Snake Venomics of the Lancehead Pitviper Bothrops asper: Geographic, Individual, and Ontogenetic Variations

We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two geographically isolated populations from the Caribbean and the Pacific versants of Costa Rica. The crude venoms were fractionated by reverse-phase HPLC,...

Full description

Saved in:
Bibliographic Details
Published inJournal of proteome research Vol. 7; no. 8; pp. 3556 - 3571
Main Authors Alape-Girón, Alberto, Sanz, Libia, Escolano, José, Flores-Díaz, Marietta, Madrigal, Marvin, Sasa, Mahmood, Calvete, Juan J
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.08.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two geographically isolated populations from the Caribbean and the Pacific versants of Costa Rica. The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The two B. asper populations, separated since the late Miocene or early Pliocene (8−5 mya) by the Guanacaste Mountain Range, Central Mountain Range, and Talamanca Mountain Range, contain both identical and different (iso)enzymes from the PLA2, serine proteinase, and SVMP families. Using a similarity coefficient, we estimate that the similarity of venom proteins between the two B. asper populations may be around 52%. Compositional differences between venoms among different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. To investigate venom variability among specimens from the two B. asper populations, the reverse-phase HPLC protein profiles of 15 venoms from Caribbean specimens and 11 venoms from snakes from Pacific regions were compared. Within each B. asper geographic populations, all major venom protein families appeared to be subjected to individual variations. The occurrence of intraspecific individual allopatric variability highlights the concept that a species, B. asper in our case, should be considered as a group of metapopulations. Analysis of pooled venoms of neonate specimens from Caribbean and Pacific regions with those of adult snakes from the same geographical habitat revealed prominent ontogenetic changes in both geographical populations. Major ontogenetic changes appear to be a shift from a PIII-SVMP-rich to a PI-SVMP-rich venom and the secretion in adults of a distinct set of PLA2 molecules than in the neonates. In addition, the ontogenetic venom composition shift results in increasing venom complexity, indicating that the requirement for the venom to immobilize prey and initiate digestion may change with the size (age) of the snake. Besides ecological and taxonomical implications, the geographical venom variability reported here may have an impact in the treatment of bite victims and in the selection of specimens for antivenom production. The occurrence of intraspecies variability in the biochemical composition and symptomatology after envenomation by snakes from different gegraphical location and age has long been apreciated by herpetologist and toxinologists, though detailed comparative proteomic analysis are scarce. Our study represents the first detailed characterization of individual and ontogenetic venom protein profile variations in two geographical isolated B. asper populations, and highlights the necessity of using pooled venoms as a statistically representative venom for antivenom production.
AbstractList We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two geographically isolated populations from the Caribbean and the Pacific versants of Costa Rica. The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The two B. asper populations, separated since the late Miocene or early Pliocene (8-5 mya) by the Guanacaste Mountain Range, Central Mountain Range, and Talamanca Mountain Range, contain both identical and different (iso)enzymes from the PLA 2, serine proteinase, and SVMP families. Using a similarity coefficient, we estimate that the similarity of venom proteins between the two B. asper populations may be around 52%. Compositional differences between venoms among different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. To investigate venom variability among specimens from the two B. asper populations, the reverse-phase HPLC protein profiles of 15 venoms from Caribbean specimens and 11 venoms from snakes from Pacific regions were compared. Within each B. asper geographic populations, all major venom protein families appeared to be subjected to individual variations. The occurrence of intraspecific individual allopatric variability highlights the concept that a species, B. asper in our case, should be considered as a group of metapopulations. Analysis of pooled venoms of neonate specimens from Caribbean and Pacific regions with those of adult snakes from the same geographical habitat revealed prominent ontogenetic changes in both geographical populations. Major ontogenetic changes appear to be a shift from a PIII-SVMP-rich to a PI-SVMP-rich venom and the secretion in adults of a distinct set of PLA 2 molecules than in the neonates. In addition, the ontogenetic venom composition shift results in increasing venom complexity, indicating that the requirement for the venom to immobilize prey and initiate digestion may change with the size (age) of the snake. Besides ecological and taxonomical implications, the geographical venom variability reported here may have an impact in the treatment of bite victims and in the selection of specimens for antivenom production. The occurrence of intraspecies variability in the biochemical composition and symptomatology after envenomation by snakes from different geographical location and age has long been appreciated by herpetologist and toxinologists, though detailed comparative proteomic analysis are scarce. Our study represents the first detailed characterization of individual and ontogenetic venom protein profile variations in two geographical isolated B. asper populations, and highlights the necessity of using pooled venoms as a statistically representative venom for antivenom production.
We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two geographically isolated populations from the Caribbean and the Pacific versants of Costa Rica. The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The two B. asper populations, separated since the late Miocene or early Pliocene (8−5 mya) by the Guanacaste Mountain Range, Central Mountain Range, and Talamanca Mountain Range, contain both identical and different (iso)enzymes from the PLA2, serine proteinase, and SVMP families. Using a similarity coefficient, we estimate that the similarity of venom proteins between the two B. asper populations may be around 52%. Compositional differences between venoms among different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. To investigate venom variability among specimens from the two B. asper populations, the reverse-phase HPLC protein profiles of 15 venoms from Caribbean specimens and 11 venoms from snakes from Pacific regions were compared. Within each B. asper geographic populations, all major venom protein families appeared to be subjected to individual variations. The occurrence of intraspecific individual allopatric variability highlights the concept that a species, B. asper in our case, should be considered as a group of metapopulations. Analysis of pooled venoms of neonate specimens from Caribbean and Pacific regions with those of adult snakes from the same geographical habitat revealed prominent ontogenetic changes in both geographical populations. Major ontogenetic changes appear to be a shift from a PIII-SVMP-rich to a PI-SVMP-rich venom and the secretion in adults of a distinct set of PLA2 molecules than in the neonates. In addition, the ontogenetic venom composition shift results in increasing venom complexity, indicating that the requirement for the venom to immobilize prey and initiate digestion may change with the size (age) of the snake. Besides ecological and taxonomical implications, the geographical venom variability reported here may have an impact in the treatment of bite victims and in the selection of specimens for antivenom production. The occurrence of intraspecies variability in the biochemical composition and symptomatology after envenomation by snakes from different gegraphical location and age has long been apreciated by herpetologist and toxinologists, though detailed comparative proteomic analysis are scarce. Our study represents the first detailed characterization of individual and ontogenetic venom protein profile variations in two geographical isolated B. asper populations, and highlights the necessity of using pooled venoms as a statistically representative venom for antivenom production.
We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two geographically isolated populations from the Caribbean and the Pacific versants of Costa Rica. The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The two B. asper populations, separated since the late Miocene or early Pliocene (8-5 mya) by the Guanacaste Mountain Range, Central Mountain Range, and Talamanca Mountain Range, contain both identical and different (iso)enzymes from the PLA 2, serine proteinase, and SVMP families. Using a similarity coefficient, we estimate that the similarity of venom proteins between the two B. asper populations may be around 52%. Compositional differences between venoms among different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. To investigate venom variability among specimens from the two B. asper populations, the reverse-phase HPLC protein profiles of 15 venoms from Caribbean specimens and 11 venoms from snakes from Pacific regions were compared. Within each B. asper geographic populations, all major venom protein families appeared to be subjected to individual variations. The occurrence of intraspecific individual allopatric variability highlights the concept that a species, B. asper in our case, should be considered as a group of metapopulations. Analysis of pooled venoms of neonate specimens from Caribbean and Pacific regions with those of adult snakes from the same geographical habitat revealed prominent ontogenetic changes in both geographical populations. Major ontogenetic changes appear to be a shift from a PIII-SVMP-rich to a PI-SVMP-rich venom and the secretion in adults of a distinct set of PLA 2 molecules than in the neonates. In addition, the ontogenetic venom composition shift results in increasing venom complexity, indicating that the requirement for the venom to immobilize prey and initiate digestion may change with the size (age) of the snake. Besides ecological and taxonomical implications, the geographical venom variability reported here may have an impact in the treatment of bite victims and in the selection of specimens for antivenom production. The occurrence of intraspecies variability in the biochemical composition and symptomatology after envenomation by snakes from different geographical location and age has long been appreciated by herpetologist and toxinologists, though detailed comparative proteomic analysis are scarce. Our study represents the first detailed characterization of individual and ontogenetic venom protein profile variations in two geographical isolated B. asper populations, and highlights the necessity of using pooled venoms as a statistically representative venom for antivenom production.We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two geographically isolated populations from the Caribbean and the Pacific versants of Costa Rica. The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The two B. asper populations, separated since the late Miocene or early Pliocene (8-5 mya) by the Guanacaste Mountain Range, Central Mountain Range, and Talamanca Mountain Range, contain both identical and different (iso)enzymes from the PLA 2, serine proteinase, and SVMP families. Using a similarity coefficient, we estimate that the similarity of venom proteins between the two B. asper populations may be around 52%. Compositional differences between venoms among different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. To investigate venom variability among specimens from the two B. asper populations, the reverse-phase HPLC protein profiles of 15 venoms from Caribbean specimens and 11 venoms from snakes from Pacific regions were compared. Within each B. asper geographic populations, all major venom protein families appeared to be subjected to individual variations. The occurrence of intraspecific individual allopatric variability highlights the concept that a species, B. asper in our case, should be considered as a group of metapopulations. Analysis of pooled venoms of neonate specimens from Caribbean and Pacific regions with those of adult snakes from the same geographical habitat revealed prominent ontogenetic changes in both geographical populations. Major ontogenetic changes appear to be a shift from a PIII-SVMP-rich to a PI-SVMP-rich venom and the secretion in adults of a distinct set of PLA 2 molecules than in the neonates. In addition, the ontogenetic venom composition shift results in increasing venom complexity, indicating that the requirement for the venom to immobilize prey and initiate digestion may change with the size (age) of the snake. Besides ecological and taxonomical implications, the geographical venom variability reported here may have an impact in the treatment of bite victims and in the selection of specimens for antivenom production. The occurrence of intraspecies variability in the biochemical composition and symptomatology after envenomation by snakes from different geographical location and age has long been appreciated by herpetologist and toxinologists, though detailed comparative proteomic analysis are scarce. Our study represents the first detailed characterization of individual and ontogenetic venom protein profile variations in two geographical isolated B. asper populations, and highlights the necessity of using pooled venoms as a statistically representative venom for antivenom production.
Author Sanz, Libia
Madrigal, Marvin
Escolano, José
Calvete, Juan J
Flores-Díaz, Marietta
Sasa, Mahmood
Alape-Girón, Alberto
Author_xml – sequence: 1
  givenname: Alberto
  surname: Alape-Girón
  fullname: Alape-Girón, Alberto
– sequence: 2
  givenname: Libia
  surname: Sanz
  fullname: Sanz, Libia
– sequence: 3
  givenname: José
  surname: Escolano
  fullname: Escolano, José
– sequence: 4
  givenname: Marietta
  surname: Flores-Díaz
  fullname: Flores-Díaz, Marietta
– sequence: 5
  givenname: Marvin
  surname: Madrigal
  fullname: Madrigal, Marvin
– sequence: 6
  givenname: Mahmood
  surname: Sasa
  fullname: Sasa, Mahmood
– sequence: 7
  givenname: Juan J
  surname: Calvete
  fullname: Calvete, Juan J
  email: jcalvete@ibv.csic.es
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18557640$$D View this record in MEDLINE/PubMed
BookMark eNptkc1LJDEQxYO4OH4d_AeWXHZBcDTpTCbde9sVPwYGFNS5huqkeibak7RJWvC_t3dHPSyeqgp-78Grt0e2ffBIyBFnp5wV_KyLJWNCFN0W2eVSyLGomNr-2MtKjMheSo-McamY2CEjXkqpphO2S57uPDwhXaAPa2cSDQ3NK6Rz8AZXCJbeuvziOoz0T8irGLpEIQ3nL3qFYRmhWzlzQmfeuhdne2hPKHhLb3wOS_SYnaELiA6yCz4dkG8NtAkP3-c-ebi8uD-_Hs9vrmbnv-djEKrKY1XJYohTm9JYW2FTc2DKTllZQF1OLWAhuAVliloZq7CYcDWRdSOH0I0AhmKf_Nz4djE895iyXrtksG3BY-iTnlZCTZRUA_j9HezrNVrdRbeG-Ko_3jMAZxvAxJBSxEYbl_-FyRFcqznTfwvQnwUMiuP_FJ-mX7A_NiyYpB9DH_3wlS-4N35akpY
CitedBy_id crossref_primary_10_1016_j_toxicon_2021_01_007
crossref_primary_10_1016_j_jprot_2011_12_016
crossref_primary_10_3390_toxins12010008
crossref_primary_10_3390_toxins11050294
crossref_primary_10_1007_s10616_014_9820_2
crossref_primary_10_1021_pr9009518
crossref_primary_10_1016_j_jprot_2016_06_029
crossref_primary_10_1016_j_nbt_2017_05_005
crossref_primary_10_1016_j_toxicon_2009_06_024
crossref_primary_10_3389_fevo_2019_00156
crossref_primary_10_1016_j_toxicon_2022_106983
crossref_primary_10_1016_j_toxicon_2012_10_023
crossref_primary_10_1016_j_bmcl_2017_03_007
crossref_primary_10_1016_j_cbi_2021_109581
crossref_primary_10_1016_j_jprot_2012_09_003
crossref_primary_10_1016_j_actatropica_2021_106113
crossref_primary_10_1016_j_toxicon_2008_12_014
crossref_primary_10_1016_j_jprot_2016_10_006
crossref_primary_10_1038_s41598_018_28749_4
crossref_primary_10_7717_peerj_14817
crossref_primary_10_1016_j_toxicon_2020_07_030
crossref_primary_10_1016_j_ijbiomac_2020_07_178
crossref_primary_10_1042_BCJ20160577
crossref_primary_10_1016_j_toxcx_2020_100037
crossref_primary_10_1016_j_toxicon_2014_05_011
crossref_primary_10_1021_acsomega_2c00280
crossref_primary_10_1016_j_toxicon_2014_05_017
crossref_primary_10_3390_toxins12110669
crossref_primary_10_1016_j_jprot_2015_04_029
crossref_primary_10_7717_peerj_246
crossref_primary_10_1016_j_cbpc_2025_110129
crossref_primary_10_1016_j_toxicon_2009_06_011
crossref_primary_10_1016_j_toxicon_2009_10_018
crossref_primary_10_3390_toxins16020083
crossref_primary_10_1016_j_toxicon_2020_07_025
crossref_primary_10_1016_j_toxicon_2010_02_028
crossref_primary_10_1016_j_toxcx_2020_100044
crossref_primary_10_3390_toxins14090598
crossref_primary_10_1016_j_jprot_2014_03_034
crossref_primary_10_1007_s10989_022_10476_0
crossref_primary_10_1016_j_biologicals_2010_05_006
crossref_primary_10_1016_j_toxicon_2010_10_001
crossref_primary_10_1016_j_biologicals_2015_11_002
crossref_primary_10_1021_pr901027r
crossref_primary_10_1586_14789450_5_6_787
crossref_primary_10_1016_j_biochi_2014_01_008
crossref_primary_10_1021_acs_jproteome_6b00561
crossref_primary_10_1016_j_jep_2021_114710
crossref_primary_10_3390_ijms22179643
crossref_primary_10_1155_2018_7358472
crossref_primary_10_1016_j_toxicon_2021_04_006
crossref_primary_10_1534_g3_115_020578
crossref_primary_10_1016_j_toxcx_2020_100053
crossref_primary_10_1111_j_1365_294X_2011_05426_x
crossref_primary_10_1016_j_jprot_2013_01_021
crossref_primary_10_1186_s12915_023_01626_x
crossref_primary_10_3390_toxins8070210
crossref_primary_10_1073_pnas_2405708121
crossref_primary_10_1371_journal_pone_0145516
crossref_primary_10_1016_j_biochi_2021_12_005
crossref_primary_10_1016_j_actatropica_2021_106119
crossref_primary_10_1371_journal_pntd_0012057
crossref_primary_10_1093_icb_icw082
crossref_primary_10_1007_s10886_021_01278_7
crossref_primary_10_1021_acs_jproteome_6b00693
crossref_primary_10_3390_toxins16020063
crossref_primary_10_5620_eaht_2024001
crossref_primary_10_3109_15569543_2013_855789
crossref_primary_10_3390_toxins9050163
crossref_primary_10_1371_journal_pntd_0005768
crossref_primary_10_1016_j_toxicon_2013_03_020
crossref_primary_10_1007_s10930_018_9781_y
crossref_primary_10_3390_toxins12080485
crossref_primary_10_3390_toxins10010023
crossref_primary_10_1016_j_toxicon_2020_06_023
crossref_primary_10_1016_j_toxicon_2014_06_008
crossref_primary_10_1016_j_toxicon_2009_03_019
crossref_primary_10_1016_j_toxicon_2021_10_008
crossref_primary_10_1016_j_ijbiomac_2017_04_013
crossref_primary_10_1038_s41598_018_30578_4
crossref_primary_10_1016_j_toxicon_2009_01_006
crossref_primary_10_1021_pr100545d
crossref_primary_10_1371_journal_pntd_0007899
crossref_primary_10_1016_j_toxcx_2021_100076
crossref_primary_10_1016_j_toxicon_2009_03_015
crossref_primary_10_1371_journal_pntd_0001554
crossref_primary_10_1016_j_cbpc_2020_108743
crossref_primary_10_1242_jeb_229229
crossref_primary_10_1111_j_1469_185X_2012_00222_x
crossref_primary_10_3390_toxins13020078
crossref_primary_10_1007_s40368_018_0406_0
crossref_primary_10_1016_j_chemosphere_2020_129164
crossref_primary_10_3390_toxins16030152
crossref_primary_10_1002_pmic_201100287
crossref_primary_10_1021_acs_jproteome_5b00764
crossref_primary_10_3390_toxins8010009
crossref_primary_10_1016_j_jprot_2022_104613
crossref_primary_10_3390_toxins11100564
crossref_primary_10_1016_j_jprot_2008_07_007
crossref_primary_10_1016_j_bbagen_2017_01_020
crossref_primary_10_1016_j_toxlet_2021_05_005
crossref_primary_10_1016_j_jprot_2020_103945
crossref_primary_10_1016_j_jprot_2010_06_001
crossref_primary_10_1021_pr901128x
crossref_primary_10_3390_ijms18122695
crossref_primary_10_3390_toxins14100657
crossref_primary_10_3390_toxins11100581
crossref_primary_10_1186_1471_2164_12_259
crossref_primary_10_3390_toxins10020085
crossref_primary_10_1016_j_jprot_2012_01_020
crossref_primary_10_1016_j_toxcx_2025_100216
crossref_primary_10_1111_brv_12793
crossref_primary_10_1016_j_cbd_2019_01_012
crossref_primary_10_1080_22297928_2021_1894974
crossref_primary_10_1007_s00580_016_2240_2
crossref_primary_10_1038_news_2008_954
crossref_primary_10_3390_toxins10120501
crossref_primary_10_3390_toxins4121500
crossref_primary_10_1016_j_toxicon_2023_107229
crossref_primary_10_1039_D4SC06511E
crossref_primary_10_1080_00032719_2017_1312425
crossref_primary_10_1016_j_toxicon_2017_06_005
crossref_primary_10_1371_journal_pntd_0000318
crossref_primary_10_3389_fimmu_2021_775678
crossref_primary_10_1016_j_toxicon_2019_05_010
crossref_primary_10_1016_j_toxicon_2012_02_008
crossref_primary_10_1016_j_toxicon_2011_11_005
crossref_primary_10_1016_j_toxicon_2014_11_223
crossref_primary_10_1038_s41598_019_40109_4
crossref_primary_10_1186_s40409_015_0002_2
crossref_primary_10_1371_journal_pntd_0004599
crossref_primary_10_3390_biom14030278
crossref_primary_10_1016_j_toxicon_2021_03_014
crossref_primary_10_3109_15569543_2014_922581
crossref_primary_10_3390_toxins15010001
crossref_primary_10_1016_j_jprot_2017_02_018
crossref_primary_10_1371_journal_pntd_0009073
crossref_primary_10_1016_j_toxicon_2009_12_015
crossref_primary_10_1016_j_toxicon_2016_04_049
crossref_primary_10_2174_1568026619666190723154756
crossref_primary_10_1016_j_toxicon_2009_12_018
crossref_primary_10_3390_toxins15020161
crossref_primary_10_1016_j_jprot_2011_09_003
crossref_primary_10_1016_j_toxicon_2014_07_012
crossref_primary_10_1371_journal_pntd_0002442
crossref_primary_10_3390_toxins11030170
crossref_primary_10_1021_acs_jproteome_6b00948
crossref_primary_10_1016_j_cbpc_2020_108702
crossref_primary_10_1016_j_toxicon_2016_11_246
crossref_primary_10_1586_epr_11_61
crossref_primary_10_1016_j_actatropica_2019_02_030
crossref_primary_10_1016_j_toxicon_2009_07_001
crossref_primary_10_1016_j_jprot_2011_06_013
crossref_primary_10_1093_trstmh_traa081
crossref_primary_10_1016_j_vaccine_2008_10_066
crossref_primary_10_1021_jacsau_4c00646
crossref_primary_10_3109_1547691X_2013_772267
crossref_primary_10_1016_j_toxicon_2009_12_009
crossref_primary_10_1038_s41598_018_34363_1
crossref_primary_10_1371_journal_pntd_0004615
crossref_primary_10_1016_j_toxicon_2009_01_038
crossref_primary_10_1016_j_biochi_2015_08_006
crossref_primary_10_1016_j_toxicon_2009_01_039
crossref_primary_10_3390_toxins17030149
crossref_primary_10_1371_journal_pone_0253050
crossref_primary_10_1016_j_ijbiomac_2020_10_190
crossref_primary_10_1016_j_toxicon_2010_07_001
crossref_primary_10_1021_pr101248e
crossref_primary_10_1093_icb_icw110
crossref_primary_10_1016_j_toxicon_2015_06_027
crossref_primary_10_1186_1471_2164_14_394
crossref_primary_10_3390_toxins10120534
crossref_primary_10_1016_j_jprot_2009_01_001
crossref_primary_10_1016_j_toxicon_2010_11_016
crossref_primary_10_1007_BF03344195
crossref_primary_10_1016_j_toxicon_2019_08_004
crossref_primary_10_1080_01480545_2020_1856864
crossref_primary_10_1086_714936
crossref_primary_10_2174_0126661217299051240722072656
crossref_primary_10_7717_peerj_3203
crossref_primary_10_1016_j_jprot_2009_01_006
crossref_primary_10_1016_j_jprot_2018_07_016
crossref_primary_10_1016_j_jprot_2009_01_005
crossref_primary_10_1016_j_jprot_2009_01_008
crossref_primary_10_1016_j_jprot_2008_10_003
crossref_primary_10_31594_commagene_655929
crossref_primary_10_1016_j_toxicon_2019_10_242
crossref_primary_10_1021_pr4007393
crossref_primary_10_3390_toxins15070415
crossref_primary_10_1016_j_biochi_2014_10_010
crossref_primary_10_1186_1471_2156_12_94
crossref_primary_10_1016_j_toxicon_2015_06_016
crossref_primary_10_1111_1755_0998_12389
crossref_primary_10_1016_j_jprot_2019_02_004
crossref_primary_10_1371_journal_pntd_0012335
crossref_primary_10_1016_j_jprot_2009_12_006
crossref_primary_10_1016_j_jprot_2015_09_015
crossref_primary_10_1111_febs_12386
crossref_primary_10_1016_j_toxicon_2022_02_024
crossref_primary_10_1590_S1678_91992011000200003
crossref_primary_10_1021_pr901042p
crossref_primary_10_1093_gbe_evae198
crossref_primary_10_7705_biomedica_5181
crossref_primary_10_1016_j_toxicon_2017_05_010
crossref_primary_10_1016_j_toxicon_2009_05_026
crossref_primary_10_1016_j_jprot_2009_07_013
crossref_primary_10_3390_toxins15040258
crossref_primary_10_1007_s00239_008_9186_1
crossref_primary_10_1016_j_toxicon_2017_08_016
crossref_primary_10_1016_j_toxicon_2022_106937
crossref_primary_10_1021_pr9008749
crossref_primary_10_7705_biomedica_4830
crossref_primary_10_3390_molecules27238588
crossref_primary_10_3390_pathogens10121632
crossref_primary_10_3390_toxins6123388
crossref_primary_10_1016_j_toxicon_2018_01_020
crossref_primary_10_1016_j_toxicon_2017_04_002
crossref_primary_10_1016_j_wem_2013_06_005
crossref_primary_10_1016_j_cbpc_2010_10_007
crossref_primary_10_1016_j_jprot_2011_05_027
crossref_primary_10_3390_toxins6082471
crossref_primary_10_1016_j_jprot_2011_01_003
crossref_primary_10_1016_j_jprot_2015_03_015
crossref_primary_10_1371_journal_pone_0222206
crossref_primary_10_1016_j_jprot_2014_01_019
crossref_primary_10_1016_j_jprot_2020_103758
crossref_primary_10_1016_j_cbpc_2016_10_009
crossref_primary_10_1016_j_jprot_2013_11_005
crossref_primary_10_1016_j_jprot_2013_11_001
crossref_primary_10_1146_annurev_anchem_091619_093003
crossref_primary_10_1098_rspb_2014_1984
crossref_primary_10_1371_journal_pntd_0006024
crossref_primary_10_1643_OT_13_005
crossref_primary_10_1002_dta_3108
crossref_primary_10_1016_j_tox_2021_152724
crossref_primary_10_3390_toxins12120791
crossref_primary_10_1016_j_jprot_2024_105337
crossref_primary_10_1080_14789450_2021_1995357
crossref_primary_10_1016_j_ijbiomac_2022_03_095
crossref_primary_10_1016_j_jchromb_2020_122352
crossref_primary_10_1016_j_toxicon_2012_09_004
crossref_primary_10_1093_beheco_aru096
crossref_primary_10_1016_j_toxicon_2012_11_016
crossref_primary_10_1590_1678_9199_jvatitd_2020_0016
crossref_primary_10_1016_j_toxicon_2021_01_019
crossref_primary_10_1186_1471_2164_11_605
crossref_primary_10_1021_acs_jproteome_0c00737
crossref_primary_10_1016_j_toxicon_2010_01_015
crossref_primary_10_1016_j_toxicon_2017_08_009
crossref_primary_10_3390_toxins16120511
crossref_primary_10_1016_j_jprot_2014_02_020
crossref_primary_10_1016_j_toxicon_2019_03_027
crossref_primary_10_3390_toxins16090396
crossref_primary_10_1016_j_intimp_2024_113586
crossref_primary_10_1016_j_toxicon_2017_10_001
crossref_primary_10_1016_j_jprot_2013_04_003
crossref_primary_10_1016_j_febslet_2009_03_029
crossref_primary_10_1080_14789450_2018_1538800
crossref_primary_10_1186_1471_2164_14_234
crossref_primary_10_3390_toxins10070271
crossref_primary_10_1016_j_biochi_2015_11_031
crossref_primary_10_1002_ece3_5959
crossref_primary_10_1002_rcm_8255
crossref_primary_10_1016_j_jprot_2024_105320
crossref_primary_10_21615_cesmvz_11_1_10
crossref_primary_10_1016_j_toxicon_2009_05_031
crossref_primary_10_1016_j_jprot_2012_03_028
crossref_primary_10_1016_j_toxicon_2012_11_028
Cites_doi 10.1016/j.toxicon.2006.01.007
10.1016/0041-0101(64)90017-0
10.1002/pmic.200300628
10.1016/S0041-0101(03)00171-5
10.1186/1477-5956-4-11
10.1046/j.1365-294X.2000.01125.x
10.1038/379537a0
10.2307/2399082
10.1021/pr0602500
10.1042/bj3470491
10.2307/1445927
10.1038/327147a0
10.1016/j.toxicon.2003.11.027
10.1021/pr060494k
10.1007/s00239-005-0268-z
10.1021/pr700610z
10.1371/journal.pmed.0030150
10.1016/j.toxicon.2005.12.010
10.1186/1471-2148-7-2
10.1016/j.febslet.2006.07.010
10.1016/0305-0491(92)90129-F
10.1016/0041-0101(88)90004-9
10.1016/j.toxicon.2006.07.008
10.1016/j.gene.2006.03.008
10.1016/S0014-5793(96)01144-1
10.1016/S0041-0101(02)00104-6
10.1016/j.ympev.2005.12.014
10.1038/nature04328
10.1016/j.toxicon.2004.07.028
10.1007/s00239-002-2403-4
10.1017/S0305004100015450
10.1016/S0378-1119(02)01080-6
10.1016/j.toxicon.2003.11.008
10.1021/pr8000139
10.1093/molbev/msh091
10.1016/S1095-6433(98)10136-8
10.1643/HA03-037.1
10.1016/0041-0101(92)90055-A
10.1002/pmic.200402024
10.1016/S0041-0101(00)00155-0
10.1002/pmic.200300415
10.1016/j.biochi.2004.02.002
10.1186/1471-2199-8-115
10.1016/0041-0101(91)90116-9
10.1016/S0041-0101(97)00076-7
10.1093/nar/25.17.3389
10.51481/amc.v41i4.528
10.1016/S0041-0101(98)00188-3
10.1016/S0035-9203(96)90442-3
10.1016/S0041-0101(98)00126-3
10.1016/j.jprot.2007.10.004
10.1160/TH05-02-0112
10.1016/0041-0101(90)90080-Q
10.1002/jms.1242
10.1007/BF00173166
10.1534/genetics.106.056515
10.1007/s00239-008-9067-7
10.1016/0041-0101(81)90076-3
10.1101/gr.3228405
10.1186/1471-2164-7-152
10.1006/bijl.1997.0162
10.1111/j.1432-1033.1996.0083h.x
10.1016/S0041-0101(98)00121-4
10.1016/j.toxicon.2005.02.030
10.1021/pr0701714
10.1016/S0079-6603(08)61036-3
10.1016/S0041-0101(02)00172-1
10.1007/s00018-005-5384-9
10.1016/j.bbrc.2006.01.006
10.1080/00034983.1999.11813436
10.1016/j.gene.2004.03.024
10.1016/0041-0101(64)90021-2
10.1007/s00239-002-2400-7
ContentType Journal Article
Copyright Copyright © 2008 American Chemical Society
Copyright_xml – notice: Copyright © 2008 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/pr800332p
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Proteomics of Bothrops asper
EISSN 1535-3907
EndPage 3571
ExternalDocumentID 18557640
10_1021_pr800332p
a143181898
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GeographicLocations Costa Rica
GeographicLocations_xml – name: Costa Rica
GroupedDBID -
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
ZA5
---
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
AFFNX
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a379t-7952003bc8cdd9efb1a07d6082ab86dae231da7c2b7cd7e241745bf5390f3a0e3
IEDL.DBID ACS
ISSN 1535-3893
IngestDate Thu Jul 10 22:10:40 EDT 2025
Thu Jan 02 22:03:46 EST 2025
Tue Jul 01 01:36:13 EDT 2025
Thu Apr 24 23:12:02 EDT 2025
Thu Aug 27 13:43:01 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords snake venom protein families
Bothrops asper
proteomics
individual venom variation
geographical venom variation
viperid toxins
N-terminal sequencing
mass spectrometry
Snake venomics
ontogenetic shift
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a379t-7952003bc8cdd9efb1a07d6082ab86dae231da7c2b7cd7e241745bf5390f3a0e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 18557640
PQID 69374757
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_69374757
pubmed_primary_18557640
crossref_citationtrail_10_1021_pr800332p
crossref_primary_10_1021_pr800332p
acs_journals_10_1021_pr800332p
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-08-01
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: 2008-08-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of proteome research
PublicationTitleAlternate J. Proteome Res
PublicationYear 2008
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Castoe T. A. (ref57/cit57) 2006; 39
Campbell J. A. (ref1/cit1) 2004
Ohno M. (ref56/cit56) 1998; 59
Bazaa A. (ref42/cit42) 2005; 5
Mackessy S. P. (ref79/cit79) 1988; 1988
Aragón F. (ref33/cit33) 1981; 19
Wagstaff S. C. (ref24/cit24) 2006; 377
Calvete J. J. (ref16/cit16) 2007; 6
Otero R. (ref7/cit7) 2002; 40
Fry B. G. (ref10/cit10) 2004; 21
Creer S. (ref61/cit61) 2003; 56
Moreno E. (ref35/cit35) 1988; 26
Calvete J.J.; Juárez, P. (ref15/cit15) 2007; 42
Zhang B. (ref23/cit23) 2006; 7
Altschul S. F. (ref47/cit47) 1997; 25
Junqueira de Azevedo I. L. (ref19/cit19) 2002; 299
Qinghua L. (ref22/cit22) 2006; 341
Owbny C. L. (ref72/cit72) 1999; 37
Fry B. G. (ref11/cit11) 2005; 15
Chaves F. (ref37/cit37) 1992; 30
Jorge M. T. (ref3/cit3) 1999; 93
Saborío P. (ref6/cit6) 1998; 36
Daltry J. C. (ref78/cit78) 1996; 379
Ogawa T. (ref52/cit52) 1995; 41
Chioato L. (ref74/cit74) 2003; 42
Vellard J. (ref83/cit83) 1937; 204
Ménez A. (ref17/cit17) 2006; 47
Vellard J. (ref84/cit84) 1939; 130
Saldarriaga M. M. (ref38/cit38) 2003; 42
Arroyo O. (ref5/cit5) 1999; 41
Lomonte B. (ref36/cit36) 1992; 102
Gutiérrez J. M. (ref34/cit34) 1980; 28
Rodrigues V. M. (ref62/cit62) 1998; 121
Markland F. S. (ref14/cit14) 1998; 36
Kordis D. (ref54/cit54) 1996; 240
Gutiérrez J. M. (ref76/cit76) 1990; 28
Fry B. G. (ref12/cit12) 2006; 439
Juárez P. (ref43/cit43) 2006; 63
Taborska E. (ref70/cit70) 1985; 23
Mackessy S. P. (ref80/cit80) 2006; 47
Junqueira-de-Azevedo I. L. M. (ref25/cit25) 2006; 173
Deshimaru M. (ref55/cit55) 1996; 397
St Pierre L. (ref27/cit27) 2005; 62
Guércio R. A. P. (ref29/cit29) 2006; 4
Sasa M. (ref4/cit4) 2003; 41
Kashima S. (ref20/cit20) 2004; 86
Ménez A. (ref51/cit51) 2002
Zamudio K. R. (ref66/cit66) 1997; 62
Le Blanc J. C. (ref48/cit48) 2003; 3
Savage J. M. (ref64/cit64) 1982; 69
Chippaux J-P. (ref69/cit69) 1991; 29
Lomonte B. (ref46/cit46) 2008; 7
Pahary S. (ref26/cit26) 2007; 8
Sanz L. (ref31/cit31) 2008; 71
Gutiérrez J. M. (ref2/cit2) 2006; 3
Wetton J. H. (ref49/cit49) 1987; 327
Coates A. G. (ref63/cit63) 1996
Moreno E. (ref75/cit75) 1988; 26
Calvete J. J. (ref44/cit44) 2007; 6
Chijiwa T. (ref59/cit59) 2000; 347
Mebs D. (ref82/cit82) 2001; 39
Cidade D. A. P. (ref21/cit21) 2006; 48
Fox J. W. (ref13/cit13) 2005; 45
Chijiwa T. (ref60/cit60) 2003; 56
Ogawa T. (ref53/cit53) 2005; 45
Jiménez-Porras J. M. (ref71/cit71) 1964; 2
Mackessy S. P. (ref30/cit30) 2005; 2003
Otero R. (ref39/cit39) 1996; 90
Angulo Y. (ref45/cit45) 2008; 7
Rucavado A. (ref8/cit8) 2005; 94
Crother B. I. (ref65/cit65) 1992
Mackessy S. P. (ref77/cit77) 1988; 1988
Jiménez-Porras J. M. (ref32/cit32) 1964; 2
Finch V. J. (ref85/cit85) 2007; 7
Lomonte B. (ref73/cit73) 2003; 42
Ching A. T. C. (ref28/cit28) 2006; 580
Chijiwa T. (ref50/cit50) 2003
Hanski L. (ref68/cit68) 1991; 42
Francischetti I. M. (ref18/cit18) 2004; 337
Juárez P. (ref40/cit40) 2004; 4
Sasa M. (ref81/cit81) 1999; 37
Gibbs H. L. (ref86/cit86) 2008; 66
Vidal N. (ref9/cit9) 2002; 21
Sanz L. (ref41/cit41) 2006; 5
Richman A. (ref58/cit58) 2000; 9
Haldane J. B. S. (ref67/cit67) 1930; 26
18671372 - J Proteome Res. 2008 Aug;7(8):3067
References_xml – volume: 47
  start-page: 537
  year: 2006
  ident: ref80/cit80
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2006.01.007
– volume: 2
  start-page: 155
  year: 1964
  ident: ref32/cit32
  publication-title: Toxicon
  doi: 10.1016/0041-0101(64)90017-0
– volume: 21
  start-page: 21
  year: 2002
  ident: ref9/cit9
  publication-title: J. Toxicol. Rev.
– volume: 4
  start-page: 327
  year: 2004
  ident: ref40/cit40
  publication-title: Proteomics
  doi: 10.1002/pmic.200300628
– volume: 42
  start-page: 405
  year: 2003
  ident: ref38/cit38
  publication-title: Toxicon
  doi: 10.1016/S0041-0101(03)00171-5
– volume: 4
  start-page: 11
  year: 2006
  ident: ref29/cit29
  publication-title: Proteome Sci.
  doi: 10.1186/1477-5956-4-11
– volume: 9
  start-page: 1953
  year: 2000
  ident: ref58/cit58
  publication-title: Mol. Ecol.
  doi: 10.1046/j.1365-294X.2000.01125.x
– volume: 379
  start-page: 537
  year: 1996
  ident: ref78/cit78
  publication-title: Nature
  doi: 10.1038/379537a0
– start-page: 1
  volume-title: Biology of the Pitvipers
  year: 1992
  ident: ref65/cit65
– volume: 69
  start-page: 464
  year: 1982
  ident: ref64/cit64
  publication-title: Ann. Mo. Bot. Gard.
  doi: 10.2307/2399082
– volume: 5
  start-page: 2098
  year: 2006
  ident: ref41/cit41
  publication-title: J. Proteome Res.
  doi: 10.1021/pr0602500
– volume: 347
  start-page: 491
  year: 2000
  ident: ref59/cit59
  publication-title: Biochem. J.
  doi: 10.1042/bj3470491
– volume: 1988
  start-page: 92
  year: 1988
  ident: ref77/cit77
  publication-title: Copeia
  doi: 10.2307/1445927
– volume: 327
  start-page: 147
  year: 1987
  ident: ref49/cit49
  publication-title: Nature
  doi: 10.1038/327147a0
– volume: 42
  start-page: 869
  year: 2003
  ident: ref74/cit74
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2003.11.027
– volume: 204
  start-page: 1369
  year: 1937
  ident: ref83/cit83
  publication-title: C. R. Acad. Sci.
– volume: 6
  start-page: 326
  year: 2007
  ident: ref44/cit44
  publication-title: J. Proteome Res.
  doi: 10.1021/pr060494k
– volume-title: Perspectives in Molecular Toxinology
  year: 2002
  ident: ref51/cit51
– volume: 63
  start-page: 142
  year: 2006
  ident: ref43/cit43
  publication-title: J. Mol. Evol.
  doi: 10.1007/s00239-005-0268-z
– volume: 7
  start-page: 708
  year: 2008
  ident: ref45/cit45
  publication-title: J. Proteome Res.
  doi: 10.1021/pr700610z
– volume: 28
  start-page: 341
  year: 1980
  ident: ref34/cit34
  publication-title: Rev. Biol. Trop.
– volume: 3
  start-page: e150
  year: 2006
  ident: ref2/cit2
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.0030150
– volume: 47
  start-page: 255
  year: 2006
  ident: ref17/cit17
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2005.12.010
– volume: 7
  start-page: 2
  year: 2007
  ident: ref85/cit85
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-7-2
– volume: 580
  start-page: 4417
  year: 2006
  ident: ref28/cit28
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2006.07.010
– volume: 102
  start-page: 325
  year: 1992
  ident: ref36/cit36
  publication-title: Comp. Biochem. Physiol. B
  doi: 10.1016/0305-0491(92)90129-F
– start-page: 21
  volume-title: Evolution and environment in Tropical America
  year: 1996
  ident: ref63/cit63
– volume: 26
  start-page: 363
  year: 1988
  ident: ref35/cit35
  publication-title: Toxicon.\
  doi: 10.1016/0041-0101(88)90004-9
– volume: 48
  start-page: 437
  year: 2006
  ident: ref21/cit21
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2006.07.008
– volume: 377
  start-page: 21
  year: 2006
  ident: ref24/cit24
  publication-title: Gene
  doi: 10.1016/j.gene.2006.03.008
– volume: 397
  start-page: 83
  year: 1996
  ident: ref55/cit55
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(96)01144-1
– volume: 40
  start-page: 1107
  year: 2002
  ident: ref7/cit7
  publication-title: Toxicon
  doi: 10.1016/S0041-0101(02)00104-6
– volume: 39
  start-page: 91
  year: 2006
  ident: ref57/cit57
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2005.12.014
– volume: 439
  start-page: 584
  year: 2006
  ident: ref12/cit12
  publication-title: Nature
  doi: 10.1038/nature04328
– volume: 45
  start-page: 1
  year: 2005
  ident: ref53/cit53
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2004.07.028
– volume: 56
  start-page: 317
  year: 2003
  ident: ref61/cit61
  publication-title: J. Mol. Evol.
  doi: 10.1007/s00239-002-2403-4
– volume: 26
  start-page: 220
  year: 1930
  ident: ref67/cit67
  publication-title: Proc. Cambridge Philos. Soc.
  doi: 10.1017/S0305004100015450
– volume: 299
  start-page: 279
  year: 2002
  ident: ref19/cit19
  publication-title: Gene
  doi: 10.1016/S0378-1119(02)01080-6
– volume: 42
  start-page: 885
  year: 2003
  ident: ref73/cit73
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2003.11.008
– volume: 7
  start-page: 2445
  year: 2008
  ident: ref46/cit46
  publication-title: J. Proteome Res.
  doi: 10.1021/pr8000139
– volume: 21
  start-page: 870
  year: 2004
  ident: ref10/cit10
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msh091
– volume: 121
  start-page: 215
  year: 1998
  ident: ref62/cit62
  publication-title: Comp. Biochem. Physiol. A
  doi: 10.1016/S1095-6433(98)10136-8
– volume: 130
  start-page: 463
  year: 1939
  ident: ref84/cit84
  publication-title: C. R. Soc. Biol.
– volume: 2003
  start-page: 769
  year: 2005
  ident: ref30/cit30
  publication-title: Copeia
  doi: 10.1643/HA03-037.1
– volume: 30
  start-page: 1099
  year: 1992
  ident: ref37/cit37
  publication-title: Toxicon
  doi: 10.1016/0041-0101(92)90055-A
– volume: 5
  start-page: 4223
  year: 2005
  ident: ref42/cit42
  publication-title: Proteomics
  doi: 10.1002/pmic.200402024
– volume: 1988
  start-page: 92
  year: 1988
  ident: ref79/cit79
  publication-title: Copeia
  doi: 10.2307/1445927
– volume: 39
  start-page: 87
  year: 2001
  ident: ref82/cit82
  publication-title: Toxicon
  doi: 10.1016/S0041-0101(00)00155-0
– volume: 3
  start-page: 859
  year: 2003
  ident: ref48/cit48
  publication-title: Proteomics
  doi: 10.1002/pmic.200300415
– volume: 86
  start-page: 211
  year: 2004
  ident: ref20/cit20
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2004.02.002
– volume: 8
  start-page: 115
  year: 2007
  ident: ref26/cit26
  publication-title: BMC Mol. Biol.
  doi: 10.1186/1471-2199-8-115
– volume: 29
  start-page: 1279
  year: 1991
  ident: ref69/cit69
  publication-title: Toxicon
  doi: 10.1016/0041-0101(91)90116-9
– volume: 36
  start-page: 359
  year: 1998
  ident: ref6/cit6
  publication-title: Toxicon
  doi: 10.1016/S0041-0101(97)00076-7
– volume: 25
  start-page: 3389
  year: 1997
  ident: ref47/cit47
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.17.3389
– volume: 41
  start-page: 23
  year: 1999
  ident: ref5/cit5
  publication-title: Acta Med. Costarric.
  doi: 10.51481/amc.v41i4.528
– volume: 37
  start-page: 411
  year: 1999
  ident: ref72/cit72
  publication-title: Toxicon
  doi: 10.1016/S0041-0101(98)00188-3
– volume: 26
  start-page: 363
  year: 1988
  ident: ref75/cit75
  publication-title: Toxicon
  doi: 10.1016/0041-0101(88)90004-9
– volume: 90
  start-page: 696
  year: 1996
  ident: ref39/cit39
  publication-title: Trans. R. Soc. Trop. Med.Hyg.
  doi: 10.1016/S0035-9203(96)90442-3
– start-page: 546
  year: 2003
  ident: ref50/cit50
  publication-title: J Mol Evol.
– volume: 36
  start-page: 1749
  year: 1998
  ident: ref14/cit14
  publication-title: Toxicon
  doi: 10.1016/S0041-0101(98)00126-3
– volume: 71
  start-page: 46
  year: 2008
  ident: ref31/cit31
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2007.10.004
– volume: 94
  start-page: 123
  year: 2005
  ident: ref8/cit8
  publication-title: Thromb. Haemostasis
  doi: 10.1160/TH05-02-0112
– volume: 28
  start-page: 419
  year: 1990
  ident: ref76/cit76
  publication-title: Toxicon
  doi: 10.1016/0041-0101(90)90080-Q
– volume: 42
  start-page: 1405
  year: 2007
  ident: ref15/cit15
  publication-title: J. Mass Spectrom.
  doi: 10.1002/jms.1242
– volume-title: The Venomous Reptiles of the Western Hemisphere.
  year: 2004
  ident: ref1/cit1
– volume: 41
  start-page: 867
  year: 1995
  ident: ref52/cit52
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF00173166
– volume: 173
  start-page: 877
  year: 2006
  ident: ref25/cit25
  publication-title: Genetics
  doi: 10.1534/genetics.106.056515
– volume: 66
  start-page: 151
  year: 2008
  ident: ref86/cit86
  publication-title: J. Mol. Evol.
  doi: 10.1007/s00239-008-9067-7
– volume: 19
  start-page: 797
  year: 1981
  ident: ref33/cit33
  publication-title: Toxicon
  doi: 10.1016/0041-0101(81)90076-3
– volume: 15
  start-page: 403
  year: 2005
  ident: ref11/cit11
  publication-title: Genome Res.
  doi: 10.1101/gr.3228405
– volume: 7
  start-page: 152
  year: 2006
  ident: ref23/cit23
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-7-152
– volume: 62
  start-page: 421
  year: 1997
  ident: ref66/cit66
  publication-title: Biol. J. Linnean Soc.
  doi: 10.1006/bijl.1997.0162
– volume: 240
  start-page: 83
  year: 1996
  ident: ref54/cit54
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1996.0083h.x
– volume: 23
  start-page: 612
  year: 1985
  ident: ref70/cit70
  publication-title: Toxicon
– volume: 37
  start-page: 249
  year: 1999
  ident: ref81/cit81
  publication-title: Toxicon
  doi: 10.1016/S0041-0101(98)00121-4
– volume: 45
  start-page: 951
  year: 2005
  ident: ref13/cit13
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2005.02.030
– volume: 6
  start-page: 2732
  year: 2007
  ident: ref16/cit16
  publication-title: J. Proteome Res.
  doi: 10.1021/pr0701714
– volume: 59
  start-page: 307
  year: 1998
  ident: ref56/cit56
  publication-title: Prog. Nucleic Acid Res. Mol. Biol.
  doi: 10.1016/S0079-6603(08)61036-3
– volume: 41
  start-page: 19
  year: 2003
  ident: ref4/cit4
  publication-title: Toxicon
  doi: 10.1016/S0041-0101(02)00172-1
– volume: 42
  start-page: 3
  year: 1991
  ident: ref68/cit68
  publication-title: Biol. J.
– volume: 62
  start-page: 2679
  year: 2005
  ident: ref27/cit27
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-005-5384-9
– volume: 341
  start-page: 522
  year: 2006
  ident: ref22/cit22
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2006.01.006
– volume: 93
  start-page: 401
  year: 1999
  ident: ref3/cit3
  publication-title: Ann. Trop. Med. Parasitol.
  doi: 10.1080/00034983.1999.11813436
– volume: 337
  start-page: 55
  year: 2004
  ident: ref18/cit18
  publication-title: Gene
  doi: 10.1016/j.gene.2004.03.024
– volume: 2
  start-page: 187
  year: 1964
  ident: ref71/cit71
  publication-title: Toxicon
  doi: 10.1016/0041-0101(64)90021-2
– volume: 56
  start-page: 286
  year: 2003
  ident: ref60/cit60
  publication-title: J. Mol. Evol.
  doi: 10.1007/s00239-002-2400-7
– reference: 18671372 - J Proteome Res. 2008 Aug;7(8):3067
SSID ssj0015703
Score 2.4131212
Snippet We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3556
SubjectTerms Amino Acid Sequence
Animals
Animals, Newborn
Bothrops
Chromatography, High Pressure Liquid
Costa Rica
Crotalid Venoms - analysis
Electrophoresis, Polyacrylamide Gel
Molecular Sequence Data
Proteome - analysis
Species Specificity
Title Snake Venomics of the Lancehead Pitviper Bothrops asper: Geographic, Individual, and Ontogenetic Variations
URI http://dx.doi.org/10.1021/pr800332p
https://www.ncbi.nlm.nih.gov/pubmed/18557640
https://www.proquest.com/docview/69374757
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-N8TBeBoxtlI_Ngj3sod6S2Ikd3kphKkiwSV2rvkW244iqU1I1KQ_89ZzzUUB08H6OLN_Z97vc3e8AzjxmFVO-T2UcSsoDHlGplU99vEux41fSmQsUv3yNRhP-eRbOduDtPRn8wL9crqQbOBYsH8DDIJLCRViD4XiTKnAUUg0pakid9-3og35f6lyPKf90PffgydqvXD2GD113TlNOsrhYV_rC_PibrPFfW34C-y2uJIPGEJ7Cjs0PYG_YjXN7BotxrhaWTG3dh1ySIiOI_UjdA40Pckpu5tX3-dKuyPuinp1QEuVYxN-Rdk76t7npk0-b_q0-UXlKrvOqQBN0nZBkimF38__vECZXH2-HI9pOWqCKibiiInbsS0wbaVBFNtO-8kQaITxQWkapsogCUyVMoIVJhUWvL3ios5DFXsaUZ9kR7OZFbp8DsR7jBnGV44nhWkvFrEStxV6QRfiY8R6coCqS9qaUSZ0ED_xkc2Y9OO-0lJiWp9yNy7jbJvpmI7psyDm2CZ12qk7wyF0-ROW2WJdJhNCMi1D04LixgF8fkSHGYdx78b_NvoRHTQGJqwh8BbvVam1fI0qp9EltpT8BSkfgJg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCvpTVQhw4EEhiJ3a4QQUqOxKLuEW244iqKKmalANfz9hJyyIQ3B1rZI89bzKe9xDacYkWRHiew6OAO9SnocOl8BwPzlJk-JVkahLFq-uw_UDPn4KnmibH9MKAEQXMVNgi_ge7gHfQ63OjO-b3xtEEgBDfJFpHrbtRxcAwSVXcqIFjgvCQRejzpyYCqeJrBPoFVtrwcjpT6RRZw-yrku7-oJT76u0bZ-P_LJ9F0zXKxEeVW8yhMZ3No8nWUNxtAXXvMtHV-FHbruQC5ykGJIhtRzRczwm-7ZSvnZ7u4-PcKikUWBhO8UNcq6Y_d9QePht1c-1hkSX4JitzcEjTF4kfIQmv_gYuoofTk_tW26l1FxxBWFQ6LDJcTEQqrmDDdCo94bIkBLAgJA8ToQETJoIpXzKVMA0YgNFApgGJ3JQIV5Ml1MjyTK8grF1CFaAswxpDpeSCaB5yFrl-GsLVRptoE5Ysrs9NEduSuO_FozVrot3hZsWqZi034hkvPw3dHg3tVVQdPw3aGu54DEtuqiMi0_mgiEMAapQFrImWK0f4mIQHkJVRd_UvY7fQZPv-6jK-PLu-WENT1dMS81ZwHTXK_kBvAH4p5aZ13HfbCOiH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8gJMqL4gd4KrAxPvhAoe1uu1vf8PACfgAJQnhrdrfbcDnTNteeD_71zrS9Kgaj79PNZGd25zednd8AvPG501wHgaeSSHkiFLGnjA68AM9SQvxKJqdE8ctpfHwpPl5H132iSL0wqESNK9VtEZ9OdZXlPcNAcFDNFc0eC6t7sEblOkq2DscXQ9WA2KQ6ftTIo0C8ZBL6_VOKQra-HYX-Ai3bEDN5BGeDcu3Lktn-ojH79scfvI3_r_0GPOzRJjvs3OMxrLjiCTwYL4e8PYXZRaFnjl25tju5ZmXOEBGytjMar-mMnU-b79PKzdn7sp2oUDNN3OLvWD89_WZq99jJ0NW1x3SRsbOiKdExqT-SXWEy3v0VfAaXkw9fx8deP3_B01wmjScT4mTixiqLhnO5CbQvsxhBgzYqzrRDbJhpaUMjbSYdYgEpIpNHPPFzrn3HN2G1KAv3HJjzubCItog9RhijNHcqVjLxwzzGK06MYAe3Le3PT522pfEwSIc9G8HbpcFS27OX0xCNb3eJvh5Eq46y4y6h3aXVU9xyqpLowpWLOo0RsAkZyRFsdc7waxEVYXYm_Bf_UnYX7p8fTdLPJ6efXsJ698KEngy-gtVmvnDbCGMas9P67k-DuusK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Snake+Venomics+of+the+Lancehead+Pitviper+Bothrops+asper%3A+Geographic%2C+Individual%2C+and+Ontogenetic+Variations&rft.jtitle=Journal+of+proteome+research&rft.au=Alape-Giro%CC%81n%2C+Alberto&rft.au=Sanz%2C+Libia&rft.au=Escolano%2C+Jose%CC%81&rft.au=Flores-Di%CC%81az%2C+Marietta&rft.date=2008-08-01&rft.pub=American+Chemical+Society&rft.issn=1535-3893&rft.eissn=1535-3907&rft.volume=7&rft.issue=8&rft.spage=3556&rft.epage=3571&rft_id=info:doi/10.1021%2Fpr800332p&rft.externalDocID=a143181898
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-3893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-3893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-3893&client=summon