Single Gold Nanoparticles Counter: An Ultrasensitive Detection Platform for One-Step Homogeneous Immunoassays and DNA Hybridization Assays

In this paper, we present for the first time a single gold nanoparticle counter (SGNPC) in solution based on the photon bursting in a highly focused laser beam (less than 1 fL) due to the plasmon resonance scattering and Brownian motion of gold nanoparticles (GNPs). The photon burst intensity of sin...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 131; no. 35; pp. 12763 - 12770
Main Authors Xie, Chao, Xu, Fagong, Huang, Xiangyi, Dong, Chaoqing, Ren, Jicun
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.09.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we present for the first time a single gold nanoparticle counter (SGNPC) in solution based on the photon bursting in a highly focused laser beam (less than 1 fL) due to the plasmon resonance scattering and Brownian motion of gold nanoparticles (GNPs). The photon burst intensity of single 36 nm GNPs is several tens to hundreds times stronger than that of quantum dots (QDs) and organic dyes. The relationship between the photon burst counts and GNPs concentration shows an excellent linearity. The linear range is over 4 orders of magnitude, and the detection limit of GNPs (36 nm) is 17 fM. On the basis of this single nanoparticle technique, we developed an ultrasensitive and highly selective detection platform for homogeneous immunoassay and DNA hybridization assays using GNPs as probes, which were 2−5 orders of magnitude more sensitive than current homogeneous methods. We used this technology to construct homogeneous sandwich immunoassays for cancer biomarkers, such as carcinoembryonic antigen (CEA) and alpha fetal protein (AFP), and aptamer recognition for thrombin. The detection limits are 130 fM for CEA, 714 fM for AFP and 2.72 pM for thrombin. Our method was successfully applied for direct determination of CEA, AFP and thrombin levels in sera from healthy subjects and cancer patients. In homogeneous DNA hybridization detection, we chose methylenetetrahydrofolate reductase (MTHFR) gene as a target. This assay successfully distinguished DNA sequences with single base mismatches, and the detection limits for the target were at 1 fM level.
AbstractList In this paper, we present for the first time a single gold nanoparticle counter (SGNPC) in solution based on the photon bursting in a highly focused laser beam (less than 1 fL) due to the plasmon resonance scattering and Brownian motion of gold nanoparticles (GNPs). The photon burst intensity of single 36 nm GNPs is several tens to hundreds times stronger than that of quantum dots (QDs) and organic dyes. The relationship between the photon burst counts and GNPs concentration shows an excellent linearity. The linear range is over 4 orders of magnitude, and the detection limit of GNPs (36 nm) is 17 fM. On the basis of this single nanoparticle technique, we developed an ultrasensitive and highly selective detection platform for homogeneous immunoassay and DNA hybridization assays using GNPs as probes, which were 2−5 orders of magnitude more sensitive than current homogeneous methods. We used this technology to construct homogeneous sandwich immunoassays for cancer biomarkers, such as carcinoembryonic antigen (CEA) and alpha fetal protein (AFP), and aptamer recognition for thrombin. The detection limits are 130 fM for CEA, 714 fM for AFP and 2.72 pM for thrombin. Our method was successfully applied for direct determination of CEA, AFP and thrombin levels in sera from healthy subjects and cancer patients. In homogeneous DNA hybridization detection, we chose methylenetetrahydrofolate reductase (MTHFR) gene as a target. This assay successfully distinguished DNA sequences with single base mismatches, and the detection limits for the target were at 1 fM level.
In this paper, we present for the first time a single gold nanoparticle counter (SGNPC) in solution based on the photon bursting in a highly focused laser beam (less than 1 fL) due to the plasmon resonance scattering and Brownian motion of gold nanoparticles (GNPs). The photon burst intensity of single 36 nm GNPs is several tens to hundreds times stronger than that of quantum dots (QDs) and organic dyes. The relationship between the photon burst counts and GNPs concentration shows an excellent linearity. The linear range is over 4 orders of magnitude, and the detection limit of GNPs (36 nm) is 17 fM. On the basis of this single nanoparticle technique, we developed an ultrasensitive and highly selective detection platform for homogeneous immunoassay and DNA hybridization assays using GNPs as probes, which were 2-5 orders of magnitude more sensitive than current homogeneous methods. We used this technology to construct homogeneous sandwich immunoassays for cancer biomarkers, such as carcinoembryonic antigen (CEA) and alpha fetal protein (AFP), and aptamer recognition for thrombin. The detection limits are 130 fM for CEA, 714 fM for AFP and 2.72 pM for thrombin. Our method was successfully applied for direct determination of CEA, AFP and thrombin levels in sera from healthy subjects and cancer patients. In homogeneous DNA hybridization detection, we chose methylenetetrahydrofolate reductase (MTHFR) gene as a target. This assay successfully distinguished DNA sequences with single base mismatches, and the detection limits for the target were at 1 fM level.
In this paper, we present for the first time a single gold nanoparticle counter (SGNPC) in solution based on the photon bursting in a highly focused laser beam (less than 1 fL) due to the plasmon resonance scattering and Brownian motion of gold nanoparticles (GNPs). The photon burst intensity of single 36 nm GNPs is several tens to hundreds times stronger than that of quantum dots (QDs) and organic dyes. The relationship between the photon burst counts and GNPs concentration shows an excellent linearity. The linear range is over 4 orders of magnitude, and the detection limit of GNPs (36 nm) is 17 fM. On the basis of this single nanoparticle technique, we developed an ultrasensitive and highly selective detection platform for homogeneous immunoassay and DNA hybridization assays using GNPs as probes, which were 2-5 orders of magnitude more sensitive than current homogeneous methods. We used this technology to construct homogeneous sandwich immunoassays for cancer biomarkers, such as carcinoembryonic antigen (CEA) and alpha fetal protein (AFP), and aptamer recognition for thrombin. The detection limits are 130 fM for CEA, 714 fM for AFP and 2.72 pM for thrombin. Our method was successfully applied for direct determination of CEA, AFP and thrombin levels in sera from healthy subjects and cancer patients. In homogeneous DNA hybridization detection, we chose methylenetetrahydrofolate reductase (MTHFR) gene as a target. This assay successfully distinguished DNA sequences with single base mismatches, and the detection limits for the target were at 1 fM level.In this paper, we present for the first time a single gold nanoparticle counter (SGNPC) in solution based on the photon bursting in a highly focused laser beam (less than 1 fL) due to the plasmon resonance scattering and Brownian motion of gold nanoparticles (GNPs). The photon burst intensity of single 36 nm GNPs is several tens to hundreds times stronger than that of quantum dots (QDs) and organic dyes. The relationship between the photon burst counts and GNPs concentration shows an excellent linearity. The linear range is over 4 orders of magnitude, and the detection limit of GNPs (36 nm) is 17 fM. On the basis of this single nanoparticle technique, we developed an ultrasensitive and highly selective detection platform for homogeneous immunoassay and DNA hybridization assays using GNPs as probes, which were 2-5 orders of magnitude more sensitive than current homogeneous methods. We used this technology to construct homogeneous sandwich immunoassays for cancer biomarkers, such as carcinoembryonic antigen (CEA) and alpha fetal protein (AFP), and aptamer recognition for thrombin. The detection limits are 130 fM for CEA, 714 fM for AFP and 2.72 pM for thrombin. Our method was successfully applied for direct determination of CEA, AFP and thrombin levels in sera from healthy subjects and cancer patients. In homogeneous DNA hybridization detection, we chose methylenetetrahydrofolate reductase (MTHFR) gene as a target. This assay successfully distinguished DNA sequences with single base mismatches, and the detection limits for the target were at 1 fM level.
Author Huang, Xiangyi
Dong, Chaoqing
Xie, Chao
Xu, Fagong
Ren, Jicun
Author_xml – sequence: 1
  givenname: Chao
  surname: Xie
  fullname: Xie, Chao
– sequence: 2
  givenname: Fagong
  surname: Xu
  fullname: Xu, Fagong
– sequence: 3
  givenname: Xiangyi
  surname: Huang
  fullname: Huang, Xiangyi
– sequence: 4
  givenname: Chaoqing
  surname: Dong
  fullname: Dong, Chaoqing
– sequence: 5
  givenname: Jicun
  surname: Ren
  fullname: Ren, Jicun
  email: jicunren@sjtu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19678640$$D View this record in MEDLINE/PubMed
BookMark eNptkUtPHDEMxyNEVRbaA1-gygVVHKbksfPitloei4QAiXIeORkPyiqTbJNMpe1H6Kdm2OUhIS62bP9s2X_vk13nHRJyyNkvzgQ_WULNZFVKt0MmPBcsy7kodsmEMSaysirkHtmPcTmGU1Hxr2SP18WYnrIJ-X9v3KNFeultS2_A-RWEZLTFSOd-cAnDKZ05-mBTgIgummT-Ij3DhDoZ7-idhdT50NPR0FuH2X3CFV343j-iQz9EetX3g_MQI6wjBdfSs5sZXaxVMK35B5shs03xG_nSgY34_cUfkIeL89_zRXZ9e3k1n11nICuWMt4q1UkQumpFLiqoeVewQufQTutSocC2Q8Y574RiudKqYqpSqIRmpdQl5_KA_NzOXQX_Z8CYmt5EjdbCZuGmlFMmZS3LkfzxQg6qx7ZZBdNDWDev8o3A8RbQwccYsHtHWPP8mubtNSN78oHVJm3uH6U19tOOo20H6Ngs_RDcKMsn3BMOTZ7L
CitedBy_id crossref_primary_10_1016_j_trac_2023_117090
crossref_primary_10_1016_j_ab_2013_12_007
crossref_primary_10_1016_j_molliq_2023_122704
crossref_primary_10_1039_c2an15848e
crossref_primary_10_1016_j_bios_2010_07_028
crossref_primary_10_1021_acsami_7b11659
crossref_primary_10_1016_j_talanta_2010_08_036
crossref_primary_10_1039_c1cc12939b
crossref_primary_10_1002_anie_201006838
crossref_primary_10_1021_ac5012377
crossref_primary_10_1186_1477_3155_10_26
crossref_primary_10_1007_s00216_010_3801_x
crossref_primary_10_1016_S1369_7021_10_70125_5
crossref_primary_10_1021_ac901822w
crossref_primary_10_1039_c1cc12659h
crossref_primary_10_1039_c2an16148f
crossref_primary_10_1021_ac101018v
crossref_primary_10_1021_la1049937
crossref_primary_10_1016_j_talanta_2014_11_041
crossref_primary_10_1021_ac902492c
crossref_primary_10_1002_chem_201203131
crossref_primary_10_1016_j_cclet_2010_05_007
crossref_primary_10_1002_smll_201102660
crossref_primary_10_1016_j_ica_2012_05_038
crossref_primary_10_1039_C4TB01881H
crossref_primary_10_1016_j_aca_2010_10_033
crossref_primary_10_1021_cr2001178
crossref_primary_10_1021_nn901742q
crossref_primary_10_1016_j_snb_2012_06_030
crossref_primary_10_1039_c2an16171k
crossref_primary_10_3109_07388551_2013_819484
crossref_primary_10_1016_j_talanta_2010_03_002
crossref_primary_10_1039_C6AN00696E
crossref_primary_10_1002_chem_200902555
crossref_primary_10_1039_C4AY00954A
crossref_primary_10_3390_en14051278
crossref_primary_10_1002_smll_201000523
crossref_primary_10_1039_C0AY00709A
crossref_primary_10_1002_ange_201006838
crossref_primary_10_1021_ja104052c
crossref_primary_10_1039_C4RA12831A
crossref_primary_10_1016_j_progsurf_2012_03_001
crossref_primary_10_7567_JJAP_55_107001
Cites_doi 10.1038/355564a0
10.1021/ja010437m
10.1039/b708461g
10.1126/science.289.5485.1757
10.1039/b818081d
10.1038/nnano.2008.30
10.1021/ac801005d
10.1002/elps.200700798
10.1021/jp8065822
10.1016/S0006-3495(02)75516-1
10.1002/anie.200601554
10.1039/b808753a
10.1016/j.canlet.2008.09.024
10.1021/ja044031w
10.1038/83530
10.1126/science.1150082
10.1002/anie.200890076
10.1021/ja000133k
10.1021/jp0546047
10.1038/nprot.2007.5
10.1021/ar800035u
10.1021/jp951379s
10.1038/456850a
10.1021/ac8005796
10.1038/nbt977
10.1002/anie.200700803
10.1038/ng0595-111
10.1002/anie.200801301
10.1021/ac8004154
10.1021/ac0262210
10.1021/ja711298b
10.1016/j.ab.2008.09.004
10.1021/jp0671796
10.1021/ac801106w
10.1021/ja046628h
10.1039/B813640H
10.1038/nprot.2008.111
10.1021/ac7026436
10.1002/smll.200700054
10.1021/ac801875a
10.1038/nmeth1133
10.1021/jp060279r
10.1021/ac070867g
10.1038/nmeth1104
10.1126/science.297.5586.1536
10.1126/science.277.5329.1078
10.1002/anie.200804066
10.1021/ja800604z
10.1021/ja900809z
10.1021/ja0778747
10.1016/j.cplett.2008.03.098
10.1021/ac8017058
10.1021/ac801647b
10.1021/ja972332i
10.1016/j.talanta.2008.05.059
10.1016/S0022-1759(01)00537-3
10.1021/ja065930i
10.1039/b818853j
10.1021/jp8096742
10.1038/ng.140
ContentType Journal Article
Copyright Copyright © 2009 American Chemical Society
Copyright_xml – notice: Copyright © 2009 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/ja903873n
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Single Gold Nanoparticles Counter
EISSN 1520-5126
EndPage 12770
ExternalDocumentID 19678640
10_1021_ja903873n
c711911515
Genre Research Support, Non-U.S. Gov't
Retracted Publication
Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AFFNX
AFMIJ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
UQL
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZCG
ZE2
ZHY
---
-DZ
-ET
-~X
.DC
6TJ
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a380t-1dbbf3a2c8d2528a91f606c5ad497be2edfe0111f2b05bcb80b8beb2c073c7113
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Jul 10 22:33:23 EDT 2025
Mon Jul 21 05:56:11 EDT 2025
Tue Jul 01 04:14:49 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
Thu Aug 27 13:42:37 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a380t-1dbbf3a2c8d2528a91f606c5ad497be2edfe0111f2b05bcb80b8beb2c073c7113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Correction/Retraction-3
PMID 19678640
PQID 734033937
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_734033937
pubmed_primary_19678640
crossref_primary_10_1021_ja903873n
crossref_citationtrail_10_1021_ja903873n
acs_journals_10_1021_ja903873n
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-09-09
PublicationDateYYYYMMDD 2009-09-09
PublicationDate_xml – month: 09
  year: 2009
  text: 2009-09-09
  day: 09
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2009
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Liu R. (ref41/cit41) 2008; 47
Xu X. (ref47/cit47) 2007; 79
Hirsch L. R. (ref46/cit46) 2003; 75
Földes-Papp Z. (ref52/cit52) 2002; 260
Storhoff J. J. (ref25/cit25) 2004; 22
Jiang Z. L. (ref43/cit43) 2008; 80
Kokko T. (ref17/cit17) 2008; 80
Shi X. G. (ref31/cit31) 2007; 3
Huang C. C. (ref19/cit19) 2007; 46
Cruz-Aguado J. A. (ref13/cit13) 2008; 80
Murphy C. J. (ref32/cit32) 2008; 41
Jenison R. (ref58/cit58) 2001; 19
Jin R. C. (ref27/cit27) 2008; 47
Loos R. J. F. (ref1/cit1) 2008; 40
Taton T. A. (ref22/cit22) 2000; 289
Storhoff J. J. (ref45/cit45) 1998; 120
Yang R. H. (ref14/cit14) 2008; 130
Dong C. (ref49/cit49) 2006; 110
Jiang W. (ref33/cit33) 2008; 3
Daniel D. C. (ref51/cit51) 2002; 82
Heyduk E. (ref10/cit10) 2008; 80
He H. (ref30/cit30) 2008; 77
He W. (ref42/cit42) 2008; 80
Chen G. (ref20/cit20) 2009; 131
Otsuka H. (ref54/cit54) 2001; 123
Shi W. (ref61/cit61) 2008; 8
Cao Y. C. (ref24/cit24) 2002; 297
Porter M. D. (ref6/cit6) 2008; 37
Shen Q. P. (ref37/cit37) 2009; 15
Tachi T. (ref12/cit12) 2009; 9
Cang H. (ref29/cit29) 2008; 457
Bock L. C. (ref53/cit53) 1992; 355
Liu G. L. (ref23/cit23) 2007; 4
Frosst P. (ref57/cit57) 1995; 10
He H. (ref34/cit34) 2008; 80
Li Y. (ref56/cit56) 2008; 29
Sharlow E. R. (ref9/cit9) 2008; 3
Kim S. A. (ref48/cit48) 2007; 4
Liu X. (ref26/cit26) 2008; 130
Jiang T. T. (ref40/cit40) 2009; 15
Zhang H. (ref55/cit55) 2008; 130
Lee C. (ref5/cit5) 2007; 39
Bailey R. C. (ref2/cit2) 2007; 129
Jiang Y. (ref39/cit39) 2008; 47
Mishra A. (ref44/cit44) 2009; 113
Song H. (ref60/cit60) 2006; 45
Uyeda H. T. (ref50/cit50) 2005; 127
Ke Y. G. (ref4/cit4) 2008; 319
Liu L. (ref16/cit16) 2008; 80
Li J. L. (ref35/cit35) 2009; 274
Xiang M. H. (ref21/cit21) 2009; 113
Elghanian R. (ref36/cit36) 1997; 277
Lopez-Crapez E. (ref15/cit15) 2008; 383
Narayanan R. (ref8/cit8) 2008; 80
Zhang K. (ref18/cit18) 2005; 109
Xu C. S. (ref28/cit28) 2007; 111
Reynolds R. A. (ref59/cit59) 2000; 122
Liu J. W. (ref38/cit38) 2004; 126
Hayden E. C. (ref3/cit3) 2008; 456
Freeman R. G. (ref7/cit7) 1996; 100
Ramirez D. C. (ref11/cit11) 2007; 2
20961083 - J Am Chem Soc. 2010 Oct 27;132(42):15091
References_xml – volume: 355
  start-page: 564
  year: 1992
  ident: ref53/cit53
  publication-title: Nature
  doi: 10.1038/355564a0
– volume: 123
  start-page: 8226
  year: 2001
  ident: ref54/cit54
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja010437m
– volume: 37
  start-page: 1001
  year: 2008
  ident: ref6/cit6
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b708461g
– volume: 289
  start-page: 1757
  year: 2000
  ident: ref22/cit22
  publication-title: Science
  doi: 10.1126/science.289.5485.1757
– volume: 15
  start-page: 929
  year: 2009
  ident: ref37/cit37
  publication-title: Chem. Commun.
  doi: 10.1039/b818081d
– volume: 3
  start-page: 145
  year: 2008
  ident: ref33/cit33
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.30
– volume: 80
  start-page: 8424
  year: 2008
  ident: ref42/cit42
  publication-title: Anal. Chem.
  doi: 10.1021/ac801005d
– volume: 29
  start-page: 2570
  year: 2008
  ident: ref56/cit56
  publication-title: Electrophoresis
  doi: 10.1002/elps.200700798
– volume: 113
  start-page: 2734
  year: 2009
  ident: ref21/cit21
  publication-title: J. Phys.Chem. B
  doi: 10.1021/jp8065822
– volume: 39
  start-page: S48−S54
  year: 2007
  ident: ref5/cit5
  publication-title: Nat. Genet.
– volume: 82
  start-page: 1654
  year: 2002
  ident: ref51/cit51
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(02)75516-1
– volume: 45
  start-page: 7336
  year: 2006
  ident: ref60/cit60
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200601554
– volume: 8
  start-page: 1432
  year: 2008
  ident: ref61/cit61
  publication-title: Lab Chip
  doi: 10.1039/b808753a
– volume: 274
  start-page: 319
  year: 2009
  ident: ref35/cit35
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2008.09.024
– volume: 127
  start-page: 3870
  year: 2005
  ident: ref50/cit50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja044031w
– volume: 19
  start-page: 62
  year: 2001
  ident: ref58/cit58
  publication-title: Nat. Biotechnol.
  doi: 10.1038/83530
– volume: 319
  start-page: 180
  year: 2008
  ident: ref4/cit4
  publication-title: Science
  doi: 10.1126/science.1150082
– volume: 47
  start-page: 3081
  year: 2008
  ident: ref41/cit41
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200890076
– volume: 122
  start-page: 3795
  year: 2000
  ident: ref59/cit59
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja000133k
– volume: 109
  start-page: 21930
  year: 2005
  ident: ref18/cit18
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0546047
– volume: 2
  start-page: 512
  year: 2007
  ident: ref11/cit11
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.5
– volume: 41
  start-page: 1721
  year: 2008
  ident: ref32/cit32
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar800035u
– volume: 100
  start-page: 718
  year: 1996
  ident: ref7/cit7
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp951379s
– volume: 456
  start-page: 850
  year: 2008
  ident: ref3/cit3
  publication-title: Nature
  doi: 10.1038/456850a
– volume: 80
  start-page: 5951
  year: 2008
  ident: ref34/cit34
  publication-title: Anal. Chem.
  doi: 10.1021/ac8005796
– volume: 22
  start-page: 883
  year: 2004
  ident: ref25/cit25
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt977
– volume: 46
  start-page: 6824
  year: 2007
  ident: ref19/cit19
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200700803
– volume: 10
  start-page: 111
  year: 1995
  ident: ref57/cit57
  publication-title: Nat. Genet.
  doi: 10.1038/ng0595-111
– volume: 47
  start-page: 6750
  year: 2008
  ident: ref27/cit27
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200801301
– volume: 80
  start-page: 5152
  year: 2008
  ident: ref10/cit10
  publication-title: Anal. Chem.
  doi: 10.1021/ac8004154
– volume: 75
  start-page: 2377
  year: 2003
  ident: ref46/cit46
  publication-title: Anal. Chem.
  doi: 10.1021/ac0262210
– volume: 130
  start-page: 2780
  year: 2008
  ident: ref26/cit26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja711298b
– volume: 383
  start-page: 301
  year: 2008
  ident: ref15/cit15
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2008.09.004
– volume: 111
  start-page: 32
  year: 2007
  ident: ref28/cit28
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0671796
– volume: 80
  start-page: 7735
  year: 2008
  ident: ref16/cit16
  publication-title: Anal. Chem.
  doi: 10.1021/ac801106w
– volume: 126
  start-page: 12298
  year: 2004
  ident: ref38/cit38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja046628h
– volume: 9
  start-page: 966
  year: 2009
  ident: ref12/cit12
  publication-title: Lab Chip
  doi: 10.1039/B813640H
– volume: 3
  start-page: 1350
  year: 2008
  ident: ref9/cit9
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.111
– volume: 80
  start-page: 2265
  year: 2008
  ident: ref8/cit8
  publication-title: Anal. Chem.
  doi: 10.1021/ac7026436
– volume: 3
  start-page: 1245
  year: 2007
  ident: ref31/cit31
  publication-title: Small
  doi: 10.1002/smll.200700054
– volume: 80
  start-page: 9763
  year: 2008
  ident: ref17/cit17
  publication-title: Anal. Chem.
  doi: 10.1021/ac801875a
– volume: 4
  start-page: 1015
  year: 2007
  ident: ref23/cit23
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1133
– volume: 110
  start-page: 11069
  year: 2006
  ident: ref49/cit49
  publication-title: J Phys. Chem. B
  doi: 10.1021/jp060279r
– volume: 79
  start-page: 6650
  year: 2007
  ident: ref47/cit47
  publication-title: Anal. Chem.
  doi: 10.1021/ac070867g
– volume: 4
  start-page: 963
  year: 2007
  ident: ref48/cit48
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1104
– volume: 297
  start-page: 1536
  year: 2002
  ident: ref24/cit24
  publication-title: Science
  doi: 10.1126/science.297.5586.1536
– volume: 277
  start-page: 1078
  year: 1997
  ident: ref36/cit36
  publication-title: Science
  doi: 10.1126/science.277.5329.1078
– volume: 47
  start-page: 8601
  year: 2008
  ident: ref39/cit39
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200804066
– volume: 130
  start-page: 8351
  year: 2008
  ident: ref14/cit14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja800604z
– volume: 131
  start-page: 4218
  year: 2009
  ident: ref20/cit20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja900809z
– volume: 130
  start-page: 34
  year: 2008
  ident: ref55/cit55
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0778747
– volume: 457
  start-page: 285
  year: 2008
  ident: ref29/cit29
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2008.03.098
– volume: 80
  start-page: 8853
  year: 2008
  ident: ref13/cit13
  publication-title: Anal. Chem.
  doi: 10.1021/ac8017058
– volume: 80
  start-page: 8681
  year: 2008
  ident: ref43/cit43
  publication-title: Anal. Chem.
  doi: 10.1021/ac801647b
– volume: 120
  start-page: 1959
  year: 1998
  ident: ref45/cit45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja972332i
– volume: 77
  start-page: 166
  year: 2008
  ident: ref30/cit30
  publication-title: Talanta
  doi: 10.1016/j.talanta.2008.05.059
– volume: 260
  start-page: 117
  year: 2002
  ident: ref52/cit52
  publication-title: J. Immunol. Meth.
  doi: 10.1016/S0022-1759(01)00537-3
– volume: 129
  start-page: 1959
  year: 2007
  ident: ref2/cit2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja065930i
– volume: 15
  start-page: 1972
  year: 2009
  ident: ref40/cit40
  publication-title: Chem. Commun.
  doi: 10.1039/b818853j
– volume: 113
  start-page: 6976
  year: 2009
  ident: ref44/cit44
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8096742
– volume: 40
  start-page: 768
  year: 2008
  ident: ref1/cit1
  publication-title: Nat. Genet.
  doi: 10.1038/ng.140
– reference: 20961083 - J Am Chem Soc. 2010 Oct 27;132(42):15091
SSID ssj0004281
Score 2.1934574
SecondaryResourceType retracted_publication
Snippet In this paper, we present for the first time a single gold nanoparticle counter (SGNPC) in solution based on the photon bursting in a highly focused laser beam...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12763
SubjectTerms Animals
Aptamers, Nucleotide - genetics
Aptamers, Nucleotide - metabolism
Base Sequence
Biomarkers, Tumor - analysis
Biomarkers, Tumor - metabolism
DNA - chemistry
DNA - genetics
DNA Probes - chemistry
DNA Probes - genetics
Female
Gold - analysis
Gold - chemistry
Humans
Immunoassay - methods
Linear Models
Metal Nanoparticles - analysis
Metal Nanoparticles - chemistry
Mice
Motion
Nucleic Acid Hybridization
Photons
Pregnancy
Scattering, Radiation
Solutions
Thrombin - metabolism
Title Single Gold Nanoparticles Counter: An Ultrasensitive Detection Platform for One-Step Homogeneous Immunoassays and DNA Hybridization Assays
URI http://dx.doi.org/10.1021/ja903873n
https://www.ncbi.nlm.nih.gov/pubmed/19678640
https://www.proquest.com/docview/734033937
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELaAHsqFUtrSbQsa0R64BDm28-pttQvdViqtBCtxi-yJcyE4Fcke4Cf0V3ecRykqtFKUS-zIGo8932jmm2HsA08Nx7LUAQrEQCFmgcYYA2mMCQnRFVx4cvLX03ixVF8uoos19v6RCL7w9YEyH2KVbp09ETEdXo9_Zmd35EeRhiPGTdJYjuWD_pzqTQ82903PI3iysysnz9h8ZOf06SSXR6vWHOHt38Ua_7XkbbY14EqY9orwnK1Zt8OezsZ2bi_YzzMyUpWFT3VVAN2p5CwPOXHgeekk3o8wdbCs2msybK7pcopgbtsuV8vB90q3HuACveCbs4HPD4NFfVWTCtp61cBnTzWpCYzrmwa0K2B-OoXFjaeEDWRPmHYfX7LlyfH5bBEMjRgCLVPeBmFhTCm1wLQQkUh1Fpbk92CkC5UlxgpblNb3rC-F4ZFBk3KTGnLZke4PTMJQvmIbrnb2NQORZBlKa1RoChWFqCMluMLSIy3yLPWE7dNO5cNBavIuRi7IRxlFOmGH4ybmOJQx9900qoeGHvwe-qOv3fHQIBg1Iacd8eES3UktT6Ti0tcLnLDdXkPu_pKRjY8Vf_O_1b5lm334yT_v2EZ7vbJ7hGJas99p8S9-Ce42
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHMoFyrPLo4wQBy6pEtvZJNyiLSWFdkFqV-otsifOhdRBTfZQfgK_mrGTdAEVgRTlEicajSeebzQz3zD2Jkx1iHWtAuSIgUTMAoVzDITWOiJEV4XcNSefLOfFSn48j89HmhzXC0NCdPSlzifxN-wCjiYoc5lWYW-zOwRCuLPmfHG66YHkaTRB3SSdi4lF6NdXnQfC7ncP9BdY6d3L4f1hTpEXzFeVfN1f93ofv__B2fh_ku-weyPKhHwwiwfslrEP2fZiGu72iP04JZfVGPjQNhXQCUuh81ghB65LnZT9DnILq6a_JDdnO19hBAem95VbFr40qndwF-gGn60JXLUYFO1FSwZp2nUHR67xpCVorq46ULaCg2UOxZVrEBtbPyH3Dx-z1eH7s0URjGMZAiXSsA-iSutaKI5pxWOeqiyqKQrCWFUyS7ThpqqNm2Bfcx3GGnUa6lRTAI90mmASReIJ27KtNbsMeJJlKIyWka5kHKGKJQ8l1g53UZypZmyPNFqOv1VX-ow5p4hlUumMvZ32ssSR1NzN1mhuWvr6eum3gcnjpkUwGURJO-KSJ8prrUyEDIVjD5yxp4OhbL6Skcefy_DZv6R9xbaLs5Pj8vho-ek5uzskptz1gm31l2vzkvBNr_e8Yf8EeUn2lw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSMCFd2F5FAtx4JIqsZ1Nwi3aZdny2FYqK_UW2WPnQnCqJnsoP4FfzYw3aQEVgRTlkok1Go8932hejL2OcxNDXesIBECkAIpIwxQiaYxJENHZWFBx8ufVdLlWH07Sk8FRpFoYZKLDlboQxKdTfWrrocMAtQoqKNoq_XV2g8J1pNHl7PiyDlLkyQh3s3wqx05Cv_5KVgi6363QX6BlMDGLu-zwgrmQWfJ1f9Obffj-R9_G_-f-HrszoE1ebtXjPrvm_AN2azYOeXvIfhyj6Wocf982luNNiy70kCnHqVodhf6Wl56vm_4MzZ3vQqYRn7s-ZHB5ftTonmAvxxc_9C6irDG-bL-1qJiu3XT8gApQWoTo-rzj2ls-X5V8eU6FYkMJKC_Dx0dsvXj3ZbaMhvEMkZZ53EeJNaaWWkBuRSpyXSQ1ekOQaquKzDjhbO1okn0tTJwaMHlscoOOPOCtAlmSyF2241vvnjAusqIA6YxKjFVpAjpVIlZQE_5Cf1NP2B5KtRqOV1eFyLlAz2UU6YS9GfezgqG5Oc3YaK4ifXVBerrt6HEVER-VosIdoSCKDlKrMqliSV0EJ-zxVlkuVynQ8k9V_PRf3L5kN4_mi-rTwerjM3Z7G5-i5znb6c827gXCnN7sBd3-CXrR-Ro
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Gold+Nanoparticles+Counter%3A+An+Ultrasensitive+Detection+Platform+for+One-Step+Homogeneous+Immunoassays+and+DNA+Hybridization+Assays&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Xie%2C+Chao&rft.au=Xu%2C+Fagong&rft.au=Huang%2C+Xiangyi&rft.au=Dong%2C+Chaoqing&rft.date=2009-09-09&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=131&rft.issue=35&rft.spage=12763&rft.epage=12770&rft_id=info:doi/10.1021%2Fja903873n&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ja903873n
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon