Kinetics of the Terminal Electron Transfer Step in Cytochrome c Oxidase
Cytochrome c oxidase (cco) catalyzes the oxygen reduction reaction in most aerobically respiring organisms. Decades of research have uncovered many aspects relating to structure and function of this enzyme. However, the origin of the unusually fast terminal electron transfer step from heme a to heme...
Saved in:
Published in | The journal of physical chemistry. B Vol. 116; no. 6; pp. 1876 - 1883 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.02.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1520-6106 1520-5207 1520-5207 |
DOI | 10.1021/jp209175j |
Cover
Loading…
Abstract | Cytochrome c oxidase (cco) catalyzes the oxygen reduction reaction in most aerobically respiring organisms. Decades of research have uncovered many aspects relating to structure and function of this enzyme. However, the origin of the unusually fast terminal electron transfer step from heme a to heme a3 in cco has been the subject of intense discussions over recent years. Yet, no satisfactory consensus has been achieved. Carrying out large-scale molecular dynamics simulation of the protein embedded in a solvated membrane, we obtain a reorganization free energy λ = 0.57 eV. Evaluation of the quantized single-mode rate equation using the experimental rate and the computed reorganization free energy gives a value of 1.5 meV for the average electronic coupling (H ab) between heme a and heme a3. Thus, according to our calculations, the nanosecond electron transfer (ET) is due to a small but significant activation barrier (ΔG ‡ = 0.12 eV) in combination with effective electronic coupling between the two cofactors. The activation free energy is caused predominantly by collective reorganization of protein residues. We show that our results are consistent with the weak temperature dependence observed in experiment if one allows for very minor variations in the donor–acceptor distance as the temperature changes. |
---|---|
AbstractList | Cytochrome c oxidase (cco) catalyzes the oxygen reduction reaction in most aerobically respiring organisms. Decades of research have uncovered many aspects relating to structure and function of this enzyme. However, the origin of the unusually fast terminal electron transfer step from heme a to heme a sub(3) in cco has been the subject of intense discussions over recent years. Yet, no satisfactory consensus has been achieved. Carrying out large-scale molecular dynamics simulation of the protein embedded in a solvated membrane, we obtain a reorganization free energy lambda = 0.57 eV. Evaluation of the quantized single-mode rate equation using the experimental rate and the computed reorganization free energy gives a value of 1.5 meV for the average electronic coupling (H sub(ab)) between heme a and heme a sub(3). Thus, according to our calculations, the nanosecond electron transfer (ET) is due to a small but significant activation barrier ( Delta G super() = 0.12 eV) in combination with effective electronic coupling between the two cofactors. The activation free energy is caused predominantly by collective reorganization of protein residues. We show that our results are consistent with the weak temperature dependence observed in experiment if one allows for very minor variations in the donor-acceptor distance as the temperature changes. Cytochrome c oxidase (cco) catalyzes the oxygen reduction reaction in most aerobically respiring organisms. Decades of research have uncovered many aspects relating to structure and function of this enzyme. However, the origin of the unusually fast terminal electron transfer step from heme a to heme a(3) in cco has been the subject of intense discussions over recent years. Yet, no satisfactory consensus has been achieved. Carrying out large-scale molecular dynamics simulation of the protein embedded in a solvated membrane, we obtain a reorganization free energy λ = 0.57 eV. Evaluation of the quantized single-mode rate equation using the experimental rate and the computed reorganization free energy gives a value of 1.5 meV for the average electronic coupling (H(ab)) between heme a and heme a(3). Thus, according to our calculations, the nanosecond electron transfer (ET) is due to a small but significant activation barrier (ΔG(‡) = 0.12 eV) in combination with effective electronic coupling between the two cofactors. The activation free energy is caused predominantly by collective reorganization of protein residues. We show that our results are consistent with the weak temperature dependence observed in experiment if one allows for very minor variations in the donor-acceptor distance as the temperature changes.Cytochrome c oxidase (cco) catalyzes the oxygen reduction reaction in most aerobically respiring organisms. Decades of research have uncovered many aspects relating to structure and function of this enzyme. However, the origin of the unusually fast terminal electron transfer step from heme a to heme a(3) in cco has been the subject of intense discussions over recent years. Yet, no satisfactory consensus has been achieved. Carrying out large-scale molecular dynamics simulation of the protein embedded in a solvated membrane, we obtain a reorganization free energy λ = 0.57 eV. Evaluation of the quantized single-mode rate equation using the experimental rate and the computed reorganization free energy gives a value of 1.5 meV for the average electronic coupling (H(ab)) between heme a and heme a(3). Thus, according to our calculations, the nanosecond electron transfer (ET) is due to a small but significant activation barrier (ΔG(‡) = 0.12 eV) in combination with effective electronic coupling between the two cofactors. The activation free energy is caused predominantly by collective reorganization of protein residues. We show that our results are consistent with the weak temperature dependence observed in experiment if one allows for very minor variations in the donor-acceptor distance as the temperature changes. Cytochrome c oxidase (cco) catalyzes the oxygen reduction reaction in most aerobically respiring organisms. Decades of research have uncovered many aspects relating to structure and function of this enzyme. However, the origin of the unusually fast terminal electron transfer step from heme a to heme a3 in cco has been the subject of intense discussions over recent years. Yet, no satisfactory consensus has been achieved. Carrying out large-scale molecular dynamics simulation of the protein embedded in a solvated membrane, we obtain a reorganization free energy λ = 0.57 eV. Evaluation of the quantized single-mode rate equation using the experimental rate and the computed reorganization free energy gives a value of 1.5 meV for the average electronic coupling (H ab) between heme a and heme a3. Thus, according to our calculations, the nanosecond electron transfer (ET) is due to a small but significant activation barrier (ΔG ‡ = 0.12 eV) in combination with effective electronic coupling between the two cofactors. The activation free energy is caused predominantly by collective reorganization of protein residues. We show that our results are consistent with the weak temperature dependence observed in experiment if one allows for very minor variations in the donor–acceptor distance as the temperature changes. Cytochrome c oxidase (cco) catalyzes the oxygen reduction reaction in most aerobically respiring organisms. Decades of research have uncovered many aspects relating to structure and function of this enzyme. However, the origin of the unusually fast terminal electron transfer step from heme a to heme a₃ in cco has been the subject of intense discussions over recent years. Yet, no satisfactory consensus has been achieved. Carrying out large-scale molecular dynamics simulation of the protein embedded in a solvated membrane, we obtain a reorganization free energy λ = 0.57 eV. Evaluation of the quantized single-mode rate equation using the experimental rate and the computed reorganization free energy gives a value of 1.5 meV for the average electronic coupling (Hₐb) between heme a and heme a₃. Thus, according to our calculations, the nanosecond electron transfer (ET) is due to a small but significant activation barrier (ΔG‡ = 0.12 eV) in combination with effective electronic coupling between the two cofactors. The activation free energy is caused predominantly by collective reorganization of protein residues. We show that our results are consistent with the weak temperature dependence observed in experiment if one allows for very minor variations in the donor–acceptor distance as the temperature changes. Cytochrome c oxidase (cco) catalyzes the oxygen reduction reaction in most aerobically respiring organisms. Decades of research have uncovered many aspects relating to structure and function of this enzyme. However, the origin of the unusually fast terminal electron transfer step from heme a to heme a(3) in cco has been the subject of intense discussions over recent years. Yet, no satisfactory consensus has been achieved. Carrying out large-scale molecular dynamics simulation of the protein embedded in a solvated membrane, we obtain a reorganization free energy λ = 0.57 eV. Evaluation of the quantized single-mode rate equation using the experimental rate and the computed reorganization free energy gives a value of 1.5 meV for the average electronic coupling (H(ab)) between heme a and heme a(3). Thus, according to our calculations, the nanosecond electron transfer (ET) is due to a small but significant activation barrier (ΔG(‡) = 0.12 eV) in combination with effective electronic coupling between the two cofactors. The activation free energy is caused predominantly by collective reorganization of protein residues. We show that our results are consistent with the weak temperature dependence observed in experiment if one allows for very minor variations in the donor-acceptor distance as the temperature changes. |
Author | Tipmanee, Varomyalin Blumberger, Jochen |
Author_xml | – sequence: 1 givenname: Varomyalin surname: Tipmanee fullname: Tipmanee, Varomyalin – sequence: 2 givenname: Jochen surname: Blumberger fullname: Blumberger, Jochen email: j.blumberger@ucl.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22243050$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1LwzAYB_Agii_Tg19AchH1UM1Lm7RHGTrFwQ7Oc0nTp5jRJjNJwX17OzZ3ENFDSA6_54H8_ydo3zoLCJ1TcksJo3eLJSMFldliDx3TjJFkOHJ_-xaUiCN0EsKCEJaxXByiI8ZYyklGjtHkxViIRgfsGhzfAc_Bd8aqFj-0oKN3Fs-9sqEBj18jLLGxeLyKTr971wHWePZpahXgFB00qg1wtr1H6O3xYT5-SqazyfP4fpoonpOYMK7TXEhZNLJWKs1zKHQqKwGUFwRyzXldZLKpqpxWdS1k2hDKdd0wppSWRPERutrsXXr30UOIZWeChrZVFlwfymL4GhWci0Fe_ykZIUMCIhP0XzpEyzPK8my99WJL-6qDulx60ym_Kr8THcDNBmjvQvDQ7Agl5bqtctfWYO9-WG2iisbZ6JVpf5243EwoHcqF6_3QVPjFfQFLBaA9 |
CitedBy_id | crossref_primary_10_1016_j_abb_2015_06_016 crossref_primary_10_1016_j_bpj_2015_10_038 crossref_primary_10_1021_acs_jpclett_8b00537 crossref_primary_10_1073_pnas_2107939118 crossref_primary_10_1021_ar500271d crossref_primary_10_1073_pnas_1316156111 crossref_primary_10_1016_j_compbiolchem_2013_05_004 crossref_primary_10_1039_c2cp41348e crossref_primary_10_1021_ja3027696 crossref_primary_10_1039_D3CP00197K crossref_primary_10_1021_ci300250q crossref_primary_10_1021_acs_jpcb_9b05253 crossref_primary_10_1002_prot_24584 crossref_primary_10_1098_rsif_2014_1117 crossref_primary_10_1021_acs_jctc_7b01128 crossref_primary_10_1016_j_bbrc_2019_01_083 crossref_primary_10_1021_ct500527v crossref_primary_10_1021_jp5086894 crossref_primary_10_1042_BST20120139 crossref_primary_10_1021_jacs_5b02840 crossref_primary_10_1002_jcc_23622 crossref_primary_10_1021_acs_chemrev_5b00298 |
Cites_doi | 10.1073/pnas.0408117102 10.1017/S0033583503003913 10.1021/bi061114b 10.1063/1.432142 10.1021/ja107876p 10.1002/(SICI)1097-461X(1996)60:7<1271::AID-QUA8>3.0.CO;2-W 10.1021/jp057068r 10.1021/jp0037403 10.1063/1.445869 10.1073/pnas.0903938106 10.1021/ja063852t 10.1016/j.bbabio.2008.04.021 10.1038/376660a0 10.1063/1.465654 10.1002/jcc.20675 10.1063/1.459255 10.1016/S0006-3495(98)77604-0 10.1021/jp027815+ 10.1021/jp991057e 10.1073/pnas.2635097100 10.1002/jcc.20448 10.1021/jp101527v 10.1016/S0006-3495(04)74248-4 10.1098/rstb.2006.1868 10.1529/biophysj.104.056606 10.1073/pnas.0510860103 10.1002/jcc.20289 10.1007/s00214-005-0058-0 10.1016/S0006-3495(04)74254-X 10.1016/S0014-5793(97)01003-X 10.1038/nature03921 10.1021/ja805471a 10.1073/pnas.1005889107 10.1002/anie.200906455 10.1002/jcc.20835 10.1021/jp0303422 10.1021/j100124a023 10.1038/nature04619 10.1073/pnas.0503001102 10.1016/S0005-2728(01)00220-1 10.1039/b807444e 10.1080/00268970802220112 10.1021/ja9047834 10.1016/S0006-3495(93)81514-5 10.1063/1.464913 10.1021/ja0351037 10.1073/pnas.0405032101 10.1103/PhysRevB.37.785 10.1073/pnas.0709876105 10.1016/j.febslet.2004.04.016 10.1021/j100016a067 10.1002/jcc.21224 10.1038/355796a0 10.1016/0304-4173(85)90014-X 10.1016/S0006-3495(00)76831-7 10.1103/PhysRevLett.77.3865 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 7X8 |
DOI | 10.1021/jp209175j |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5207 |
EndPage | 1883 |
ExternalDocumentID | 22243050 10_1021_jp209175j b237237350 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 123 29L 4.4 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZGI ZHY --- -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK XSW YQT ~02 CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-a380t-23c486779f7daa488e9c47b6e1390e8c33d957fbb81bdd674f013cdf22aac70a3 |
IEDL.DBID | ACS |
ISSN | 1520-6106 1520-5207 |
IngestDate | Thu Jul 10 22:19:42 EDT 2025 Fri Jul 11 10:59:31 EDT 2025 Fri Jul 11 05:21:56 EDT 2025 Mon Jul 21 06:03:28 EDT 2025 Thu Apr 24 22:58:18 EDT 2025 Tue Jul 01 00:21:38 EDT 2025 Thu Aug 27 13:42:48 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a380t-23c486779f7daa488e9c47b6e1390e8c33d957fbb81bdd674f013cdf22aac70a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22243050 |
PQID | 1753512856 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_922216336 proquest_miscellaneous_2000506561 proquest_miscellaneous_1753512856 pubmed_primary_22243050 crossref_primary_10_1021_jp209175j crossref_citationtrail_10_1021_jp209175j acs_journals_10_1021_jp209175j |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-02-16 |
PublicationDateYYYYMMDD | 2012-02-16 |
PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Faxen K. (ref3/cit3) 2005; 437 Blomberg M. R. A. (ref7/cit7) 2006; 27 Nagle J. F. (ref46/cit46) 1993; 64 Kucerka N. (ref45/cit45) 2005; 88 Kim Y. C. (ref8/cit8) 2009; 106 Jasaitis A. (ref15/cit15) 2007; 104 Marcus R. A. (ref18/cit18) 1985; 811 Kaila V. R. I. (ref21/cit21) 2010; 107 Blumberger J. (ref24/cit24) 2006; 128 Gray H. B. (ref17/cit17) 2003; 36 Tan M.-L. (ref20/cit20) 2004; 86 Tachiya M. (ref56/cit56) 1993; 97 Tipmanee V. (ref25/cit25) 2010; 132 ref34/cit34 Iwaki M. (ref5/cit5) 2006; 45 Olkhova E. (ref9/cit9) 2004; 86 Perdew J. P. (ref30/cit30) 1996; 77 Ren P. (ref52/cit52) 2003; 107 Ceccarelli M. (ref49/cit49) 2003; 107 Popovic D. M. (ref6/cit6) 2004; 566 Riistama S. (ref35/cit35) 1997; 414 Becke A. (ref31/cit31) 1993; 98 Iwata S. (ref1/cit1) 1995; 376 Jasaitis A. (ref14/cit14) 2005; 102 Seidel R. (ref27/cit27) 2009; 131 Lee C. (ref32/cit32) 1988; 37 Berneche S. (ref37/cit37) 2000; 78 Phillips J. C. (ref44/cit44) 2005; 26 Olsson M. H. M. (ref11/cit11) 2006; 103 Oberhofer H. (ref54/cit54) 2010; 49 Gould I. R. (ref40/cit40) 2008; 29 Song X. (ref29/cit29) 1993; 99 Johansson M. P. (ref39/cit39) 2008; 29 Xu J. (ref10/cit10) 2005; 102 Moser C. C. (ref19/cit19) 2006; 361 Amashukeli X. (ref23/cit23) 2004; 126 Moens J. (ref53/cit53) 2010; 114 Blumberger J. (ref47/cit47) 2006; 115 Tsukihara T. (ref2/cit2) 2003; 100 Verkhovsky M. I. (ref12/cit12) 2001; 1506 Jorgensen W. L. (ref42/cit42) 1983; 79 Moser C. C. (ref58/cit58) 2008; 1777 Moser C. C. (ref16/cit16) 1992; 355 Blumberger J. (ref48/cit48) 2008; 106 Ungar L. W. (ref50/cit50) 1999; 103 Blumberger J. (ref26/cit26) 2008; 10 Martinez L. (ref38/cit38) 2009; 30 Blumberger J. (ref57/cit57) 2008; 130 Pilet E. (ref13/cit13) 2004; 101 Jortner J. (ref28/cit28) 1976; 64 Seminario J. M. (ref41/cit41) 1996; 60 King G. (ref51/cit51) 1990; 93 ref33/cit33 Sigfridsson E. (ref22/cit22) 2001; 105 Smith D. M. A. (ref55/cit55) 2006; 110 Berneche S. (ref36/cit36) 1998; 75 Belevich I. (ref4/cit4) 2006; 440 Caldwell J. W. (ref43/cit43) 1995; 99 |
References_xml | – volume: 102 start-page: 6795 year: 2005 ident: ref10/cit10 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0408117102 – volume: 36 start-page: 341 year: 2003 ident: ref17/cit17 publication-title: Q. Rev. Biophys. doi: 10.1017/S0033583503003913 – volume: 45 start-page: 10873 year: 2006 ident: ref5/cit5 publication-title: Biochemistry doi: 10.1021/bi061114b – volume: 64 start-page: 4860 year: 1976 ident: ref28/cit28 publication-title: J. Chem. Phys. doi: 10.1063/1.432142 – volume: 132 start-page: 17032 year: 2010 ident: ref25/cit25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja107876p – volume: 60 start-page: 1271 year: 1996 ident: ref41/cit41 publication-title: Int. J. Quantum Chem. doi: 10.1002/(SICI)1097-461X(1996)60:7<1271::AID-QUA8>3.0.CO;2-W – volume: 110 start-page: 15582 year: 2006 ident: ref55/cit55 publication-title: J. Phys. Chem. B doi: 10.1021/jp057068r – volume: 105 start-page: 5546 year: 2001 ident: ref22/cit22 publication-title: J. Phys. Chem. B doi: 10.1021/jp0037403 – volume: 79 start-page: 926 year: 1983 ident: ref42/cit42 publication-title: J. Chem. Phys. doi: 10.1063/1.445869 – volume: 106 start-page: 13707 year: 2009 ident: ref8/cit8 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0903938106 – volume: 128 start-page: 13854 year: 2006 ident: ref24/cit24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja063852t – volume: 1777 start-page: 1032 year: 2008 ident: ref58/cit58 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2008.04.021 – ident: ref33/cit33 – volume: 376 start-page: 660 year: 1995 ident: ref1/cit1 publication-title: Nature doi: 10.1038/376660a0 – volume: 99 start-page: 7768 year: 1993 ident: ref29/cit29 publication-title: J. Chem. Phys. doi: 10.1063/1.465654 – volume: 29 start-page: 24 year: 2008 ident: ref40/cit40 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20675 – volume: 93 start-page: 8682 year: 1990 ident: ref51/cit51 publication-title: J. Chem. Phys. doi: 10.1063/1.459255 – volume: 75 start-page: 1603 year: 1998 ident: ref36/cit36 publication-title: Biophys. J. doi: 10.1016/S0006-3495(98)77604-0 – volume: 107 start-page: 5933 year: 2003 ident: ref52/cit52 publication-title: J. Phys. Chem. B doi: 10.1021/jp027815+ – volume: 103 start-page: 7367 year: 1999 ident: ref50/cit50 publication-title: J. Phys. Chem. B doi: 10.1021/jp991057e – volume: 100 start-page: 15304 year: 2003 ident: ref2/cit2 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2635097100 – volume: 27 start-page: 1373 year: 2006 ident: ref7/cit7 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20448 – volume: 114 start-page: 9173 year: 2010 ident: ref53/cit53 publication-title: J. Phys. Chem. B doi: 10.1021/jp101527v – volume: 86 start-page: 1813 year: 2004 ident: ref20/cit20 publication-title: Biophys. J. doi: 10.1016/S0006-3495(04)74248-4 – volume: 361 start-page: 1295 year: 2006 ident: ref19/cit19 publication-title: Phil. Trans. R. Soc. B doi: 10.1098/rstb.2006.1868 – volume: 88 start-page: 2626 year: 2005 ident: ref45/cit45 publication-title: Biophys. J. doi: 10.1529/biophysj.104.056606 – volume: 103 start-page: 6500 year: 2006 ident: ref11/cit11 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0510860103 – volume: 26 start-page: 1781 year: 2005 ident: ref44/cit44 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20289 – volume: 115 start-page: 113 year: 2006 ident: ref47/cit47 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-005-0058-0 – volume: 86 start-page: 1873 year: 2004 ident: ref9/cit9 publication-title: Biophys. J. doi: 10.1016/S0006-3495(04)74254-X – volume: 414 start-page: 275 year: 1997 ident: ref35/cit35 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(97)01003-X – volume: 437 start-page: 286 year: 2005 ident: ref3/cit3 publication-title: Nature doi: 10.1038/nature03921 – volume: 130 start-page: 16065 year: 2008 ident: ref57/cit57 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja805471a – volume: 107 start-page: 21470 year: 2010 ident: ref21/cit21 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1005889107 – volume: 49 start-page: 3631 year: 2010 ident: ref54/cit54 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200906455 – volume: 29 start-page: 753 year: 2008 ident: ref39/cit39 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20835 – volume: 107 start-page: 5630 year: 2003 ident: ref49/cit49 publication-title: J. Phys. Chem. B doi: 10.1021/jp0303422 – volume: 97 start-page: 5911 year: 1993 ident: ref56/cit56 publication-title: J. Phys. Chem. doi: 10.1021/j100124a023 – volume: 440 start-page: 829 year: 2006 ident: ref4/cit4 publication-title: Nature doi: 10.1038/nature04619 – volume: 102 start-page: 10882 year: 2005 ident: ref14/cit14 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0503001102 – volume: 1506 start-page: 143 year: 2001 ident: ref12/cit12 publication-title: Biochem. Biophys. Acta, Bioenerg. doi: 10.1016/S0005-2728(01)00220-1 – volume: 10 start-page: 5651 year: 2008 ident: ref26/cit26 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b807444e – volume: 106 start-page: 1597 year: 2008 ident: ref48/cit48 publication-title: Mol. Phys. doi: 10.1080/00268970802220112 – ident: ref34/cit34 – volume: 131 start-page: 16127 year: 2009 ident: ref27/cit27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9047834 – volume: 64 start-page: 1476 year: 1993 ident: ref46/cit46 publication-title: Biophys. J. doi: 10.1016/S0006-3495(93)81514-5 – volume: 98 start-page: 5648 year: 1993 ident: ref31/cit31 publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 126 start-page: 15566 year: 2004 ident: ref23/cit23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0351037 – volume: 101 start-page: 16198 year: 2004 ident: ref13/cit13 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0405032101 – volume: 37 start-page: 785 year: 1988 ident: ref32/cit32 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.785 – volume: 104 start-page: 20811 year: 2007 ident: ref15/cit15 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0709876105 – volume: 566 start-page: 126 year: 2004 ident: ref6/cit6 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2004.04.016 – volume: 99 start-page: 6208 year: 1995 ident: ref43/cit43 publication-title: J. Phys. Chem. doi: 10.1021/j100016a067 – volume: 30 start-page: 2157 year: 2009 ident: ref38/cit38 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21224 – volume: 355 start-page: 796 year: 1992 ident: ref16/cit16 publication-title: Nature doi: 10.1038/355796a0 – volume: 811 start-page: 265 year: 1985 ident: ref18/cit18 publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4173(85)90014-X – volume: 78 start-page: 2900 year: 2000 ident: ref37/cit37 publication-title: Biophys. J. doi: 10.1016/S0006-3495(00)76831-7 – volume: 77 start-page: 3865 year: 1996 ident: ref30/cit30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 |
SSID | ssj0025286 |
Score | 2.1661015 |
Snippet | Cytochrome c oxidase (cco) catalyzes the oxygen reduction reaction in most aerobically respiring organisms. Decades of research have uncovered many aspects... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1876 |
SubjectTerms | cytochrome-c oxidase Cytochromes Electron transfer Electron Transport Electron Transport Complex IV - chemistry Electron Transport Complex IV - metabolism Electronics Electrons equations Free energy Gibbs free energy heme Heme - chemistry Kinetics Mathematical analysis molecular dynamics Molecular Dynamics Simulation Oxidase Oxidation-Reduction oxygen Protein Structure, Tertiary Proteins temperature Terminals Thermodynamics |
Title | Kinetics of the Terminal Electron Transfer Step in Cytochrome c Oxidase |
URI | http://dx.doi.org/10.1021/jp209175j https://www.ncbi.nlm.nih.gov/pubmed/22243050 https://www.proquest.com/docview/1753512856 https://www.proquest.com/docview/2000506561 https://www.proquest.com/docview/922216336 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ3JTsMwEIZHUA5wYV_KJrMcuARSO46TIypLBQIOgMStsh1btFQpoqkEPD3jLBWIFs4ZJ44XzTfy-B-AQyOMHwmLOy1m1gsUZ17Mje9RJWNtmApk5C4439yGrcfg6ok_TcHBhBN82jjpvlL0aYJ3p2GGhojXjn-a96OoitO8nCP6IRcH-WElH_S9qXM9evDT9UzgydyvXCzAWXU7p0gneTkeZupYf_4Wa_yry4swX3IlOS0WwhJMmXQZZptVObcVuLxGnnSazKRvCVIfeSjSYHrkvKyEQ3K_Zc0bcalfpJOS5kfW189O0IBocvfeSdDlrcLjxflDs-WVVRQ8ySI_8yjTTlVPxFYkUuJ-NbEOhAoNsp9vIs1YEnNhlUKATZJQBBapUCeWUim18CVbg1raT80GEKpxg0tspowNuKAy5lKHGGMIrTiG6HXYxWFul7tg0M4PuCkGGNV41OGomoG2LjXIXSmM3jjT_ZHpayG8Mc5or5rGNg6nO-uQqekP8dMYhiHLRDycbENz9RsE2kYdyASbGPkJkZXha9aLZTLqDT5xemn-5n9_vQVziFnU5Xo3wm2oZW9Ds4Mok6ndfCl_Afi369w |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDuXCvpTVIA5cAqkdx8kRVZSylQNF4hbZji02pYimEvD1jJ2kLGoF50ycie3ReyOP3yC0r7n2I24g0mJqvEAy6sVM-x6RIlaaykBE9oLzVSds3wbnd-yulMmxd2HAiT6M1HeH-F_qAo2jxxcC0MbZ4ySaBhJCbPnecfNmmFwx4ro6AhzZdMgPKxWh769aBFL9nwg0hlY6eGnNFX2KnGOuquTpcJDLQ_XxS7Pxf57Po9mSZeLjYlssoAmdLaJas2rutoROL4BdWoVm3DMYOCDuFkUxz_ik7IuDHYoZ_YptIRh-yHDzPe-peytvgBW-fntIAQCX0W3rpNtse2VPBU_QyM89QpXV2OOx4akQEL06VgGXoQYm6OtIUZrGjBspgc6macgDAxxRpYYQIRT3BV1BU1kv02sIEwXhLuA1qU3AOBExEyqEjIMrySBhr6NtmI6kjIl-4o67CaQb1XzU0UG1EIkqFcltY4znUaZ7Q9OXQoZjlNFutZoJTKc9-RCZ7g3g05CUAbOJWDjehjgtHKC3jTrCY2xiYFNAYCkMs1rslqE38MSqp_nrf_31Dqq1u1eXyeVZ52IDzQABI7YKvBFuoqn8daC3gOTkctvt7k_pHPQ9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT8MwDLY4JOCF-xhnQDzwUuiSpmkf0WDchwRIvFVJmohL3cQ6Cfj1OF07AWKC5zqJm8TyZ9n5DLBthPEjYdHSYma9QHHmxdz4HlUy1oapQEbugfPFZXh8F5ze8_syUHRvYVCJDs7UKZL4zqrbqS0ZBup7T22K7k3wp2EYdek6V8K337jpB1icFp0d0SW5kMgPKyahr0OdF9Kd715oALQsXExzCq76yhWVJc-73Vzt6o8fvI3_134aJku0SfZ712MGhkw2C-ONqsnbHBydIcp0TM2kZQliQXLbK455IYdlfxxSeDNrXokrCCOPGWm85y394GgOiCZXb48pOsJ5uGse3jaOvbK3gidZ5OceZdpx7YnYilRKtGIT60Co0CAi9E2kGUtjLqxSCGvTNBSBRayoU0uplFr4ki3ASNbKzBIQqtHsJQ5TxgZcUBlzqUOMPIRWHAP3GqzjliSlbXSSIu1NMeyo9qMGO9VhJLpkJncNMl5-E93qi7Z7dBy_CW1WJ5rgdroMiMxMq4tLY3CGCCfi4WAZWnDiIMyt14AMkIkRVSGQZTjNYu_G9LXBL45FzV_-6683YOz6oJmcn1yercAE4jDqisHr4SqM5K9ds4ZYJ1frxQX_BPUy9sA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetics+of+the+Terminal+Electron+Transfer+Step+in+Cytochrome+c+Oxidase&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Tipmanee%2C+Varomyalin&rft.au=Blumberger%2C+Jochen&rft.date=2012-02-16&rft.issn=1520-5207&rft.volume=116&rft.issue=6+p.1876-1883&rft.spage=1876&rft.epage=1883&rft_id=info:doi/10.1021%2Fjp209175j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |