M. (ref48/cit48) 2003; 5
Nishimura T. (ref7/cit7) 2009; 48
Chen L. (ref30/cit30) 2004; 6
Han Y. (ref9/cit9) 1995; 36
Wei C. (ref72/cit72) 2005; 2
Deng G. (ref32/cit32) 2008
Luo Y. (ref42/cit42) 2005; 7
Zhao L. (ref74/cit74) 2009; 106
Li C.-J. (ref15/cit15) 1996; 52
Zhao L. (ref73/cit73) 2008; 47
Lerum R. V. (ref82/cit82) 2004; 45
Knopfel T. F. (ref55/cit55) 2004; 43
Wei C. (ref45/cit45) 2003; 125
Trost B. M. (ref2/cit2) 2009; 351
Carreira E. M. (ref37/cit37) 2001; 3
Wei C. (ref39/cit39) 2002; 124
Yoo W.-J. (ref41/cit41) 2008; 350
Rueping M. (ref51/cit51) 2007; 46
Park S. B. (ref58/cit58) 2005
Carreira E. M. (ref10/cit10) 2000; 33
Huang B. (ref61/cit61) 2006; 348
Lo V. K.-Y. (ref47/cit47) 2009; 694
Wei C. (ref40/cit40) 2004; 101
Wei C. (ref20/cit20) 2002; 4
Bonfield E. R. (ref76/cit76) 2008; 350
Viswanathan G. S. (ref29/cit29) 2002; 43
Shi L. (ref56/cit56) 2004; 6
Li C.-J. (ref63/cit63) 2009; 42
Yao X. (ref22/cit22) 2005; 7
Ju Y. (ref57/cit57) 2004; 23
Miura M. (ref11/cit11) 1995; 60
Maggi R. (ref50/cit50) 2008; 64
Zhou L. (ref83/cit83) 2008; 6
Youngman M. A. (ref43/cit43) 1997; 38
Thakkar K. (ref24/cit24a) 1995; 60
Li Z. (ref64/cit64) 2006; 17
Harkat H. (ref25/cit25) 2008; 73
Frantz D. E. (ref12/cit12) 1999; 121
Zani L. (ref14/cit14) 2006
Bonfield E. R. (ref75/cit75) 2007; 5
Li P. (ref68/cit68) 2009; 15
Chen L. (ref80/cit80) 2004; 45
Loh T. P. (ref18/cit18) 1996
Bi H. P. (ref62/cit62) 2009; 48
Fujimori S. (ref79/cit79) 2007; 46
Stang P. J. (ref1/cit1) 1995
References_xml – start-page: 1497
  year: 2004
  ident: ref38/cit38
  publication-title: Synthesis
– volume: 5
  start-page: 4473
  year: 2003
  ident: ref48/cit48
  publication-title: Org. Lett.
  doi: 10.1021/ol035781y
– volume: 45
  start-page: 2443
  year: 2004
  ident: ref49/cit49
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2004.01.044
– volume: 6
  start-page: 1001
  year: 2004
  ident: ref56/cit56
  publication-title: Org. Lett.
  doi: 10.1021/ol049936t
– volume: 348
  start-page: 1528
  year: 2006
  ident: ref61/cit61
  publication-title: Adv. Catal. Synth.
  doi: 10.1002/adsc.200606118
– volume: 7
  start-page: 4395
  year: 2005
  ident: ref22/cit22
  publication-title: Org. Lett.
  doi: 10.1021/ol051575+
– start-page: 1571
  year: 2008
  ident: ref32/cit32
  publication-title: Synlett
– volume: 43
  start-page: 5731
  year: 2002
  ident: ref69/cit69
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(02)01197-8
– volume: 45
  start-page: 2771
  year: 2004
  ident: ref80/cit80
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2004.02.038
– volume: 61
  start-page: 11418
  year: 2005
  ident: ref54/cit54
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2005.08.064
– volume: 6
  start-page: 4997
  year: 2004
  ident: ref65/cit65
  publication-title: Org. Lett.
  doi: 10.1021/ol047814v
– start-page: 268
  year: 2002
  ident: ref34/cit34
  publication-title: Chem. Commun.
– volume: 23
  start-page: 891
  year: 2004
  ident: ref57/cit57
  publication-title: QSAR Comb. Sci.
  doi: 10.1002/qsar.200420034
– volume: 8
  start-page: 1953
  year: 2006
  ident: ref27/cit27
  publication-title: Org. Lett.
  doi: 10.1021/ol060645p
– volume: 60
  start-page: 6499
  year: 1995
  ident: ref24/cit24a
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00125a041
– volume: 42
  start-page: 5763
  year: 2003
  ident: ref52/cit52
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200352578
– volume: 6
  start-page: 1107
  year: 2004
  ident: ref70/cit70
  publication-title: Org. Lett.
  doi: 10.1021/ol036462+
– volume: 15
  start-page: 11668
  year: 2009
  ident: ref84/cit84
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.200901416
– volume: 124
  start-page: 5638
  year: 2002
  ident: ref39/cit39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja026007t
– volume: 46
  start-page: 4964
  year: 2007
  ident: ref79/cit79
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200701098
– volume: 9
  start-page: 2997
  year: 2007
  ident: ref33/cit33
  publication-title: Org. Lett.
  doi: 10.1021/ol071003k
– volume: 119
  start-page: 698
  year: 1997
  ident: ref6/cit6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9624937
– start-page: 4263
  year: 2006
  ident: ref14/cit14
  publication-title: Chem. Commun.
  doi: 10.1039/B607986P
– start-page: 1472
  year: 2004
  ident: ref13/cit13
  publication-title: Synlett
– volume: 74
  start-page: 3378
  year: 2009
  ident: ref26/cit26
  publication-title: J. Org. Chem.
  doi: 10.1021/jo900079u
– volume: 125
  start-page: 9584
  year: 2003
  ident: ref45/cit45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0359299
– volume: 4
  start-page: 39
  year: 2002
  ident: ref20/cit20
  publication-title: Green Chem.
  doi: 10.1039/b110102c
– volume-title: Modern Acetylene Chemistry
  year: 1995
  ident: ref1/cit1
  doi: 10.1002/9783527615278
– volume: 52
  start-page: 5643
  year: 1996
  ident: ref15/cit15
  publication-title: Tetrahedron
  doi: 10.1016/0040-4020(95)01056-4
– volume: 350
  start-page: 370
  year: 2008
  ident: ref76/cit76
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.200700500
– volume: 47
  start-page: 7075
  year: 2008
  ident: ref73/cit73
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200801367
– volume: 33
  start-page: 373
  year: 2000
  ident: ref10/cit10
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar990078o
– volume: 106
  start-page: 4106
  year: 2009
  ident: ref74/cit74
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0809052106
– volume: 120
  start-page: 9102
  year: 1998
  ident: ref16/cit16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja981020s
– volume: 101
  start-page: 5749
  year: 2004
  ident: ref40/cit40
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0307150101
– volume: 2
  start-page: 410
  year: 2005
  ident: ref72/cit72
  publication-title: Lett. Org. Chem.
  doi: 10.2174/1570178054405959
– volume: 73
  start-page: 1620
  year: 2008
  ident: ref25/cit25
  publication-title: J. Org. Chem.
  doi: 10.1021/jo702197b
– volume: 694
  start-page: 583
  year: 2009
  ident: ref47/cit47
  publication-title: J. Organomet. Chem.
  doi: 10.1016/j.jorganchem.2008.12.008
– volume: 46
  start-page: 6903
  year: 2007
  ident: ref51/cit51
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200702439
– start-page: 1638
  year: 2004
  ident: ref36/cit36
  publication-title: Chem. Commun.
  doi: 10.1039/b404430d
– volume: 10
  start-page: 2621
  year: 2003
  ident: ref23/cit23a
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867033456468
– volume: 3
  start-page: 4319
  year: 2001
  ident: ref37/cit37
  publication-title: Org. Lett.
  doi: 10.1021/ol017022q
– start-page: 676
  year: 2001
  ident: ref44/cit44
  publication-title: Synlett.
  doi: 10.1055/s-2001-13376
– volume: 46
  start-page: 7019
  year: 2005
  ident: ref60/cit60
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2005.08.047
– volume: 34
  start-page: 259
  year: 1995
  ident: ref3/cit3
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199502591
– volume-title: Green Chemistry: Theory and Practice
  year: 1998
  ident: ref5/cit5
– volume: 38
  start-page: 6347
  year: 1997
  ident: ref43/cit43
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(97)01460-3
– volume: 48
  start-page: 792
  year: 2009
  ident: ref62/cit62
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200805122
– volume: 15
  start-page: 2045
  year: 2009
  ident: ref68/cit68
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.200802643
– volume: 44
  start-page: 6990
  year: 2005
  ident: ref28/cit28a
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200502735
– volume: 121
  start-page: 11245
  year: 1999
  ident: ref12/cit12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja993074n
– volume: 6
  start-page: 1497
  year: 2004
  ident: ref71/cit71
  publication-title: Org. Lett.
  doi: 10.1021/ol049578u
– volume: 6
  start-page: 2969
  year: 2008
  ident: ref83/cit83
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/b805946m
– volume: 55
  start-page: 11149
  year: 1999
  ident: ref19/cit19
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(99)00641-9
– start-page: 2362
  year: 2004
  ident: ref81/cit81
  publication-title: Chem. Commun.
  doi: 10.1039/b407936a
– volume: 42
  start-page: 335
  year: 2009
  ident: ref63/cit63
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar800164n
– start-page: 937
  year: 2009
  ident: ref66/cit66
  publication-title: Synlett
– volume: 64
  start-page: 4917
  year: 2008
  ident: ref46/cit46
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2008.03.083
– start-page: 2315
  year: 1996
  ident: ref18/cit18
  publication-title: Chem. Commun.
  doi: 10.1039/CC9960002315
– volume: 45
  start-page: 6591
  year: 2004
  ident: ref82/cit82
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2004.07.036
– volume: 125
  start-page: 6054
  year: 2003
  ident: ref77/cit77
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja035311z
– start-page: 1351
  year: 1998
  ident: ref17/cit17
  publication-title: Chem. Commun.
– start-page: 1315
  year: 2005
  ident: ref58/cit58
  publication-title: Chem. Commun.
  doi: 10.1039/B416268D
– volume: 45
  start-page: 8281
  year: 2004
  ident: ref59/cit59
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2004.09.079
– volume: 48
  start-page: 8057
  year: 2009
  ident: ref7/cit7
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200904486
– volume: 43
  start-page: 5971
  year: 2004
  ident: ref55/cit55
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200461286
– volume: 50
  start-page: 2895
  year: 2009
  ident: ref67/cit67
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2009.03.182
– volume: 56
  start-page: 4091
  year: 1991
  ident: ref8/cit8
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00013a003
– volume: 3
  start-page: 1661
  year: 2001
  ident: ref21/cit21
  publication-title: Org. Lett.
  doi: 10.1021/ol015830b
– volume: 7
  start-page: 2675
  year: 2005
  ident: ref42/cit42
  publication-title: Org. Lett.
  doi: 10.1021/ol050826b
– volume: 6
  start-page: 3151
  year: 2004
  ident: ref30/cit30
  publication-title: Org. Lett.
  doi: 10.1021/ol048789w
– volume: 36
  start-page: 7277
  year: 1995
  ident: ref9/cit9
  publication-title: Tetrahedron Lett.
  doi: 10.1016/0040-4039(95)01565-Y
– volume: 350
  start-page: 1503
  year: 2008
  ident: ref41/cit41
  publication-title: Adv. Syn. Catal.
  doi: 10.1002/adsc.200800232
– volume: 127
  start-page: 9682
  year: 2005
  ident: ref78/cit78
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja052411r
– volume-title: Organo Fluorine Compounds: Chemistry and Applications
  year: 2000
  ident: ref31/cit31
  doi: 10.1007/978-3-662-04164-2
– volume: 64
  start-page: 1435
  year: 2008
  ident: ref50/cit50
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2007.11.043
– volume: 351
  start-page: 963
  year: 2009
  ident: ref2/cit2
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.200800776
– volume: 40
  start-page: 2534
  year: 2001
  ident: ref35/cit35
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20010702)40:13<2534::AID-ANIE2534>3.0.CO;2-2
– volume: 5
  start-page: 435
  year: 2007
  ident: ref75/cit75
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/B613596J
– volume: 60
  start-page: 4999
  year: 1995
  ident: ref11/cit11
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00121a018
– volume: 43
  start-page: 1613
  year: 2002
  ident: ref29/cit29
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(02)00082-5
– volume: 12
  start-page: 4380
  year: 2006
  ident: ref53/cit53
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.200501233
– volume: 17
  start-page: 590
  year: 2006
  ident: ref64/cit64
  publication-title: Tetrahedron: Asymmetry
  doi: 10.1016/j.tetasy.2006.02.007
– volume: 254
  start-page: 1471
  year: 1991
  ident: ref4/cit4
  publication-title: Science
  doi: 10.1126/science.1962206
SSID ssj0002467
Score 2.4943404
Snippet One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 581
SubjectTerms Aldehydes - chemistry
Alkylation
Alkynes - chemistry
Catalysis
Ketones - chemistry
Water - chemistry
Title The Development of Catalytic Nucleophilic Additions of Terminal Alkynes in Water
URI http://dx.doi.org/10.1021/ar9002587
https://www.ncbi.nlm.nih.gov/pubmed/20095650
https://www.proquest.com/docview/733132368
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEB6qHvTi-1FfBPXgZetuks1mj2VVRFAEW-xtyROkZSt9HPTXm3S7i2LV-yQkk8k8MpNvAC5io7jkJgpsSkRA0wgHqSI6UFpThVXItfUfhR8e2V2X3vfiXgPOf8ng4-hKjFJvmHmyBCuY8cRHWO3suVa3mLISGNPFxZRTXMEHfR3qTY8afzc9v_iTM7tyuwHX1e-cspyk35pOZEt9_ARr_GvJm7A-9ytRuxSELWiYYhtWs6qd2w48OYFAX0qE0NCizL_dvLsR6NHDGg_f_OuKQm2ty0IuT9Mpq2Xc1IP-u9OL6LVAL85BHe1C9_amk90F83YKgSA8nASEccESyTzKlVGGa55apmMbJVonVEZcEpOEoY2osj5KtLEQIsSpi-iskDEje7BcDAtzAMhyZkLhfEHtc8OpFZZIIYk1ihFBcdiEU8fvfH4dxvks042jvGZMEy6ro8jVHIzc98QYLCI9q0nfSgSORUSoOs_c8dUnPURhhtNx7ntSEuz23oT98pzrWXxiyO0hPPxvtUewVhYNUKdUjmF5MpqaE-eLTOTpTBY_AZxn1nw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcigX3o_lUSwEEpe0ie04zoHDaku1pe0Kia3oLfgpoVbZarMrtPwU_kr_XMd50aIiTpW4T0Z-fPbMZMbfALxNnZFauiTyOVMRzxMa5YbZyFjLDTWxtD48FD6ciPER_3ScHq_Br-4tDA6iQk1VncT_zS6QbKt5HuyzzNoCyn23-oHhWfVhbwf38h2lux-no3HUdhCIFJPxImJCKpFpEYidnHHSytwLm_okszbjOpGauSyOfcKND4GRT5VSMc0xiPFKp4Kh3ltwG50eGgK74ehLf8tTLho-TgzHueS0Yy26PNRg8Ux11eL9xY2tzdnuPTjvF6KuYjnZWi70lvn5B0fk_7lS9-Fu60WTYQP7B7DmyoewMeqa1z2Czwh_cqkgisw8GYU_VSv8gkwCifPsLPxLMmRobVO2FmSmTW0Qqj49WaEVIN9L8hXd8fljOLqRCT2B9XJWumdAvBQuVggCGzLhuVeeaaWZd0YwxWk8gE3ch6I9_FVR5_VpUvQbMYD3HQIK01Kvhw4gp9eJvulFzxq-keuESAejAtc1pHhU6WbLqggdOBnFuQ_gaQOvXktIg-Ec4uf_Gu1r2BhPDw-Kg73J_gu405RLcLxOX8L6Yr50r9ALW-jN-jgQ-HbTqLoAniU4-g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxQxDLZKkaAX3pSFUiIEEpcpM0kmkzn0sNqyaimsKtGK3oY8JdRqdrWzK7T8GP5K_1qdeamgIk6VuDuWkzixHTufAd6kzkgtXRL5nKmI5wmNcsNsZKzlhppYWh8-Cn-eiP0T_vE0PV2DX91fGBSiQk5VncQPp3pmfYswkLxX8zzYaJm1RZSHbvUDQ7Rq92AP9_MtpeMPx6P9qO0iECkm40XEhFQi0yKAOznjpJW5Fzb1SWZtxnUiNXNZHPuEGx-CI58qpWKaYyDjlU4FQ7634HZID4bgbjj60t_0lIsGkxNDci457ZCLrooarJ6pfrd6f3Fla5M2vg8X_WLUlSxnO8uF3jE__8CJ_H9X6wHca71pMmzU_yGsufIR3B11TewewxEeA3KlMIpMPRmFF6sVjiCTAOY8nYU3JUOG1jbla4HmuKkRQtbnZyu0BuR7Sb6iWz5_Aic3MqGnsF5OS_cMiJfCxQoVwYaMeO6VZ1pp5p0RTHEaD2Ab96JoL4GqqPP7NCn6jRjAu04LCtNCsIdOIOfXkb7uSWcN7sh1RKRTpQLXNaR6VOmmy6oInTgZxbkPYLNRsZ5LSIfhHOLn_5L2Fdw52hsXnw4mhy9go6ma4HirbsH6Yr50L9EZW-jt-kQQ-HbTSnUJKts7fQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Development+of+Catalytic+Nucleophilic+Additions+of+Terminal+Alkynes+in+Water&rft.jtitle=Accounts+of+chemical+research&rft.au=Li%2C+Chao-Jun&rft.date=2010-04-20&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=43&rft.issue=4&rft.spage=581&rft.epage=590&rft_id=info:doi/10.1021%2Far9002587&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ar9002587
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon