Microplane Model M7 for Plain Concrete. I: Formulation
AbstractMathematical modeling of the nonlinear triaxial behavior and damage of such a complex material as concrete has been a long-standing challenge in which progress has been made only in gradual increments. The goal of this study is a realistic and robust material model for explicit finite-elemen...
Saved in:
Published in | Journal of engineering mechanics Vol. 139; no. 12; pp. 1714 - 1723 |
---|---|
Main Authors | , |
Format | Journal Article Publication |
Language | English |
Published |
American Society of Civil Engineers
01.12.2013
American Society of Civil Engineers (ASCE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | AbstractMathematical modeling of the nonlinear triaxial behavior and damage of such a complex material as concrete has been a long-standing challenge in which progress has been made only in gradual increments. The goal of this study is a realistic and robust material model for explicit finite-element programs for concrete structures that computes the stress tensor from the given strain tensor and some history variables. The microplane models, which use a constitutive equation in a vectorial rather than tensorial form and are semimultiscale by virtue of capturing interactions among phenomena of different orientation, can serve this goal effectively. This paper presents a new concrete microplane model, M7, which achieves this goal much better than the previous versions M1–M6 developed at Northwestern University since 1985. The basic mathematical structure of M7 is logically correlated to thermodynamic potentials for the elastic regime, the tensile and compressive damage regimes, and the frictional slip regime. Given that the volumetric-deviatoric (V-D) split of strains is inevitable for distinguishing between compression failures at low and high confinement, the key idea is to apply the V-D split only to the microplane compressive stress-strain boundaries (or strain-dependent yield limits), the sum of which is compared with the total normal stress from the microplane constitutive relation. This avoids the use of the V-D split of the elastic strains and of the tensile stress-strain boundary, which caused various troubles in M3–M6 such as excessive lateral strains and stress locking in far postpeak uniaxial extension, poor representation of unloading and loading cycles, and inability to represent high dilatancy under postpeak compression in lower-strength concretes. Moreover, the differences between high hydrostatic compression and compressive uniaxial strain are accurately captured by considering the compressive volumetric boundary as dependent on the principal strain difference. The model is verified extensively in the companion paper. |
---|---|
AbstractList | Mathematical modeling of the nonlinear triaxial behavior and damage of such a complexmaterial as concrete has been a long-standing
challenge in which progress has been made only in gradual increments. The goal of this study is a realistic and robust material model for explicit
finite-element programs for concrete structures that computes the stress tensor from the given strain tensor and some history variables. Themicroplanemodels,
which use a constitutive equation in a vectorial rather than tensorial form and are semimultiscale by virtue of capturing interactions
among phenomena of different orientation, can serve this goal effectively. This paper presents a new concrete microplane model, M7, which
achieves this goal much better than the previous versions M1–M6 developed at Northwestern University since 1985. The basic mathematical
structure of M7 is logically correlated to thermodynamic potentials for the elastic regime, the tensile and compressive damage regimes, and the
frictional slip regime.Given that the volumetric-deviatoric (V-D) split of strains is inevitable for distinguishing between compression failures at low
and high confinement, the key idea is to apply the V-Dsplit only to the microplane compressive stress-strain boundaries (or strain-dependent yield
limits), the sumof which is compared with the total normal stress from the microplane constitutive relation. This avoids the use of the V-D split of
the elastic strains and of the tensile stress-strain boundary, which caused various troubles in M3–M6 such as excessive lateral strains and stress
locking in far postpeak uniaxial extension, poor representation of unloading and loading cycles, and inability to represent high dilatancy under
postpeak compression in lower-strength concretes. Moreover, the differences between high hydrostatic compression and compressive uniaxial
strain are accurately captured by considering the compressive volumetric boundary as dependent on the principal strain difference. The model is
verified extensively in the companion paper. Mathematical modeling of the nonlinear triaxial behavior and damage of such a complex material as concrete has been a long-standing challenge in which progress has been made only in gradual increments. The goal of this study is a realistic and robust material model for explicit finite element programs for concrete structures that computes the stress tensor from the given strain tensor and some history variables. The microplane models, which use a constitutive equation in a vectorial rather than tensorial form and are semi-multiscale by virtue of capturing interactions among phenomena of different orientation, can serve this goal effectively. Presented is a new concrete microplane model M7 which achieves this goal much better than the previous versions M1-M6 developed at Northwestern since 1985. The basic mathematical structure of M7 is logically correlated to thermodynamic potentials for the elastic regime, the tensile and compressive damage regimes, and the frictional slip regime. Given that the volumetric-deviatoric (V-D) split of strains is inevitable for distinguishing between compression failures at low and high confinement, the key idea is to apply the V-D split only to the microplane compressive stress-strain boundaries (or strain-dependent yield limits), the sum of which is compared to the total normal stress from the microplane constitutive relation. This avoids the use of elastic V-D split which caused in M3-M6 various troubles such as excessive lateral strains and stress locking in far postpeak uniaxial extension, poor representation of unloading and load cycles, and inability to represent high dilatancy under postpeak compression in lower-strength concretes. Moreover, the differences between high hydrostatic compression and compressive uniaxial strain are accurately captured by considering the compressive volumetric boundary to depend on the principal strain difference. The fits of test data are presented in Part II which follows. AbstractMathematical modeling of the nonlinear triaxial behavior and damage of such a complex material as concrete has been a long-standing challenge in which progress has been made only in gradual increments. The goal of this study is a realistic and robust material model for explicit finite-element programs for concrete structures that computes the stress tensor from the given strain tensor and some history variables. The microplane models, which use a constitutive equation in a vectorial rather than tensorial form and are semimultiscale by virtue of capturing interactions among phenomena of different orientation, can serve this goal effectively. This paper presents a new concrete microplane model, M7, which achieves this goal much better than the previous versions M1–M6 developed at Northwestern University since 1985. The basic mathematical structure of M7 is logically correlated to thermodynamic potentials for the elastic regime, the tensile and compressive damage regimes, and the frictional slip regime. Given that the volumetric-deviatoric (V-D) split of strains is inevitable for distinguishing between compression failures at low and high confinement, the key idea is to apply the V-D split only to the microplane compressive stress-strain boundaries (or strain-dependent yield limits), the sum of which is compared with the total normal stress from the microplane constitutive relation. This avoids the use of the V-D split of the elastic strains and of the tensile stress-strain boundary, which caused various troubles in M3–M6 such as excessive lateral strains and stress locking in far postpeak uniaxial extension, poor representation of unloading and loading cycles, and inability to represent high dilatancy under postpeak compression in lower-strength concretes. Moreover, the differences between high hydrostatic compression and compressive uniaxial strain are accurately captured by considering the compressive volumetric boundary as dependent on the principal strain difference. The model is verified extensively in the companion paper. |
Author | Caner, Ferhun C Bažant, Zdeněk P |
Author_xml | – sequence: 1 givenname: Ferhun C surname: Caner fullname: Caner, Ferhun C email: ferhun.caner@upc.edu organization: Univ. Politecnica de Catalunya Northwestern Univ. Associate Professor, Institute of Energy Technologies, School of Industrial Engineering, , Campus Sud, 08028 Barcelona, ; presently, Visiting Scholar, Dept. of Civil and Environmental Engineering, , Evanston, IL 60208. E-mail – sequence: 2 givenname: Zdeněk P surname: Bažant fullname: Bažant, Zdeněk P organization: Northwestern Univ. Distinguished McCormick Institute Professor and W. P. Murphy Professor of Civil Engineering, Mechanical Engineering, and Materials Science, , Evanston, IL 60208 (corresponding author). E-mail |
BookMark | eNp1kNFKwzAUhoNMcJu-Q_FqXrQmTZs0uxuj08GKgnodztJT6OiambQXvr0tG_PKQPg5h3w_5JuRSWtbJOSR0YhRwZ4Xq491_pQXEVMJD2WWqYgOJ5X0hkyvuwmZUsl5qLhSd2Tm_YFSlgglpkQUtXH21ECLQWFLbIJCBpV1wXsDdRusbWscdhgF22Wwse7YN9DVtr0ntxU0Hh8uOSdfm_xz_Rru3l6269UuBC5VF6bAJJZJQkWa0kxQZeI9UkwAyj3DrOIUMsaMGlJBWabGIGdKVGUFHMo45nPCzr3G90Y7NOgMdNpC_TeMN6Yy1nEcK8kGZnFmTs5-9-g7fay9wWb8o-29ZplIUsFSJYany0u9s947rPTJ1UdwP5pRPQrWehSs80KPMvUoU18ED7A4wzC064PtXTuouJL_g7-Mr3-Y |
Cites_doi | 10.1061/(ASCE)0733-9399(2005)131:1(41) 10.1061/(ASCE)0899-1561(1993)5:3(372) 10.1061/(ASCE)0733-9399(2003)129:12(1439) 10.1016/0022-5096(71)90010-X 10.1061/(ASCE)0733-9399(1985)111:4(559) 10.1115/1.3097329 10.1016/0022-5096(72)90017-8 10.1061/(ASCE)EM.1943-7889.0000254 10.1061/(ASCE)0733-9399(2000)126:9(944) 10.1061/(ASCE)0733-9399(2000)126:9(954) 10.1115/1.2744036 10.1061/(ASCE)0733-9399(1988)114:10(1672) 10.1002/zamm.19860660108 10.1061/(ASCE)0733-9399(1988)114:10(1689) 10.1061/(ASCE)0733-9445(1984)110:9(2015) 10.1201/b10546-11 10.1615/IntJMultCompEng.v8.i1.50 10.1061/(ASCE)0733-9399(2002)128:1(24) 10.1061/(ASCE)0733-9399(2005)131:1(31) 10.1016/j.cemconcomp.2011.02.010 10.1016/j.cemconcomp.2011.02.011 10.1061/(ASCE)0733-9399(1996)122:3(245) 10.1016/S0020-7683(96)00238-7 10.1016/S0020-7683(00)00212-2 10.1115/1.4003102 10.1061/(ASCE)0899-1561(1993)5:3(394) 10.1061/(ASCE)EM.1943-7889.0000571 10.1016/0022-5096(77)90001-1 10.1016/S0749-6419(98)00018-7 10.1061/(ASCE)0733-9399(2002)128:12(1304) |
ContentType | Journal Article Publication |
Contributor | Universitat Politècnica de Catalunya. Institut de Tècniques Energètiques |
Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Institut de Tècniques Energètiques |
Copyright | 2013 American Society of Civil Engineers. Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es |
Copyright_xml | – notice: 2013 American Society of Civil Engineers. – notice: Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a> |
DBID | AAYXX CITATION 7TB 8FD F28 FR3 KR7 XX2 |
DOI | 10.1061/(ASCE)EM.1943-7889.0000570 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Recercat |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1943-7889 |
EndPage | 1723 |
ExternalDocumentID | oai_recercat_cat_2072_222971 10_1061__ASCE_EM_1943_7889_0000570 10_1061_ASCE_EM_1943_7889_0000570 |
GroupedDBID | -0O 02 0O 0R 29K 4.4 4S 5GY AAIKC ABBOT ABDBF ABFLS ABPTK ACDCL ACIWK ACNET ACVYA ADZKS AENEX ALMA_UNASSIGNED_HOLDINGS ARCSS ARKUK ASUFR CS3 D-I E.L E70 EAD EAP EAS EBS EDO EJD EMI EMK EST ESX GQVBS HZ H~9 I-F L7B O9- O~X P2P RAC RNS RXW TAE TAF TN5 TUS X -~X .4S .DC 0R~ 2FS 6TJ AAELQ AAMNW AAYOK AAYXX ABDPE ABEFU ABFSI ACGFO ACKIV ACUHS ADNWM ADVLX AFFNX AI. AIRRX ALNAR CITATION HZ~ VH1 WHG XSW ZY4 ~02 ~A~ 7TB 8FD F28 FR3 KR7 XX2 |
ID | FETCH-LOGICAL-a379t-5a17ed44065508609c2be0e4aadb1e8f30a811c930a9add5cce3196fdfa3ad223 |
ISSN | 0733-9399 |
IngestDate | Fri Aug 29 12:39:24 EDT 2025 Fri Jul 11 05:50:34 EDT 2025 Tue Jul 01 00:24:00 EDT 2025 Tue Jan 05 18:51:37 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a379t-5a17ed44065508609c2be0e4aadb1e8f30a811c930a9add5cce3196fdfa3ad223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://recercat.cat/handle/2072/222971 |
PQID | 1864561596 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | csuc_recercat_oai_recercat_cat_2072_222971 proquest_miscellaneous_1864561596 crossref_primary_10_1061__ASCE_EM_1943_7889_0000570 asce_journals_10_1061_ASCE_EM_1943_7889_0000570 |
ProviderPackageCode | GQVBS ABBOT RAC ACNET ARKUK ADZKS -0O E70 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of engineering mechanics |
PublicationYear | 2013 |
Publisher | American Society of Civil Engineers American Society of Civil Engineers (ASCE) |
Publisher_xml | – name: American Society of Civil Engineers – name: American Society of Civil Engineers (ASCE) |
References | Cusatis, G.; Beghini, H.; Bažant, Z. P. 2008; 75 Cusatis, G.; Pelessone, D.; Mencarelli, A. 2011b; 33 Bažant, Z.; Gambarova, P. 1984; 110 Bažant, Z. P.; Caner, F. C. 2005a; 131 Bažant, Z. P.; Prat, P. C. 1988a; 114 Bažant, Z. P.; Kim, J.-J. H.; Brocca, M. 1999; 96 Bažant, Z. P.; Oh, B.-H. 1986; 66 Asaro, R. J.; Rice, J. R. 1977; 25 Caner, F. C.; Bažant, Z. P. 2000; 126 Hasegawa, T.; Bažant, Z. P. 1993a; 5 Bažant, Z. P.; Prat, P. C. 1988b; 114 Caner, F. C.; Bažant, Z. P. 2013; 139 Cusatis, G.; Bažant, Z. P.; Cedolin, L. 2003; 129 Bažant, Z. P.; Oh, B.-H. 1985; 111 Bažant, Z. P.; Caner, F. C. 2005b; 131 Brocca, M.; Bažant, Z. P. 2000; 53 Caner, F. C.; Bažant, Z. P.; Hoover, C.; Waas, A.; Shahwan, K. 2011; 133 Bažant, Z.; Yu, Q. 2011; 137 Butler, G. C.; McDowell, D. L. 1998; 14 Rice, J. 1971; 19 Bažant, Z. P.; Caner, F. C.; Carol, I.; Adley, M. D.; Akers, S. A. 2000; 126 Carol, I.; Jirásek, M.; Bažant, Z. P. 2001; 38 Caner, F. C.; Bažant, Z. P. 2002; 128 Caner, F. C.; Bažant, Z. P.; Červenka, J. 2002; 128 Cusatis, G.; Mencarelli, A.; Pelessone, D.; Baylot, J. T. 2011a; 33 Bažant, Z. P.; Xiang, Y.; Prat, P. C. 1996; 122 Hasegawa, T.; Bažant, Z. P. 1993b; 5 Carol, I.; Bažant, Z. P. 1997; 34 Hill, R.; Rice, J. R. 1972; 20 Bažant, Z. P.; Cedolin, L. 1991 e_1_3_3_30_1 Bažant Z. P. (e_1_3_3_12_1) 1999; 96 Jirásek M. (e_1_3_3_38_1) 2002 Fung Y. C. (e_1_3_3_34_1) 1968 e_1_3_3_18_1 e_1_3_3_17_1 e_1_3_3_39_1 e_1_3_3_19_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_13_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_31_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_9_1 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_28_1 Batdorf S. (e_1_3_3_3_1) 1949 e_1_3_3_25_1 e_1_3_3_24_1 e_1_3_3_27_1 e_1_3_3_26_1 e_1_3_3_21_1 e_1_3_3_2_1 e_1_3_3_20_1 Stroud A. H. (e_1_3_3_40_1) 1971 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_4_1 e_1_3_3_22_1 |
References_xml | – volume: 53 start-page: 265 year: 2000 end-page: 281 article-title: Microplane constitutive model and metal plasticity publication-title: Appl. Mech. Rev. – volume: 139 start-page: 1724 year: 2013 end-page: 1735 article-title: Microplane model M7 for plain concrete. II: Calibration and verification publication-title: J. Eng. Mech. – volume: 126 start-page: 954 year: 2000 end-page: 961 article-title: Microplane model M4 for concrete. II: Algorithm and calibration publication-title: J. Eng. Mech. – volume: 133 year: 2011 article-title: Microplane model for fracturing damage of triaxially braided fiber-polymer composites publication-title: J. Eng. Mater. Technol. – volume: 114 start-page: 1689 year: 1988b end-page: 1702 article-title: Microplane model for brittle plastic material: II. Verification publication-title: J. Eng. Mech. – volume: 128 start-page: 24 year: 2002 end-page: 33 article-title: Vertex effect in strain-softening concrete at rotating principal axes publication-title: J. Eng. Mech. – volume: 137 start-page: 580 year: 2011 end-page: 588 article-title: Size effect testing of cohesive fracture parameters and non-uniqueness of work-of-fracture method publication-title: J. Eng. Mech. – volume: 33 start-page: 891 year: 2011a end-page: 905 article-title: Lattice discrete particle model (LDPM) for failure behavior of concrete. II: Calibration and validation publication-title: Cement Concr. Compos. – volume: 126 start-page: 944 year: 2000 end-page: 953 article-title: Microplane model M4 for concrete: I. Formulation with work-conjugate deviatoric stress publication-title: J. Eng. Mech. – year: 1991 article-title: Stability of structures: Elastic, inelastic, fracture and damage theories, Oxford University Press, New York. – volume: 20 start-page: 401 year: 1972 end-page: 413 article-title: Constitutive analysis of elastic-plastic crystal at arbitrary strain publication-title: J. Mech. Phys. Solids – volume: 128 start-page: 1304 year: 2002 end-page: 1313 article-title: Lateral confinement needed to suppress softening of concrete in compression publication-title: J. Eng. Mech. – volume: 111 start-page: 559 year: 1985 end-page: 582 article-title: Microplane model for progressive fracture of concrete and rock publication-title: J. Eng. Mech. – volume: 66 start-page: 37 year: 1986 end-page: 49 article-title: Efficient numerical integration on the surface of a sphere publication-title: Z. Angew. Math. Mech. – volume: 131 start-page: 31 year: 2005a end-page: 40 article-title: Microplane model M5 with kinematic and static constraints for concrete fracture and anelasticity. I. Theory publication-title: J. Eng. Mech. – volume: 5 start-page: 394 year: 1993b end-page: 410 article-title: Nonlocal microplane concrete model with rate effect and load cycles. II: Application and verification publication-title: J. Mater. Civ. Eng. – volume: 38 start-page: 2921 year: 2001 end-page: 2931 article-title: A thermodynamically consistent approach to microplane theory. Part I. Free energy and consistent microplane stresses publication-title: Int. J. Solids Struct. – volume: 19 start-page: 433 year: 1971 end-page: 455 article-title: Inelastic constitutive relations for solids: An internal variable theory and its application to metal plasticity publication-title: J. Mech. Phys. Solids – volume: 122 start-page: 245 year: 1996 end-page: 254 article-title: Microplane model for concrete. I. Stress-strain boundaries and finite strain publication-title: J. Eng. Mech. – volume: 129 start-page: 1439 year: 2003 end-page: 1448 article-title: Confinement–shear lattice model for concrete damage in tension and compression: I. Theory publication-title: J. Eng. Mech. – volume: 131 start-page: 41 year: 2005b end-page: 47 article-title: Microplane model M5 with kinematic and static constraints for concrete fracture and anelasticity. II. Computation publication-title: J. Eng. Mech. – volume: 96 start-page: 580 year: 1999 end-page: 592 article-title: Finite strain tube-squash test of concrete at high pressures and shear angles up to 70 degrees publication-title: ACI Mater. J. – volume: 14 start-page: 703 year: 1998 end-page: 717 article-title: Polycrystal constraint and grain subdivision publication-title: Int. J. Plast. – volume: 5 start-page: 372 year: 1993a end-page: 410 article-title: Nonlocal microplane concrete model with rate effect and load cycles. I: General formulation publication-title: J. Mater. Civ. Eng. – volume: 110 start-page: 2015 year: 1984 end-page: 2035 article-title: Crack shear in concrete: Crack band microplane model publication-title: J. Struct. Eng. – volume: 25 start-page: 309 year: 1977 end-page: 338 article-title: Strain localization in ductile single crystals publication-title: J. Mech. Phys. Solids – volume: 114 start-page: 1672 year: 1988a end-page: 1688 article-title: Microplane model for brittle plastic material: I. Theory publication-title: J. Eng. Mech. – volume: 75 year: 2008 article-title: Spectral stiffness microplane model for quasi-brittle composite laminates—Part I: Theory publication-title: J. Appl. Mech. – volume: 34 start-page: 3807 year: 1997 end-page: 3835 article-title: Damage and plasticity in microplane theory publication-title: Int. J. Solids Struct. – volume: 33 start-page: 881 year: 2011b end-page: 890 article-title: Lattice discrete particle model (LDPM) for failure behavior of concrete. I: Theory publication-title: Cement Concr. Compos. – ident: e_1_3_3_9_1 doi: 10.1061/(ASCE)0733-9399(2005)131:1(41) – ident: e_1_3_3_35_1 doi: 10.1061/(ASCE)0899-1561(1993)5:3(372) – ident: e_1_3_3_30_1 doi: 10.1061/(ASCE)0733-9399(2003)129:12(1439) – ident: e_1_3_3_39_1 doi: 10.1016/0022-5096(71)90010-X – ident: e_1_3_3_14_1 doi: 10.1061/(ASCE)0733-9399(1985)111:4(559) – ident: e_1_3_3_20_1 doi: 10.1115/1.3097329 – ident: e_1_3_3_37_1 doi: 10.1016/0022-5096(72)90017-8 – ident: e_1_3_3_24_1 – ident: e_1_3_3_6_1 doi: 10.1061/(ASCE)EM.1943-7889.0000254 – ident: e_1_3_3_10_1 doi: 10.1061/(ASCE)0733-9399(2000)126:9(944) – ident: e_1_3_3_22_1 doi: 10.1061/(ASCE)0733-9399(2000)126:9(954) – ident: e_1_3_3_13_1 – volume-title: Inelastic analysis of structures year: 2002 ident: e_1_3_3_38_1 – ident: e_1_3_3_31_1 doi: 10.1115/1.2744036 – ident: e_1_3_3_16_1 doi: 10.1061/(ASCE)0733-9399(1988)114:10(1672) – ident: e_1_3_3_15_1 doi: 10.1002/zamm.19860660108 – ident: e_1_3_3_17_1 doi: 10.1061/(ASCE)0733-9399(1988)114:10(1689) – ident: e_1_3_3_5_1 doi: 10.1061/(ASCE)0733-9445(1984)110:9(2015) – ident: e_1_3_3_18_1 doi: 10.1201/b10546-11 – ident: e_1_3_3_7_1 doi: 10.1615/IntJMultCompEng.v8.i1.50 – ident: e_1_3_3_26_1 doi: 10.1061/(ASCE)0733-9399(2002)128:1(24) – ident: e_1_3_3_8_1 doi: 10.1061/(ASCE)0733-9399(2005)131:1(31) – volume-title: NACA Technical Note 1871 year: 1949 ident: e_1_3_3_3_1 – ident: e_1_3_3_32_1 doi: 10.1016/j.cemconcomp.2011.02.010 – ident: e_1_3_3_33_1 doi: 10.1016/j.cemconcomp.2011.02.011 – ident: e_1_3_3_19_1 doi: 10.1061/(ASCE)0733-9399(1996)122:3(245) – ident: e_1_3_3_28_1 doi: 10.1016/S0020-7683(96)00238-7 – ident: e_1_3_3_29_1 doi: 10.1016/S0020-7683(00)00212-2 – ident: e_1_3_3_27_1 doi: 10.1115/1.4003102 – volume-title: Approximate calculation of multiple integrals year: 1971 ident: e_1_3_3_40_1 – ident: e_1_3_3_36_1 doi: 10.1061/(ASCE)0899-1561(1993)5:3(394) – ident: e_1_3_3_4_1 – ident: e_1_3_3_25_1 doi: 10.1061/(ASCE)EM.1943-7889.0000571 – ident: e_1_3_3_2_1 doi: 10.1016/0022-5096(77)90001-1 – ident: e_1_3_3_21_1 doi: 10.1016/S0749-6419(98)00018-7 – ident: e_1_3_3_23_1 doi: 10.1061/(ASCE)0733-9399(2002)128:12(1304) – volume: 96 start-page: 580 issue: 5 year: 1999 ident: e_1_3_3_12_1 article-title: Finite strain tube-squash test of concrete at high pressures and shear angles up to 70 degrees publication-title: ACI Mater. J. – volume-title: Foundations of solid mechanics year: 1968 ident: e_1_3_3_34_1 – ident: e_1_3_3_11_1 |
SSID | ssj0014696 |
Score | 2.4891207 |
Snippet | AbstractMathematical modeling of the nonlinear triaxial behavior and damage of such a complex material as concrete has been a long-standing challenge in which... Mathematical modeling of the nonlinear triaxial behavior and damage of such a complex material as concrete has been a long-standing challenge in which progress... Mathematical modeling of the nonlinear triaxial behavior and damage of such a complexmaterial as concrete has been a long-standing challenge in which progress... |
SourceID | csuc proquest crossref asce |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1714 |
SubjectTerms | Algorismes Algorithms Aplicacions de la informàtica Aplicacions informàtiques a la física i l‘enginyeria Boundaries Compressive properties Concrete Concretes Constitutive models Constitutive relationships Cracking Damage Edificació Formigó Inelasticity Informàtica Materials de construcció Mathematical analysis Mathematical models Strain Stresses Technical Papers Àrees temàtiques de la UPC |
Title | Microplane Model M7 for Plain Concrete. I: Formulation |
URI | http://ascelibrary.org/doi/abs/10.1061/(ASCE)EM.1943-7889.0000570 https://www.proquest.com/docview/1864561596 https://recercat.cat/handle/2072/222971 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wIPiE9RBihIVAKqdLGd2A5vTWm1IQUhsUkTL5aTOGKi66Y25YEH_nbu8tUwysd4aNpEOtfxnc-_s--DkBc2kWnq5cZVeRC4Pk1DVwnhuwzhsbKSM4rByfF7cXjivzsNTnu9793okiIZp992xpX8D1fhGfAVo2Svwdm2UXgAv4G_cAUOw_WfeByjN90luquWNc0Wo1iWboMfFqYK5gNIWNjx6Ajt_jmg07pW128Qqd3mJhydWwwJ7rjCT00dGjO3q8-b5XZ3NTLDaTCMZqbKYPAJFRkg1DD6UseO1XsKlF_1z2gOixrPUfQMOft6tmiTJHY3EiXnbsirMkdjW6nR0Ofopxj-pGerrEWNQLGO2sQq7J0lGEAV36neAXwATwB6Tz5OZ0MWzuJx-1dlJsqgqkJyJYV2edAuqEYqPYs10mik0TXNDbLHwMwAPbk3id5G8_Ycyhdlhbf2HZu0tYIevMTWXu3qAazuZo3mTgfp9NP1Jv1lvS9BzPEdcrvmtTOpROku6dnlPXKrk5PyPhFboXJKoXJi6YBQOaVQOa1QOUdvnI5IPSAn89nx9NCti2u4hsuwcANDpc18wHNgoyrhhSlLrGd9Y7KEWpVzzygKUxe-Q1gDgzS1qK3zLDfcZAAqH5L-8mJpHxGH5TKjLGEqSwTYv0L5CU_yzGQqtxQaHZADHA9dz5y1_is_BoQ3Q6cvq6wrLdGfqF7jKGuACnaVmkJj6vT2Bj_Mk0xjBXtJB-R5wwsNGhWPyWBgLzbQOyXQqghC8fjaHd8nN8v5VHrEPiH9YrWxTwG1FsmzWrR-AOUsh74 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microplane+Model+M7+for+Plain+Concrete.+I%3A+Formulation&rft.jtitle=Journal+of+engineering+mechanics&rft.au=Caner%2C+Ferhun+C&rft.au=Ba%C5%BEant%2C+Zden%C4%9Bk+P&rft.date=2013-12-01&rft.pub=American+Society+of+Civil+Engineers&rft.issn=0733-9399&rft.eissn=1943-7889&rft.volume=139&rft.issue=12&rft.spage=1714&rft.epage=1723&rft_id=info:doi/10.1061%2F%28ASCE%29EM.1943-7889.0000570&rft.externalDocID=10_1061_ASCE_EM_1943_7889_0000570 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-9399&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-9399&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-9399&client=summon |