Second-Order Nonlinear Optical Response of Electron Donor–Acceptor Hybrids Formed between Corannulene and Metallofullerenes

A charge transfer (CT) complex was formed between C20H10 and Li+@C60 in the ground state by the concave–convex π–π CT interaction. Herein, the structures, binding interactions, electronic absorption spectra, and first hyperpolarizabilities of a series of Li+ and Li atom in contact with C60 have been...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 119; no. 44; pp. 24965 - 24975
Main Authors Wang, Li, Wang, Wen-Yong, Qiu, Yong-Qing, Lu, Hui-Zhe
Format Journal Article
LanguageEnglish
Published American Chemical Society 05.11.2015
Subjects
Online AccessGet full text
ISSN1932-7447
1932-7455
1932-7455
DOI10.1021/acs.jpcc.5b06870

Cover

Loading…
Abstract A charge transfer (CT) complex was formed between C20H10 and Li+@C60 in the ground state by the concave–convex π–π CT interaction. Herein, the structures, binding interactions, electronic absorption spectra, and first hyperpolarizabilities of a series of Li+ and Li atom in contact with C60 have been explored with density functional theory methods. It is found that independent of the doping position, doping Li atom can significantly narrow the wide gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) (E gap = 2.82 eV) of the pure C20H10/C60 in the range of 0.86–0.99 eV. Among them, the Li-doped outer isomer C20H10/LiC60 can exhibit the intriguing n-type characteristic, where a high energy level containing the excess electron is introduced as the new HOMO orbital in the original gap of C20H10/C60. Furthermore, the diffuse excess electron also brings C20H10/C60 the considerable first hyperpolarizability, which is 3.53 × 10–29 esu. When Li+ and Li were encapsulated into the C60 cage, inner complexes C20H10/Li+@C60 and C20H10/Li@C60 of enhanced static first hyperpolarizabilities (5.39 and 2.13 × 10–29 esu, respectively) are also delivered due to that encapsulated Li+@C60 and Li@C60 show enhanced electron acceptability as compared to pristine C60, leading to more obvious intermolecular CT transitions. From a certain point of view, such systems can be considered as high-performance NLO materials that combine the basic characteristics of a classical donor–acceptor superstructure and systems with cations and easily polarizable excess electrons.
AbstractList A charge transfer (CT) complex was formed between C₂₀H₁₀ and Li⁺@C₆₀ in the ground state by the concave–convex π–π CT interaction. Herein, the structures, binding interactions, electronic absorption spectra, and first hyperpolarizabilities of a series of Li⁺ and Li atom in contact with C₆₀ have been explored with density functional theory methods. It is found that independent of the doping position, doping Li atom can significantly narrow the wide gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) (Egₐₚ = 2.82 eV) of the pure C₂₀H₁₀/C₆₀ in the range of 0.86–0.99 eV. Among them, the Li-doped outer isomer C₂₀H₁₀/LiC₆₀ can exhibit the intriguing n-type characteristic, where a high energy level containing the excess electron is introduced as the new HOMO orbital in the original gap of C₂₀H₁₀/C₆₀. Furthermore, the diffuse excess electron also brings C₂₀H₁₀/C₆₀ the considerable first hyperpolarizability, which is 3.53 × 10–²⁹ esu. When Li⁺ and Li were encapsulated into the C₆₀ cage, inner complexes C₂₀H₁₀/Li⁺@C₆₀ and C₂₀H₁₀/Li@C₆₀ of enhanced static first hyperpolarizabilities (5.39 and 2.13 × 10–²⁹ esu, respectively) are also delivered due to that encapsulated Li⁺@C₆₀ and Li@C₆₀ show enhanced electron acceptability as compared to pristine C₆₀, leading to more obvious intermolecular CT transitions. From a certain point of view, such systems can be considered as high-performance NLO materials that combine the basic characteristics of a classical donor–acceptor superstructure and systems with cations and easily polarizable excess electrons.
A charge transfer (CT) complex was formed between C20H10 and Li+@C60 in the ground state by the concave–convex π–π CT interaction. Herein, the structures, binding interactions, electronic absorption spectra, and first hyperpolarizabilities of a series of Li+ and Li atom in contact with C60 have been explored with density functional theory methods. It is found that independent of the doping position, doping Li atom can significantly narrow the wide gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) (E gap = 2.82 eV) of the pure C20H10/C60 in the range of 0.86–0.99 eV. Among them, the Li-doped outer isomer C20H10/LiC60 can exhibit the intriguing n-type characteristic, where a high energy level containing the excess electron is introduced as the new HOMO orbital in the original gap of C20H10/C60. Furthermore, the diffuse excess electron also brings C20H10/C60 the considerable first hyperpolarizability, which is 3.53 × 10–29 esu. When Li+ and Li were encapsulated into the C60 cage, inner complexes C20H10/Li+@C60 and C20H10/Li@C60 of enhanced static first hyperpolarizabilities (5.39 and 2.13 × 10–29 esu, respectively) are also delivered due to that encapsulated Li+@C60 and Li@C60 show enhanced electron acceptability as compared to pristine C60, leading to more obvious intermolecular CT transitions. From a certain point of view, such systems can be considered as high-performance NLO materials that combine the basic characteristics of a classical donor–acceptor superstructure and systems with cations and easily polarizable excess electrons.
Author Qiu, Yong-Qing
Lu, Hui-Zhe
Wang, Li
Wang, Wen-Yong
AuthorAffiliation China Agricultural University
Institute of Functional Material Chemistry, Faculty of Chemistry
Northeast Normal University
Department of Applied Chemistry
AuthorAffiliation_xml – name: Department of Applied Chemistry
– name: China Agricultural University
– name: Northeast Normal University
– name: Institute of Functional Material Chemistry, Faculty of Chemistry
Author_xml – sequence: 1
  givenname: Li
  surname: Wang
  fullname: Wang, Li
– sequence: 2
  givenname: Wen-Yong
  surname: Wang
  fullname: Wang, Wen-Yong
– sequence: 3
  givenname: Yong-Qing
  surname: Qiu
  fullname: Qiu, Yong-Qing
  email: qiuyq466@nenu.edu.cn
– sequence: 4
  givenname: Hui-Zhe
  surname: Lu
  fullname: Lu, Hui-Zhe
  email: luhz2008@yahoo.com.cn
BookMark eNp9kD1vFDEQhi0UJJJAT-mSgj1s73p9LqMjIUiBk_ioV7P2WNrIZy9jr1AKJP4D_5BfwoaLKJCgmtG87zPFc8ZOUk7I2HMpNlIo-Qpc2dzOzm30KPqtEY_YqbStakyn9cmfvTNP2Fkpt0LoVsj2lH37iC4n3-zJI_H3OcUpIRDfz3VyEPkHLHNOBXkO_DKiq5QTf51Tpp_ff1w4h3PNxK_vRpp84VeZDuj5iPUrYuK7TJDSEjEhh-T5O6wQYw5LjEjrsTxljwPEgs8e5jn7fHX5aXfd3OzfvN1d3DTQGlsbVMFY2xknRwtq62HbOtBWyN4i2C5or_qwNcYF3arQem1H8F0QaIU1Xur2nL04_p0pf1mw1OEwFYcxQsK8lEGJ3qhOWKHWqjhWHeVSCMMw03QAuhukGO5ND6vp4d708GB6Rfq_EDdVqFNOlWCK_wNfHsHfSV4orRL-Xf8FaZSZ8w
CitedBy_id crossref_primary_10_1107_S2056989022006740
crossref_primary_10_1021_acs_jpcc_1c06583
crossref_primary_10_1016_j_carbon_2018_02_106
crossref_primary_10_1039_C8TC05392H
crossref_primary_10_1016_j_jlumin_2022_119094
crossref_primary_10_1039_C7NJ04971D
crossref_primary_10_3390_molecules23061333
crossref_primary_10_1039_C6RA18421A
crossref_primary_10_1039_D3CP00020F
crossref_primary_10_1021_acs_jpca_9b10241
crossref_primary_10_1039_C7RA11476A
crossref_primary_10_1021_acs_jpcc_7b10144
crossref_primary_10_3233_JCM_181001
crossref_primary_10_1021_acs_jpca_6b09797
crossref_primary_10_1088_1402_4896_acecc3
crossref_primary_10_1039_C8CP00163D
crossref_primary_10_1016_j_jtice_2017_04_015
crossref_primary_10_1016_j_xcrp_2023_101653
crossref_primary_10_1016_j_molstruc_2022_133910
crossref_primary_10_1016_j_molliq_2018_08_121
crossref_primary_10_1039_C7TC00337D
crossref_primary_10_1039_D2NJ01394K
crossref_primary_10_1007_s00894_021_04688_2
crossref_primary_10_1016_j_jmgm_2019_03_005
crossref_primary_10_1039_C6RA22020G
crossref_primary_10_1007_s00214_018_2204_5
crossref_primary_10_1021_acs_jpcc_6b09065
crossref_primary_10_1016_j_jmgm_2017_09_012
crossref_primary_10_1039_C9RA01136F
crossref_primary_10_1039_D2RA03664A
crossref_primary_10_1016_j_orgel_2017_05_018
crossref_primary_10_1021_acs_analchem_8b05260
crossref_primary_10_1039_D3NJ03146B
crossref_primary_10_1039_D4NJ03342F
crossref_primary_10_1021_acs_jpcc_7b03834
crossref_primary_10_1039_C6RA25478K
crossref_primary_10_1039_C8NJ00360B
crossref_primary_10_3389_fchem_2020_00621
crossref_primary_10_1016_j_orgel_2016_03_036
crossref_primary_10_1039_D3CP04496C
crossref_primary_10_1016_j_jallcom_2016_06_121
crossref_primary_10_1021_acs_jpcc_0c03031
crossref_primary_10_1016_j_ijleo_2020_165923
crossref_primary_10_1016_j_molliq_2023_122878
crossref_primary_10_1016_j_jmgm_2021_107935
crossref_primary_10_1002_qua_27269
crossref_primary_10_1016_j_cplett_2017_05_067
crossref_primary_10_1021_acs_jpcc_7b07053
crossref_primary_10_1080_00268976_2017_1380859
crossref_primary_10_1007_s11664_018_6069_0
crossref_primary_10_1039_C6DT00089D
crossref_primary_10_1039_C6CP06651H
crossref_primary_10_1039_C6TC04456E
crossref_primary_10_1039_C9CP01118H
crossref_primary_10_1016_j_molliq_2020_114882
crossref_primary_10_1016_j_poly_2022_115695
crossref_primary_10_1021_acs_jpcc_9b09487
crossref_primary_10_1016_j_ccr_2019_02_028
Cites_doi 10.1021/ja077816l
10.1021/ja505952y
10.1039/C5RA09864E
10.1063/1.1712220
10.1021/jp506681k
10.1021/ja00529a011
10.1002/jcc.20495
10.1002/ange.201500544
10.1016/j.dyepig.2013.12.023
10.1021/ja1097176
10.1021/j100179a026
10.1021/ja952690q
10.1021/ja505240e
10.1021/ja068038k
10.1021/j100108a010
10.1021/ja505391x
10.1021/jp3049636
10.1021/jo100132v
10.1039/c3cp54468k
10.1021/jo0503761
10.1021/ar5001132
10.1021/ct4004349
10.1002/jcc.540110110
10.1021/jz200383a
10.1021/ja00077a088
10.1021/jp200056m
10.1021/j100190a041
10.1016/j.jmgm.2014.10.015
10.1021/ja507913u
10.1021/jz5017203
10.1021/jp3114682
10.1021/jp802886g
10.1021/cm049639i
10.1021/ja802334n
10.1016/j.polymer.2013.05.039
10.1021/ja0424124
10.1002/chem.201203329
10.1021/ja406893y
10.1039/c3dt51331a
10.1021/ja511177e
10.1063/1.434213
10.1021/ja5052236
10.1021/ja209461g
10.1021/jp5074076
10.1021/ja9031693
10.1021/jp5123163
10.1016/S0166-1280(00)00477-2
10.1021/cr0509657
10.1063/1.434888
10.1063/1.3382344
10.1021/jp110401f
10.1021/ja207588c
10.1021/acs.macromol.5b00432
10.1021/jz200339y
10.1021/ol301671n
10.1002/jcc.22885
10.1016/0263-7855(96)00018-5
10.1021/ja9031852
10.1039/C3CP53639D
10.1021/jp4047165
10.1021/jp903075s
10.1021/jp5123272
10.1021/ct800503d
10.1103/PhysRevLett.83.694
10.1021/jp103342b
10.1021/om500224g
10.1021/cr050554q
10.1002/asia.201403075
10.1021/om500124c
10.1021/jp201646q
10.1021/cr050553y
10.1021/ct100069q
10.1021/ol016511n
10.1021/ja502631w
10.1021/ct800308k
10.1021/ja9032023
10.1021/ja100936w
10.1021/cg401616j
10.1021/ef202010p
10.1007/s002140050353
10.1063/1.463479
ContentType Journal Article
Copyright Copyright © 2015 American Chemical Society
Copyright_xml – notice: Copyright © 2015 American Chemical Society
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.jpcc.5b06870
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 24975
ExternalDocumentID 10_1021_acs_jpcc_5b06870
g64805260
GroupedDBID .K2
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
7S9
L.6
ID FETCH-LOGICAL-a379t-e2f79947c1b9a28da83ca590169ea94f5d26f877cf532f3d59bad4f0e9097d153
IEDL.DBID ACS
ISSN 1932-7447
1932-7455
IngestDate Fri Jul 11 06:43:35 EDT 2025
Thu Apr 24 23:11:25 EDT 2025
Tue Jul 01 03:01:17 EDT 2025
Thu Aug 27 13:42:31 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a379t-e2f79947c1b9a28da83ca590169ea94f5d26f877cf532f3d59bad4f0e9097d153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2067240902
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_2067240902
crossref_primary_10_1021_acs_jpcc_5b06870
crossref_citationtrail_10_1021_acs_jpcc_5b06870
acs_journals_10_1021_acs_jpcc_5b06870
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-05
PublicationDateYYYYMMDD 2015-11-05
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-05
  day: 05
PublicationDecade 2010
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref66/cit66
  doi: 10.1021/ja077816l
– ident: ref31/cit31
  doi: 10.1021/ja505952y
– ident: ref65/cit65
  doi: 10.1039/C5RA09864E
– ident: ref52/cit52
  doi: 10.1063/1.1712220
– ident: ref8/cit8
  doi: 10.1021/jp506681k
– ident: ref13/cit13
  doi: 10.1021/ja00529a011
– ident: ref48/cit48
  doi: 10.1002/jcc.20495
– ident: ref32/cit32
  doi: 10.1002/ange.201500544
– ident: ref46/cit46
  doi: 10.1016/j.dyepig.2013.12.023
– ident: ref27/cit27
  doi: 10.1021/ja1097176
– ident: ref78/cit78
  doi: 10.1021/j100179a026
– ident: ref10/cit10
  doi: 10.1021/ja952690q
– ident: ref18/cit18
  doi: 10.1021/ja505240e
– ident: ref11/cit11
  doi: 10.1021/ja068038k
– ident: ref54/cit54
  doi: 10.1021/j100108a010
– ident: ref45/cit45
  doi: 10.1021/ja505391x
– ident: ref35/cit35
  doi: 10.1021/jp3049636
– ident: ref41/cit41
  doi: 10.1021/jo100132v
– ident: ref3/cit3
  doi: 10.1039/c3cp54468k
– ident: ref22/cit22
  doi: 10.1021/jo0503761
– ident: ref34/cit34
  doi: 10.1021/ar5001132
– ident: ref56/cit56
  doi: 10.1021/ct4004349
– ident: ref51/cit51
  doi: 10.1002/jcc.540110110
– ident: ref9/cit9
  doi: 10.1021/jz200383a
– ident: ref72/cit72
– ident: ref44/cit44
  doi: 10.1021/ja00077a088
– ident: ref57/cit57
  doi: 10.1021/jp200056m
– ident: ref53/cit53
  doi: 10.1021/j100190a041
– ident: ref4/cit4
  doi: 10.1016/j.jmgm.2014.10.015
– ident: ref20/cit20
  doi: 10.1021/ja507913u
– ident: ref62/cit62
– ident: ref16/cit16
  doi: 10.1021/jz5017203
– ident: ref77/cit77
  doi: 10.1021/jp3114682
– ident: ref75/cit75
  doi: 10.1021/jp802886g
– ident: ref26/cit26
  doi: 10.1021/cm049639i
– ident: ref39/cit39
  doi: 10.1021/ja802334n
– ident: ref47/cit47
  doi: 10.1016/j.polymer.2013.05.039
– ident: ref2/cit2
  doi: 10.1021/ja0424124
– ident: ref71/cit71
  doi: 10.1002/chem.201203329
– ident: ref24/cit24
  doi: 10.1021/ja406893y
– ident: ref83/cit83
  doi: 10.1039/c3dt51331a
– ident: ref1/cit1
  doi: 10.1021/ja511177e
– ident: ref81/cit81
  doi: 10.1063/1.434213
– ident: ref15/cit15
  doi: 10.1021/ja5052236
– ident: ref42/cit42
  doi: 10.1021/ja209461g
– ident: ref19/cit19
  doi: 10.1021/jp5074076
– ident: ref40/cit40
  doi: 10.1021/ja9031693
– ident: ref30/cit30
  doi: 10.1021/jp5123163
– ident: ref69/cit69
  doi: 10.1016/S0166-1280(00)00477-2
– ident: ref21/cit21
  doi: 10.1021/cr0509657
– ident: ref80/cit80
  doi: 10.1063/1.434888
– ident: ref49/cit49
  doi: 10.1063/1.3382344
– ident: ref68/cit68
  doi: 10.1021/jp110401f
– ident: ref29/cit29
  doi: 10.1021/ja207588c
– ident: ref14/cit14
  doi: 10.1021/acs.macromol.5b00432
– ident: ref17/cit17
  doi: 10.1021/jz200339y
– ident: ref28/cit28
  doi: 10.1021/ol301671n
– ident: ref63/cit63
  doi: 10.1002/jcc.22885
– ident: ref64/cit64
  doi: 10.1016/0263-7855(96)00018-5
– ident: ref36/cit36
  doi: 10.1021/ja9031852
– ident: ref79/cit79
  doi: 10.1039/C3CP53639D
– ident: ref23/cit23
  doi: 10.1021/jp4047165
– ident: ref6/cit6
  doi: 10.1021/jp903075s
– ident: ref12/cit12
  doi: 10.1021/jp5123272
– ident: ref74/cit74
  doi: 10.1021/ct800503d
– ident: ref55/cit55
  doi: 10.1103/PhysRevLett.83.694
– ident: ref58/cit58
  doi: 10.1021/jp103342b
– ident: ref5/cit5
  doi: 10.1021/om500224g
– ident: ref38/cit38
  doi: 10.1021/cr050554q
– ident: ref33/cit33
  doi: 10.1002/asia.201403075
– ident: ref7/cit7
  doi: 10.1021/om500124c
– ident: ref61/cit61
  doi: 10.1021/jp201646q
– ident: ref37/cit37
  doi: 10.1021/cr050553y
– ident: ref60/cit60
  doi: 10.1021/ct100069q
– ident: ref25/cit25
  doi: 10.1021/ol016511n
– ident: ref76/cit76
  doi: 10.1021/ja502631w
– ident: ref59/cit59
  doi: 10.1021/ct800308k
– ident: ref67/cit67
  doi: 10.1021/ja9032023
– ident: ref70/cit70
  doi: 10.1021/ja100936w
– ident: ref43/cit43
  doi: 10.1021/cg401616j
– ident: ref50/cit50
  doi: 10.1021/ef202010p
– ident: ref73/cit73
  doi: 10.1007/s002140050353
– ident: ref82/cit82
  doi: 10.1063/1.463479
SSID ssj0053013
Score 2.412594
Snippet A charge transfer (CT) complex was formed between C20H10 and Li+@C60 in the ground state by the concave–convex π–π CT interaction. Herein, the structures,...
A charge transfer (CT) complex was formed between C₂₀H₁₀ and Li⁺@C₆₀ in the ground state by the concave–convex π–π CT interaction. Herein, the structures,...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 24965
SubjectTerms cations
electrons
energy
isomers
lithium
spectral analysis
Title Second-Order Nonlinear Optical Response of Electron Donor–Acceptor Hybrids Formed between Corannulene and Metallofullerenes
URI http://dx.doi.org/10.1021/acs.jpcc.5b06870
https://www.proquest.com/docview/2067240902
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEBXp5pBe0qRJSdomKNAeevCubUmWdVy2WZZAEmi6sDejj_GhLfZiew8tFPof-g_7SzqyvS35YNmTwVhGaJ41z5qZN4S8c4ZDyBgPEhVBwCFlQWpCHXgyzGIphI18vfP1TTKb86uFWPyXyXkYwY-jkbb18MvS2qEwYYLoekZ2Y7x6NI8nd-tdVyBQWRdBRsbIuexDkk-9wTsiW993RPf34da5TF90XYrqVpPQ55R8Ha4aM7Q_His2bjHvA7Lfc0w67kBxSHageEn2JuvWbkfk553_DXbBrdfdpDedWoau6O2yPdmmn7rEWaBlTi_7Pjn0Y1mU1Z9fv8fWZ8KUFZ1999VeNZ0i7QVH-4wvOkFQFcUKvRlQXTh6DY0P7vtz_rYTS31M5tPLz5NZ0PdhCDSTqgkgzqVSXNrIKB2nTqfMal-zmijQiufCxUmeSmlzNG_OnFBGO56HoEIlHW6pr8igKAs4IRRRARo5IjdexQaEzkFKGepEMKdNYk7Je1y3rP-O6qwNkcdR1t7Excz6xTwlo7XxMtuLmfueGt82jPjwb8SyE_LY8OzFGg8ZWsaHUHQB5arOvNg9ciAVxq-3nOkb8hw5lmjLF8VbMmiqFZwhj2nMeQvgvywx8Hg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOZQLlJdogWIkOHDINontOD6utl0t0N1KfUi9RX5MDgUlq032UCQk_gP_kF_C2ElaFaEKrlFsjewvni-emW8IeecMh5gxHmUqgYhDzqLcxDryZJilUgib-Hrn-SKbnfNPF-JigyRDLQwa0eBMTQji36gLJPv-2eXS2pEwcYYgu0fuIxdJPajHk9Ph8BWIV9YFkpE4ci77yOTfZvD-yDa3_dHt4zj4mOkjcnJtXUgt-TJat2Zkv_0h3Phf5m-Thz3jpOMOIo_JBlRPyNZkaPT2lHw_9T_FLjr2Kpx00Wln6BU9XoZ7bnrSpdECrUt62HfNoQd1Va9-_fg5tj4vpl7R2ZWv_WroFEkwONrnf9EJQqyq1ujbgOrK0Tm0PtTvb_1DX5bmGTmfHp5NZlHflSHSTKo2grSUSnFpE6N0mjudM6t9BWumQCteCpdmZS6lLXGzS-aEMtrxMgYVK-nwgH1ONqu6gheEIkZAI2PkxmvagNAlSCljnQnmtMnMDnmP61b0X1VThIB5mhThIS5m0S_mDtkf9rCwvbS577Dx9Y4RH65HLDtZjzvefTvAosCd8QEVXUG9bgovfY-MSMXp7j9a-oZszc7mR8XRx8Xnl-QBsi8RChvFK7LZrtbwGhlOa_YCpn8DObb42Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkaAX3ojyNBIcOGSbxHYcH1fbrpZHt4hS1Fvk5wGqZLXJHkBC4j_wD_klzCROpSJUwdVKLMf-7PnimfmGkBfOcJ8yxpNCZT7hvmRJaVKdIBlmuRTCZpjvfLgsFif8zak43SJizIWBQbTQU9s78XFXr1yICgPZHrZ_Xlk7ESYtAGhXyFX02iGwp7Pj8QAWgFk2OJOBPHIuo3fybz2gTbLtRZt08Uju7cz8Jvl0PsI-vOTLZNOZif32h3jjf3_CLXIjMk86HaBym2z5-g65PhsLvt0l34_x59glR6jGSZeDhoZe06NVf99NPwzhtJ42gR7E6jl0v6mb9a8fP6cW42OaNV18xRywls6BDHtHYxwYnQHU6noDNs5TXTt66Dt0-ePtf1-fpb1HTuYHH2eLJFZnSDSTqkt8HqRSXNrMKJ2XTpfMasxkLZTXigfh8iKUUtoAix6YE8pox0PqVaqkg4P2Ptmum9o_IBSw4jUwR25Q28YLHbyUMtWFYE6bwuySlzBvVdxdbdU7zvOs6hthMqs4mbtkb1zHykaJc6y0cXbJG6_O31gN8h6XPPt8hEYFK4OOFV37ZtNWKIEPzEil-cN_HOkzcu39_rx693r59hHZARIm-vxG8Zhsd-uNfwJEpzNPe1j_BjOA-1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Second-Order+Nonlinear+Optical+Response+of+Electron+Donor%E2%80%93Acceptor+Hybrids+Formed+between+Corannulene+and+Metallofullerenes&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Wang%2C+Li&rft.au=Wang%2C+Wen-Yong&rft.au=Qiu%2C+Yong-Qing&rft.au=Lu%2C+Hui-Zhe&rft.date=2015-11-05&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=119&rft.issue=44&rft.spage=24965&rft.epage=24975&rft_id=info:doi/10.1021%2Facs.jpcc.5b06870&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcc_5b06870
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon