Single Gold Nanoparticles Counter: An Ultrasensitive Detection Platform for One-Step Homogeneous Immunoassays and DNA Hybridization Assays
In this paper, we present for the first time a single gold nanoparticle counter (SGNPC) in solution based on the photon bursting in a highly focused laser beam (less than 1 fL) due to the plasmon resonance scattering and Brownian motion of gold nanoparticles (GNPs). The photon burst intensity of sin...
Saved in:
Published in | Journal of the American Chemical Society Vol. 131; no. 35; pp. 12763 - 12770 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
09.09.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we present for the first time a single gold nanoparticle counter (SGNPC) in solution based on the photon bursting in a highly focused laser beam (less than 1 fL) due to the plasmon resonance scattering and Brownian motion of gold nanoparticles (GNPs). The photon burst intensity of single 36 nm GNPs is several tens to hundreds times stronger than that of quantum dots (QDs) and organic dyes. The relationship between the photon burst counts and GNPs concentration shows an excellent linearity. The linear range is over 4 orders of magnitude, and the detection limit of GNPs (36 nm) is 17 fM. On the basis of this single nanoparticle technique, we developed an ultrasensitive and highly selective detection platform for homogeneous immunoassay and DNA hybridization assays using GNPs as probes, which were 2−5 orders of magnitude more sensitive than current homogeneous methods. We used this technology to construct homogeneous sandwich immunoassays for cancer biomarkers, such as carcinoembryonic antigen (CEA) and alpha fetal protein (AFP), and aptamer recognition for thrombin. The detection limits are 130 fM for CEA, 714 fM for AFP and 2.72 pM for thrombin. Our method was successfully applied for direct determination of CEA, AFP and thrombin levels in sera from healthy subjects and cancer patients. In homogeneous DNA hybridization detection, we chose methylenetetrahydrofolate reductase (MTHFR) gene as a target. This assay successfully distinguished DNA sequences with single base mismatches, and the detection limits for the target were at 1 fM level. |
---|---|
AbstractList | In this paper, we present for the first time a single gold nanoparticle counter (SGNPC) in solution based on the photon bursting in a highly focused laser beam (less than 1 fL) due to the plasmon resonance scattering and Brownian motion of gold nanoparticles (GNPs). The photon burst intensity of single 36 nm GNPs is several tens to hundreds times stronger than that of quantum dots (QDs) and organic dyes. The relationship between the photon burst counts and GNPs concentration shows an excellent linearity. The linear range is over 4 orders of magnitude, and the detection limit of GNPs (36 nm) is 17 fM. On the basis of this single nanoparticle technique, we developed an ultrasensitive and highly selective detection platform for homogeneous immunoassay and DNA hybridization assays using GNPs as probes, which were 2−5 orders of magnitude more sensitive than current homogeneous methods. We used this technology to construct homogeneous sandwich immunoassays for cancer biomarkers, such as carcinoembryonic antigen (CEA) and alpha fetal protein (AFP), and aptamer recognition for thrombin. The detection limits are 130 fM for CEA, 714 fM for AFP and 2.72 pM for thrombin. Our method was successfully applied for direct determination of CEA, AFP and thrombin levels in sera from healthy subjects and cancer patients. In homogeneous DNA hybridization detection, we chose methylenetetrahydrofolate reductase (MTHFR) gene as a target. This assay successfully distinguished DNA sequences with single base mismatches, and the detection limits for the target were at 1 fM level. In this paper, we present for the first time a single gold nanoparticle counter (SGNPC) in solution based on the photon bursting in a highly focused laser beam (less than 1 fL) due to the plasmon resonance scattering and Brownian motion of gold nanoparticles (GNPs). The photon burst intensity of single 36 nm GNPs is several tens to hundreds times stronger than that of quantum dots (QDs) and organic dyes. The relationship between the photon burst counts and GNPs concentration shows an excellent linearity. The linear range is over 4 orders of magnitude, and the detection limit of GNPs (36 nm) is 17 fM. On the basis of this single nanoparticle technique, we developed an ultrasensitive and highly selective detection platform for homogeneous immunoassay and DNA hybridization assays using GNPs as probes, which were 2-5 orders of magnitude more sensitive than current homogeneous methods. We used this technology to construct homogeneous sandwich immunoassays for cancer biomarkers, such as carcinoembryonic antigen (CEA) and alpha fetal protein (AFP), and aptamer recognition for thrombin. The detection limits are 130 fM for CEA, 714 fM for AFP and 2.72 pM for thrombin. Our method was successfully applied for direct determination of CEA, AFP and thrombin levels in sera from healthy subjects and cancer patients. In homogeneous DNA hybridization detection, we chose methylenetetrahydrofolate reductase (MTHFR) gene as a target. This assay successfully distinguished DNA sequences with single base mismatches, and the detection limits for the target were at 1 fM level. In this paper, we present for the first time a single gold nanoparticle counter (SGNPC) in solution based on the photon bursting in a highly focused laser beam (less than 1 fL) due to the plasmon resonance scattering and Brownian motion of gold nanoparticles (GNPs). The photon burst intensity of single 36 nm GNPs is several tens to hundreds times stronger than that of quantum dots (QDs) and organic dyes. The relationship between the photon burst counts and GNPs concentration shows an excellent linearity. The linear range is over 4 orders of magnitude, and the detection limit of GNPs (36 nm) is 17 fM. On the basis of this single nanoparticle technique, we developed an ultrasensitive and highly selective detection platform for homogeneous immunoassay and DNA hybridization assays using GNPs as probes, which were 2-5 orders of magnitude more sensitive than current homogeneous methods. We used this technology to construct homogeneous sandwich immunoassays for cancer biomarkers, such as carcinoembryonic antigen (CEA) and alpha fetal protein (AFP), and aptamer recognition for thrombin. The detection limits are 130 fM for CEA, 714 fM for AFP and 2.72 pM for thrombin. Our method was successfully applied for direct determination of CEA, AFP and thrombin levels in sera from healthy subjects and cancer patients. In homogeneous DNA hybridization detection, we chose methylenetetrahydrofolate reductase (MTHFR) gene as a target. This assay successfully distinguished DNA sequences with single base mismatches, and the detection limits for the target were at 1 fM level.In this paper, we present for the first time a single gold nanoparticle counter (SGNPC) in solution based on the photon bursting in a highly focused laser beam (less than 1 fL) due to the plasmon resonance scattering and Brownian motion of gold nanoparticles (GNPs). The photon burst intensity of single 36 nm GNPs is several tens to hundreds times stronger than that of quantum dots (QDs) and organic dyes. The relationship between the photon burst counts and GNPs concentration shows an excellent linearity. The linear range is over 4 orders of magnitude, and the detection limit of GNPs (36 nm) is 17 fM. On the basis of this single nanoparticle technique, we developed an ultrasensitive and highly selective detection platform for homogeneous immunoassay and DNA hybridization assays using GNPs as probes, which were 2-5 orders of magnitude more sensitive than current homogeneous methods. We used this technology to construct homogeneous sandwich immunoassays for cancer biomarkers, such as carcinoembryonic antigen (CEA) and alpha fetal protein (AFP), and aptamer recognition for thrombin. The detection limits are 130 fM for CEA, 714 fM for AFP and 2.72 pM for thrombin. Our method was successfully applied for direct determination of CEA, AFP and thrombin levels in sera from healthy subjects and cancer patients. In homogeneous DNA hybridization detection, we chose methylenetetrahydrofolate reductase (MTHFR) gene as a target. This assay successfully distinguished DNA sequences with single base mismatches, and the detection limits for the target were at 1 fM level. |
Author | Huang, Xiangyi Dong, Chaoqing Xie, Chao Xu, Fagong Ren, Jicun |
Author_xml | – sequence: 1 givenname: Chao surname: Xie fullname: Xie, Chao – sequence: 2 givenname: Fagong surname: Xu fullname: Xu, Fagong – sequence: 3 givenname: Xiangyi surname: Huang fullname: Huang, Xiangyi – sequence: 4 givenname: Chaoqing surname: Dong fullname: Dong, Chaoqing – sequence: 5 givenname: Jicun surname: Ren fullname: Ren, Jicun email: jicunren@sjtu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19678640$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtPHDEMxyNEVRbaA1-gygVVHKbksfPitloei4QAiXIeORkPyiqTbJNMpe1H6Kdm2OUhIS62bP9s2X_vk13nHRJyyNkvzgQ_WULNZFVKt0MmPBcsy7kodsmEMSaysirkHtmPcTmGU1Hxr2SP18WYnrIJ-X9v3KNFeultS2_A-RWEZLTFSOd-cAnDKZ05-mBTgIgummT-Ij3DhDoZ7-idhdT50NPR0FuH2X3CFV343j-iQz9EetX3g_MQI6wjBdfSs5sZXaxVMK35B5shs03xG_nSgY34_cUfkIeL89_zRXZ9e3k1n11nICuWMt4q1UkQumpFLiqoeVewQufQTutSocC2Q8Y574RiudKqYqpSqIRmpdQl5_KA_NzOXQX_Z8CYmt5EjdbCZuGmlFMmZS3LkfzxQg6qx7ZZBdNDWDev8o3A8RbQwccYsHtHWPP8mubtNSN78oHVJm3uH6U19tOOo20H6Ngs_RDcKMsn3BMOTZ7L |
CitedBy_id | crossref_primary_10_1016_j_trac_2023_117090 crossref_primary_10_1016_j_ab_2013_12_007 crossref_primary_10_1016_j_molliq_2023_122704 crossref_primary_10_1039_c2an15848e crossref_primary_10_1016_j_bios_2010_07_028 crossref_primary_10_1021_acsami_7b11659 crossref_primary_10_1016_j_talanta_2010_08_036 crossref_primary_10_1039_c1cc12939b crossref_primary_10_1002_anie_201006838 crossref_primary_10_1021_ac5012377 crossref_primary_10_1186_1477_3155_10_26 crossref_primary_10_1007_s00216_010_3801_x crossref_primary_10_1016_S1369_7021_10_70125_5 crossref_primary_10_1021_ac901822w crossref_primary_10_1039_c1cc12659h crossref_primary_10_1039_c2an16148f crossref_primary_10_1021_ac101018v crossref_primary_10_1021_la1049937 crossref_primary_10_1016_j_talanta_2014_11_041 crossref_primary_10_1021_ac902492c crossref_primary_10_1002_chem_201203131 crossref_primary_10_1016_j_cclet_2010_05_007 crossref_primary_10_1002_smll_201102660 crossref_primary_10_1016_j_ica_2012_05_038 crossref_primary_10_1039_C4TB01881H crossref_primary_10_1016_j_aca_2010_10_033 crossref_primary_10_1021_cr2001178 crossref_primary_10_1021_nn901742q crossref_primary_10_1016_j_snb_2012_06_030 crossref_primary_10_1039_c2an16171k crossref_primary_10_3109_07388551_2013_819484 crossref_primary_10_1016_j_talanta_2010_03_002 crossref_primary_10_1039_C6AN00696E crossref_primary_10_1002_chem_200902555 crossref_primary_10_1039_C4AY00954A crossref_primary_10_3390_en14051278 crossref_primary_10_1002_smll_201000523 crossref_primary_10_1039_C0AY00709A crossref_primary_10_1002_ange_201006838 crossref_primary_10_1021_ja104052c crossref_primary_10_1039_C4RA12831A crossref_primary_10_1016_j_progsurf_2012_03_001 crossref_primary_10_7567_JJAP_55_107001 |
Cites_doi | 10.1038/355564a0 10.1021/ja010437m 10.1039/b708461g 10.1126/science.289.5485.1757 10.1039/b818081d 10.1038/nnano.2008.30 10.1021/ac801005d 10.1002/elps.200700798 10.1021/jp8065822 10.1016/S0006-3495(02)75516-1 10.1002/anie.200601554 10.1039/b808753a 10.1016/j.canlet.2008.09.024 10.1021/ja044031w 10.1038/83530 10.1126/science.1150082 10.1002/anie.200890076 10.1021/ja000133k 10.1021/jp0546047 10.1038/nprot.2007.5 10.1021/ar800035u 10.1021/jp951379s 10.1038/456850a 10.1021/ac8005796 10.1038/nbt977 10.1002/anie.200700803 10.1038/ng0595-111 10.1002/anie.200801301 10.1021/ac8004154 10.1021/ac0262210 10.1021/ja711298b 10.1016/j.ab.2008.09.004 10.1021/jp0671796 10.1021/ac801106w 10.1021/ja046628h 10.1039/B813640H 10.1038/nprot.2008.111 10.1021/ac7026436 10.1002/smll.200700054 10.1021/ac801875a 10.1038/nmeth1133 10.1021/jp060279r 10.1021/ac070867g 10.1038/nmeth1104 10.1126/science.297.5586.1536 10.1126/science.277.5329.1078 10.1002/anie.200804066 10.1021/ja800604z 10.1021/ja900809z 10.1021/ja0778747 10.1016/j.cplett.2008.03.098 10.1021/ac8017058 10.1021/ac801647b 10.1021/ja972332i 10.1016/j.talanta.2008.05.059 10.1016/S0022-1759(01)00537-3 10.1021/ja065930i 10.1039/b818853j 10.1021/jp8096742 10.1038/ng.140 |
ContentType | Journal Article |
Copyright | Copyright © 2009 American Chemical Society |
Copyright_xml | – notice: Copyright © 2009 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/ja903873n |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Single Gold Nanoparticles Counter |
EISSN | 1520-5126 |
EndPage | 12770 |
ExternalDocumentID | 19678640 10_1021_ja903873n c711911515 |
Genre | Research Support, Non-U.S. Gov't Retracted Publication Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF AFFNX AFMIJ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT UQL VF5 VG9 VQA W1F WH7 X XFK YZZ ZCG ZE2 ZHY --- -DZ -ET -~X .DC 6TJ AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a380t-1dbbf3a2c8d2528a91f606c5ad497be2edfe0111f2b05bcb80b8beb2c073c7113 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Jul 10 22:33:23 EDT 2025 Mon Jul 21 05:56:11 EDT 2025 Tue Jul 01 04:14:49 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 Thu Aug 27 13:42:37 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a380t-1dbbf3a2c8d2528a91f606c5ad497be2edfe0111f2b05bcb80b8beb2c073c7113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Correction/Retraction-3 |
