Robust Prediction of the MASCOT Score for an Improved Quality Assessment in Mass Spectrometric Proteomics
Protein identification by tandem mass spectrometry is based on the reliable processing of the acquired data. Unfortunately, the generation of a large number of poor quality spectra is commonly observed in LC-MS/MS, and the processing of these mostly noninformative spectra with its associated costs s...
Saved in:
Published in | Journal of proteome research Vol. 7; no. 9; pp. 3708 - 3717 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.09.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Protein identification by tandem mass spectrometry is based on the reliable processing of the acquired data. Unfortunately, the generation of a large number of poor quality spectra is commonly observed in LC-MS/MS, and the processing of these mostly noninformative spectra with its associated costs should be avoided. We present a continuous quality score that can be computed very quickly and that can be considered an approximation of the MASCOT score in case of a correct identification. This score can be used to reject low quality spectra prior to database identification, or to draw attention to those spectra that exhibit a (supposedly) high information content, but could not be identified. The proposed quality score can be calibrated automatically on site without the need for a manually generated training set. When this score is turned into a classifier and when features are used that are independent of the instrument, the proposed approach performs equally to previously published classifiers and feature sets and also gives insights into the behavior of the MASCOT score. |
---|---|
AbstractList | Protein identification by tandem mass spectrometry is based on the reliable processing of the acquired data. Unfortunately, the generation of a large number of poor quality spectra is commonly observed in LC-MS/MS, and the processing of these mostly noninformative spectra with its associated costs should be avoided. We present a continuous quality score that can be computed very quickly and that can be considered an approximation of the MASCOT score in case of a correct identification. This score can be used to reject low quality spectra prior to database identification, or to draw attention to those spectra that exhibit a (supposedly) high information content, but could not be identified. The proposed quality score can be calibrated automatically on site without the need for a manually generated training set. When this score is turned into a classifier and when features are used that are independent of the instrument, the proposed approach performs equally to previously published classifiers and feature sets and also gives insights into the behavior of the MASCOT score. |
Author | Kirchner, Marc Steen, Judith Jebanathirajah Steen, Hanno Monigatti, Flavio Patterson, Thomas Menze, Bjoern H Hamprecht, Fred A Koenig, Thomas Parker, Kenneth C |
Author_xml | – sequence: 1 givenname: Thomas surname: Koenig fullname: Koenig, Thomas – sequence: 2 givenname: Bjoern H surname: Menze fullname: Menze, Bjoern H – sequence: 3 givenname: Marc surname: Kirchner fullname: Kirchner, Marc – sequence: 4 givenname: Flavio surname: Monigatti fullname: Monigatti, Flavio – sequence: 5 givenname: Kenneth C surname: Parker fullname: Parker, Kenneth C – sequence: 6 givenname: Thomas surname: Patterson fullname: Patterson, Thomas – sequence: 7 givenname: Judith Jebanathirajah surname: Steen fullname: Steen, Judith Jebanathirajah – sequence: 8 givenname: Fred A surname: Hamprecht fullname: Hamprecht, Fred A – sequence: 9 givenname: Hanno surname: Steen fullname: Steen, Hanno email: hanno.steen@childrens.harvard.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18707158$$D View this record in MEDLINE/PubMed |
BookMark | eNptkE1PAjEQQBuDkQ89-AdML5p4QNstpeyRED9IIKjgedNtZ2MJu8VO18i_dw2oF08zh5eXmdclrcpXQMg5ZzecJfx2GxRjI5l-HpEOl0L2RcpU62cfpaJNuohrxrhUTJyQNh8pprgcdYh78XmNkT4FsM5E5yvqCxrfgM7Hy8liRZfGB6CFD1RXdFpug_8AS59rvXFxR8eIgFhCFamr6Fwj0uUWTAy-hBicabw-gi-dwVNyXOgNwtlh9sjr_d1q8tifLR6mk_Gsr4VKY19wmYNMbMGZYVLkUhspLAwGhQYYWm5FoodKK5EAGyg5kDm3hWXWGmU1syB65GrvbU59rwFjVjo0sNnoCnyN2TCVCZOpaMDrPWiCRwxQZNvgSh12GWfZd9fst2vDXhykdV6C_SMPIRvgcg9og9na16FqfvxH9AUiwoJn |
CitedBy_id | crossref_primary_10_1016_j_copbio_2014_01_007 crossref_primary_10_1128_JB_06130_11 crossref_primary_10_1371_journal_pone_0176391 crossref_primary_10_1093_plcell_koad146 crossref_primary_10_1093_nar_gkac029 crossref_primary_10_1016_j_funbio_2019_11_008 crossref_primary_10_1016_j_aca_2022_339616 crossref_primary_10_1371_journal_pone_0028221 crossref_primary_10_1016_j_jprot_2017_10_008 crossref_primary_10_1089_vbz_2024_0018 crossref_primary_10_1016_j_micpath_2019_02_028 crossref_primary_10_1128_EC_00166_10 crossref_primary_10_21769_BioProtoc_4728 crossref_primary_10_3390_cells10112983 crossref_primary_10_1016_j_theriogenology_2019_05_036 crossref_primary_10_1007_s11356_017_8801_3 crossref_primary_10_7554_eLife_74322 crossref_primary_10_1186_s40169_015_0059_0 crossref_primary_10_1016_j_biocontrol_2019_104125 crossref_primary_10_1042_BCJ20190446 crossref_primary_10_1371_journal_pone_0286752 crossref_primary_10_1186_1477_5956_8_47 crossref_primary_10_18632_oncotarget_23531 crossref_primary_10_3390_fishes7030106 crossref_primary_10_1016_j_bbrep_2020_100762 crossref_primary_10_1007_s12079_023_00736_z crossref_primary_10_1016_j_jprot_2023_104950 crossref_primary_10_1126_scisignal_2005050 crossref_primary_10_1111_pbr_12049 crossref_primary_10_1099_mic_0_080952_0 crossref_primary_10_1007_s40009_016_0479_4 crossref_primary_10_1016_j_vetpar_2016_06_029 crossref_primary_10_1021_acs_analchem_5b04418 crossref_primary_10_1128_IAI_00542_20 crossref_primary_10_3389_fpls_2021_663576 crossref_primary_10_1186_1752_0509_7_S5_S8 crossref_primary_10_1080_01490451_2019_1695982 crossref_primary_10_1007_s10989_019_09878_4 crossref_primary_10_1002_pmic_200900668 crossref_primary_10_1016_j_jbc_2022_101788 crossref_primary_10_1038_nature13015 crossref_primary_10_1186_s12014_020_09289_4 crossref_primary_10_1016_j_chom_2020_01_015 crossref_primary_10_1016_j_foodcont_2018_03_038 crossref_primary_10_1172_JCI71472 crossref_primary_10_3390_ijms15057281 crossref_primary_10_1021_acs_jproteome_8b00384 crossref_primary_10_1038_s41598_022_24923_x crossref_primary_10_1111_j_1365_3083_2012_02677_x crossref_primary_10_1126_scitranslmed_aag1286 crossref_primary_10_1021_pr200698c crossref_primary_10_1093_chromsci_bms255 crossref_primary_10_1186_1477_5956_10_S1_S12 crossref_primary_10_1089_cmb_2018_0050 crossref_primary_10_1111_febs_12701 crossref_primary_10_1091_mbc_E23_03_0113 crossref_primary_10_1371_journal_pone_0023385 crossref_primary_10_1007_s00401_014_1290_2 crossref_primary_10_1016_j_jviromet_2014_11_014 crossref_primary_10_3390_ani12202850 crossref_primary_10_1111_1462_2920_13709 crossref_primary_10_1016_j_colsurfb_2018_05_018 crossref_primary_10_1007_s00253_014_6184_7 crossref_primary_10_1186_1471_2105_11_S6_S7 crossref_primary_10_1021_bm100477j crossref_primary_10_1371_journal_pgen_1005745 crossref_primary_10_1021_acs_analchem_1c00990 crossref_primary_10_1021_acsptsci_2c00043 crossref_primary_10_1134_S1068162011020129 crossref_primary_10_3389_fmicb_2018_01567 crossref_primary_10_1038_s41467_020_16321_6 crossref_primary_10_1016_j_schres_2019_07_025 crossref_primary_10_1039_D2MO00077F crossref_primary_10_1016_j_jchromb_2014_11_027 crossref_primary_10_1016_j_jprot_2018_11_011 crossref_primary_10_2174_0929866529666220328125151 crossref_primary_10_1074_mcp_O114_047035 crossref_primary_10_1002_pmic_200900326 crossref_primary_10_1038_ncomms6429 crossref_primary_10_3390_cancers15020412 crossref_primary_10_1002_pmic_200900727 crossref_primary_10_1021_acs_jproteome_7b00431 crossref_primary_10_1186_s12953_016_0100_2 crossref_primary_10_1371_journal_pone_0254296 crossref_primary_10_3390_proteomes9010002 crossref_primary_10_1515_amylase_2021_0004 crossref_primary_10_3945_an_115_010991 crossref_primary_10_1002_pmic_201500187 crossref_primary_10_1016_j_str_2022_03_003 crossref_primary_10_1007_s00216_016_9657_y crossref_primary_10_7554_eLife_50130 crossref_primary_10_1371_journal_pntd_0004099 crossref_primary_10_1021_acs_analchem_9b04855 crossref_primary_10_1039_D2AY01549H crossref_primary_10_1371_journal_pcbi_1004325 crossref_primary_10_1093_jxb_erab153 crossref_primary_10_1039_c3sc50826a crossref_primary_10_4155_bio_2023_0102 crossref_primary_10_1214_15_AOAS870 crossref_primary_10_3390_proteomes9010015 crossref_primary_10_1186_s12859_021_04159_8 crossref_primary_10_1093_nar_gkab1152 crossref_primary_10_7554_eLife_68058 crossref_primary_10_1039_C5CC00420A crossref_primary_10_1002_jms_1488 crossref_primary_10_1016_j_bbrc_2018_09_111 crossref_primary_10_1371_journal_ppat_1005186 crossref_primary_10_1016_j_chroma_2020_461047 crossref_primary_10_1242_jeb_093823 crossref_primary_10_1371_journal_pone_0048337 crossref_primary_10_1111_gtc_12304 crossref_primary_10_1016_j_jchromb_2011_08_028 crossref_primary_10_1093_bioinformatics_btu062 crossref_primary_10_3390_ijms232113198 crossref_primary_10_1016_j_bbagen_2018_08_022 crossref_primary_10_1007_s40502_018_0357_9 crossref_primary_10_1091_mbc_E20_01_0089 crossref_primary_10_1093_hmg_ddu309 crossref_primary_10_3168_jds_2016_11166 crossref_primary_10_1146_annurev_biodatasci_020722_044021 crossref_primary_10_1016_j_livsci_2012_07_018 crossref_primary_10_3389_fpls_2022_869178 crossref_primary_10_1016_j_ab_2010_05_017 crossref_primary_10_1016_j_jprot_2010_12_008 crossref_primary_10_1016_j_cub_2020_10_044 crossref_primary_10_1016_j_jtbi_2011_01_010 crossref_primary_10_1016_j_jprot_2010_08_009 crossref_primary_10_1021_pr501286b crossref_primary_10_1007_s00792_011_0422_z crossref_primary_10_1038_srep44906 crossref_primary_10_1186_s12866_020_01944_y crossref_primary_10_1590_1807_3107bor_2019_vol33_0043 crossref_primary_10_3390_molecules23061384 crossref_primary_10_1016_j_drudis_2013_07_008 crossref_primary_10_1021_acsinfecdis_2c00457 crossref_primary_10_1021_acs_jproteome_8b00239 crossref_primary_10_3390_cancers13153754 crossref_primary_10_3390_ijms23126410 |
Cites_doi | 10.1002/pmic.200500309 10.1074/mcp.T600050-MCP200 10.1016/S1044-0305(00)00097-0 10.1002/1615-9861(200104)1:5<651::AID-PROT651>3.0.CO;2-N 10.1021/ac025747h 10.1074/mcp.M400120-MCP200 10.1021/ac001196o 10.1016/S1044-0305(02)00352-5 10.1093/bioinformatics/bth947 10.1016/S0968-0004(00)01726-6 10.1021/ac950914h 10.1093/bioinformatics/bti829 10.1021/pr049844y 10.1021/pr025556v 10.1074/mcp.M600255-MCP200 10.1021/pr0255654 10.1023/A:1010933404324 10.1002/pmic.200300656 |
ContentType | Journal Article |
Copyright | Copyright © 2008 American Chemical Society |
Copyright_xml | – notice: Copyright © 2008 American Chemical Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1021/pr700859x |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Robust Prediction of the MASCOT Score |
EISSN | 1535-3907 |
EndPage | 3717 |
ExternalDocumentID | 10_1021_pr700859x 18707158 c487540075 |
Genre | Validation Studies Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F ZA5 --- 6TJ AAHBH ABJNI ABQRX ADHLV AFFNX AHGAQ CGR CUPRZ CUY CVF ECM EIF GGK NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a379t-315be52df10c053b5ac53de44faee6d1d32a67a732e047545b1dfd0ddc7da0de3 |
IEDL.DBID | ACS |
ISSN | 1535-3893 |
IngestDate | Fri Oct 25 02:28:31 EDT 2024 Fri Dec 06 02:18:57 EST 2024 Sat Sep 28 07:50:19 EDT 2024 Thu Aug 27 13:42:11 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | peptide identification random forest classification supervised learning regression |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a379t-315be52df10c053b5ac53de44faee6d1d32a67a732e047545b1dfd0ddc7da0de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 18707158 |
PQID | 69520593 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_69520593 crossref_primary_10_1021_pr700859x pubmed_primary_18707158 acs_journals_10_1021_pr700859x |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2008-09-01 |
PublicationDateYYYYMMDD | 2008-09-01 |
PublicationDate_xml | – month: 09 year: 2008 text: 2008-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of proteome research |
PublicationTitleAlternate | J. Proteome Res |
PublicationYear | 2008 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Keller A. (ref10/cit10) 2002; 74 ref3/cit3 Salmi J. (ref14/cit14) 2006; 22 Liaw A. (ref22/cit22) 2002; 2 Flikka K. (ref15/cit15) 2006; 6 (ref1/cit1a) 2001; 1 Moore R. (ref23/cit23) 2002; 13 Anderson D. C. (ref9/cit9) 2003; 2 Peng J. (ref24/cit24) 2003; 2 Shilov I. (ref19/cit19) 2007; 6 Choudhary J. S. (ref1/cit1) 2001; 1 ref20/cit20 Razumovskaya J. (ref8/cit8) 2004; 4 Hastie T. (ref16/cit16) 2003 Wisniewski J. R. (ref6/cit6) 2007; 6 Moore R. (ref11/cit11) 2000; 11 Xu M. (ref13/cit13) 2005; 4 Taylor J. A. (ref5/cit5) 2001; 73 Bern M. (ref12/cit12) 2004; 20 Breiman L. (ref17/cit17) 2001; 45 Menze B. H. (ref21/cit21) ref4/cit4 Sun W. (ref7/cit7) 2004; 3 Shevchenko A. (ref18/cit18) 1996; 68 Mann M. (ref2/cit2) 2001; 26 |
References_xml | – volume: 6 start-page: 2086 year: 2006 ident: ref15/cit15 publication-title: Proteomics doi: 10.1002/pmic.200500309 contributor: fullname: Flikka K. – ident: ref20/cit20 – volume: 6 start-page: 1638 year: 2007 ident: ref19/cit19 publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.T600050-MCP200 contributor: fullname: Shilov I. – volume: 1 start-page: 796 year: 2001 ident: ref1/cit1a publication-title: Proteomics – ident: ref4/cit4 – volume: 11 start-page: 422 year: 2000 ident: ref11/cit11 publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/S1044-0305(00)00097-0 contributor: fullname: Moore R. – volume: 1 start-page: 651 year: 2001 ident: ref1/cit1 publication-title: Proteomics doi: 10.1002/1615-9861(200104)1:5<651::AID-PROT651>3.0.CO;2-N contributor: fullname: Choudhary J. S. – volume: 74 start-page: 5383 year: 2002 ident: ref10/cit10 publication-title: Anal. Chem. doi: 10.1021/ac025747h contributor: fullname: Keller A. – volume: 3 start-page: 1194 year: 2004 ident: ref7/cit7 publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M400120-MCP200 contributor: fullname: Sun W. – volume: 73 start-page: 2594 year: 2001 ident: ref5/cit5 publication-title: Anal. Chem. doi: 10.1021/ac001196o contributor: fullname: Taylor J. A. – volume: 13 start-page: 378 year: 2002 ident: ref23/cit23 publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/S1044-0305(02)00352-5 contributor: fullname: Moore R. – volume: 20 start-page: i49−i54 year: 2004 ident: ref12/cit12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth947 contributor: fullname: Bern M. – ident: ref21/cit21 publication-title: Magn. Reson. Med. contributor: fullname: Menze B. H. – volume: 26 start-page: 54 year: 2001 ident: ref2/cit2 publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(00)01726-6 contributor: fullname: Mann M. – volume: 2 start-page: 18 year: 2002 ident: ref22/cit22 publication-title: R News contributor: fullname: Liaw A. – volume: 68 start-page: 850 year: 1996 ident: ref18/cit18 publication-title: Anal. Chem. doi: 10.1021/ac950914h contributor: fullname: Shevchenko A. – volume: 22 start-page: 400 year: 2006 ident: ref14/cit14 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti829 contributor: fullname: Salmi J. – volume: 4 start-page: 300 year: 2005 ident: ref13/cit13 publication-title: J. Proteome Res. doi: 10.1021/pr049844y contributor: fullname: Xu M. – volume-title: The Elements of Statistical Learning year: 2003 ident: ref16/cit16 contributor: fullname: Hastie T. – ident: ref3/cit3 – volume: 2 start-page: 43 year: 2003 ident: ref24/cit24 publication-title: J. Proteome Res. doi: 10.1021/pr025556v contributor: fullname: Peng J. – volume: 6 start-page: 72 year: 2007 ident: ref6/cit6 publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M600255-MCP200 contributor: fullname: Wisniewski J. R. – volume: 2 start-page: 137 year: 2003 ident: ref9/cit9 publication-title: J. Proteome Res. doi: 10.1021/pr0255654 contributor: fullname: Anderson D. C. – volume: 45 start-page: 5 year: 2001 ident: ref17/cit17 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 contributor: fullname: Breiman L. – volume: 4 start-page: 961 year: 2004 ident: ref8/cit8 publication-title: Proteomics doi: 10.1002/pmic.200300656 contributor: fullname: Razumovskaya J. |
SSID | ssj0015703 |
Score | 2.3804104 |
Snippet | Protein identification by tandem mass spectrometry is based on the reliable processing of the acquired data. Unfortunately, the generation of a large number of... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3708 |
SubjectTerms | Proteomics Tandem Mass Spectrometry - standards |
Title | Robust Prediction of the MASCOT Score for an Improved Quality Assessment in Mass Spectrometric Proteomics |
URI | http://dx.doi.org/10.1021/pr700859x https://www.ncbi.nlm.nih.gov/pubmed/18707158 https://search.proquest.com/docview/69520593 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS8MwFA5jPuiL98u8zKC-djZp0qyPYzqGMBHnYG8lt4IIraztg_56T9Z1Kjp9LWkI-ZJzvpOTfAehKyABKtSJ9XRCmcdkBHYQgh6PMclCK5x8iTvQH92Hwwm7m_JpA12uyOBTcv06E44XREAU16iAsNvxn_54mSpwElKVKCr3nPet5YO-_upcj86_u54VfHLuVwZb6KZ-nVNdJ3nplIXq6PefYo1_DXkbbS54Je5VC2EHNWy6i9b7dTm3PfT8mKkyL_DDzKVmHBw4SzDQPzzqjSGwx2MnaImBw2KZ4uqswRpcaWy84d5SwRM_p3gElBu70vWFUztwIv_Qb1ZY98Q530eTwe1Tf-gt6ix4MhBRAWaYK8upSYivYU8qLjUPjGUskdaGhpiAylBIEVDrMwGUSxGTGN8YLYz0jQ0OUDPNUnuEMJVBZIUMeFf5ADcA7eugy5kkLOHKyBZqAxDxYp_k8TwFTkm8nLEWuqgxgo9zvY3fGp3X6MUwiy7FIVOblXkcRpy6IoUtdFiB-tkJGCZBePf4vxGcoI36TohPTlGzmJX2DIhHodrzhfcB4B7Sgg |
link.rule.ids | 314,780,784,2765,27076,27924,27925,56738,56788 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1bS8MwFMeDzIf54v0yL1sQX6u9JM36OIYydRNxG_hWkiaFIbSytg_66T2nXTcVRV9LGw45Sc4_PcnvEHIBIkD5UWysKHaZxWQA6yBseizGJPONQHwJ_tAfPfiDKbt75s8LTA7ehQEjMmgpK5P4K7qAc_U6FygPAtCL6xxLVaIM6o-XGQMkSVVsVG5hEK4pQp8_xQgUZV8j0C-ysgwvN1tVnaLSsPJUyctlkavL6P0bs_F_lm-TzYXKpL1qWOyQNZPskma_Lu62R2ZPqSqynD7OMVGDzqFpTEEM0lFvDNt8Oka8JQVFS2VCqz8PRtOKuPFGe0ueJ50ldAQCnGIh-xzZB4j8h3bT3OCF52yfTG-uJ_2Btai6YElPBDksylwZ7urYsSOYoYrLiHvaMBZLY3ztaM-VvpDCc43NBAgw5ehY21pHQktbG--ANJI0MUeEutILjJAe7yobnA9utyOvy5l0WMyVli3Shg4LF7MmC8uEuOuEyx5rkfPaVfCwpG_89FKndmIIvYgJD5mYtMhCP-AulixskcPKt6tGYJkSDu8e_2VBhzQHk9EwHN4-3J-Qjfq0iO2ckkY-L8wZSJJctcux-AH1W9rv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT8MwDI4QSMAL9zGOLUK8Fnokzfo4DaZxDBBjEm9V0qTShNROa_cAvx67xzgEgtcqjSw7sb_EzmdCTgEEKD-KjRXFLrOYDMAPwqHHYkwy3wikL8EL_cGd3x-x62f-XB0U8S0MCJHBTFmRxMddPdFxxTDgnE-mAiFCAJhxiYOXxRKuTnc4zxogm1TJj8otDMQ1k9DnXzEKRdnXKPQLtCxCTG-d3M-FKypLXs5muTqL3r7xNv5f-g2yVqFN2imXxyZZMMkWWenWTd62yfgxVbMspw9TTNigkWgaUwCFdNAZwnGfDpHmkgKypTKh5Q2E0bRk3nilnTmvJx0ndABAnGJD-xw5EJD6H-ZNc4MPn7MdMupdPnX7VtV9wZKeCHJwzlwZ7urYsSPYqYrLiHvaMBZLY3ztaM-VvpDCc43NBAAx5ehY21pHQktbG2-XLCZpYvYJdaUXGCE93lY2LAIwvx15bc6kw2KutGyQJigtrHZPFhaJcdcJ5xprkJPaXPCxYOH4aVCrNmQIWsTEh0xMOstCP-Auti5skL3Svh-TgLsSDm8f_CVBiyw_XPTC26u7m0OyWheN2M4RWcynM3MMyCRXzWI5vgMqM91y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Prediction+of+the+MASCOT+Score+for+an+Improved+Quality+Assessment+in+Mass+Spectrometric+Proteomics&rft.jtitle=Journal+of+proteome+research&rft.au=Koenig%2C+Thomas&rft.au=Menze%2C+Bjoern+H&rft.au=Kirchner%2C+Marc&rft.au=Monigatti%2C+Flavio&rft.date=2008-09-01&rft.pub=American+Chemical+Society&rft.issn=1535-3893&rft.eissn=1535-3907&rft.volume=7&rft.issue=9&rft.spage=3708&rft.epage=3717&rft_id=info:doi/10.1021%2Fpr700859x&rft.externalDocID=c487540075 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-3893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-3893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-3893&client=summon |