Kinetics of the Terminal Electron Transfer Step in Cytochrome c Oxidase

Cytochrome c oxidase (cco) catalyzes the oxygen reduction reaction in most aerobically respiring organisms. Decades of research have uncovered many aspects relating to structure and function of this enzyme. However, the origin of the unusually fast terminal electron transfer step from heme a to heme...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 116; no. 6; pp. 1876 - 1883
Main Authors Tipmanee, Varomyalin, Blumberger, Jochen
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.02.2012
Subjects
Online AccessGet full text
ISSN1520-6106
1520-5207
1520-5207
DOI10.1021/jp209175j

Cover

Loading…
Abstract Cytochrome c oxidase (cco) catalyzes the oxygen reduction reaction in most aerobically respiring organisms. Decades of research have uncovered many aspects relating to structure and function of this enzyme. However, the origin of the unusually fast terminal electron transfer step from heme a to heme a3 in cco has been the subject of intense discussions over recent years. Yet, no satisfactory consensus has been achieved. Carrying out large-scale molecular dynamics simulation of the protein embedded in a solvated membrane, we obtain a reorganization free energy λ = 0.57 eV. Evaluation of the quantized single-mode rate equation using the experimental rate and the computed reorganization free energy gives a value of 1.5 meV for the average electronic coupling (H ab) between heme a and heme a3. Thus, according to our calculations, the nanosecond electron transfer (ET) is due to a small but significant activation barrier (ΔG ‡ = 0.12 eV) in combination with effective electronic coupling between the two cofactors. The activation free energy is caused predominantly by collective reorganization of protein residues. We show that our results are consistent with the weak temperature dependence observed in experiment if one allows for very minor variations in the donor–acceptor distance as the temperature changes.
AbstractList Cytochrome c oxidase (cco) catalyzes the oxygen reduction reaction in most aerobically respiring organisms. Decades of research have uncovered many aspects relating to structure and function of this enzyme. However, the origin of the unusually fast terminal electron transfer step from heme a to heme a sub(3) in cco has been the subject of intense discussions over recent years. Yet, no satisfactory consensus has been achieved. Carrying out large-scale molecular dynamics simulation of the protein embedded in a solvated membrane, we obtain a reorganization free energy lambda = 0.57 eV. Evaluation of the quantized single-mode rate equation using the experimental rate and the computed reorganization free energy gives a value of 1.5 meV for the average electronic coupling (H sub(ab)) between heme a and heme a sub(3). Thus, according to our calculations, the nanosecond electron transfer (ET) is due to a small but significant activation barrier ( Delta G super() = 0.12 eV) in combination with effective electronic coupling between the two cofactors. The activation free energy is caused predominantly by collective reorganization of protein residues. We show that our results are consistent with the weak temperature dependence observed in experiment if one allows for very minor variations in the donor-acceptor distance as the temperature changes.
Cytochrome c oxidase (cco) catalyzes the oxygen reduction reaction in most aerobically respiring organisms. Decades of research have uncovered many aspects relating to structure and function of this enzyme. However, the origin of the unusually fast terminal electron transfer step from heme a to heme a(3) in cco has been the subject of intense discussions over recent years. Yet, no satisfactory consensus has been achieved. Carrying out large-scale molecular dynamics simulation of the protein embedded in a solvated membrane, we obtain a reorganization free energy λ = 0.57 eV. Evaluation of the quantized single-mode rate equation using the experimental rate and the computed reorganization free energy gives a value of 1.5 meV for the average electronic coupling (H(ab)) between heme a and heme a(3). Thus, according to our calculations, the nanosecond electron transfer (ET) is due to a small but significant activation barrier (ΔG(‡) = 0.12 eV) in combination with effective electronic coupling between the two cofactors. The activation free energy is caused predominantly by collective reorganization of protein residues. We show that our results are consistent with the weak temperature dependence observed in experiment if one allows for very minor variations in the donor-acceptor distance as the temperature changes.Cytochrome c oxidase (cco) catalyzes the oxygen reduction reaction in most aerobically respiring organisms. Decades of research have uncovered many aspects relating to structure and function of this enzyme. However, the origin of the unusually fast terminal electron transfer step from heme a to heme a(3) in cco has been the subject of intense discussions over recent years. Yet, no satisfactory consensus has been achieved. Carrying out large-scale molecular dynamics simulation of the protein embedded in a solvated membrane, we obtain a reorganization free energy λ = 0.57 eV. Evaluation of the quantized single-mode rate equation using the experimental rate and the computed reorganization free energy gives a value of 1.5 meV for the average electronic coupling (H(ab)) between heme a and heme a(3). Thus, according to our calculations, the nanosecond electron transfer (ET) is due to a small but significant activation barrier (ΔG(‡) = 0.12 eV) in combination with effective electronic coupling between the two cofactors. The activation free energy is caused predominantly by collective reorganization of protein residues. We show that our results are consistent with the weak temperature dependence observed in experiment if one allows for very minor variations in the donor-acceptor distance as the temperature changes.
Cytochrome c oxidase (cco) catalyzes the oxygen reduction reaction in most aerobically respiring organisms. Decades of research have uncovered many aspects relating to structure and function of this enzyme. However, the origin of the unusually fast terminal electron transfer step from heme a to heme a3 in cco has been the subject of intense discussions over recent years. Yet, no satisfactory consensus has been achieved. Carrying out large-scale molecular dynamics simulation of the protein embedded in a solvated membrane, we obtain a reorganization free energy λ = 0.57 eV. Evaluation of the quantized single-mode rate equation using the experimental rate and the computed reorganization free energy gives a value of 1.5 meV for the average electronic coupling (H ab) between heme a and heme a3. Thus, according to our calculations, the nanosecond electron transfer (ET) is due to a small but significant activation barrier (ΔG ‡ = 0.12 eV) in combination with effective electronic coupling between the two cofactors. The activation free energy is caused predominantly by collective reorganization of protein residues. We show that our results are consistent with the weak temperature dependence observed in experiment if one allows for very minor variations in the donor–acceptor distance as the temperature changes.
Cytochrome c oxidase (cco) catalyzes the oxygen reduction reaction in most aerobically respiring organisms. Decades of research have uncovered many aspects relating to structure and function of this enzyme. However, the origin of the unusually fast terminal electron transfer step from heme a to heme a₃ in cco has been the subject of intense discussions over recent years. Yet, no satisfactory consensus has been achieved. Carrying out large-scale molecular dynamics simulation of the protein embedded in a solvated membrane, we obtain a reorganization free energy λ = 0.57 eV. Evaluation of the quantized single-mode rate equation using the experimental rate and the computed reorganization free energy gives a value of 1.5 meV for the average electronic coupling (Hₐb) between heme a and heme a₃. Thus, according to our calculations, the nanosecond electron transfer (ET) is due to a small but significant activation barrier (ΔG‡ = 0.12 eV) in combination with effective electronic coupling between the two cofactors. The activation free energy is caused predominantly by collective reorganization of protein residues. We show that our results are consistent with the weak temperature dependence observed in experiment if one allows for very minor variations in the donor–acceptor distance as the temperature changes.
Cytochrome c oxidase (cco) catalyzes the oxygen reduction reaction in most aerobically respiring organisms. Decades of research have uncovered many aspects relating to structure and function of this enzyme. However, the origin of the unusually fast terminal electron transfer step from heme a to heme a(3) in cco has been the subject of intense discussions over recent years. Yet, no satisfactory consensus has been achieved. Carrying out large-scale molecular dynamics simulation of the protein embedded in a solvated membrane, we obtain a reorganization free energy λ = 0.57 eV. Evaluation of the quantized single-mode rate equation using the experimental rate and the computed reorganization free energy gives a value of 1.5 meV for the average electronic coupling (H(ab)) between heme a and heme a(3). Thus, according to our calculations, the nanosecond electron transfer (ET) is due to a small but significant activation barrier (ΔG(‡) = 0.12 eV) in combination with effective electronic coupling between the two cofactors. The activation free energy is caused predominantly by collective reorganization of protein residues. We show that our results are consistent with the weak temperature dependence observed in experiment if one allows for very minor variations in the donor-acceptor distance as the temperature changes.
Author Tipmanee, Varomyalin
Blumberger, Jochen
Author_xml – sequence: 1
  givenname: Varomyalin
  surname: Tipmanee
  fullname: Tipmanee, Varomyalin
– sequence: 2
  givenname: Jochen
  surname: Blumberger
  fullname: Blumberger, Jochen
  email: j.blumberger@ucl.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22243050$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1LwzAYB_Agii_Tg19AchH1UM1Lm7RHGTrFwQ7Oc0nTp5jRJjNJwX17OzZ3ENFDSA6_54H8_ydo3zoLCJ1TcksJo3eLJSMFldliDx3TjJFkOHJ_-xaUiCN0EsKCEJaxXByiI8ZYyklGjtHkxViIRgfsGhzfAc_Bd8aqFj-0oKN3Fs-9sqEBj18jLLGxeLyKTr971wHWePZpahXgFB00qg1wtr1H6O3xYT5-SqazyfP4fpoonpOYMK7TXEhZNLJWKs1zKHQqKwGUFwRyzXldZLKpqpxWdS1k2hDKdd0wppSWRPERutrsXXr30UOIZWeChrZVFlwfymL4GhWci0Fe_ykZIUMCIhP0XzpEyzPK8my99WJL-6qDulx60ym_Kr8THcDNBmjvQvDQ7Agl5bqtctfWYO9-WG2iisbZ6JVpf5243EwoHcqF6_3QVPjFfQFLBaA9
CitedBy_id crossref_primary_10_1016_j_abb_2015_06_016
crossref_primary_10_1016_j_bpj_2015_10_038
crossref_primary_10_1021_acs_jpclett_8b00537
crossref_primary_10_1073_pnas_2107939118
crossref_primary_10_1021_ar500271d
crossref_primary_10_1073_pnas_1316156111
crossref_primary_10_1016_j_compbiolchem_2013_05_004
crossref_primary_10_1039_c2cp41348e
crossref_primary_10_1021_ja3027696
crossref_primary_10_1039_D3CP00197K
crossref_primary_10_1021_ci300250q
crossref_primary_10_1021_acs_jpcb_9b05253
crossref_primary_10_1002_prot_24584
crossref_primary_10_1098_rsif_2014_1117
crossref_primary_10_1021_acs_jctc_7b01128
crossref_primary_10_1016_j_bbrc_2019_01_083
crossref_primary_10_1021_ct500527v
crossref_primary_10_1021_jp5086894
crossref_primary_10_1042_BST20120139
crossref_primary_10_1021_jacs_5b02840
crossref_primary_10_1002_jcc_23622
crossref_primary_10_1021_acs_chemrev_5b00298
Cites_doi 10.1073/pnas.0408117102
10.1017/S0033583503003913
10.1021/bi061114b
10.1063/1.432142
10.1021/ja107876p
10.1002/(SICI)1097-461X(1996)60:7<1271::AID-QUA8>3.0.CO;2-W
10.1021/jp057068r
10.1021/jp0037403
10.1063/1.445869
10.1073/pnas.0903938106
10.1021/ja063852t
10.1016/j.bbabio.2008.04.021
10.1038/376660a0
10.1063/1.465654
10.1002/jcc.20675
10.1063/1.459255
10.1016/S0006-3495(98)77604-0
10.1021/jp027815+
10.1021/jp991057e
10.1073/pnas.2635097100
10.1002/jcc.20448
10.1021/jp101527v
10.1016/S0006-3495(04)74248-4
10.1098/rstb.2006.1868
10.1529/biophysj.104.056606
10.1073/pnas.0510860103
10.1002/jcc.20289
10.1007/s00214-005-0058-0
10.1016/S0006-3495(04)74254-X
10.1016/S0014-5793(97)01003-X
10.1038/nature03921
10.1021/ja805471a
10.1073/pnas.1005889107
10.1002/anie.200906455
10.1002/jcc.20835
10.1021/jp0303422
10.1021/j100124a023
10.1038/nature04619
10.1073/pnas.0503001102
10.1016/S0005-2728(01)00220-1
10.1039/b807444e
10.1080/00268970802220112
10.1021/ja9047834
10.1016/S0006-3495(93)81514-5
10.1063/1.464913
10.1021/ja0351037
10.1073/pnas.0405032101
10.1103/PhysRevB.37.785
10.1073/pnas.0709876105
10.1016/j.febslet.2004.04.016
10.1021/j100016a067
10.1002/jcc.21224
10.1038/355796a0
10.1016/0304-4173(85)90014-X
10.1016/S0006-3495(00)76831-7
10.1103/PhysRevLett.77.3865
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
Copyright_xml – notice: Copyright © 2012 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
7X8
DOI 10.1021/jp209175j
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 1883
ExternalDocumentID 22243050
10_1021_jp209175j
b237237350
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
123
29L
4.4
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZGI
ZHY
---
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
7X8
ID FETCH-LOGICAL-a380t-23c486779f7daa488e9c47b6e1390e8c33d957fbb81bdd674f013cdf22aac70a3
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Thu Jul 10 22:19:42 EDT 2025
Fri Jul 11 10:59:31 EDT 2025
Fri Jul 11 05:21:56 EDT 2025
Mon Jul 21 06:03:28 EDT 2025
Thu Apr 24 22:58:18 EDT 2025
Tue Jul 01 00:21:38 EDT 2025
Thu Aug 27 13:42:48 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a380t-23c486779f7daa488e9c47b6e1390e8c33d957fbb81bdd674f013cdf22aac70a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22243050
PQID 1753512856
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_922216336
proquest_miscellaneous_2000506561
proquest_miscellaneous_1753512856
pubmed_primary_22243050
crossref_primary_10_1021_jp209175j
crossref_citationtrail_10_1021_jp209175j
acs_journals_10_1021_jp209175j
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-16
PublicationDateYYYYMMDD 2012-02-16
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Faxen K. (ref3/cit3) 2005; 437
Blomberg M. R. A. (ref7/cit7) 2006; 27
Nagle J. F. (ref46/cit46) 1993; 64
Kucerka N. (ref45/cit45) 2005; 88
Kim Y. C. (ref8/cit8) 2009; 106
Jasaitis A. (ref15/cit15) 2007; 104
Marcus R. A. (ref18/cit18) 1985; 811
Kaila V. R. I. (ref21/cit21) 2010; 107
Blumberger J. (ref24/cit24) 2006; 128
Gray H. B. (ref17/cit17) 2003; 36
Tan M.-L. (ref20/cit20) 2004; 86
Tachiya M. (ref56/cit56) 1993; 97
Tipmanee V. (ref25/cit25) 2010; 132
ref34/cit34
Iwaki M. (ref5/cit5) 2006; 45
Olkhova E. (ref9/cit9) 2004; 86
Perdew J. P. (ref30/cit30) 1996; 77
Ren P. (ref52/cit52) 2003; 107
Ceccarelli M. (ref49/cit49) 2003; 107
Popovic D. M. (ref6/cit6) 2004; 566
Riistama S. (ref35/cit35) 1997; 414
Becke A. (ref31/cit31) 1993; 98
Iwata S. (ref1/cit1) 1995; 376
Jasaitis A. (ref14/cit14) 2005; 102
Seidel R. (ref27/cit27) 2009; 131
Lee C. (ref32/cit32) 1988; 37
Berneche S. (ref37/cit37) 2000; 78
Phillips J. C. (ref44/cit44) 2005; 26
Olsson M. H. M. (ref11/cit11) 2006; 103
Oberhofer H. (ref54/cit54) 2010; 49
Gould I. R. (ref40/cit40) 2008; 29
Song X. (ref29/cit29) 1993; 99
Johansson M. P. (ref39/cit39) 2008; 29
Xu J. (ref10/cit10) 2005; 102
Moser C. C. (ref19/cit19) 2006; 361
Amashukeli X. (ref23/cit23) 2004; 126
Moens J. (ref53/cit53) 2010; 114
Blumberger J. (ref47/cit47) 2006; 115
Tsukihara T. (ref2/cit2) 2003; 100
Verkhovsky M. I. (ref12/cit12) 2001; 1506
Jorgensen W. L. (ref42/cit42) 1983; 79
Moser C. C. (ref58/cit58) 2008; 1777
Moser C. C. (ref16/cit16) 1992; 355
Blumberger J. (ref48/cit48) 2008; 106
Ungar L. W. (ref50/cit50) 1999; 103
Blumberger J. (ref26/cit26) 2008; 10
Martinez L. (ref38/cit38) 2009; 30
Blumberger J. (ref57/cit57) 2008; 130
Pilet E. (ref13/cit13) 2004; 101
Jortner J. (ref28/cit28) 1976; 64
Seminario J. M. (ref41/cit41) 1996; 60
King G. (ref51/cit51) 1990; 93
ref33/cit33
Sigfridsson E. (ref22/cit22) 2001; 105
Smith D. M. A. (ref55/cit55) 2006; 110
Berneche S. (ref36/cit36) 1998; 75
Belevich I. (ref4/cit4) 2006; 440
Caldwell J. W. (ref43/cit43) 1995; 99
References_xml – volume: 102
  start-page: 6795
  year: 2005
  ident: ref10/cit10
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0408117102
– volume: 36
  start-page: 341
  year: 2003
  ident: ref17/cit17
  publication-title: Q. Rev. Biophys.
  doi: 10.1017/S0033583503003913
– volume: 45
  start-page: 10873
  year: 2006
  ident: ref5/cit5
  publication-title: Biochemistry
  doi: 10.1021/bi061114b
– volume: 64
  start-page: 4860
  year: 1976
  ident: ref28/cit28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.432142
– volume: 132
  start-page: 17032
  year: 2010
  ident: ref25/cit25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja107876p
– volume: 60
  start-page: 1271
  year: 1996
  ident: ref41/cit41
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/(SICI)1097-461X(1996)60:7<1271::AID-QUA8>3.0.CO;2-W
– volume: 110
  start-page: 15582
  year: 2006
  ident: ref55/cit55
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp057068r
– volume: 105
  start-page: 5546
  year: 2001
  ident: ref22/cit22
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0037403
– volume: 79
  start-page: 926
  year: 1983
  ident: ref42/cit42
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445869
– volume: 106
  start-page: 13707
  year: 2009
  ident: ref8/cit8
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0903938106
– volume: 128
  start-page: 13854
  year: 2006
  ident: ref24/cit24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja063852t
– volume: 1777
  start-page: 1032
  year: 2008
  ident: ref58/cit58
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2008.04.021
– ident: ref33/cit33
– volume: 376
  start-page: 660
  year: 1995
  ident: ref1/cit1
  publication-title: Nature
  doi: 10.1038/376660a0
– volume: 99
  start-page: 7768
  year: 1993
  ident: ref29/cit29
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.465654
– volume: 29
  start-page: 24
  year: 2008
  ident: ref40/cit40
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20675
– volume: 93
  start-page: 8682
  year: 1990
  ident: ref51/cit51
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.459255
– volume: 75
  start-page: 1603
  year: 1998
  ident: ref36/cit36
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(98)77604-0
– volume: 107
  start-page: 5933
  year: 2003
  ident: ref52/cit52
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp027815+
– volume: 103
  start-page: 7367
  year: 1999
  ident: ref50/cit50
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp991057e
– volume: 100
  start-page: 15304
  year: 2003
  ident: ref2/cit2
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2635097100
– volume: 27
  start-page: 1373
  year: 2006
  ident: ref7/cit7
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20448
– volume: 114
  start-page: 9173
  year: 2010
  ident: ref53/cit53
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp101527v
– volume: 86
  start-page: 1813
  year: 2004
  ident: ref20/cit20
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(04)74248-4
– volume: 361
  start-page: 1295
  year: 2006
  ident: ref19/cit19
  publication-title: Phil. Trans. R. Soc. B
  doi: 10.1098/rstb.2006.1868
– volume: 88
  start-page: 2626
  year: 2005
  ident: ref45/cit45
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.056606
– volume: 103
  start-page: 6500
  year: 2006
  ident: ref11/cit11
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0510860103
– volume: 26
  start-page: 1781
  year: 2005
  ident: ref44/cit44
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20289
– volume: 115
  start-page: 113
  year: 2006
  ident: ref47/cit47
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-005-0058-0
– volume: 86
  start-page: 1873
  year: 2004
  ident: ref9/cit9
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(04)74254-X
– volume: 414
  start-page: 275
  year: 1997
  ident: ref35/cit35
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(97)01003-X
– volume: 437
  start-page: 286
  year: 2005
  ident: ref3/cit3
  publication-title: Nature
  doi: 10.1038/nature03921
– volume: 130
  start-page: 16065
  year: 2008
  ident: ref57/cit57
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja805471a
– volume: 107
  start-page: 21470
  year: 2010
  ident: ref21/cit21
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1005889107
– volume: 49
  start-page: 3631
  year: 2010
  ident: ref54/cit54
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200906455
– volume: 29
  start-page: 753
  year: 2008
  ident: ref39/cit39
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20835
– volume: 107
  start-page: 5630
  year: 2003
  ident: ref49/cit49
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0303422
– volume: 97
  start-page: 5911
  year: 1993
  ident: ref56/cit56
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100124a023
– volume: 440
  start-page: 829
  year: 2006
  ident: ref4/cit4
  publication-title: Nature
  doi: 10.1038/nature04619
– volume: 102
  start-page: 10882
  year: 2005
  ident: ref14/cit14
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0503001102
– volume: 1506
  start-page: 143
  year: 2001
  ident: ref12/cit12
  publication-title: Biochem. Biophys. Acta, Bioenerg.
  doi: 10.1016/S0005-2728(01)00220-1
– volume: 10
  start-page: 5651
  year: 2008
  ident: ref26/cit26
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b807444e
– volume: 106
  start-page: 1597
  year: 2008
  ident: ref48/cit48
  publication-title: Mol. Phys.
  doi: 10.1080/00268970802220112
– ident: ref34/cit34
– volume: 131
  start-page: 16127
  year: 2009
  ident: ref27/cit27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9047834
– volume: 64
  start-page: 1476
  year: 1993
  ident: ref46/cit46
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(93)81514-5
– volume: 98
  start-page: 5648
  year: 1993
  ident: ref31/cit31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 126
  start-page: 15566
  year: 2004
  ident: ref23/cit23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0351037
– volume: 101
  start-page: 16198
  year: 2004
  ident: ref13/cit13
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0405032101
– volume: 37
  start-page: 785
  year: 1988
  ident: ref32/cit32
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.785
– volume: 104
  start-page: 20811
  year: 2007
  ident: ref15/cit15
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0709876105
– volume: 566
  start-page: 126
  year: 2004
  ident: ref6/cit6
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2004.04.016
– volume: 99
  start-page: 6208
  year: 1995
  ident: ref43/cit43
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100016a067
– volume: 30
  start-page: 2157
  year: 2009
  ident: ref38/cit38
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21224
– volume: 355
  start-page: 796
  year: 1992
  ident: ref16/cit16
  publication-title: Nature
  doi: 10.1038/355796a0
– volume: 811
  start-page: 265
  year: 1985
  ident: ref18/cit18
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4173(85)90014-X
– volume: 78
  start-page: 2900
  year: 2000
  ident: ref37/cit37
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(00)76831-7
– volume: 77
  start-page: 3865
  year: 1996
  ident: ref30/cit30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
SSID ssj0025286
Score 2.1661015
Snippet Cytochrome c oxidase (cco) catalyzes the oxygen reduction reaction in most aerobically respiring organisms. Decades of research have uncovered many aspects...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1876
SubjectTerms cytochrome-c oxidase
Cytochromes
Electron transfer
Electron Transport
Electron Transport Complex IV - chemistry
Electron Transport Complex IV - metabolism
Electronics
Electrons
equations
Free energy
Gibbs free energy
heme
Heme - chemistry
Kinetics
Mathematical analysis
molecular dynamics
Molecular Dynamics Simulation
Oxidase
Oxidation-Reduction
oxygen
Protein Structure, Tertiary
Proteins
temperature
Terminals
Thermodynamics
Title Kinetics of the Terminal Electron Transfer Step in Cytochrome c Oxidase
URI http://dx.doi.org/10.1021/jp209175j
https://www.ncbi.nlm.nih.gov/pubmed/22243050
https://www.proquest.com/docview/1753512856
https://www.proquest.com/docview/2000506561
https://www.proquest.com/docview/922216336
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ3JTsMwEIZHUA5wYV_KJrMcuARSO46TIypLBQIOgMStsh1btFQpoqkEPD3jLBWIFs4ZJ44XzTfy-B-AQyOMHwmLOy1m1gsUZ17Mje9RJWNtmApk5C4439yGrcfg6ok_TcHBhBN82jjpvlL0aYJ3p2GGhojXjn-a96OoitO8nCP6IRcH-WElH_S9qXM9evDT9UzgydyvXCzAWXU7p0gneTkeZupYf_4Wa_yry4swX3IlOS0WwhJMmXQZZptVObcVuLxGnnSazKRvCVIfeSjSYHrkvKyEQ3K_Zc0bcalfpJOS5kfW189O0IBocvfeSdDlrcLjxflDs-WVVRQ8ySI_8yjTTlVPxFYkUuJ-NbEOhAoNsp9vIs1YEnNhlUKATZJQBBapUCeWUim18CVbg1raT80GEKpxg0tspowNuKAy5lKHGGMIrTiG6HXYxWFul7tg0M4PuCkGGNV41OGomoG2LjXIXSmM3jjT_ZHpayG8Mc5or5rGNg6nO-uQqekP8dMYhiHLRDycbENz9RsE2kYdyASbGPkJkZXha9aLZTLqDT5xemn-5n9_vQVziFnU5Xo3wm2oZW9Ds4Mok6ndfCl_Afi369w
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDuXCvpTVIA5cAqkdx8kRVZSylQNF4hbZji02pYimEvD1jJ2kLGoF50ycie3ReyOP3yC0r7n2I24g0mJqvEAy6sVM-x6RIlaaykBE9oLzVSds3wbnd-yulMmxd2HAiT6M1HeH-F_qAo2jxxcC0MbZ4ySaBhJCbPnecfNmmFwx4ro6AhzZdMgPKxWh769aBFL9nwg0hlY6eGnNFX2KnGOuquTpcJDLQ_XxS7Pxf57Po9mSZeLjYlssoAmdLaJas2rutoROL4BdWoVm3DMYOCDuFkUxz_ik7IuDHYoZ_YptIRh-yHDzPe-peytvgBW-fntIAQCX0W3rpNtse2VPBU_QyM89QpXV2OOx4akQEL06VgGXoQYm6OtIUZrGjBspgc6macgDAxxRpYYQIRT3BV1BU1kv02sIEwXhLuA1qU3AOBExEyqEjIMrySBhr6NtmI6kjIl-4o67CaQb1XzU0UG1EIkqFcltY4znUaZ7Q9OXQoZjlNFutZoJTKc9-RCZ7g3g05CUAbOJWDjehjgtHKC3jTrCY2xiYFNAYCkMs1rslqE38MSqp_nrf_31Dqq1u1eXyeVZ52IDzQABI7YKvBFuoqn8daC3gOTkctvt7k_pHPQ9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT8MwDLY4JOCF-xhnQDzwUuiSpmkf0WDchwRIvFVJmohL3cQ6Cfj1OF07AWKC5zqJm8TyZ9n5DLBthPEjYdHSYma9QHHmxdz4HlUy1oapQEbugfPFZXh8F5ze8_syUHRvYVCJDs7UKZL4zqrbqS0ZBup7T22K7k3wp2EYdek6V8K337jpB1icFp0d0SW5kMgPKyahr0OdF9Kd715oALQsXExzCq76yhWVJc-73Vzt6o8fvI3_134aJku0SfZ712MGhkw2C-ONqsnbHBydIcp0TM2kZQliQXLbK455IYdlfxxSeDNrXokrCCOPGWm85y394GgOiCZXb48pOsJ5uGse3jaOvbK3gidZ5OceZdpx7YnYilRKtGIT60Co0CAi9E2kGUtjLqxSCGvTNBSBRayoU0uplFr4ki3ASNbKzBIQqtHsJQ5TxgZcUBlzqUOMPIRWHAP3GqzjliSlbXSSIu1NMeyo9qMGO9VhJLpkJncNMl5-E93qi7Z7dBy_CW1WJ5rgdroMiMxMq4tLY3CGCCfi4WAZWnDiIMyt14AMkIkRVSGQZTjNYu_G9LXBL45FzV_-6683YOz6oJmcn1yercAE4jDqisHr4SqM5K9ds4ZYJ1frxQX_BPUy9sA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetics+of+the+Terminal+Electron+Transfer+Step+in+Cytochrome+c+Oxidase&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Tipmanee%2C+Varomyalin&rft.au=Blumberger%2C+Jochen&rft.date=2012-02-16&rft.issn=1520-5207&rft.volume=116&rft.issue=6+p.1876-1883&rft.spage=1876&rft.epage=1883&rft_id=info:doi/10.1021%2Fjp209175j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon