Microplane Model M7 for Plain Concrete. I: Formulation

AbstractMathematical modeling of the nonlinear triaxial behavior and damage of such a complex material as concrete has been a long-standing challenge in which progress has been made only in gradual increments. The goal of this study is a realistic and robust material model for explicit finite-elemen...

Full description

Saved in:
Bibliographic Details
Published inJournal of engineering mechanics Vol. 139; no. 12; pp. 1714 - 1723
Main Authors Caner, Ferhun C, Bažant, Zdeněk P
Format Journal Article Publication
LanguageEnglish
Published American Society of Civil Engineers 01.12.2013
American Society of Civil Engineers (ASCE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract AbstractMathematical modeling of the nonlinear triaxial behavior and damage of such a complex material as concrete has been a long-standing challenge in which progress has been made only in gradual increments. The goal of this study is a realistic and robust material model for explicit finite-element programs for concrete structures that computes the stress tensor from the given strain tensor and some history variables. The microplane models, which use a constitutive equation in a vectorial rather than tensorial form and are semimultiscale by virtue of capturing interactions among phenomena of different orientation, can serve this goal effectively. This paper presents a new concrete microplane model, M7, which achieves this goal much better than the previous versions M1–M6 developed at Northwestern University since 1985. The basic mathematical structure of M7 is logically correlated to thermodynamic potentials for the elastic regime, the tensile and compressive damage regimes, and the frictional slip regime. Given that the volumetric-deviatoric (V-D) split of strains is inevitable for distinguishing between compression failures at low and high confinement, the key idea is to apply the V-D split only to the microplane compressive stress-strain boundaries (or strain-dependent yield limits), the sum of which is compared with the total normal stress from the microplane constitutive relation. This avoids the use of the V-D split of the elastic strains and of the tensile stress-strain boundary, which caused various troubles in M3–M6 such as excessive lateral strains and stress locking in far postpeak uniaxial extension, poor representation of unloading and loading cycles, and inability to represent high dilatancy under postpeak compression in lower-strength concretes. Moreover, the differences between high hydrostatic compression and compressive uniaxial strain are accurately captured by considering the compressive volumetric boundary as dependent on the principal strain difference. The model is verified extensively in the companion paper.
AbstractList Mathematical modeling of the nonlinear triaxial behavior and damage of such a complexmaterial as concrete has been a long-standing challenge in which progress has been made only in gradual increments. The goal of this study is a realistic and robust material model for explicit finite-element programs for concrete structures that computes the stress tensor from the given strain tensor and some history variables. Themicroplanemodels, which use a constitutive equation in a vectorial rather than tensorial form and are semimultiscale by virtue of capturing interactions among phenomena of different orientation, can serve this goal effectively. This paper presents a new concrete microplane model, M7, which achieves this goal much better than the previous versions M1–M6 developed at Northwestern University since 1985. The basic mathematical structure of M7 is logically correlated to thermodynamic potentials for the elastic regime, the tensile and compressive damage regimes, and the frictional slip regime.Given that the volumetric-deviatoric (V-D) split of strains is inevitable for distinguishing between compression failures at low and high confinement, the key idea is to apply the V-Dsplit only to the microplane compressive stress-strain boundaries (or strain-dependent yield limits), the sumof which is compared with the total normal stress from the microplane constitutive relation. This avoids the use of the V-D split of the elastic strains and of the tensile stress-strain boundary, which caused various troubles in M3–M6 such as excessive lateral strains and stress locking in far postpeak uniaxial extension, poor representation of unloading and loading cycles, and inability to represent high dilatancy under postpeak compression in lower-strength concretes. Moreover, the differences between high hydrostatic compression and compressive uniaxial strain are accurately captured by considering the compressive volumetric boundary as dependent on the principal strain difference. The model is verified extensively in the companion paper.
Mathematical modeling of the nonlinear triaxial behavior and damage of such a complex material as concrete has been a long-standing challenge in which progress has been made only in gradual increments. The goal of this study is a realistic and robust material model for explicit finite element programs for concrete structures that computes the stress tensor from the given strain tensor and some history variables. The microplane models, which use a constitutive equation in a vectorial rather than tensorial form and are semi-multiscale by virtue of capturing interactions among phenomena of different orientation, can serve this goal effectively. Presented is a new concrete microplane model M7 which achieves this goal much better than the previous versions M1-M6 developed at Northwestern since 1985. The basic mathematical structure of M7 is logically correlated to thermodynamic potentials for the elastic regime, the tensile and compressive damage regimes, and the frictional slip regime. Given that the volumetric-deviatoric (V-D) split of strains is inevitable for distinguishing between compression failures at low and high confinement, the key idea is to apply the V-D split only to the microplane compressive stress-strain boundaries (or strain-dependent yield limits), the sum of which is compared to the total normal stress from the microplane constitutive relation. This avoids the use of elastic V-D split which caused in M3-M6 various troubles such as excessive lateral strains and stress locking in far postpeak uniaxial extension, poor representation of unloading and load cycles, and inability to represent high dilatancy under postpeak compression in lower-strength concretes. Moreover, the differences between high hydrostatic compression and compressive uniaxial strain are accurately captured by considering the compressive volumetric boundary to depend on the principal strain difference. The fits of test data are presented in Part II which follows.
AbstractMathematical modeling of the nonlinear triaxial behavior and damage of such a complex material as concrete has been a long-standing challenge in which progress has been made only in gradual increments. The goal of this study is a realistic and robust material model for explicit finite-element programs for concrete structures that computes the stress tensor from the given strain tensor and some history variables. The microplane models, which use a constitutive equation in a vectorial rather than tensorial form and are semimultiscale by virtue of capturing interactions among phenomena of different orientation, can serve this goal effectively. This paper presents a new concrete microplane model, M7, which achieves this goal much better than the previous versions M1–M6 developed at Northwestern University since 1985. The basic mathematical structure of M7 is logically correlated to thermodynamic potentials for the elastic regime, the tensile and compressive damage regimes, and the frictional slip regime. Given that the volumetric-deviatoric (V-D) split of strains is inevitable for distinguishing between compression failures at low and high confinement, the key idea is to apply the V-D split only to the microplane compressive stress-strain boundaries (or strain-dependent yield limits), the sum of which is compared with the total normal stress from the microplane constitutive relation. This avoids the use of the V-D split of the elastic strains and of the tensile stress-strain boundary, which caused various troubles in M3–M6 such as excessive lateral strains and stress locking in far postpeak uniaxial extension, poor representation of unloading and loading cycles, and inability to represent high dilatancy under postpeak compression in lower-strength concretes. Moreover, the differences between high hydrostatic compression and compressive uniaxial strain are accurately captured by considering the compressive volumetric boundary as dependent on the principal strain difference. The model is verified extensively in the companion paper.
Author Caner, Ferhun C
Bažant, Zdeněk P
Author_xml – sequence: 1
  givenname: Ferhun C
  surname: Caner
  fullname: Caner, Ferhun C
  email: ferhun.caner@upc.edu
  organization: Univ. Politecnica de Catalunya Northwestern Univ. Associate Professor, Institute of Energy Technologies, School of Industrial Engineering, , Campus Sud, 08028 Barcelona, ; presently, Visiting Scholar, Dept. of Civil and Environmental Engineering, , Evanston, IL 60208. E-mail
– sequence: 2
  givenname: Zdeněk P
  surname: Bažant
  fullname: Bažant, Zdeněk P
  organization: Northwestern Univ. Distinguished McCormick Institute Professor and W. P. Murphy Professor of Civil Engineering, Mechanical Engineering, and Materials Science, , Evanston, IL 60208 (corresponding author). E-mail
BookMark eNp1kNFKwzAUhoNMcJu-Q_FqXrQmTZs0uxuj08GKgnodztJT6OiambQXvr0tG_PKQPg5h3w_5JuRSWtbJOSR0YhRwZ4Xq491_pQXEVMJD2WWqYgOJ5X0hkyvuwmZUsl5qLhSd2Tm_YFSlgglpkQUtXH21ECLQWFLbIJCBpV1wXsDdRusbWscdhgF22Wwse7YN9DVtr0ntxU0Hh8uOSdfm_xz_Rru3l6269UuBC5VF6bAJJZJQkWa0kxQZeI9UkwAyj3DrOIUMsaMGlJBWabGIGdKVGUFHMo45nPCzr3G90Y7NOgMdNpC_TeMN6Yy1nEcK8kGZnFmTs5-9-g7fay9wWb8o-29ZplIUsFSJYany0u9s947rPTJ1UdwP5pRPQrWehSs80KPMvUoU18ED7A4wzC064PtXTuouJL_g7-Mr3-Y
Cites_doi 10.1061/(ASCE)0733-9399(2005)131:1(41)
10.1061/(ASCE)0899-1561(1993)5:3(372)
10.1061/(ASCE)0733-9399(2003)129:12(1439)
10.1016/0022-5096(71)90010-X
10.1061/(ASCE)0733-9399(1985)111:4(559)
10.1115/1.3097329
10.1016/0022-5096(72)90017-8
10.1061/(ASCE)EM.1943-7889.0000254
10.1061/(ASCE)0733-9399(2000)126:9(944)
10.1061/(ASCE)0733-9399(2000)126:9(954)
10.1115/1.2744036
10.1061/(ASCE)0733-9399(1988)114:10(1672)
10.1002/zamm.19860660108
10.1061/(ASCE)0733-9399(1988)114:10(1689)
10.1061/(ASCE)0733-9445(1984)110:9(2015)
10.1201/b10546-11
10.1615/IntJMultCompEng.v8.i1.50
10.1061/(ASCE)0733-9399(2002)128:1(24)
10.1061/(ASCE)0733-9399(2005)131:1(31)
10.1016/j.cemconcomp.2011.02.010
10.1016/j.cemconcomp.2011.02.011
10.1061/(ASCE)0733-9399(1996)122:3(245)
10.1016/S0020-7683(96)00238-7
10.1016/S0020-7683(00)00212-2
10.1115/1.4003102
10.1061/(ASCE)0899-1561(1993)5:3(394)
10.1061/(ASCE)EM.1943-7889.0000571
10.1016/0022-5096(77)90001-1
10.1016/S0749-6419(98)00018-7
10.1061/(ASCE)0733-9399(2002)128:12(1304)
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. Institut de Tècniques Energètiques
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Institut de Tècniques Energètiques
Copyright 2013 American Society of Civil Engineers.
Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es
Copyright_xml – notice: 2013 American Society of Civil Engineers.
– notice: Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
DBID AAYXX
CITATION
7TB
8FD
F28
FR3
KR7
XX2
DOI 10.1061/(ASCE)EM.1943-7889.0000570
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Recercat
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1943-7889
EndPage 1723
ExternalDocumentID oai_recercat_cat_2072_222971
10_1061__ASCE_EM_1943_7889_0000570
10_1061_ASCE_EM_1943_7889_0000570
GroupedDBID -0O
02
0O
0R
29K
4.4
4S
5GY
AAIKC
ABBOT
ABDBF
ABFLS
ABPTK
ACDCL
ACIWK
ACNET
ACVYA
ADZKS
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ARKUK
ASUFR
CS3
D-I
E.L
E70
EAD
EAP
EAS
EBS
EDO
EJD
EMI
EMK
EST
ESX
GQVBS
HZ
H~9
I-F
L7B
O9-
O~X
P2P
RAC
RNS
RXW
TAE
TAF
TN5
TUS
X
-~X
.4S
.DC
0R~
2FS
6TJ
AAELQ
AAMNW
AAYOK
AAYXX
ABDPE
ABEFU
ABFSI
ACGFO
ACKIV
ACUHS
ADNWM
ADVLX
AFFNX
AI.
AIRRX
ALNAR
CITATION
HZ~
VH1
WHG
XSW
ZY4
~02
~A~
7TB
8FD
F28
FR3
KR7
XX2
ID FETCH-LOGICAL-a379t-5a17ed44065508609c2be0e4aadb1e8f30a811c930a9add5cce3196fdfa3ad223
ISSN 0733-9399
IngestDate Fri Aug 29 12:39:24 EDT 2025
Fri Jul 11 05:50:34 EDT 2025
Tue Jul 01 00:24:00 EDT 2025
Tue Jan 05 18:51:37 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a379t-5a17ed44065508609c2be0e4aadb1e8f30a811c930a9add5cce3196fdfa3ad223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://recercat.cat/handle/2072/222971
PQID 1864561596
PQPubID 23500
PageCount 10
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_222971
proquest_miscellaneous_1864561596
crossref_primary_10_1061__ASCE_EM_1943_7889_0000570
asce_journals_10_1061_ASCE_EM_1943_7889_0000570
ProviderPackageCode GQVBS
ABBOT
RAC
ACNET
ARKUK
ADZKS
-0O
E70
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of engineering mechanics
PublicationYear 2013
Publisher American Society of Civil Engineers
American Society of Civil Engineers (ASCE)
Publisher_xml – name: American Society of Civil Engineers
– name: American Society of Civil Engineers (ASCE)
References Cusatis, G.; Beghini, H.; Bažant, Z. P. 2008; 75
Cusatis, G.; Pelessone, D.; Mencarelli, A. 2011b; 33
Bažant, Z.; Gambarova, P. 1984; 110
Bažant, Z. P.; Caner, F. C. 2005a; 131
Bažant, Z. P.; Prat, P. C. 1988a; 114
Bažant, Z. P.; Kim, J.-J. H.; Brocca, M. 1999; 96
Bažant, Z. P.; Oh, B.-H. 1986; 66
Asaro, R. J.; Rice, J. R. 1977; 25
Caner, F. C.; Bažant, Z. P. 2000; 126
Hasegawa, T.; Bažant, Z. P. 1993a; 5
Bažant, Z. P.; Prat, P. C. 1988b; 114
Caner, F. C.; Bažant, Z. P. 2013; 139
Cusatis, G.; Bažant, Z. P.; Cedolin, L. 2003; 129
Bažant, Z. P.; Oh, B.-H. 1985; 111
Bažant, Z. P.; Caner, F. C. 2005b; 131
Brocca, M.; Bažant, Z. P. 2000; 53
Caner, F. C.; Bažant, Z. P.; Hoover, C.; Waas, A.; Shahwan, K. 2011; 133
Bažant, Z.; Yu, Q. 2011; 137
Butler, G. C.; McDowell, D. L. 1998; 14
Rice, J. 1971; 19
Bažant, Z. P.; Caner, F. C.; Carol, I.; Adley, M. D.; Akers, S. A. 2000; 126
Carol, I.; Jirásek, M.; Bažant, Z. P. 2001; 38
Caner, F. C.; Bažant, Z. P. 2002; 128
Caner, F. C.; Bažant, Z. P.; Červenka, J. 2002; 128
Cusatis, G.; Mencarelli, A.; Pelessone, D.; Baylot, J. T. 2011a; 33
Bažant, Z. P.; Xiang, Y.; Prat, P. C. 1996; 122
Hasegawa, T.; Bažant, Z. P. 1993b; 5
Carol, I.; Bažant, Z. P. 1997; 34
Hill, R.; Rice, J. R. 1972; 20
Bažant, Z. P.; Cedolin, L. 1991
e_1_3_3_30_1
Bažant Z. P. (e_1_3_3_12_1) 1999; 96
Jirásek M. (e_1_3_3_38_1) 2002
Fung Y. C. (e_1_3_3_34_1) 1968
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_39_1
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_28_1
Batdorf S. (e_1_3_3_3_1) 1949
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_26_1
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_20_1
Stroud A. H. (e_1_3_3_40_1) 1971
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_4_1
e_1_3_3_22_1
References_xml – volume: 53
  start-page: 265
  year: 2000
  end-page: 281
  article-title: Microplane constitutive model and metal plasticity
  publication-title: Appl. Mech. Rev.
– volume: 139
  start-page: 1724
  year: 2013
  end-page: 1735
  article-title: Microplane model M7 for plain concrete. II: Calibration and verification
  publication-title: J. Eng. Mech.
– volume: 126
  start-page: 954
  year: 2000
  end-page: 961
  article-title: Microplane model M4 for concrete. II: Algorithm and calibration
  publication-title: J. Eng. Mech.
– volume: 133
  year: 2011
  article-title: Microplane model for fracturing damage of triaxially braided fiber-polymer composites
  publication-title: J. Eng. Mater. Technol.
– volume: 114
  start-page: 1689
  year: 1988b
  end-page: 1702
  article-title: Microplane model for brittle plastic material: II. Verification
  publication-title: J. Eng. Mech.
– volume: 128
  start-page: 24
  year: 2002
  end-page: 33
  article-title: Vertex effect in strain-softening concrete at rotating principal axes
  publication-title: J. Eng. Mech.
– volume: 137
  start-page: 580
  year: 2011
  end-page: 588
  article-title: Size effect testing of cohesive fracture parameters and non-uniqueness of work-of-fracture method
  publication-title: J. Eng. Mech.
– volume: 33
  start-page: 891
  year: 2011a
  end-page: 905
  article-title: Lattice discrete particle model (LDPM) for failure behavior of concrete. II: Calibration and validation
  publication-title: Cement Concr. Compos.
– volume: 126
  start-page: 944
  year: 2000
  end-page: 953
  article-title: Microplane model M4 for concrete: I. Formulation with work-conjugate deviatoric stress
  publication-title: J. Eng. Mech.
– year: 1991
  article-title: Stability of structures: Elastic, inelastic, fracture and damage theories, Oxford University Press, New York.
– volume: 20
  start-page: 401
  year: 1972
  end-page: 413
  article-title: Constitutive analysis of elastic-plastic crystal at arbitrary strain
  publication-title: J. Mech. Phys. Solids
– volume: 128
  start-page: 1304
  year: 2002
  end-page: 1313
  article-title: Lateral confinement needed to suppress softening of concrete in compression
  publication-title: J. Eng. Mech.
– volume: 111
  start-page: 559
  year: 1985
  end-page: 582
  article-title: Microplane model for progressive fracture of concrete and rock
  publication-title: J. Eng. Mech.
– volume: 66
  start-page: 37
  year: 1986
  end-page: 49
  article-title: Efficient numerical integration on the surface of a sphere
  publication-title: Z. Angew. Math. Mech.
– volume: 131
  start-page: 31
  year: 2005a
  end-page: 40
  article-title: Microplane model M5 with kinematic and static constraints for concrete fracture and anelasticity. I. Theory
  publication-title: J. Eng. Mech.
– volume: 5
  start-page: 394
  year: 1993b
  end-page: 410
  article-title: Nonlocal microplane concrete model with rate effect and load cycles. II: Application and verification
  publication-title: J. Mater. Civ. Eng.
– volume: 38
  start-page: 2921
  year: 2001
  end-page: 2931
  article-title: A thermodynamically consistent approach to microplane theory. Part I. Free energy and consistent microplane stresses
  publication-title: Int. J. Solids Struct.
– volume: 19
  start-page: 433
  year: 1971
  end-page: 455
  article-title: Inelastic constitutive relations for solids: An internal variable theory and its application to metal plasticity
  publication-title: J. Mech. Phys. Solids
– volume: 122
  start-page: 245
  year: 1996
  end-page: 254
  article-title: Microplane model for concrete. I. Stress-strain boundaries and finite strain
  publication-title: J. Eng. Mech.
– volume: 129
  start-page: 1439
  year: 2003
  end-page: 1448
  article-title: Confinement–shear lattice model for concrete damage in tension and compression: I. Theory
  publication-title: J. Eng. Mech.
– volume: 131
  start-page: 41
  year: 2005b
  end-page: 47
  article-title: Microplane model M5 with kinematic and static constraints for concrete fracture and anelasticity. II. Computation
  publication-title: J. Eng. Mech.
– volume: 96
  start-page: 580
  year: 1999
  end-page: 592
  article-title: Finite strain tube-squash test of concrete at high pressures and shear angles up to 70 degrees
  publication-title: ACI Mater. J.
– volume: 14
  start-page: 703
  year: 1998
  end-page: 717
  article-title: Polycrystal constraint and grain subdivision
  publication-title: Int. J. Plast.
– volume: 5
  start-page: 372
  year: 1993a
  end-page: 410
  article-title: Nonlocal microplane concrete model with rate effect and load cycles. I: General formulation
  publication-title: J. Mater. Civ. Eng.
– volume: 110
  start-page: 2015
  year: 1984
  end-page: 2035
  article-title: Crack shear in concrete: Crack band microplane model
  publication-title: J. Struct. Eng.
– volume: 25
  start-page: 309
  year: 1977
  end-page: 338
  article-title: Strain localization in ductile single crystals
  publication-title: J. Mech. Phys. Solids
– volume: 114
  start-page: 1672
  year: 1988a
  end-page: 1688
  article-title: Microplane model for brittle plastic material: I. Theory
  publication-title: J. Eng. Mech.
– volume: 75
  year: 2008
  article-title: Spectral stiffness microplane model for quasi-brittle composite laminates—Part I: Theory
  publication-title: J. Appl. Mech.
– volume: 34
  start-page: 3807
  year: 1997
  end-page: 3835
  article-title: Damage and plasticity in microplane theory
  publication-title: Int. J. Solids Struct.
– volume: 33
  start-page: 881
  year: 2011b
  end-page: 890
  article-title: Lattice discrete particle model (LDPM) for failure behavior of concrete. I: Theory
  publication-title: Cement Concr. Compos.
– ident: e_1_3_3_9_1
  doi: 10.1061/(ASCE)0733-9399(2005)131:1(41)
– ident: e_1_3_3_35_1
  doi: 10.1061/(ASCE)0899-1561(1993)5:3(372)
– ident: e_1_3_3_30_1
  doi: 10.1061/(ASCE)0733-9399(2003)129:12(1439)
– ident: e_1_3_3_39_1
  doi: 10.1016/0022-5096(71)90010-X
– ident: e_1_3_3_14_1
  doi: 10.1061/(ASCE)0733-9399(1985)111:4(559)
– ident: e_1_3_3_20_1
  doi: 10.1115/1.3097329
– ident: e_1_3_3_37_1
  doi: 10.1016/0022-5096(72)90017-8
– ident: e_1_3_3_24_1
– ident: e_1_3_3_6_1
  doi: 10.1061/(ASCE)EM.1943-7889.0000254
– ident: e_1_3_3_10_1
  doi: 10.1061/(ASCE)0733-9399(2000)126:9(944)
– ident: e_1_3_3_22_1
  doi: 10.1061/(ASCE)0733-9399(2000)126:9(954)
– ident: e_1_3_3_13_1
– volume-title: Inelastic analysis of structures
  year: 2002
  ident: e_1_3_3_38_1
– ident: e_1_3_3_31_1
  doi: 10.1115/1.2744036
– ident: e_1_3_3_16_1
  doi: 10.1061/(ASCE)0733-9399(1988)114:10(1672)
– ident: e_1_3_3_15_1
  doi: 10.1002/zamm.19860660108
– ident: e_1_3_3_17_1
  doi: 10.1061/(ASCE)0733-9399(1988)114:10(1689)
– ident: e_1_3_3_5_1
  doi: 10.1061/(ASCE)0733-9445(1984)110:9(2015)
– ident: e_1_3_3_18_1
  doi: 10.1201/b10546-11
– ident: e_1_3_3_7_1
  doi: 10.1615/IntJMultCompEng.v8.i1.50
– ident: e_1_3_3_26_1
  doi: 10.1061/(ASCE)0733-9399(2002)128:1(24)
– ident: e_1_3_3_8_1
  doi: 10.1061/(ASCE)0733-9399(2005)131:1(31)
– volume-title: NACA Technical Note 1871
  year: 1949
  ident: e_1_3_3_3_1
– ident: e_1_3_3_32_1
  doi: 10.1016/j.cemconcomp.2011.02.010
– ident: e_1_3_3_33_1
  doi: 10.1016/j.cemconcomp.2011.02.011
– ident: e_1_3_3_19_1
  doi: 10.1061/(ASCE)0733-9399(1996)122:3(245)
– ident: e_1_3_3_28_1
  doi: 10.1016/S0020-7683(96)00238-7
– ident: e_1_3_3_29_1
  doi: 10.1016/S0020-7683(00)00212-2
– ident: e_1_3_3_27_1
  doi: 10.1115/1.4003102
– volume-title: Approximate calculation of multiple integrals
  year: 1971
  ident: e_1_3_3_40_1
– ident: e_1_3_3_36_1
  doi: 10.1061/(ASCE)0899-1561(1993)5:3(394)
– ident: e_1_3_3_4_1
– ident: e_1_3_3_25_1
  doi: 10.1061/(ASCE)EM.1943-7889.0000571
– ident: e_1_3_3_2_1
  doi: 10.1016/0022-5096(77)90001-1
– ident: e_1_3_3_21_1
  doi: 10.1016/S0749-6419(98)00018-7
– ident: e_1_3_3_23_1
  doi: 10.1061/(ASCE)0733-9399(2002)128:12(1304)
– volume: 96
  start-page: 580
  issue: 5
  year: 1999
  ident: e_1_3_3_12_1
  article-title: Finite strain tube-squash test of concrete at high pressures and shear angles up to 70 degrees
  publication-title: ACI Mater. J.
– volume-title: Foundations of solid mechanics
  year: 1968
  ident: e_1_3_3_34_1
– ident: e_1_3_3_11_1
SSID ssj0014696
Score 2.4891207
Snippet AbstractMathematical modeling of the nonlinear triaxial behavior and damage of such a complex material as concrete has been a long-standing challenge in which...
Mathematical modeling of the nonlinear triaxial behavior and damage of such a complex material as concrete has been a long-standing challenge in which progress...
Mathematical modeling of the nonlinear triaxial behavior and damage of such a complexmaterial as concrete has been a long-standing challenge in which progress...
SourceID csuc
proquest
crossref
asce
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1714
SubjectTerms Algorismes
Algorithms
Aplicacions de la informàtica
Aplicacions informàtiques a la física i l‘enginyeria
Boundaries
Compressive properties
Concrete
Concretes
Constitutive models
Constitutive relationships
Cracking
Damage
Edificació
Formigó
Inelasticity
Informàtica
Materials de construcció
Mathematical analysis
Mathematical models
Strain
Stresses
Technical Papers
Àrees temàtiques de la UPC
Title Microplane Model M7 for Plain Concrete. I: Formulation
URI http://ascelibrary.org/doi/abs/10.1061/(ASCE)EM.1943-7889.0000570
https://www.proquest.com/docview/1864561596
https://recercat.cat/handle/2072/222971
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wIPiE9RBihIVAKqdLGd2A5vTWm1IQUhsUkTL5aTOGKi66Y25YEH_nbu8tUwysd4aNpEOtfxnc-_s--DkBc2kWnq5cZVeRC4Pk1DVwnhuwzhsbKSM4rByfF7cXjivzsNTnu9793okiIZp992xpX8D1fhGfAVo2Svwdm2UXgAv4G_cAUOw_WfeByjN90luquWNc0Wo1iWboMfFqYK5gNIWNjx6Ajt_jmg07pW128Qqd3mJhydWwwJ7rjCT00dGjO3q8-b5XZ3NTLDaTCMZqbKYPAJFRkg1DD6UseO1XsKlF_1z2gOixrPUfQMOft6tmiTJHY3EiXnbsirMkdjW6nR0Ofopxj-pGerrEWNQLGO2sQq7J0lGEAV36neAXwATwB6Tz5OZ0MWzuJx-1dlJsqgqkJyJYV2edAuqEYqPYs10mik0TXNDbLHwMwAPbk3id5G8_Ycyhdlhbf2HZu0tYIevMTWXu3qAazuZo3mTgfp9NP1Jv1lvS9BzPEdcrvmtTOpROku6dnlPXKrk5PyPhFboXJKoXJi6YBQOaVQOa1QOUdvnI5IPSAn89nx9NCti2u4hsuwcANDpc18wHNgoyrhhSlLrGd9Y7KEWpVzzygKUxe-Q1gDgzS1qK3zLDfcZAAqH5L-8mJpHxGH5TKjLGEqSwTYv0L5CU_yzGQqtxQaHZADHA9dz5y1_is_BoQ3Q6cvq6wrLdGfqF7jKGuACnaVmkJj6vT2Bj_Mk0xjBXtJB-R5wwsNGhWPyWBgLzbQOyXQqghC8fjaHd8nN8v5VHrEPiH9YrWxTwG1FsmzWrR-AOUsh74
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microplane+Model+M7+for+Plain+Concrete.+I%3A+Formulation&rft.jtitle=Journal+of+engineering+mechanics&rft.au=Caner%2C+Ferhun+C&rft.au=Ba%C5%BEant%2C+Zden%C4%9Bk+P&rft.date=2013-12-01&rft.pub=American+Society+of+Civil+Engineers&rft.issn=0733-9399&rft.eissn=1943-7889&rft.volume=139&rft.issue=12&rft.spage=1714&rft.epage=1723&rft_id=info:doi/10.1061%2F%28ASCE%29EM.1943-7889.0000570&rft.externalDocID=10_1061_ASCE_EM_1943_7889_0000570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-9399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-9399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-9399&client=summon