Snake Venomics of the Lancehead Pitviper Bothrops asper: Geographic, Individual, and Ontogenetic Variations
We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two geographically isolated populations from the Caribbean and the Pacific versants of Costa Rica. The crude venoms were fractionated by reverse-phase HPLC,...
Saved in:
Published in | Journal of proteome research Vol. 7; no. 8; pp. 3556 - 3571 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.08.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two geographically isolated populations from the Caribbean and the Pacific versants of Costa Rica. The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The two B. asper populations, separated since the late Miocene or early Pliocene (8−5 mya) by the Guanacaste Mountain Range, Central Mountain Range, and Talamanca Mountain Range, contain both identical and different (iso)enzymes from the PLA2, serine proteinase, and SVMP families. Using a similarity coefficient, we estimate that the similarity of venom proteins between the two B. asper populations may be around 52%. Compositional differences between venoms among different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. To investigate venom variability among specimens from the two B. asper populations, the reverse-phase HPLC protein profiles of 15 venoms from Caribbean specimens and 11 venoms from snakes from Pacific regions were compared. Within each B. asper geographic populations, all major venom protein families appeared to be subjected to individual variations. The occurrence of intraspecific individual allopatric variability highlights the concept that a species, B. asper in our case, should be considered as a group of metapopulations. Analysis of pooled venoms of neonate specimens from Caribbean and Pacific regions with those of adult snakes from the same geographical habitat revealed prominent ontogenetic changes in both geographical populations. Major ontogenetic changes appear to be a shift from a PIII-SVMP-rich to a PI-SVMP-rich venom and the secretion in adults of a distinct set of PLA2 molecules than in the neonates. In addition, the ontogenetic venom composition shift results in increasing venom complexity, indicating that the requirement for the venom to immobilize prey and initiate digestion may change with the size (age) of the snake. Besides ecological and taxonomical implications, the geographical venom variability reported here may have an impact in the treatment of bite victims and in the selection of specimens for antivenom production. The occurrence of intraspecies variability in the biochemical composition and symptomatology after envenomation by snakes from different gegraphical location and age has long been apreciated by herpetologist and toxinologists, though detailed comparative proteomic analysis are scarce. Our study represents the first detailed characterization of individual and ontogenetic venom protein profile variations in two geographical isolated B. asper populations, and highlights the necessity of using pooled venoms as a statistically representative venom for antivenom production. |
---|---|
AbstractList | We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two geographically isolated populations from the Caribbean and the Pacific versants of Costa Rica. The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The two B. asper populations, separated since the late Miocene or early Pliocene (8-5 mya) by the Guanacaste Mountain Range, Central Mountain Range, and Talamanca Mountain Range, contain both identical and different (iso)enzymes from the PLA 2, serine proteinase, and SVMP families. Using a similarity coefficient, we estimate that the similarity of venom proteins between the two B. asper populations may be around 52%. Compositional differences between venoms among different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. To investigate venom variability among specimens from the two B. asper populations, the reverse-phase HPLC protein profiles of 15 venoms from Caribbean specimens and 11 venoms from snakes from Pacific regions were compared. Within each B. asper geographic populations, all major venom protein families appeared to be subjected to individual variations. The occurrence of intraspecific individual allopatric variability highlights the concept that a species, B. asper in our case, should be considered as a group of metapopulations. Analysis of pooled venoms of neonate specimens from Caribbean and Pacific regions with those of adult snakes from the same geographical habitat revealed prominent ontogenetic changes in both geographical populations. Major ontogenetic changes appear to be a shift from a PIII-SVMP-rich to a PI-SVMP-rich venom and the secretion in adults of a distinct set of PLA 2 molecules than in the neonates. In addition, the ontogenetic venom composition shift results in increasing venom complexity, indicating that the requirement for the venom to immobilize prey and initiate digestion may change with the size (age) of the snake. Besides ecological and taxonomical implications, the geographical venom variability reported here may have an impact in the treatment of bite victims and in the selection of specimens for antivenom production. The occurrence of intraspecies variability in the biochemical composition and symptomatology after envenomation by snakes from different geographical location and age has long been appreciated by herpetologist and toxinologists, though detailed comparative proteomic analysis are scarce. Our study represents the first detailed characterization of individual and ontogenetic venom protein profile variations in two geographical isolated B. asper populations, and highlights the necessity of using pooled venoms as a statistically representative venom for antivenom production. We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two geographically isolated populations from the Caribbean and the Pacific versants of Costa Rica. The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The two B. asper populations, separated since the late Miocene or early Pliocene (8−5 mya) by the Guanacaste Mountain Range, Central Mountain Range, and Talamanca Mountain Range, contain both identical and different (iso)enzymes from the PLA2, serine proteinase, and SVMP families. Using a similarity coefficient, we estimate that the similarity of venom proteins between the two B. asper populations may be around 52%. Compositional differences between venoms among different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. To investigate venom variability among specimens from the two B. asper populations, the reverse-phase HPLC protein profiles of 15 venoms from Caribbean specimens and 11 venoms from snakes from Pacific regions were compared. Within each B. asper geographic populations, all major venom protein families appeared to be subjected to individual variations. The occurrence of intraspecific individual allopatric variability highlights the concept that a species, B. asper in our case, should be considered as a group of metapopulations. Analysis of pooled venoms of neonate specimens from Caribbean and Pacific regions with those of adult snakes from the same geographical habitat revealed prominent ontogenetic changes in both geographical populations. Major ontogenetic changes appear to be a shift from a PIII-SVMP-rich to a PI-SVMP-rich venom and the secretion in adults of a distinct set of PLA2 molecules than in the neonates. In addition, the ontogenetic venom composition shift results in increasing venom complexity, indicating that the requirement for the venom to immobilize prey and initiate digestion may change with the size (age) of the snake. Besides ecological and taxonomical implications, the geographical venom variability reported here may have an impact in the treatment of bite victims and in the selection of specimens for antivenom production. The occurrence of intraspecies variability in the biochemical composition and symptomatology after envenomation by snakes from different gegraphical location and age has long been apreciated by herpetologist and toxinologists, though detailed comparative proteomic analysis are scarce. Our study represents the first detailed characterization of individual and ontogenetic venom protein profile variations in two geographical isolated B. asper populations, and highlights the necessity of using pooled venoms as a statistically representative venom for antivenom production. We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two geographically isolated populations from the Caribbean and the Pacific versants of Costa Rica. The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The two B. asper populations, separated since the late Miocene or early Pliocene (8-5 mya) by the Guanacaste Mountain Range, Central Mountain Range, and Talamanca Mountain Range, contain both identical and different (iso)enzymes from the PLA 2, serine proteinase, and SVMP families. Using a similarity coefficient, we estimate that the similarity of venom proteins between the two B. asper populations may be around 52%. Compositional differences between venoms among different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. To investigate venom variability among specimens from the two B. asper populations, the reverse-phase HPLC protein profiles of 15 venoms from Caribbean specimens and 11 venoms from snakes from Pacific regions were compared. Within each B. asper geographic populations, all major venom protein families appeared to be subjected to individual variations. The occurrence of intraspecific individual allopatric variability highlights the concept that a species, B. asper in our case, should be considered as a group of metapopulations. Analysis of pooled venoms of neonate specimens from Caribbean and Pacific regions with those of adult snakes from the same geographical habitat revealed prominent ontogenetic changes in both geographical populations. Major ontogenetic changes appear to be a shift from a PIII-SVMP-rich to a PI-SVMP-rich venom and the secretion in adults of a distinct set of PLA 2 molecules than in the neonates. In addition, the ontogenetic venom composition shift results in increasing venom complexity, indicating that the requirement for the venom to immobilize prey and initiate digestion may change with the size (age) of the snake. Besides ecological and taxonomical implications, the geographical venom variability reported here may have an impact in the treatment of bite victims and in the selection of specimens for antivenom production. The occurrence of intraspecies variability in the biochemical composition and symptomatology after envenomation by snakes from different geographical location and age has long been appreciated by herpetologist and toxinologists, though detailed comparative proteomic analysis are scarce. Our study represents the first detailed characterization of individual and ontogenetic venom protein profile variations in two geographical isolated B. asper populations, and highlights the necessity of using pooled venoms as a statistically representative venom for antivenom production.We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two geographically isolated populations from the Caribbean and the Pacific versants of Costa Rica. The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The two B. asper populations, separated since the late Miocene or early Pliocene (8-5 mya) by the Guanacaste Mountain Range, Central Mountain Range, and Talamanca Mountain Range, contain both identical and different (iso)enzymes from the PLA 2, serine proteinase, and SVMP families. Using a similarity coefficient, we estimate that the similarity of venom proteins between the two B. asper populations may be around 52%. Compositional differences between venoms among different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. To investigate venom variability among specimens from the two B. asper populations, the reverse-phase HPLC protein profiles of 15 venoms from Caribbean specimens and 11 venoms from snakes from Pacific regions were compared. Within each B. asper geographic populations, all major venom protein families appeared to be subjected to individual variations. The occurrence of intraspecific individual allopatric variability highlights the concept that a species, B. asper in our case, should be considered as a group of metapopulations. Analysis of pooled venoms of neonate specimens from Caribbean and Pacific regions with those of adult snakes from the same geographical habitat revealed prominent ontogenetic changes in both geographical populations. Major ontogenetic changes appear to be a shift from a PIII-SVMP-rich to a PI-SVMP-rich venom and the secretion in adults of a distinct set of PLA 2 molecules than in the neonates. In addition, the ontogenetic venom composition shift results in increasing venom complexity, indicating that the requirement for the venom to immobilize prey and initiate digestion may change with the size (age) of the snake. Besides ecological and taxonomical implications, the geographical venom variability reported here may have an impact in the treatment of bite victims and in the selection of specimens for antivenom production. The occurrence of intraspecies variability in the biochemical composition and symptomatology after envenomation by snakes from different geographical location and age has long been appreciated by herpetologist and toxinologists, though detailed comparative proteomic analysis are scarce. Our study represents the first detailed characterization of individual and ontogenetic venom protein profile variations in two geographical isolated B. asper populations, and highlights the necessity of using pooled venoms as a statistically representative venom for antivenom production. |
Author | Sanz, Libia Madrigal, Marvin Escolano, José Calvete, Juan J Flores-Díaz, Marietta Sasa, Mahmood Alape-Girón, Alberto |
Author_xml | – sequence: 1 givenname: Alberto surname: Alape-Girón fullname: Alape-Girón, Alberto – sequence: 2 givenname: Libia surname: Sanz fullname: Sanz, Libia – sequence: 3 givenname: José surname: Escolano fullname: Escolano, José – sequence: 4 givenname: Marietta surname: Flores-Díaz fullname: Flores-Díaz, Marietta – sequence: 5 givenname: Marvin surname: Madrigal fullname: Madrigal, Marvin – sequence: 6 givenname: Mahmood surname: Sasa fullname: Sasa, Mahmood – sequence: 7 givenname: Juan J surname: Calvete fullname: Calvete, Juan J email: jcalvete@ibv.csic.es |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18557640$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1LJDEQxYO4OH4d_AeWXHZBcDTpTCbde9sVPwYGFNS5huqkeibak7RJWvC_t3dHPSyeqgp-78Grt0e2ffBIyBFnp5wV_KyLJWNCFN0W2eVSyLGomNr-2MtKjMheSo-McamY2CEjXkqpphO2S57uPDwhXaAPa2cSDQ3NK6Rz8AZXCJbeuvziOoz0T8irGLpEIQ3nL3qFYRmhWzlzQmfeuhdne2hPKHhLb3wOS_SYnaELiA6yCz4dkG8NtAkP3-c-ebi8uD-_Hs9vrmbnv-djEKrKY1XJYohTm9JYW2FTc2DKTllZQF1OLWAhuAVliloZq7CYcDWRdSOH0I0AhmKf_Nz4djE895iyXrtksG3BY-iTnlZCTZRUA_j9HezrNVrdRbeG-Ko_3jMAZxvAxJBSxEYbl_-FyRFcqznTfwvQnwUMiuP_FJ-mX7A_NiyYpB9DH_3wlS-4N35akpY |
CitedBy_id | crossref_primary_10_1016_j_toxicon_2021_01_007 crossref_primary_10_1016_j_jprot_2011_12_016 crossref_primary_10_3390_toxins12010008 crossref_primary_10_3390_toxins11050294 crossref_primary_10_1007_s10616_014_9820_2 crossref_primary_10_1021_pr9009518 crossref_primary_10_1016_j_jprot_2016_06_029 crossref_primary_10_1016_j_nbt_2017_05_005 crossref_primary_10_1016_j_toxicon_2009_06_024 crossref_primary_10_3389_fevo_2019_00156 crossref_primary_10_1016_j_toxicon_2022_106983 crossref_primary_10_1016_j_toxicon_2012_10_023 crossref_primary_10_1016_j_bmcl_2017_03_007 crossref_primary_10_1016_j_cbi_2021_109581 crossref_primary_10_1016_j_jprot_2012_09_003 crossref_primary_10_1016_j_actatropica_2021_106113 crossref_primary_10_1016_j_toxicon_2008_12_014 crossref_primary_10_1016_j_jprot_2016_10_006 crossref_primary_10_1038_s41598_018_28749_4 crossref_primary_10_7717_peerj_14817 crossref_primary_10_1016_j_toxicon_2020_07_030 crossref_primary_10_1016_j_ijbiomac_2020_07_178 crossref_primary_10_1042_BCJ20160577 crossref_primary_10_1016_j_toxcx_2020_100037 crossref_primary_10_1016_j_toxicon_2014_05_011 crossref_primary_10_1021_acsomega_2c00280 crossref_primary_10_1016_j_toxicon_2014_05_017 crossref_primary_10_3390_toxins12110669 crossref_primary_10_1016_j_jprot_2015_04_029 crossref_primary_10_7717_peerj_246 crossref_primary_10_1016_j_cbpc_2025_110129 crossref_primary_10_1016_j_toxicon_2009_06_011 crossref_primary_10_1016_j_toxicon_2009_10_018 crossref_primary_10_3390_toxins16020083 crossref_primary_10_1016_j_toxicon_2020_07_025 crossref_primary_10_1016_j_toxicon_2010_02_028 crossref_primary_10_1016_j_toxcx_2020_100044 crossref_primary_10_3390_toxins14090598 crossref_primary_10_1016_j_jprot_2014_03_034 crossref_primary_10_1007_s10989_022_10476_0 crossref_primary_10_1016_j_biologicals_2010_05_006 crossref_primary_10_1016_j_toxicon_2010_10_001 crossref_primary_10_1016_j_biologicals_2015_11_002 crossref_primary_10_1021_pr901027r crossref_primary_10_1586_14789450_5_6_787 crossref_primary_10_1016_j_biochi_2014_01_008 crossref_primary_10_1021_acs_jproteome_6b00561 crossref_primary_10_1016_j_jep_2021_114710 crossref_primary_10_3390_ijms22179643 crossref_primary_10_1155_2018_7358472 crossref_primary_10_1016_j_toxicon_2021_04_006 crossref_primary_10_1534_g3_115_020578 crossref_primary_10_1016_j_toxcx_2020_100053 crossref_primary_10_1111_j_1365_294X_2011_05426_x crossref_primary_10_1016_j_jprot_2013_01_021 crossref_primary_10_1186_s12915_023_01626_x crossref_primary_10_3390_toxins8070210 crossref_primary_10_1073_pnas_2405708121 crossref_primary_10_1371_journal_pone_0145516 crossref_primary_10_1016_j_biochi_2021_12_005 crossref_primary_10_1016_j_actatropica_2021_106119 crossref_primary_10_1371_journal_pntd_0012057 crossref_primary_10_1093_icb_icw082 crossref_primary_10_1007_s10886_021_01278_7 crossref_primary_10_1021_acs_jproteome_6b00693 crossref_primary_10_3390_toxins16020063 crossref_primary_10_5620_eaht_2024001 crossref_primary_10_3109_15569543_2013_855789 crossref_primary_10_3390_toxins9050163 crossref_primary_10_1371_journal_pntd_0005768 crossref_primary_10_1016_j_toxicon_2013_03_020 crossref_primary_10_1007_s10930_018_9781_y crossref_primary_10_3390_toxins12080485 crossref_primary_10_3390_toxins10010023 crossref_primary_10_1016_j_toxicon_2020_06_023 crossref_primary_10_1016_j_toxicon_2014_06_008 crossref_primary_10_1016_j_toxicon_2009_03_019 crossref_primary_10_1016_j_toxicon_2021_10_008 crossref_primary_10_1016_j_ijbiomac_2017_04_013 crossref_primary_10_1038_s41598_018_30578_4 crossref_primary_10_1016_j_toxicon_2009_01_006 crossref_primary_10_1021_pr100545d crossref_primary_10_1371_journal_pntd_0007899 crossref_primary_10_1016_j_toxcx_2021_100076 crossref_primary_10_1016_j_toxicon_2009_03_015 crossref_primary_10_1371_journal_pntd_0001554 crossref_primary_10_1016_j_cbpc_2020_108743 crossref_primary_10_1242_jeb_229229 crossref_primary_10_1111_j_1469_185X_2012_00222_x crossref_primary_10_3390_toxins13020078 crossref_primary_10_1007_s40368_018_0406_0 crossref_primary_10_1016_j_chemosphere_2020_129164 crossref_primary_10_3390_toxins16030152 crossref_primary_10_1002_pmic_201100287 crossref_primary_10_1021_acs_jproteome_5b00764 crossref_primary_10_3390_toxins8010009 crossref_primary_10_1016_j_jprot_2022_104613 crossref_primary_10_3390_toxins11100564 crossref_primary_10_1016_j_jprot_2008_07_007 crossref_primary_10_1016_j_bbagen_2017_01_020 crossref_primary_10_1016_j_toxlet_2021_05_005 crossref_primary_10_1016_j_jprot_2020_103945 crossref_primary_10_1016_j_jprot_2010_06_001 crossref_primary_10_1021_pr901128x crossref_primary_10_3390_ijms18122695 crossref_primary_10_3390_toxins14100657 crossref_primary_10_3390_toxins11100581 crossref_primary_10_1186_1471_2164_12_259 crossref_primary_10_3390_toxins10020085 crossref_primary_10_1016_j_jprot_2012_01_020 crossref_primary_10_1016_j_toxcx_2025_100216 crossref_primary_10_1111_brv_12793 crossref_primary_10_1016_j_cbd_2019_01_012 crossref_primary_10_1080_22297928_2021_1894974 crossref_primary_10_1007_s00580_016_2240_2 crossref_primary_10_1038_news_2008_954 crossref_primary_10_3390_toxins10120501 crossref_primary_10_3390_toxins4121500 crossref_primary_10_1016_j_toxicon_2023_107229 crossref_primary_10_1039_D4SC06511E crossref_primary_10_1080_00032719_2017_1312425 crossref_primary_10_1016_j_toxicon_2017_06_005 crossref_primary_10_1371_journal_pntd_0000318 crossref_primary_10_3389_fimmu_2021_775678 crossref_primary_10_1016_j_toxicon_2019_05_010 crossref_primary_10_1016_j_toxicon_2012_02_008 crossref_primary_10_1016_j_toxicon_2011_11_005 crossref_primary_10_1016_j_toxicon_2014_11_223 crossref_primary_10_1038_s41598_019_40109_4 crossref_primary_10_1186_s40409_015_0002_2 crossref_primary_10_1371_journal_pntd_0004599 crossref_primary_10_3390_biom14030278 crossref_primary_10_1016_j_toxicon_2021_03_014 crossref_primary_10_3109_15569543_2014_922581 crossref_primary_10_3390_toxins15010001 crossref_primary_10_1016_j_jprot_2017_02_018 crossref_primary_10_1371_journal_pntd_0009073 crossref_primary_10_1016_j_toxicon_2009_12_015 crossref_primary_10_1016_j_toxicon_2016_04_049 crossref_primary_10_2174_1568026619666190723154756 crossref_primary_10_1016_j_toxicon_2009_12_018 crossref_primary_10_3390_toxins15020161 crossref_primary_10_1016_j_jprot_2011_09_003 crossref_primary_10_1016_j_toxicon_2014_07_012 crossref_primary_10_1371_journal_pntd_0002442 crossref_primary_10_3390_toxins11030170 crossref_primary_10_1021_acs_jproteome_6b00948 crossref_primary_10_1016_j_cbpc_2020_108702 crossref_primary_10_1016_j_toxicon_2016_11_246 crossref_primary_10_1586_epr_11_61 crossref_primary_10_1016_j_actatropica_2019_02_030 crossref_primary_10_1016_j_toxicon_2009_07_001 crossref_primary_10_1016_j_jprot_2011_06_013 crossref_primary_10_1093_trstmh_traa081 crossref_primary_10_1016_j_vaccine_2008_10_066 crossref_primary_10_1021_jacsau_4c00646 crossref_primary_10_3109_1547691X_2013_772267 crossref_primary_10_1016_j_toxicon_2009_12_009 crossref_primary_10_1038_s41598_018_34363_1 crossref_primary_10_1371_journal_pntd_0004615 crossref_primary_10_1016_j_toxicon_2009_01_038 crossref_primary_10_1016_j_biochi_2015_08_006 crossref_primary_10_1016_j_toxicon_2009_01_039 crossref_primary_10_3390_toxins17030149 crossref_primary_10_1371_journal_pone_0253050 crossref_primary_10_1016_j_ijbiomac_2020_10_190 crossref_primary_10_1016_j_toxicon_2010_07_001 crossref_primary_10_1021_pr101248e crossref_primary_10_1093_icb_icw110 crossref_primary_10_1016_j_toxicon_2015_06_027 crossref_primary_10_1186_1471_2164_14_394 crossref_primary_10_3390_toxins10120534 crossref_primary_10_1016_j_jprot_2009_01_001 crossref_primary_10_1016_j_toxicon_2010_11_016 crossref_primary_10_1007_BF03344195 crossref_primary_10_1016_j_toxicon_2019_08_004 crossref_primary_10_1080_01480545_2020_1856864 crossref_primary_10_1086_714936 crossref_primary_10_2174_0126661217299051240722072656 crossref_primary_10_7717_peerj_3203 crossref_primary_10_1016_j_jprot_2009_01_006 crossref_primary_10_1016_j_jprot_2018_07_016 crossref_primary_10_1016_j_jprot_2009_01_005 crossref_primary_10_1016_j_jprot_2009_01_008 crossref_primary_10_1016_j_jprot_2008_10_003 crossref_primary_10_31594_commagene_655929 crossref_primary_10_1016_j_toxicon_2019_10_242 crossref_primary_10_1021_pr4007393 crossref_primary_10_3390_toxins15070415 crossref_primary_10_1016_j_biochi_2014_10_010 crossref_primary_10_1186_1471_2156_12_94 crossref_primary_10_1016_j_toxicon_2015_06_016 crossref_primary_10_1111_1755_0998_12389 crossref_primary_10_1016_j_jprot_2019_02_004 crossref_primary_10_1371_journal_pntd_0012335 crossref_primary_10_1016_j_jprot_2009_12_006 crossref_primary_10_1016_j_jprot_2015_09_015 crossref_primary_10_1111_febs_12386 crossref_primary_10_1016_j_toxicon_2022_02_024 crossref_primary_10_1590_S1678_91992011000200003 crossref_primary_10_1021_pr901042p crossref_primary_10_1093_gbe_evae198 crossref_primary_10_7705_biomedica_5181 crossref_primary_10_1016_j_toxicon_2017_05_010 crossref_primary_10_1016_j_toxicon_2009_05_026 crossref_primary_10_1016_j_jprot_2009_07_013 crossref_primary_10_3390_toxins15040258 crossref_primary_10_1007_s00239_008_9186_1 crossref_primary_10_1016_j_toxicon_2017_08_016 crossref_primary_10_1016_j_toxicon_2022_106937 crossref_primary_10_1021_pr9008749 crossref_primary_10_7705_biomedica_4830 crossref_primary_10_3390_molecules27238588 crossref_primary_10_3390_pathogens10121632 crossref_primary_10_3390_toxins6123388 crossref_primary_10_1016_j_toxicon_2018_01_020 crossref_primary_10_1016_j_toxicon_2017_04_002 crossref_primary_10_1016_j_wem_2013_06_005 crossref_primary_10_1016_j_cbpc_2010_10_007 crossref_primary_10_1016_j_jprot_2011_05_027 crossref_primary_10_3390_toxins6082471 crossref_primary_10_1016_j_jprot_2011_01_003 crossref_primary_10_1016_j_jprot_2015_03_015 crossref_primary_10_1371_journal_pone_0222206 crossref_primary_10_1016_j_jprot_2014_01_019 crossref_primary_10_1016_j_jprot_2020_103758 crossref_primary_10_1016_j_cbpc_2016_10_009 crossref_primary_10_1016_j_jprot_2013_11_005 crossref_primary_10_1016_j_jprot_2013_11_001 crossref_primary_10_1146_annurev_anchem_091619_093003 crossref_primary_10_1098_rspb_2014_1984 crossref_primary_10_1371_journal_pntd_0006024 crossref_primary_10_1643_OT_13_005 crossref_primary_10_1002_dta_3108 crossref_primary_10_1016_j_tox_2021_152724 crossref_primary_10_3390_toxins12120791 crossref_primary_10_1016_j_jprot_2024_105337 crossref_primary_10_1080_14789450_2021_1995357 crossref_primary_10_1016_j_ijbiomac_2022_03_095 crossref_primary_10_1016_j_jchromb_2020_122352 crossref_primary_10_1016_j_toxicon_2012_09_004 crossref_primary_10_1093_beheco_aru096 crossref_primary_10_1016_j_toxicon_2012_11_016 crossref_primary_10_1590_1678_9199_jvatitd_2020_0016 crossref_primary_10_1016_j_toxicon_2021_01_019 crossref_primary_10_1186_1471_2164_11_605 crossref_primary_10_1021_acs_jproteome_0c00737 crossref_primary_10_1016_j_toxicon_2010_01_015 crossref_primary_10_1016_j_toxicon_2017_08_009 crossref_primary_10_3390_toxins16120511 crossref_primary_10_1016_j_jprot_2014_02_020 crossref_primary_10_1016_j_toxicon_2019_03_027 crossref_primary_10_3390_toxins16090396 crossref_primary_10_1016_j_intimp_2024_113586 crossref_primary_10_1016_j_toxicon_2017_10_001 crossref_primary_10_1016_j_jprot_2013_04_003 crossref_primary_10_1016_j_febslet_2009_03_029 crossref_primary_10_1080_14789450_2018_1538800 crossref_primary_10_1186_1471_2164_14_234 crossref_primary_10_3390_toxins10070271 crossref_primary_10_1016_j_biochi_2015_11_031 crossref_primary_10_1002_ece3_5959 crossref_primary_10_1002_rcm_8255 crossref_primary_10_1016_j_jprot_2024_105320 crossref_primary_10_21615_cesmvz_11_1_10 crossref_primary_10_1016_j_toxicon_2009_05_031 crossref_primary_10_1016_j_jprot_2012_03_028 crossref_primary_10_1016_j_toxicon_2012_11_028 |
Cites_doi | 10.1016/j.toxicon.2006.01.007 10.1016/0041-0101(64)90017-0 10.1002/pmic.200300628 10.1016/S0041-0101(03)00171-5 10.1186/1477-5956-4-11 10.1046/j.1365-294X.2000.01125.x 10.1038/379537a0 10.2307/2399082 10.1021/pr0602500 10.1042/bj3470491 10.2307/1445927 10.1038/327147a0 10.1016/j.toxicon.2003.11.027 10.1021/pr060494k 10.1007/s00239-005-0268-z 10.1021/pr700610z 10.1371/journal.pmed.0030150 10.1016/j.toxicon.2005.12.010 10.1186/1471-2148-7-2 10.1016/j.febslet.2006.07.010 10.1016/0305-0491(92)90129-F 10.1016/0041-0101(88)90004-9 10.1016/j.toxicon.2006.07.008 10.1016/j.gene.2006.03.008 10.1016/S0014-5793(96)01144-1 10.1016/S0041-0101(02)00104-6 10.1016/j.ympev.2005.12.014 10.1038/nature04328 10.1016/j.toxicon.2004.07.028 10.1007/s00239-002-2403-4 10.1017/S0305004100015450 10.1016/S0378-1119(02)01080-6 10.1016/j.toxicon.2003.11.008 10.1021/pr8000139 10.1093/molbev/msh091 10.1016/S1095-6433(98)10136-8 10.1643/HA03-037.1 10.1016/0041-0101(92)90055-A 10.1002/pmic.200402024 10.1016/S0041-0101(00)00155-0 10.1002/pmic.200300415 10.1016/j.biochi.2004.02.002 10.1186/1471-2199-8-115 10.1016/0041-0101(91)90116-9 10.1016/S0041-0101(97)00076-7 10.1093/nar/25.17.3389 10.51481/amc.v41i4.528 10.1016/S0041-0101(98)00188-3 10.1016/S0035-9203(96)90442-3 10.1016/S0041-0101(98)00126-3 10.1016/j.jprot.2007.10.004 10.1160/TH05-02-0112 10.1016/0041-0101(90)90080-Q 10.1002/jms.1242 10.1007/BF00173166 10.1534/genetics.106.056515 10.1007/s00239-008-9067-7 10.1016/0041-0101(81)90076-3 10.1101/gr.3228405 10.1186/1471-2164-7-152 10.1006/bijl.1997.0162 10.1111/j.1432-1033.1996.0083h.x 10.1016/S0041-0101(98)00121-4 10.1016/j.toxicon.2005.02.030 10.1021/pr0701714 10.1016/S0079-6603(08)61036-3 10.1016/S0041-0101(02)00172-1 10.1007/s00018-005-5384-9 10.1016/j.bbrc.2006.01.006 10.1080/00034983.1999.11813436 10.1016/j.gene.2004.03.024 10.1016/0041-0101(64)90021-2 10.1007/s00239-002-2400-7 |
ContentType | Journal Article |
Copyright | Copyright © 2008 American Chemical Society |
Copyright_xml | – notice: Copyright © 2008 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/pr800332p |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Proteomics of Bothrops asper |
EISSN | 1535-3907 |
EndPage | 3571 |
ExternalDocumentID | 18557640 10_1021_pr800332p a143181898 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GeographicLocations | Costa Rica |
GeographicLocations_xml | – name: Costa Rica |
GroupedDBID | - 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F ZA5 --- 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK AFFNX CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a379t-7952003bc8cdd9efb1a07d6082ab86dae231da7c2b7cd7e241745bf5390f3a0e3 |
IEDL.DBID | ACS |
ISSN | 1535-3893 |
IngestDate | Thu Jul 10 22:10:40 EDT 2025 Thu Jan 02 22:03:46 EST 2025 Tue Jul 01 01:36:13 EDT 2025 Thu Apr 24 23:12:02 EDT 2025 Thu Aug 27 13:43:01 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | snake venom protein families Bothrops asper proteomics individual venom variation geographical venom variation viperid toxins N-terminal sequencing mass spectrometry Snake venomics ontogenetic shift |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a379t-7952003bc8cdd9efb1a07d6082ab86dae231da7c2b7cd7e241745bf5390f3a0e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 18557640 |
PQID | 69374757 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_69374757 pubmed_primary_18557640 crossref_citationtrail_10_1021_pr800332p crossref_primary_10_1021_pr800332p acs_journals_10_1021_pr800332p |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-08-01 |
PublicationDateYYYYMMDD | 2008-08-01 |
PublicationDate_xml | – month: 08 year: 2008 text: 2008-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of proteome research |
PublicationTitleAlternate | J. Proteome Res |
PublicationYear | 2008 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Castoe T. A. (ref57/cit57) 2006; 39 Campbell J. A. (ref1/cit1) 2004 Ohno M. (ref56/cit56) 1998; 59 Bazaa A. (ref42/cit42) 2005; 5 Mackessy S. P. (ref79/cit79) 1988; 1988 Aragón F. (ref33/cit33) 1981; 19 Wagstaff S. C. (ref24/cit24) 2006; 377 Calvete J. J. (ref16/cit16) 2007; 6 Otero R. (ref7/cit7) 2002; 40 Fry B. G. (ref10/cit10) 2004; 21 Creer S. (ref61/cit61) 2003; 56 Moreno E. (ref35/cit35) 1988; 26 Calvete J.J.; Juárez, P. (ref15/cit15) 2007; 42 Zhang B. (ref23/cit23) 2006; 7 Altschul S. F. (ref47/cit47) 1997; 25 Junqueira de Azevedo I. L. (ref19/cit19) 2002; 299 Qinghua L. (ref22/cit22) 2006; 341 Owbny C. L. (ref72/cit72) 1999; 37 Fry B. G. (ref11/cit11) 2005; 15 Chaves F. (ref37/cit37) 1992; 30 Jorge M. T. (ref3/cit3) 1999; 93 Saborío P. (ref6/cit6) 1998; 36 Daltry J. C. (ref78/cit78) 1996; 379 Ogawa T. (ref52/cit52) 1995; 41 Chioato L. (ref74/cit74) 2003; 42 Vellard J. (ref83/cit83) 1937; 204 Ménez A. (ref17/cit17) 2006; 47 Vellard J. (ref84/cit84) 1939; 130 Saldarriaga M. M. (ref38/cit38) 2003; 42 Arroyo O. (ref5/cit5) 1999; 41 Lomonte B. (ref36/cit36) 1992; 102 Gutiérrez J. M. (ref34/cit34) 1980; 28 Rodrigues V. M. (ref62/cit62) 1998; 121 Markland F. S. (ref14/cit14) 1998; 36 Kordis D. (ref54/cit54) 1996; 240 Gutiérrez J. M. (ref76/cit76) 1990; 28 Fry B. G. (ref12/cit12) 2006; 439 Juárez P. (ref43/cit43) 2006; 63 Taborska E. (ref70/cit70) 1985; 23 Mackessy S. P. (ref80/cit80) 2006; 47 Junqueira-de-Azevedo I. L. M. (ref25/cit25) 2006; 173 Deshimaru M. (ref55/cit55) 1996; 397 St Pierre L. (ref27/cit27) 2005; 62 Guércio R. A. P. (ref29/cit29) 2006; 4 Sasa M. (ref4/cit4) 2003; 41 Kashima S. (ref20/cit20) 2004; 86 Ménez A. (ref51/cit51) 2002 Zamudio K. R. (ref66/cit66) 1997; 62 Le Blanc J. C. (ref48/cit48) 2003; 3 Savage J. M. (ref64/cit64) 1982; 69 Chippaux J-P. (ref69/cit69) 1991; 29 Lomonte B. (ref46/cit46) 2008; 7 Pahary S. (ref26/cit26) 2007; 8 Sanz L. (ref31/cit31) 2008; 71 Gutiérrez J. M. (ref2/cit2) 2006; 3 Wetton J. H. (ref49/cit49) 1987; 327 Coates A. G. (ref63/cit63) 1996 Moreno E. (ref75/cit75) 1988; 26 Calvete J. J. (ref44/cit44) 2007; 6 Chijiwa T. (ref59/cit59) 2000; 347 Mebs D. (ref82/cit82) 2001; 39 Cidade D. A. P. (ref21/cit21) 2006; 48 Fox J. W. (ref13/cit13) 2005; 45 Chijiwa T. (ref60/cit60) 2003; 56 Ogawa T. (ref53/cit53) 2005; 45 Jiménez-Porras J. M. (ref71/cit71) 1964; 2 Mackessy S. P. (ref30/cit30) 2005; 2003 Otero R. (ref39/cit39) 1996; 90 Angulo Y. (ref45/cit45) 2008; 7 Rucavado A. (ref8/cit8) 2005; 94 Crother B. I. (ref65/cit65) 1992 Mackessy S. P. (ref77/cit77) 1988; 1988 Jiménez-Porras J. M. (ref32/cit32) 1964; 2 Finch V. J. (ref85/cit85) 2007; 7 Lomonte B. (ref73/cit73) 2003; 42 Ching A. T. C. (ref28/cit28) 2006; 580 Chijiwa T. (ref50/cit50) 2003 Hanski L. (ref68/cit68) 1991; 42 Francischetti I. M. (ref18/cit18) 2004; 337 Juárez P. (ref40/cit40) 2004; 4 Sasa M. (ref81/cit81) 1999; 37 Gibbs H. L. (ref86/cit86) 2008; 66 Vidal N. (ref9/cit9) 2002; 21 Sanz L. (ref41/cit41) 2006; 5 Richman A. (ref58/cit58) 2000; 9 Haldane J. B. S. (ref67/cit67) 1930; 26 18671372 - J Proteome Res. 2008 Aug;7(8):3067 |
References_xml | – volume: 47 start-page: 537 year: 2006 ident: ref80/cit80 publication-title: Toxicon doi: 10.1016/j.toxicon.2006.01.007 – volume: 2 start-page: 155 year: 1964 ident: ref32/cit32 publication-title: Toxicon doi: 10.1016/0041-0101(64)90017-0 – volume: 21 start-page: 21 year: 2002 ident: ref9/cit9 publication-title: J. Toxicol. Rev. – volume: 4 start-page: 327 year: 2004 ident: ref40/cit40 publication-title: Proteomics doi: 10.1002/pmic.200300628 – volume: 42 start-page: 405 year: 2003 ident: ref38/cit38 publication-title: Toxicon doi: 10.1016/S0041-0101(03)00171-5 – volume: 4 start-page: 11 year: 2006 ident: ref29/cit29 publication-title: Proteome Sci. doi: 10.1186/1477-5956-4-11 – volume: 9 start-page: 1953 year: 2000 ident: ref58/cit58 publication-title: Mol. Ecol. doi: 10.1046/j.1365-294X.2000.01125.x – volume: 379 start-page: 537 year: 1996 ident: ref78/cit78 publication-title: Nature doi: 10.1038/379537a0 – start-page: 1 volume-title: Biology of the Pitvipers year: 1992 ident: ref65/cit65 – volume: 69 start-page: 464 year: 1982 ident: ref64/cit64 publication-title: Ann. Mo. Bot. Gard. doi: 10.2307/2399082 – volume: 5 start-page: 2098 year: 2006 ident: ref41/cit41 publication-title: J. Proteome Res. doi: 10.1021/pr0602500 – volume: 347 start-page: 491 year: 2000 ident: ref59/cit59 publication-title: Biochem. J. doi: 10.1042/bj3470491 – volume: 1988 start-page: 92 year: 1988 ident: ref77/cit77 publication-title: Copeia doi: 10.2307/1445927 – volume: 327 start-page: 147 year: 1987 ident: ref49/cit49 publication-title: Nature doi: 10.1038/327147a0 – volume: 42 start-page: 869 year: 2003 ident: ref74/cit74 publication-title: Toxicon doi: 10.1016/j.toxicon.2003.11.027 – volume: 204 start-page: 1369 year: 1937 ident: ref83/cit83 publication-title: C. R. Acad. Sci. – volume: 6 start-page: 326 year: 2007 ident: ref44/cit44 publication-title: J. Proteome Res. doi: 10.1021/pr060494k – volume-title: Perspectives in Molecular Toxinology year: 2002 ident: ref51/cit51 – volume: 63 start-page: 142 year: 2006 ident: ref43/cit43 publication-title: J. Mol. Evol. doi: 10.1007/s00239-005-0268-z – volume: 7 start-page: 708 year: 2008 ident: ref45/cit45 publication-title: J. Proteome Res. doi: 10.1021/pr700610z – volume: 28 start-page: 341 year: 1980 ident: ref34/cit34 publication-title: Rev. Biol. Trop. – volume: 3 start-page: e150 year: 2006 ident: ref2/cit2 publication-title: PLoS Med. doi: 10.1371/journal.pmed.0030150 – volume: 47 start-page: 255 year: 2006 ident: ref17/cit17 publication-title: Toxicon doi: 10.1016/j.toxicon.2005.12.010 – volume: 7 start-page: 2 year: 2007 ident: ref85/cit85 publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-7-2 – volume: 580 start-page: 4417 year: 2006 ident: ref28/cit28 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2006.07.010 – volume: 102 start-page: 325 year: 1992 ident: ref36/cit36 publication-title: Comp. Biochem. Physiol. B doi: 10.1016/0305-0491(92)90129-F – start-page: 21 volume-title: Evolution and environment in Tropical America year: 1996 ident: ref63/cit63 – volume: 26 start-page: 363 year: 1988 ident: ref35/cit35 publication-title: Toxicon.\ doi: 10.1016/0041-0101(88)90004-9 – volume: 48 start-page: 437 year: 2006 ident: ref21/cit21 publication-title: Toxicon doi: 10.1016/j.toxicon.2006.07.008 – volume: 377 start-page: 21 year: 2006 ident: ref24/cit24 publication-title: Gene doi: 10.1016/j.gene.2006.03.008 – volume: 397 start-page: 83 year: 1996 ident: ref55/cit55 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(96)01144-1 – volume: 40 start-page: 1107 year: 2002 ident: ref7/cit7 publication-title: Toxicon doi: 10.1016/S0041-0101(02)00104-6 – volume: 39 start-page: 91 year: 2006 ident: ref57/cit57 publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2005.12.014 – volume: 439 start-page: 584 year: 2006 ident: ref12/cit12 publication-title: Nature doi: 10.1038/nature04328 – volume: 45 start-page: 1 year: 2005 ident: ref53/cit53 publication-title: Toxicon doi: 10.1016/j.toxicon.2004.07.028 – volume: 56 start-page: 317 year: 2003 ident: ref61/cit61 publication-title: J. Mol. Evol. doi: 10.1007/s00239-002-2403-4 – volume: 26 start-page: 220 year: 1930 ident: ref67/cit67 publication-title: Proc. Cambridge Philos. Soc. doi: 10.1017/S0305004100015450 – volume: 299 start-page: 279 year: 2002 ident: ref19/cit19 publication-title: Gene doi: 10.1016/S0378-1119(02)01080-6 – volume: 42 start-page: 885 year: 2003 ident: ref73/cit73 publication-title: Toxicon doi: 10.1016/j.toxicon.2003.11.008 – volume: 7 start-page: 2445 year: 2008 ident: ref46/cit46 publication-title: J. Proteome Res. doi: 10.1021/pr8000139 – volume: 21 start-page: 870 year: 2004 ident: ref10/cit10 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msh091 – volume: 121 start-page: 215 year: 1998 ident: ref62/cit62 publication-title: Comp. Biochem. Physiol. A doi: 10.1016/S1095-6433(98)10136-8 – volume: 130 start-page: 463 year: 1939 ident: ref84/cit84 publication-title: C. R. Soc. Biol. – volume: 2003 start-page: 769 year: 2005 ident: ref30/cit30 publication-title: Copeia doi: 10.1643/HA03-037.1 – volume: 30 start-page: 1099 year: 1992 ident: ref37/cit37 publication-title: Toxicon doi: 10.1016/0041-0101(92)90055-A – volume: 5 start-page: 4223 year: 2005 ident: ref42/cit42 publication-title: Proteomics doi: 10.1002/pmic.200402024 – volume: 1988 start-page: 92 year: 1988 ident: ref79/cit79 publication-title: Copeia doi: 10.2307/1445927 – volume: 39 start-page: 87 year: 2001 ident: ref82/cit82 publication-title: Toxicon doi: 10.1016/S0041-0101(00)00155-0 – volume: 3 start-page: 859 year: 2003 ident: ref48/cit48 publication-title: Proteomics doi: 10.1002/pmic.200300415 – volume: 86 start-page: 211 year: 2004 ident: ref20/cit20 publication-title: Biochimie doi: 10.1016/j.biochi.2004.02.002 – volume: 8 start-page: 115 year: 2007 ident: ref26/cit26 publication-title: BMC Mol. Biol. doi: 10.1186/1471-2199-8-115 – volume: 29 start-page: 1279 year: 1991 ident: ref69/cit69 publication-title: Toxicon doi: 10.1016/0041-0101(91)90116-9 – volume: 36 start-page: 359 year: 1998 ident: ref6/cit6 publication-title: Toxicon doi: 10.1016/S0041-0101(97)00076-7 – volume: 25 start-page: 3389 year: 1997 ident: ref47/cit47 publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.17.3389 – volume: 41 start-page: 23 year: 1999 ident: ref5/cit5 publication-title: Acta Med. Costarric. doi: 10.51481/amc.v41i4.528 – volume: 37 start-page: 411 year: 1999 ident: ref72/cit72 publication-title: Toxicon doi: 10.1016/S0041-0101(98)00188-3 – volume: 26 start-page: 363 year: 1988 ident: ref75/cit75 publication-title: Toxicon doi: 10.1016/0041-0101(88)90004-9 – volume: 90 start-page: 696 year: 1996 ident: ref39/cit39 publication-title: Trans. R. Soc. Trop. Med.Hyg. doi: 10.1016/S0035-9203(96)90442-3 – start-page: 546 year: 2003 ident: ref50/cit50 publication-title: J Mol Evol. – volume: 36 start-page: 1749 year: 1998 ident: ref14/cit14 publication-title: Toxicon doi: 10.1016/S0041-0101(98)00126-3 – volume: 71 start-page: 46 year: 2008 ident: ref31/cit31 publication-title: J. Proteomics doi: 10.1016/j.jprot.2007.10.004 – volume: 94 start-page: 123 year: 2005 ident: ref8/cit8 publication-title: Thromb. Haemostasis doi: 10.1160/TH05-02-0112 – volume: 28 start-page: 419 year: 1990 ident: ref76/cit76 publication-title: Toxicon doi: 10.1016/0041-0101(90)90080-Q – volume: 42 start-page: 1405 year: 2007 ident: ref15/cit15 publication-title: J. Mass Spectrom. doi: 10.1002/jms.1242 – volume-title: The Venomous Reptiles of the Western Hemisphere. year: 2004 ident: ref1/cit1 – volume: 41 start-page: 867 year: 1995 ident: ref52/cit52 publication-title: J. Mol. Evol. doi: 10.1007/BF00173166 – volume: 173 start-page: 877 year: 2006 ident: ref25/cit25 publication-title: Genetics doi: 10.1534/genetics.106.056515 – volume: 66 start-page: 151 year: 2008 ident: ref86/cit86 publication-title: J. Mol. Evol. doi: 10.1007/s00239-008-9067-7 – volume: 19 start-page: 797 year: 1981 ident: ref33/cit33 publication-title: Toxicon doi: 10.1016/0041-0101(81)90076-3 – volume: 15 start-page: 403 year: 2005 ident: ref11/cit11 publication-title: Genome Res. doi: 10.1101/gr.3228405 – volume: 7 start-page: 152 year: 2006 ident: ref23/cit23 publication-title: BMC Genomics doi: 10.1186/1471-2164-7-152 – volume: 62 start-page: 421 year: 1997 ident: ref66/cit66 publication-title: Biol. J. Linnean Soc. doi: 10.1006/bijl.1997.0162 – volume: 240 start-page: 83 year: 1996 ident: ref54/cit54 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1996.0083h.x – volume: 23 start-page: 612 year: 1985 ident: ref70/cit70 publication-title: Toxicon – volume: 37 start-page: 249 year: 1999 ident: ref81/cit81 publication-title: Toxicon doi: 10.1016/S0041-0101(98)00121-4 – volume: 45 start-page: 951 year: 2005 ident: ref13/cit13 publication-title: Toxicon doi: 10.1016/j.toxicon.2005.02.030 – volume: 6 start-page: 2732 year: 2007 ident: ref16/cit16 publication-title: J. Proteome Res. doi: 10.1021/pr0701714 – volume: 59 start-page: 307 year: 1998 ident: ref56/cit56 publication-title: Prog. Nucleic Acid Res. Mol. Biol. doi: 10.1016/S0079-6603(08)61036-3 – volume: 41 start-page: 19 year: 2003 ident: ref4/cit4 publication-title: Toxicon doi: 10.1016/S0041-0101(02)00172-1 – volume: 42 start-page: 3 year: 1991 ident: ref68/cit68 publication-title: Biol. J. – volume: 62 start-page: 2679 year: 2005 ident: ref27/cit27 publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-005-5384-9 – volume: 341 start-page: 522 year: 2006 ident: ref22/cit22 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2006.01.006 – volume: 93 start-page: 401 year: 1999 ident: ref3/cit3 publication-title: Ann. Trop. Med. Parasitol. doi: 10.1080/00034983.1999.11813436 – volume: 337 start-page: 55 year: 2004 ident: ref18/cit18 publication-title: Gene doi: 10.1016/j.gene.2004.03.024 – volume: 2 start-page: 187 year: 1964 ident: ref71/cit71 publication-title: Toxicon doi: 10.1016/0041-0101(64)90021-2 – volume: 56 start-page: 286 year: 2003 ident: ref60/cit60 publication-title: J. Mol. Evol. doi: 10.1007/s00239-002-2400-7 – reference: 18671372 - J Proteome Res. 2008 Aug;7(8):3067 |
SSID | ssj0015703 |
Score | 2.4131212 |
Snippet | We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3556 |
SubjectTerms | Amino Acid Sequence Animals Animals, Newborn Bothrops Chromatography, High Pressure Liquid Costa Rica Crotalid Venoms - analysis Electrophoresis, Polyacrylamide Gel Molecular Sequence Data Proteome - analysis Species Specificity |
Title | Snake Venomics of the Lancehead Pitviper Bothrops asper: Geographic, Individual, and Ontogenetic Variations |
URI | http://dx.doi.org/10.1021/pr800332p https://www.ncbi.nlm.nih.gov/pubmed/18557640 https://www.proquest.com/docview/69374757 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-N8TBeBoxtlI_Ngj3sod6S2Ikd3kphKkiwSV2rvkW244iqU1I1KQ_89ZzzUUB08H6OLN_Z97vc3e8AzjxmFVO-T2UcSsoDHlGplU99vEux41fSmQsUv3yNRhP-eRbOduDtPRn8wL9crqQbOBYsH8DDIJLCRViD4XiTKnAUUg0pakid9-3og35f6lyPKf90PffgydqvXD2GD113TlNOsrhYV_rC_PibrPFfW34C-y2uJIPGEJ7Cjs0PYG_YjXN7BotxrhaWTG3dh1ySIiOI_UjdA40Pckpu5tX3-dKuyPuinp1QEuVYxN-Rdk76t7npk0-b_q0-UXlKrvOqQBN0nZBkimF38__vECZXH2-HI9pOWqCKibiiInbsS0wbaVBFNtO-8kQaITxQWkapsogCUyVMoIVJhUWvL3ios5DFXsaUZ9kR7OZFbp8DsR7jBnGV44nhWkvFrEStxV6QRfiY8R6coCqS9qaUSZ0ED_xkc2Y9OO-0lJiWp9yNy7jbJvpmI7psyDm2CZ12qk7wyF0-ROW2WJdJhNCMi1D04LixgF8fkSHGYdx78b_NvoRHTQGJqwh8BbvVam1fI0qp9EltpT8BSkfgJg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCvpTVQhw4EEhiJ3a4QQUqOxKLuEW244iqKKmalANfz9hJyyIQ3B1rZI89bzKe9xDacYkWRHiew6OAO9SnocOl8BwPzlJk-JVkahLFq-uw_UDPn4KnmibH9MKAEQXMVNgi_ge7gHfQ63OjO-b3xtEEgBDfJFpHrbtRxcAwSVXcqIFjgvCQRejzpyYCqeJrBPoFVtrwcjpT6RRZw-yrku7-oJT76u0bZ-P_LJ9F0zXKxEeVW8yhMZ3No8nWUNxtAXXvMtHV-FHbruQC5ykGJIhtRzRczwm-7ZSvnZ7u4-PcKikUWBhO8UNcq6Y_d9QePht1c-1hkSX4JitzcEjTF4kfIQmv_gYuoofTk_tW26l1FxxBWFQ6LDJcTEQqrmDDdCo94bIkBLAgJA8ToQETJoIpXzKVMA0YgNFApgGJ3JQIV5Ml1MjyTK8grF1CFaAswxpDpeSCaB5yFrl-GsLVRptoE5Ysrs9NEduSuO_FozVrot3hZsWqZi034hkvPw3dHg3tVVQdPw3aGu54DEtuqiMi0_mgiEMAapQFrImWK0f4mIQHkJVRd_UvY7fQZPv-6jK-PLu-WENT1dMS81ZwHTXK_kBvAH4p5aZ13HfbCOiH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8gJMqL4gd4KrAxPvhAoe1uu1vf8PACfgAJQnhrdrfbcDnTNteeD_71zrS9Kgaj79PNZGd25zednd8AvPG501wHgaeSSHkiFLGnjA68AM9SQvxKJqdE8ctpfHwpPl5H132iSL0wqESNK9VtEZ9OdZXlPcNAcFDNFc0eC6t7sEblOkq2DscXQ9WA2KQ6ftTIo0C8ZBL6_VOKQra-HYX-Ai3bEDN5BGeDcu3Lktn-ojH79scfvI3_r_0GPOzRJjvs3OMxrLjiCTwYL4e8PYXZRaFnjl25tju5ZmXOEBGytjMar-mMnU-b79PKzdn7sp2oUDNN3OLvWD89_WZq99jJ0NW1x3SRsbOiKdExqT-SXWEy3v0VfAaXkw9fx8deP3_B01wmjScT4mTixiqLhnO5CbQvsxhBgzYqzrRDbJhpaUMjbSYdYgEpIpNHPPFzrn3HN2G1KAv3HJjzubCItog9RhijNHcqVjLxwzzGK06MYAe3Le3PT522pfEwSIc9G8HbpcFS27OX0xCNb3eJvh5Eq46y4y6h3aXVU9xyqpLowpWLOo0RsAkZyRFsdc7waxEVYXYm_Bf_UnYX7p8fTdLPJ6efXsJ698KEngy-gtVmvnDbCGMas9P67k-DuusK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Snake+Venomics+of+the+Lancehead+Pitviper+Bothrops+asper%3A+Geographic%2C+Individual%2C+and+Ontogenetic+Variations&rft.jtitle=Journal+of+proteome+research&rft.au=Alape-Giro%CC%81n%2C+Alberto&rft.au=Sanz%2C+Libia&rft.au=Escolano%2C+Jose%CC%81&rft.au=Flores-Di%CC%81az%2C+Marietta&rft.date=2008-08-01&rft.pub=American+Chemical+Society&rft.issn=1535-3893&rft.eissn=1535-3907&rft.volume=7&rft.issue=8&rft.spage=3556&rft.epage=3571&rft_id=info:doi/10.1021%2Fpr800332p&rft.externalDocID=a143181898 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-3893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-3893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-3893&client=summon |