PMID | 19678640 |
PQID | 734033937 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_734033937 pubmed_primary_19678640 crossref_primary_10_1021_ja903873n crossref_citationtrail_10_1021_ja903873n acs_journals_10_1021_ja903873n |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-09-09 |
PublicationDateYYYYMMDD | 2009-09-09 |
PublicationDate_xml | – month: 09 year: 2009 text: 2009-09-09 day: 09 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2009 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Liu R. (ref41/cit41) 2008; 47 Xu X. (ref47/cit47) 2007; 79 Hirsch L. R. (ref46/cit46) 2003; 75 Földes-Papp Z. (ref52/cit52) 2002; 260 Storhoff J. J. (ref25/cit25) 2004; 22 Jiang Z. L. (ref43/cit43) 2008; 80 Kokko T. (ref17/cit17) 2008; 80 Shi X. G. (ref31/cit31) 2007; 3 Huang C. C. (ref19/cit19) 2007; 46 Cruz-Aguado J. A. (ref13/cit13) 2008; 80 Murphy C. J. (ref32/cit32) 2008; 41 Jenison R. (ref58/cit58) 2001; 19 Jin R. C. (ref27/cit27) 2008; 47 Loos R. J. F. (ref1/cit1) 2008; 40 Taton T. A. (ref22/cit22) 2000; 289 Storhoff J. J. (ref45/cit45) 1998; 120 Yang R. H. (ref14/cit14) 2008; 130 Dong C. (ref49/cit49) 2006; 110 Jiang W. (ref33/cit33) 2008; 3 Daniel D. C. (ref51/cit51) 2002; 82 Heyduk E. (ref10/cit10) 2008; 80 He H. (ref30/cit30) 2008; 77 He W. (ref42/cit42) 2008; 80 Chen G. (ref20/cit20) 2009; 131 Otsuka H. (ref54/cit54) 2001; 123 Shi W. (ref61/cit61) 2008; 8 Cao Y. C. (ref24/cit24) 2002; 297 Porter M. D. (ref6/cit6) 2008; 37 Shen Q. P. (ref37/cit37) 2009; 15 Tachi T. (ref12/cit12) 2009; 9 Cang H. (ref29/cit29) 2008; 457 Bock L. C. (ref53/cit53) 1992; 355 Liu G. L. (ref23/cit23) 2007; 4 Frosst P. (ref57/cit57) 1995; 10 He H. (ref34/cit34) 2008; 80 Li Y. (ref56/cit56) 2008; 29 Sharlow E. R. (ref9/cit9) 2008; 3 Kim S. A. (ref48/cit48) 2007; 4 Liu X. (ref26/cit26) 2008; 130 Jiang T. T. (ref40/cit40) 2009; 15 Zhang H. (ref55/cit55) 2008; 130 Lee C. (ref5/cit5) 2007; 39 Bailey R. C. (ref2/cit2) 2007; 129 Jiang Y. (ref39/cit39) 2008; 47 Mishra A. (ref44/cit44) 2009; 113 Song H. (ref60/cit60) 2006; 45 Uyeda H. T. (ref50/cit50) 2005; 127 Ke Y. G. (ref4/cit4) 2008; 319 Liu L. (ref16/cit16) 2008; 80 Li J. L. (ref35/cit35) 2009; 274 Xiang M. H. (ref21/cit21) 2009; 113 Elghanian R. (ref36/cit36) 1997; 277 Lopez-Crapez E. (ref15/cit15) 2008; 383 Narayanan R. (ref8/cit8) 2008; 80 Zhang K. (ref18/cit18) 2005; 109 Xu C. S. (ref28/cit28) 2007; 111 Reynolds R. A. (ref59/cit59) 2000; 122 Liu J. W. (ref38/cit38) 2004; 126 Hayden E. C. (ref3/cit3) 2008; 456 Freeman R. G. (ref7/cit7) 1996; 100 Ramirez D. C. (ref11/cit11) 2007; 2 20961083 - J Am Chem Soc. 2010 Oct 27;132(42):15091 |
References_xml | – volume: 355 start-page: 564 year: 1992 ident: ref53/cit53 publication-title: Nature doi: 10.1038/355564a0 – volume: 123 start-page: 8226 year: 2001 ident: ref54/cit54 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja010437m – volume: 37 start-page: 1001 year: 2008 ident: ref6/cit6 publication-title: Chem. Soc. Rev. doi: 10.1039/b708461g – volume: 289 start-page: 1757 year: 2000 ident: ref22/cit22 publication-title: Science doi: 10.1126/science.289.5485.1757 – volume: 15 start-page: 929 year: 2009 ident: ref37/cit37 publication-title: Chem. Commun. doi: 10.1039/b818081d – volume: 3 start-page: 145 year: 2008 ident: ref33/cit33 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.30 – volume: 80 start-page: 8424 year: 2008 ident: ref42/cit42 publication-title: Anal. Chem. doi: 10.1021/ac801005d – volume: 29 start-page: 2570 year: 2008 ident: ref56/cit56 publication-title: Electrophoresis doi: 10.1002/elps.200700798 – volume: 113 start-page: 2734 year: 2009 ident: ref21/cit21 publication-title: J. Phys.Chem. B doi: 10.1021/jp8065822 – volume: 39 start-page: S48−S54 year: 2007 ident: ref5/cit5 publication-title: Nat. Genet. – volume: 82 start-page: 1654 year: 2002 ident: ref51/cit51 publication-title: Biophys. J. doi: 10.1016/S0006-3495(02)75516-1 – volume: 45 start-page: 7336 year: 2006 ident: ref60/cit60 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200601554 – volume: 8 start-page: 1432 year: 2008 ident: ref61/cit61 publication-title: Lab Chip doi: 10.1039/b808753a – volume: 274 start-page: 319 year: 2009 ident: ref35/cit35 publication-title: Cancer Lett. doi: 10.1016/j.canlet.2008.09.024 – volume: 127 start-page: 3870 year: 2005 ident: ref50/cit50 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja044031w – volume: 19 start-page: 62 year: 2001 ident: ref58/cit58 publication-title: Nat. Biotechnol. doi: 10.1038/83530 – volume: 319 start-page: 180 year: 2008 ident: ref4/cit4 publication-title: Science doi: 10.1126/science.1150082 – volume: 47 start-page: 3081 year: 2008 ident: ref41/cit41 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200890076 – volume: 122 start-page: 3795 year: 2000 ident: ref59/cit59 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja000133k – volume: 109 start-page: 21930 year: 2005 ident: ref18/cit18 publication-title: J. Phys. Chem. B doi: 10.1021/jp0546047 – volume: 2 start-page: 512 year: 2007 ident: ref11/cit11 publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.5 – volume: 41 start-page: 1721 year: 2008 ident: ref32/cit32 publication-title: Acc. Chem. Res. doi: 10.1021/ar800035u – volume: 100 start-page: 718 year: 1996 ident: ref7/cit7 publication-title: J. Phys. Chem. doi: 10.1021/jp951379s – volume: 456 start-page: 850 year: 2008 ident: ref3/cit3 publication-title: Nature doi: 10.1038/456850a – volume: 80 start-page: 5951 year: 2008 ident: ref34/cit34 publication-title: Anal. Chem. doi: 10.1021/ac8005796 – volume: 22 start-page: 883 year: 2004 ident: ref25/cit25 publication-title: Nat. Biotechnol. doi: 10.1038/nbt977 – volume: 46 start-page: 6824 year: 2007 ident: ref19/cit19 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200700803 – volume: 10 start-page: 111 year: 1995 ident: ref57/cit57 publication-title: Nat. Genet. doi: 10.1038/ng0595-111 – volume: 47 start-page: 6750 year: 2008 ident: ref27/cit27 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200801301 – volume: 80 start-page: 5152 year: 2008 ident: ref10/cit10 publication-title: Anal. Chem. doi: 10.1021/ac8004154 – volume: 75 start-page: 2377 year: 2003 ident: ref46/cit46 publication-title: Anal. Chem. doi: 10.1021/ac0262210 – volume: 130 start-page: 2780 year: 2008 ident: ref26/cit26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja711298b – volume: 383 start-page: 301 year: 2008 ident: ref15/cit15 publication-title: Anal. Biochem. doi: 10.1016/j.ab.2008.09.004 – volume: 111 start-page: 32 year: 2007 ident: ref28/cit28 publication-title: J. Phys. Chem. C doi: 10.1021/jp0671796 – volume: 80 start-page: 7735 year: 2008 ident: ref16/cit16 publication-title: Anal. Chem. doi: 10.1021/ac801106w – volume: 126 start-page: 12298 year: 2004 ident: ref38/cit38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja046628h – volume: 9 start-page: 966 year: 2009 ident: ref12/cit12 publication-title: Lab Chip doi: 10.1039/B813640H – volume: 3 start-page: 1350 year: 2008 ident: ref9/cit9 publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.111 – volume: 80 start-page: 2265 year: 2008 ident: ref8/cit8 publication-title: Anal. Chem. doi: 10.1021/ac7026436 – volume: 3 start-page: 1245 year: 2007 ident: ref31/cit31 publication-title: Small doi: 10.1002/smll.200700054 – volume: 80 start-page: 9763 year: 2008 ident: ref17/cit17 publication-title: Anal. Chem. doi: 10.1021/ac801875a – volume: 4 start-page: 1015 year: 2007 ident: ref23/cit23 publication-title: Nat. Methods doi: 10.1038/nmeth1133 – volume: 110 start-page: 11069 year: 2006 ident: ref49/cit49 publication-title: J Phys. Chem. B doi: 10.1021/jp060279r – volume: 79 start-page: 6650 year: 2007 ident: ref47/cit47 publication-title: Anal. Chem. doi: 10.1021/ac070867g – volume: 4 start-page: 963 year: 2007 ident: ref48/cit48 publication-title: Nat. Methods doi: 10.1038/nmeth1104 – volume: 297 start-page: 1536 year: 2002 ident: ref24/cit24 publication-title: Science doi: 10.1126/science.297.5586.1536 – volume: 277 start-page: 1078 year: 1997 ident: ref36/cit36 publication-title: Science doi: 10.1126/science.277.5329.1078 – volume: 47 start-page: 8601 year: 2008 ident: ref39/cit39 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200804066 – volume: 130 start-page: 8351 year: 2008 ident: ref14/cit14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800604z – volume: 131 start-page: 4218 year: 2009 ident: ref20/cit20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja900809z – volume: 130 start-page: 34 year: 2008 ident: ref55/cit55 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0778747 – volume: 457 start-page: 285 year: 2008 ident: ref29/cit29 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2008.03.098 – volume: 80 start-page: 8853 year: 2008 ident: ref13/cit13 publication-title: Anal. Chem. doi: 10.1021/ac8017058 – volume: 80 start-page: 8681 year: 2008 ident: ref43/cit43 publication-title: Anal. Chem. doi: 10.1021/ac801647b – volume: 120 start-page: 1959 year: 1998 ident: ref45/cit45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja972332i – volume: 77 start-page: 166 year: 2008 ident: ref30/cit30 publication-title: Talanta doi: 10.1016/j.talanta.2008.05.059 – volume: 260 start-page: 117 year: 2002 ident: ref52/cit52 publication-title: J. Immunol. Meth. doi: 10.1016/S0022-1759(01)00537-3 – volume: 129 start-page: 1959 year: 2007 ident: ref2/cit2 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065930i – volume: 15 start-page: 1972 year: 2009 ident: ref40/cit40 publication-title: Chem. Commun. doi: 10.1039/b818853j – volume: 113 start-page: 6976 year: 2009 ident: ref44/cit44 publication-title: J. Phys. Chem. C doi: 10.1021/jp8096742 – volume: 40 start-page: 768 year: 2008 ident: ref1/cit1 publication-title: Nat. Genet. doi: 10.1038/ng.140 – reference: 20961083 - J Am Chem Soc. 2010 Oct 27;132(42):15091 |
SSID | ssj0004281 |
Score | 2.1934574 |
SecondaryResourceType | retracted_publication |
Snippet | In this paper, we present for the first time a single gold nanoparticle counter (SGNPC) in solution based on the photon bursting in a highly focused laser beam... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12763 |
SubjectTerms | Animals Aptamers, Nucleotide - genetics Aptamers, Nucleotide - metabolism Base Sequence Biomarkers, Tumor - analysis Biomarkers, Tumor - metabolism DNA - chemistry DNA - genetics DNA Probes - chemistry DNA Probes - genetics Female Gold - analysis Gold - chemistry Humans Immunoassay - methods Linear Models Metal Nanoparticles - analysis Metal Nanoparticles - chemistry Mice Motion Nucleic Acid Hybridization Photons Pregnancy Scattering, Radiation Solutions Thrombin - metabolism |
Title | Single Gold Nanoparticles Counter: An Ultrasensitive Detection Platform for One-Step Homogeneous Immunoassays and DNA Hybridization Assays |
URI | http://dx.doi.org/10.1021/ja903873n https://www.ncbi.nlm.nih.gov/pubmed/19678640 https://www.proquest.com/docview/734033937 |
Volume | 131 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELaAHsqFUtrSbQsa0R64BDm28-pttQvdViqtBCtxi-yJcyE4Fcke4Cf0V3ecRykqtFKUS-zIGo8932jmm2HsA08Nx7LUAQrEQCFmgcYYA2mMCQnRFVx4cvLX03ixVF8uoos19v6RCL7w9YEyH2KVbp09ETEdXo9_Zmd35EeRhiPGTdJYjuWD_pzqTQ82903PI3iysysnz9h8ZOf06SSXR6vWHOHt38Ua_7XkbbY14EqY9orwnK1Zt8OezsZ2bi_YzzMyUpWFT3VVAN2p5CwPOXHgeekk3o8wdbCs2msybK7pcopgbtsuV8vB90q3HuACveCbs4HPD4NFfVWTCtp61cBnTzWpCYzrmwa0K2B-OoXFjaeEDWRPmHYfX7LlyfH5bBEMjRgCLVPeBmFhTCm1wLQQkUh1Fpbk92CkC5UlxgpblNb3rC-F4ZFBk3KTGnLZke4PTMJQvmIbrnb2NQORZBlKa1RoChWFqCMluMLSIy3yLPWE7dNO5cNBavIuRi7IRxlFOmGH4ybmOJQx9900qoeGHvwe-qOv3fHQIBg1Iacd8eES3UktT6Ti0tcLnLDdXkPu_pKRjY8Vf_O_1b5lm334yT_v2EZ7vbJ7hGJas99p8S9-Ce42 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHMoFyrPLo4wQBy6pEtvZJNyiLSWFdkFqV-otsifOhdRBTfZQfgK_mrGTdAEVgRTlEicajSeebzQz3zD2Jkx1iHWtAuSIgUTMAoVzDITWOiJEV4XcNSefLOfFSn48j89HmhzXC0NCdPSlzifxN-wCjiYoc5lWYW-zOwRCuLPmfHG66YHkaTRB3SSdi4lF6NdXnQfC7ncP9BdY6d3L4f1hTpEXzFeVfN1f93ofv__B2fh_ku-weyPKhHwwiwfslrEP2fZiGu72iP04JZfVGPjQNhXQCUuh81ghB65LnZT9DnILq6a_JDdnO19hBAem95VbFr40qndwF-gGn60JXLUYFO1FSwZp2nUHR67xpCVorq46ULaCg2UOxZVrEBtbPyH3Dx-z1eH7s0URjGMZAiXSsA-iSutaKI5pxWOeqiyqKQrCWFUyS7ThpqqNm2Bfcx3GGnUa6lRTAI90mmASReIJ27KtNbsMeJJlKIyWka5kHKGKJQ8l1g53UZypZmyPNFqOv1VX-ow5p4hlUumMvZ32ssSR1NzN1mhuWvr6eum3gcnjpkUwGURJO-KSJ8prrUyEDIVjD5yxp4OhbL6Skcefy_DZv6R9xbaLs5Pj8vho-ek5uzskptz1gm31l2vzkvBNr_e8Yf8EeUn2lw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSMCFd2F5FAtx4JIqsZ1Nwi3aZdny2FYqK_UW2WPnQnCqJnsoP4FfzYw3aQEVgRTlkok1Go8932hejL2OcxNDXesIBECkAIpIwxQiaYxJENHZWFBx8ufVdLlWH07Sk8FRpFoYZKLDlboQxKdTfWrrocMAtQoqKNoq_XV2g8J1pNHl7PiyDlLkyQh3s3wqx05Cv_5KVgi6363QX6BlMDGLu-zwgrmQWfJ1f9Obffj-R9_G_-f-HrszoE1ebtXjPrvm_AN2azYOeXvIfhyj6Wocf982luNNiy70kCnHqVodhf6Wl56vm_4MzZ3vQqYRn7s-ZHB5ftTonmAvxxc_9C6irDG-bL-1qJiu3XT8gApQWoTo-rzj2ls-X5V8eU6FYkMJKC_Dx0dsvXj3ZbaMhvEMkZZ53EeJNaaWWkBuRSpyXSQ1ekOQaquKzDjhbO1okn0tTJwaMHlscoOOPOCtAlmSyF2241vvnjAusqIA6YxKjFVpAjpVIlZQE_5Cf1NP2B5KtRqOV1eFyLlAz2UU6YS9GfezgqG5Oc3YaK4ifXVBerrt6HEVER-VosIdoSCKDlKrMqliSV0EJ-zxVlkuVynQ8k9V_PRf3L5kN4_mi-rTwerjM3Z7G5-i5znb6c827gXCnN7sBd3-CXrR-Ro |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Gold+Nanoparticles+Counter%3A+An+Ultrasensitive+Detection+Platform+for+One-Step+Homogeneous+Immunoassays+and+DNA+Hybridization+Assays&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Xie%2C+Chao&rft.au=Xu%2C+Fagong&rft.au=Huang%2C+Xiangyi&rft.au=Dong%2C+Chaoqing&rft.date=2009-09-09&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=131&rft.issue=35&rft.spage=12763&rft.epage=12770&rft_id=info:doi/10.1021%2Fja903873n&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ja903873n |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |