The use of electromagnetic induction techniques in soils studies
Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; asse...
Saved in:
Published in | Geoderma Vol. 223-225; pp. 33 - 45 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.07.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales.
•We review the use of electromagnetic induction (EMI) techniques in soils studies.•EMI allows the rapid collection of large amounts of spatially-oriented data.•Diffuse boundaries between soil map units can be well characterized with EMI.•A wide range of soil properties can be characterized. |
---|---|
AbstractList | Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (EC sub(a)) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales. Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales. •We review the use of electromagnetic induction (EMI) techniques in soils studies.•EMI allows the rapid collection of large amounts of spatially-oriented data.•Diffuse boundaries between soil map units can be well characterized with EMI.•A wide range of soil properties can be characterized. Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales. |
Author | Brevik, Eric C. Doolittle, James A. |
Author_xml | – sequence: 1 givenname: James A. surname: Doolittle fullname: Doolittle, James A. email: jim.doolittle@lin.usda.gov organization: USDA-NRCS-NSSC, 11 Campus Boulevard, Suite 200, Newtown Square, PA 19073, United States – sequence: 2 givenname: Eric C. orcidid: 0000-0002-6004-0018 surname: Brevik fullname: Brevik, Eric C. email: Eric.Brevik@dickinsonstate.edu organization: Department of Natural Sciences, 291 Campus Drive, Dickinson State University, Dickinson, ND 58601, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28399768$$DView record in Pascal Francis |
BookMark | eNqFkU1LxDAQhoMouH78BelF8NKaSdqkBQ-K-AWCFz2HbDLVLN1Ek1Tw39uy6sHLnoYZnncY5jkguz54JOQEaAUUxPmqesVgMa51xSjUFYWKMrlDFtBKVgrWdLtkQSeylFTAPjlIaTW1kjK6IJfPb1iMCYvQFzigyTGs9avH7EzhvB1NdsEXGc2bdx8jpmlYpOCGVKQ8WofpiOz1ekh4_FMPycvtzfP1ffn4dPdwffVYai67XAJddrzjQkNvYSk0b1rT1lbUVhpqjZSNaPiylkvbgUHoLLUNl6bvhdTY1sAPydlm73sM8yFZrV0yOAzaYxiTgpYLITmjbDsqasYBoJHb0YZRLjiv2wk9_UF1Mnroo_bGJfUe3VrHL8Va3nVSzJzYcCaGlCL2fwhQNQtTK_UrTM3CFAU1CZuCF_-CxmU9_z9H7Ybt8ctNHCcLnw6jSsahN2hdnLwqG9y2Fd-9vbbf |
CODEN | GEDMAB |
CitedBy_id | crossref_primary_10_1016_j_compag_2022_107512 crossref_primary_10_1016_j_rineng_2024_101777 crossref_primary_10_1016_j_geoderma_2020_114291 crossref_primary_10_1007_s12665_016_6179_z crossref_primary_10_1016_j_atech_2024_100697 crossref_primary_10_1016_j_agwat_2019_02_045 crossref_primary_10_1016_j_quaint_2022_10_008 crossref_primary_10_2136_sssaj2014_11_0447 crossref_primary_10_3390_atmos13010073 crossref_primary_10_1016_j_geoderma_2020_114852 crossref_primary_10_3389_fsoil_2023_1290591 crossref_primary_10_3390_soilsystems4040061 crossref_primary_10_1002_fes3_52 crossref_primary_10_1002_hyp_13453 crossref_primary_10_1007_s42729_020_00367_y crossref_primary_10_1016_j_catena_2021_105190 crossref_primary_10_3390_applmech3030049 crossref_primary_10_5194_hess_27_4317_2023 crossref_primary_10_1016_j_geoderma_2024_116914 crossref_primary_10_1007_s40333_022_0052_6 crossref_primary_10_1016_j_geodrs_2020_e00336 crossref_primary_10_1109_LGRS_2017_2683400 crossref_primary_10_2136_vzj2016_12_0129 crossref_primary_10_1007_s12517_021_06557_x crossref_primary_10_1016_j_wasman_2022_03_007 crossref_primary_10_5897_AJAR2016_11088 crossref_primary_10_1007_s11356_023_29658_4 crossref_primary_10_5194_hess_22_1509_2018 crossref_primary_10_1016_j_trgeo_2025_101531 crossref_primary_10_1007_s11119_024_10191_4 crossref_primary_10_1016_j_geoderma_2014_04_020 crossref_primary_10_3389_fpls_2025_1512598 crossref_primary_10_1111_sum_12411 crossref_primary_10_1016_j_compag_2019_02_010 crossref_primary_10_1111_sum_12772 crossref_primary_10_3390_rs15081975 crossref_primary_10_1007_s11119_016_9435_z crossref_primary_10_1002_saj2_20153 crossref_primary_10_1016_j_foodchem_2019_01_012 crossref_primary_10_3390_agronomy6040057 crossref_primary_10_1016_j_geoderma_2015_11_020 crossref_primary_10_1016_j_scitotenv_2017_08_001 crossref_primary_10_3390_rs14236066 crossref_primary_10_1371_journal_pone_0153377 crossref_primary_10_1016_j_jhydrol_2015_07_023 crossref_primary_10_3389_fenvs_2022_883533 crossref_primary_10_3390_rs14133020 crossref_primary_10_1016_j_biosystemseng_2021_09_007 crossref_primary_10_1016_j_scitotenv_2017_02_136 crossref_primary_10_1016_j_geodrs_2024_e00795 crossref_primary_10_1016_j_gsd_2024_101169 crossref_primary_10_2136_sssaj2016_12_0432 crossref_primary_10_1007_s11119_021_09826_7 crossref_primary_10_1071_SR13305 crossref_primary_10_3390_s22041508 crossref_primary_10_1016_j_catena_2024_108520 crossref_primary_10_1016_j_jasrep_2018_04_005 crossref_primary_10_1016_j_jhydrol_2016_10_017 crossref_primary_10_1016_j_jhydrol_2024_130957 crossref_primary_10_3390_s22103882 crossref_primary_10_1016_j_jhydrol_2018_03_046 crossref_primary_10_1016_j_scitotenv_2016_10_224 crossref_primary_10_3390_rs8121022 crossref_primary_10_1007_s11356_017_1062_3 crossref_primary_10_3390_geosciences10110446 crossref_primary_10_3390_w14193049 crossref_primary_10_1016_j_scitotenv_2023_164957 crossref_primary_10_1016_j_jappgeo_2020_103965 crossref_primary_10_1071_SR22260 crossref_primary_10_1016_j_agwat_2023_108472 crossref_primary_10_5194_hess_21_495_2017 crossref_primary_10_1097_SS_0000000000000213 crossref_primary_10_1016_j_catena_2016_03_011 crossref_primary_10_1111_ejss_13010 crossref_primary_10_1007_s12665_015_4535_z crossref_primary_10_3390_geosciences10090349 crossref_primary_10_1016_j_jenvman_2021_114123 crossref_primary_10_3390_s17112540 crossref_primary_10_1016_j_geoderma_2020_114253 crossref_primary_10_23939_istcmtm2018_01_028 crossref_primary_10_1016_j_geoderma_2019_114084 crossref_primary_10_1029_2019GL082745 crossref_primary_10_1016_j_geoderma_2016_09_027 crossref_primary_10_1002_vzj2_20062 crossref_primary_10_1002_vzj2_20060 crossref_primary_10_1016_j_geoderma_2015_07_015 crossref_primary_10_1002_vzj2_20080 crossref_primary_10_3390_f16010086 crossref_primary_10_1007_s12665_024_11643_w crossref_primary_10_1007_s11104_019_04237_0 crossref_primary_10_1002_nsg_12159 crossref_primary_10_3390_soilsystems7040088 crossref_primary_10_1016_j_scitotenv_2024_172344 crossref_primary_10_1007_s00477_019_01667_1 crossref_primary_10_1007_s13593_022_00798_0 crossref_primary_10_1111_ejss_12390 crossref_primary_10_4236_as_2022_138058 crossref_primary_10_1016_j_compag_2016_11_013 crossref_primary_10_1016_j_catena_2016_07_023 crossref_primary_10_1016_j_geomorph_2024_109283 crossref_primary_10_2136_sssaj2017_10_0356 crossref_primary_10_1016_j_jappgeo_2020_103944 crossref_primary_10_3390_soilsystems8010011 crossref_primary_10_1016_j_scitotenv_2020_136510 crossref_primary_10_1080_1065657X_2020_1772906 crossref_primary_10_1144_qjegh2019_113 crossref_primary_10_3390_agriculture14091527 crossref_primary_10_1007_s12665_016_6361_3 crossref_primary_10_32389_JEEG22_007 crossref_primary_10_1016_j_jappgeo_2017_09_015 crossref_primary_10_2136_sssaj2017_09_0327 crossref_primary_10_1007_s12517_020_05620_3 crossref_primary_10_1117_1_JRS_12_036015 crossref_primary_10_3389_fgene_2023_1164935 crossref_primary_10_1016_j_scitotenv_2023_165503 crossref_primary_10_1016_j_biosystemseng_2016_03_011 crossref_primary_10_1007_s13157_023_01686_3 crossref_primary_10_1002_ldr_4205 crossref_primary_10_3390_app14219623 crossref_primary_10_1016_j_geoderma_2023_116419 crossref_primary_10_3390_su10082826 crossref_primary_10_1016_j_jhydrol_2017_03_067 crossref_primary_10_5194_soil_10_843_2024 crossref_primary_10_1088_1755_1315_1458_1_012013 crossref_primary_10_19047_0136_1694_2020_103_149_167 crossref_primary_10_3390_s19235280 crossref_primary_10_3390_w12030880 crossref_primary_10_53759_832X_JCIMS202402009 crossref_primary_10_1002_2015WR017016 crossref_primary_10_1016_j_jhydrol_2024_131161 crossref_primary_10_1371_journal_pone_0127996 crossref_primary_10_1016_j_scitotenv_2023_165730 crossref_primary_10_1093_gji_ggaa531 crossref_primary_10_1016_j_enggeo_2021_106125 crossref_primary_10_1002_vzj2_20099 crossref_primary_10_3390_rs15112932 crossref_primary_10_1002_vzj2_20097 crossref_primary_10_1016_j_biosystemseng_2016_07_002 crossref_primary_10_1007_s12665_021_09368_1 crossref_primary_10_3390_app131911107 crossref_primary_10_1002_arp_1814 crossref_primary_10_1007_s11368_024_03801_1 crossref_primary_10_1111_sum_12261 crossref_primary_10_5194_soil_1_117_2015 crossref_primary_10_1016_j_still_2023_105953 crossref_primary_10_1002_vzj2_20389 crossref_primary_10_1007_s11119_015_9423_8 crossref_primary_10_1016_j_earscirev_2021_103586 crossref_primary_10_1016_j_catena_2016_06_021 crossref_primary_10_1093_gji_ggad298 crossref_primary_10_1007_s13201_022_01619_1 crossref_primary_10_1016_j_catena_2016_10_005 crossref_primary_10_21285_2686_9993_2023_46_3_270_281 crossref_primary_10_3390_rs15071772 crossref_primary_10_1002_saj2_20799 crossref_primary_10_1016_j_jclepro_2016_11_154 crossref_primary_10_2136_vzj2014_10_0150 crossref_primary_10_3389_fsoil_2024_1346028 crossref_primary_10_3389_fenvs_2021_712831 crossref_primary_10_1016_j_advwatres_2023_104462 crossref_primary_10_1016_j_catena_2022_106395 crossref_primary_10_3390_rs12020239 crossref_primary_10_3390_agronomy12051019 crossref_primary_10_3390_rs14246243 crossref_primary_10_1007_s10712_020_09625_1 crossref_primary_10_3390_agriculture12060883 crossref_primary_10_1016_j_atech_2023_100330 crossref_primary_10_32389_JEEG20_001 crossref_primary_10_3390_agronomy8100224 crossref_primary_10_1016_j_catena_2016_09_018 crossref_primary_10_1016_j_geoderma_2018_07_047 crossref_primary_10_3390_w14071158 crossref_primary_10_1016_j_still_2018_08_007 crossref_primary_10_3390_w14071157 crossref_primary_10_1029_2023RG000804 crossref_primary_10_1016_j_scitotenv_2020_142030 crossref_primary_10_1016_j_geoderma_2020_114908 crossref_primary_10_1109_ACCESS_2021_3052478 crossref_primary_10_1007_s11368_019_02390_8 crossref_primary_10_3390_w11101964 crossref_primary_10_1002_nsg_12324 crossref_primary_10_1016_j_geoderma_2024_117028 crossref_primary_10_1346_CCMN_2017_064074 crossref_primary_10_3390_rs12162601 crossref_primary_10_1016_j_enggeo_2024_107749 crossref_primary_10_1007_s10712_018_9471_5 crossref_primary_10_5424_sjar_2022201_18631 crossref_primary_10_3390_rs12030482 crossref_primary_10_1007_s12665_018_7687_9 crossref_primary_10_2136_sssaj2015_05_0187 crossref_primary_10_1016_j_advwatres_2022_104156 crossref_primary_10_1016_j_geoderma_2017_04_028 crossref_primary_10_1016_j_catena_2017_12_036 crossref_primary_10_1002_dep2_279 crossref_primary_10_1016_j_biosystemseng_2022_02_017 crossref_primary_10_1080_00103624_2014_988582 crossref_primary_10_5194_hess_26_55_2022 crossref_primary_10_1080_02571862_2023_2294448 crossref_primary_10_2136_sssaj2018_02_0074 crossref_primary_10_1190_geo2022_0443_1 crossref_primary_10_1016_j_geoderma_2019_114086 crossref_primary_10_1088_1361_6501_ac632b crossref_primary_10_17660_ActaHortic_2021_1314_15 crossref_primary_10_1007_s11600_019_00306_1 crossref_primary_10_3390_s20082330 crossref_primary_10_1016_j_biosystemseng_2014_07_006 crossref_primary_10_1016_j_enggeo_2018_12_015 crossref_primary_10_1002_vzj2_20174 crossref_primary_10_1016_j_geoderma_2015_05_017 crossref_primary_10_1002_crso_20401 crossref_primary_10_3390_s19214753 crossref_primary_10_1029_2018RG000611 crossref_primary_10_3390_s20143922 crossref_primary_10_1016_j_advwatres_2024_104815 crossref_primary_10_1016_j_jhydrol_2025_133116 crossref_primary_10_1002_2016WR019330 crossref_primary_10_1029_2018RG000618 crossref_primary_10_1016_j_geoderma_2015_09_022 crossref_primary_10_1111_sum_12344 crossref_primary_10_2166_wst_2015_125 crossref_primary_10_3390_land12101932 crossref_primary_10_1016_j_geoderma_2017_10_045 crossref_primary_10_1007_s12517_021_07735_7 crossref_primary_10_1071_SR17220 crossref_primary_10_3390_su12166362 crossref_primary_10_1071_SR15043 crossref_primary_10_3390_s22041496 crossref_primary_10_3390_app122010550 crossref_primary_10_1093_jge_gxz029 crossref_primary_10_3390_soilsystems2010011 crossref_primary_10_1007_s11104_023_06316_9 crossref_primary_10_1016_j_geoderma_2024_117095 crossref_primary_10_1016_j_jappgeo_2017_02_011 crossref_primary_10_47245_archimede_0007_act_14 crossref_primary_10_1186_s40538_024_00620_x crossref_primary_10_1002_saj2_20350 crossref_primary_10_1016_j_coldregions_2018_11_008 crossref_primary_10_3390_agronomy12010183 crossref_primary_10_1007_s11770_025_1161_8 crossref_primary_10_1016_j_agwat_2020_106652 crossref_primary_10_1016_j_agwat_2021_107246 crossref_primary_10_1177_0309133319889048 crossref_primary_10_5424_sjar_2018164_13071 crossref_primary_10_1016_j_catena_2019_02_031 crossref_primary_10_1016_j_scitotenv_2024_172398 crossref_primary_10_1109_TMAG_2016_2518993 crossref_primary_10_19047_0136_1694_2020_105_57_90 crossref_primary_10_1007_s11119_018_09630_w crossref_primary_10_3390_soilsystems8040128 crossref_primary_10_1007_s11119_016_9481_6 crossref_primary_10_1016_j_scitotenv_2019_05_037 crossref_primary_10_1016_j_geoderma_2019_02_024 crossref_primary_10_1016_j_geodrs_2017_07_003 crossref_primary_10_1016_j_compag_2025_110108 crossref_primary_10_3390_rs12182973 crossref_primary_10_1016_j_compag_2014_11_014 crossref_primary_10_1007_s11104_014_2207_5 crossref_primary_10_3389_fsoil_2024_1239497 crossref_primary_10_36783_18069657rbcs20230101 crossref_primary_10_1190_geo2023_0358_1 crossref_primary_10_1016_j_jappgeo_2016_05_004 crossref_primary_10_3390_s24134159 crossref_primary_10_1016_j_earscirev_2018_10_005 crossref_primary_10_1016_j_jappgeo_2016_01_010 crossref_primary_10_1029_2021WR030696 crossref_primary_10_1016_j_measurement_2024_116534 crossref_primary_10_1016_j_still_2020_104867 crossref_primary_10_1016_j_geoderma_2018_11_030 crossref_primary_10_1016_j_geoderma_2015_04_013 crossref_primary_10_1029_2024GC011519 crossref_primary_10_3390_soilsystems4040062 crossref_primary_10_5194_soil_1_287_2015 crossref_primary_10_3390_rs14143389 crossref_primary_10_1016_j_geoderma_2015_10_014 crossref_primary_10_1016_j_enggeo_2018_09_001 crossref_primary_10_1016_j_geoderma_2020_114525 crossref_primary_10_1111_sum_12359 crossref_primary_10_3390_s21082800 crossref_primary_10_1007_s12665_024_11558_6 |
Cites_doi | 10.2136/sssaj1994.03615995005800040026x 10.1097/SS.0b013e318221f11a 10.2136/sh2002.1.0009 10.1071/EA05102 10.1016/j.geoderma.2012.07.017 10.2136/sh2005.4.0169 10.2136/sssaj2008.0079 10.1071/SR03149 10.2136/sssaj2002.0235 10.2307/4003336 10.1002/hyp.6963 10.1016/j.catena.2008.03.007 10.1080/00103629009368275 10.2136/sssaj1998.03615995006200010030x 10.2136/sssaj2012.0276 10.1029/95WR01949 10.4141/cjss90-056 10.2134/agronj2008.0060 10.1007/s11119-006-9021-x 10.2134/agronj2003.0472 10.1111/j.1745-6584.1999.tb00987.x 10.1016/j.geoderma.2012.07.019 10.1007/s100400050210 10.2136/sssaj1976.03615995004000050017x 10.1016/S0167-8809(01)00256-0 10.1097/00010694-199208000-00009 10.2134/agronj2012.0156 10.2136/vzj2011.0035 10.2136/sh2003.1.0016 10.1080/15324989709381490 10.1016/j.geoderma.2009.02.024 10.1190/1.1442811 10.2136/sssaj2002.1562 10.2136/sh12-01-0002 10.1111/ejss.12033 10.1023/A:1024960708561 10.1016/j.compag.2004.03.002 10.2136/sssaj1979.03615995004300040040x 10.4141/cjss88-069 10.2136/sh1996.1.0011 10.13031/2013.20098 10.1016/j.jterra.2004.12.004 10.2136/vzj2008.0123 10.2136/sh2000.2.0027 10.1071/SR06093 10.1080/00103629809370093 10.2136/sssaj2010.0055 10.1016/0016-7061(92)90021-X 10.1016/j.geoderma.2012.06.010 10.1111/j.1475-2743.2011.00386.x 10.2136/sssaj1981.03615995004500020006x 10.2136/sssaj2011.0063 10.1002/ird.289 10.1080/00224561.2000.12457301 10.1016/j.geoderma.2005.03.008 10.1016/j.biosystemseng.2006.10.010 10.2136/sssaj1992.03615995005600040003x 10.1016/j.envsoft.2013.01.012 10.1080/00224561.2002.12457433 10.2136/sssaj1997.03615995006100060013x 10.1016/S0168-1699(00)00185-X 10.13031/2013.7879 10.1016/S0016-7061(02)00305-1 10.1007/BF00189989 10.1071/SR07191 10.2136/sssaj2006.0177 10.2136/sssaj1990.03615995005400010047x 10.4141/cjss86-032 10.2136/sh12-05-0018 10.1016/j.cageo.2004.01.005 10.1016/j.catena.2010.06.011 10.4141/cjss94-046 10.1111/j.1745-6592.1983.tb01199.x 10.1023/A:1008050510681 10.2136/sssaj1984.03615995004800020011x 10.1002/hyp.1221 10.1016/0022-1694(92)90111-8 10.2136/sh2009.2.0068 10.2136/sssaj1982.03615995004600030014x 10.1111/ejss.12067 10.2136/sh13-01-0009 10.3997/1873-0604.2008031 10.2136/sssaj2001.1829 10.1080/00224561.1994.12456905 10.2136/sh2002.1.0014 10.2136/sh2008.4.0102 10.2136/sh12-02-0005 10.2136/sh2004.3.0096 10.2136/sh1989.3.0066 10.1111/j.1475-2743.2006.00065.x 10.1071/SR12228 10.2134/agronj2003.0496 10.1097/SS.0b013e31824e14d6 10.1016/j.jhydrol.2009.01.037 10.2136/sh12-04-0013 10.13031/2013.15663 10.2136/sh2011.3.0077 10.2134/jeq2009.0140 10.1016/j.geoderma.2013.06.001 10.2136/sssaj2008.0074 10.1029/94WR02179 10.13031/2013.17959 10.1016/j.geoderma.2008.09.013 10.1016/j.cageo.2011.06.017 10.13031/2013.7701 10.1071/SR9820107 10.1023/B:PRAG.0000022359.79184.92 10.1016/j.jas.2012.09.004 10.1071/SR9900443 10.2136/sssaj1989.03615995005300020020x 10.2136/sssaj2010.0056 10.2136/sssaj1992.03615995005600020031x 10.2136/sssaj2012.0091 10.1016/0022-1694(89)90060-7 10.1144/GSL.QJEG.1985.018.02.03 10.1016/j.compag.2009.05.009 10.2136/sssaj2008.0277 10.1071/SR08240 10.1016/j.geoderma.2007.11.003 10.1007/s11119-005-1033-4 10.2136/sssaj1989.03615995005300010014x 10.1080/00224561.2001.12457389 10.2134/jeq1995.00472425002400010005x 10.1071/EA04110 10.2134/agronj2002.1355 10.4141/cjss89-003 10.1016/0022-1694(89)90260-6 10.1016/j.biosystemseng.2003.09.001 10.1071/SR9870021 10.1029/94WR02180 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7UA C1K F1W H96 L.G 8FD FR3 KR7 7S9 L.6 |
DOI | 10.1016/j.geoderma.2014.01.027 |
DatabaseName | CrossRef Pascal-Francis Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Technology Research Database AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 45 |
ExternalDocumentID | 28399768 10_1016_j_geoderma_2014_01_027 S0016706114000548 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K VH1 WUQ XPP Y6R ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7UA C1K F1W H96 L.G 8FD FR3 KR7 7S9 L.6 |
ID | FETCH-LOGICAL-a379t-10b93936a1fd1b6a358c84d64d7c0dc775653b47bd91ce19d0d537cff67ae8413 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 11:12:29 EDT 2025 Fri Jul 11 15:23:57 EDT 2025 Thu Jul 10 19:18:17 EDT 2025 Wed Apr 02 07:25:08 EDT 2025 Tue Jul 01 05:06:21 EDT 2025 Thu Apr 24 22:59:46 EDT 2025 Fri Feb 23 02:20:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil spatial characterization Apparent conductivity Electromagnetic induction Soil mapping salinity Spatial variability soil moisture textures Property of soil source rocks measurement sensor cartography electromagnetic induction depth bedrock organic materials pH compaction spatial variations electrical conductivity soils |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a379t-10b93936a1fd1b6a358c84d64d7c0dc775653b47bd91ce19d0d537cff67ae8413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6004-0018 |
PQID | 1520363348 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1836673202 proquest_miscellaneous_1642311157 proquest_miscellaneous_1520363348 pascalfrancis_primary_28399768 crossref_primary_10_1016_j_geoderma_2014_01_027 crossref_citationtrail_10_1016_j_geoderma_2014_01_027 elsevier_sciencedirect_doi_10_1016_j_geoderma_2014_01_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-00 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-00 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Geoderma |
PublicationYear | 2014 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Huth, Poulton (bb0360) 2007; 45 Mueller, Hartsock, Stombaugh, Shearer, Cornelius, Barnhisel (bb0540) 2003; 95 Saey, Simpson, Vermeersch, Cockx, Van Meirvenne (bb0610) 2009; 73 United States Department of Agriculture, Natural Resources Conservation Service (bb0740) 2006 Heil, Schmidhalter (bb0340) 2012; 39 Heilig, Kempenich, Doolittle, Brevik, Ulmer (bb0345) 2011; 52 Johnson, Doran, Duke, Wienhold, Eskridge, Shanahan (bb0395) 2001; 65 Bork, West, Doolittle, Boettinger (bb0055) 1998; 51 Sudduth, Kitchen, Chung, Drummond (bb0690) 2010 Ammons, Timpson, Newton (bb0025) 1989; 30 De Smedt, Van Meirvenne, Davies, Bats, Saey, Du Reu, Meerschman, Gelorini, Zwertvaegher, Antrop, Bourgeois, De Maeyer, Finke, Verniers, Crombé (bb0200) 2013; 40 James, Waine, Bradley, Taylor, Godwin (bb0365) 2003; 86 Sudduth, Kitchen, Bollero, Bullock, Wiebold (bb0685) 2003; 95 Diaz, Herrero (bb0210) 1992; 154 Rhoades, Corwin (bb0555) 1981; 45 Thomas, Fitzpatrick, Heinson (bb0710) 2009; 47 Doolittle, Windhorn, Withers, McLeese (bb0270) 2009; 50 Richardson, Williams (bb0580) 1994 Rhoades, Manteghi, Shouse, Alves (bb0565) 1989; 53 Doolittle, Indorante, Potter, Hefner, McCauley (bb0230) 2002; 57 Hedley, Yule, Eastwood, Sheperd, Arnold (bb0335) 2004; 42 Chen, Kissel, Adkins (bb0140) 2000 Jaynes, Novak, Moorman, Cambardella (bb0390) 1994; 24 Sherlock, McDonnell (bb0640) 2003; 17 Cook, Walker, Buselli, Potts, Dodds (bb0160) 1992; 130 Mester, van der Kruk, Zimmermann, Vereecken (bb0525) 2011; 10 Khakural, Robert, Hugins (bb0415) 1998; 29 Sudduth, Kitchen, Myers, Drummond (bb0705) 2009; 2 Brevik, Fenton (bb0080) 2002; 43 Bourgault, Rabenhorst (bb0060) 2012; 76 Brevik, Fenton (bb0075) 1999; 22 Al-Gaadi (bb0010) 2012; 4 Corwin, Rhoades (bb0175) 1982; 46 Doolittle, Sudduth, Kitchen, Indorante (bb0260) 1994; 49 Zalasiewicz, Mathers, Cornwell (bb0820) 1985; 18 Zhu, Lin, Doolittle (bb0830) 2010; 74 Meerschman, Van Meirvenne, De Smedt, Saey, Islam, Meeuws, Van De Vijver, Ghysels (bb0515) 2011; 75 King, Dampney, Lark, Wheeler, Bradley, Mayr (bb0420) 2005; 6 Toushmalani (bb0715) 2010; 4 Vitharana, Van Meirvenne, Simpson, Cockx, De Baerdemaeker (bb0770) 2008; 143 Kitchen, Sudduth, Drummond (bb0425) 1998 Farahani, Flynn (bb0295) 2007; 96 Kweon (bb0445) 2012; 104 Doolittle, Noble, Leinard (bb0245) 2000; 41 Doolittle (bb0215) 2013 Jaynes (bb0375) 1996 Daniels, Allred, Collins, Doolittle (bb0190) 2003 Hopkins, Richardson (bb0355) 1999; 7 Palacky, Stephens (bb0550) 1990; 55 de Jong, Ballantyne, Cameron, Read (bb0195) 1979; 43 Hezarjaribi, Sourell (bb0350) 2007; 56 Morris (bb0535) 2009; 68 Brevik, Hartemink (bb0115) 2010; 83 Lück, Gebbers, Ruehlmann, Sprangenberg (bb0480) 2009; 7 Doolittle, Zhu, Zhang, Guo, Lin (bb0275) 2012 Brevik, Batten (bb0070) 2012; 53 Triantafilis, Terhune, Monteiro Santos (bb0730) 2013; 43 Wienhold, Doran (bb0790) 2008 Cockx, Van Meirvenne, Vitharana, Verbeke, Simpson, Saey, Van Coille (bb0145) 2009; 73 Cassel, Goorahoo, Zoldoske, Adhikari (bb0135) 2009 Slavich (bb0645) 1990; 28 Greenhouse, Slaine (bb0320) 1983; 3 Triantafilis, Lesch, La Lau, Buchanan (bb0720) 2009; 47 Sudduth, Drummond, Kitchen (bb0670) 2000 Lesch, Rhoades, Lund, Corwin (bb0460) 1992; 56 Kravchenko (bb0435) 2008 Sudduth, Kitchen (bb0680) 1993 Brevik, Fenton, Jaynes (bb0100) 2003; 4 Cannon, McKenzie, Lachapelle (bb0120) 1994; 74 Williams, Hoey (bb0805) 1987; 25 Doolittle, Chibirka, Muniz, Shaw (bb0220) 2013; 54 Ganjegunte, Braun (bb0315) 2011; 176 Kravchenko, Bollero, Omonode, Bullock (bb0440) 2002; 66 Mankin, Karthikeyan (bb0485) 2002; 45 Anderson-Cook, Alley, Roygard, Khosla, Noble, Doolittle (bb0030) 2002; 66 Doolittle, Neild, Sasser, Tuttle (bb0240) 2005; 46 Williams, Walker, Anderson (bb0810) 2006; 46 Brevik, Fenton (bb0085) 2003; 44 Saey, Van Meirvenne, Vermeersch, Ameloot, Cockx (bb0615) 2009; 150 McBride, Gordon, Shrive (bb0495) 1990; 54 Doolittle, Stube, Price, Kelly (bb0255) 2002; 43 Zhu, Lin, Doolittle (bb0835) 2010; 74 Allred, Ehsani, Saraswat (bb0020) 2005; 48 Brevik (bb0065) 2012; 53 Lobell, Lesch, Corwin, Ulmer, Anderson, Potts, Doolittle, Matos, Baltes (bb0475) 2010; 39 van der Lelij (bb0755) 1983 Wollenhaupt, Richardson, Foss, Doll (bb0815) 1986; 66 Brevik, Fenton (bb0090) 2004; 45 Williams, Baker (bb0800) 1982; 20 Sudduth, Kitchen, Drummond (bb0695) 1999 Lesch, Strauss, Rhoades (bb0470) 1995; 31 Tromp-van Meerveld, McDonnell (bb0735) 2009; 368 Stroh, Archer, Wilding, Doolittle (bb0665) 1993 McKenzie, Chomistek, Clark (bb0500) 1989; 69 Williams, Arunin (bb0795) 1990 Eigenberg, Doran, Nienaber, Ferguson, Woodbury (bb0285) 2002; 88 Freeland, Yoder, Ammons, Leonard (bb0305) 2002; 18 Slavich, Yang (bb0650) 1990; 11 Meerschman, Van Meirvenne, Van De Vijver, De Smedt, Saey, Islam, Saey (bb0520) 2011; 64 Boettinger, Doolittle, West, Bork, Schupp (bb0050) 1997; 11 Sudduth, Kitchen, Hughes, Drummond (bb0700) 1995 Nettleton, Bushue, Doolittle, Endres, Indorante (bb0545) 1994; 58 Saey, De Smedt, Monirul Islam, Meerschman, Van De Vijver, Lehouck, Van Meirvenne (bb0595) 2012; 189–190 Cook, Walker, Jolly (bb0165) 1989; 111 Saey, Simpson, Vitharana, Vermeersch, Vermang, Van Meirvenne (bb0600) 2008; 74 Jaynes (bb0380) 1996; 48 United States Salinity Laboratory Staff (bb0745) 1954 Harvey, Morgan (bb0330) 2009; 73 De Smedt, Saey, Lehouck, Stichelbaut, Meerschman, Islam, Van De Vijver, Van Meirvenne (bb0205) 2013; 199 Corwin, Rhoades (bb0180) 1984; 48 Rhoades, Lesch, Shouse, Alves (bb0560) 1989; 53 Van Meirvenne, Islam, De Smedt, Meerschman, Van De Vijver, Saey (bb0760) 2013; 199 Fenton, Lauterbach (bb0300) 1999 Sudduth, Drummond, Kitchen (bb0675) 2001; 31 Dunn, Beecher (bb0280) 2007; 47 Vitharana, Saey, Cockx, Simpson, Vermeersch, Van Meirvenne (bb0765) 2008; 148 Robinson, Binley, Crook, Day-Lewis, Ferré, Grauch, Knight, Knoll, Lakshmi, Miller, Nyquist, Pellerin, Singha, Slater (bb0585) 2008; 22 Scanlon, Paine, Goldsmith (bb0620) 1999; 37 Triantafilis, Monteiro Santos (bb0725) 2013; 211–212 Miller (bb0530) 2012; 53 Cook, Hughes, Walker, Allison (bb0150) 1989; 107 Doolittle, Peterson, Wheeler (bb0250) 2001; 56 Sommer, Wehrhan, Zipprich, Weller, Castell, Ehrich, Tandler, Selige (bb0660) 2003; 112 Saey, De Smedt, De Clercq, Meerschman, Islam, Van Meirvenne (bb0590) 2012; 77 Corwin, Rhoades (bb0185) 1990; 21 Waine, Blackmore, Godwin (bb0775) 2000 Rhoades, Raats, Prather (bb0570) 1976; 40 Shaner, Kosla, Brodahl, Buchleiter, Farahani (bb0630) 2008; 100 Batte (bb0035) 2000; 55 Doolittle, Murphy, Parks, Warner (bb0235) 1996; 37 Brevik, Fenton, Horton (bb0095) 2004; 5 Farahani, Buchleiter, Brodahl (bb0290) 2005; 48 Lesch, Herrero, Rhoades (bb0450) 1998; 62 Saey, Van Meirvenne, De Smedt, Neubauer, Trink, Verhoeven, Seren (bb0605) 2013; 64 Doolittle, Windhorn, Withers, Zwicker, Heisner, McLeese (bb0265) 2008; 49 McNeill (bb0510) 1980 Greve, Greve (bb0325) 2004; 30 Corwin (bb0170) 2008 Cook, Walker (bb0155) 1992; 56 White, Shaw, Raper, Rodekohr, Wood (bb0785) 2012; 177 Bianchini, Mallarino (bb0045) 2002; 94 Korsaeth, Riley, Kværnø, Vestgarden (bb0430) 2008 Weller, Zipprich, Sommer, Castell, Wehrhan (bb0780) 2007; 71 Soil Survey Division Staff (bb0655) 1993 Brevik, Fenton, Lazari (bb0110) 2006; 7 Schumann, Zaman (bb0625) 2003; 19 Urdanoz, Aragüés (bb0750) 2012; 28 Frogbrook, Oliver (bb0310) 2007; 23 Kachanoski, de Jong, van Wesenbeeck (bb0405) 1990; 70 Martinez, Vanderlinden, Ordóñez, Muriel (bb0490) 2009; 8 Carter, Rhoades, Cesson (bb0130) 1993 Zhu, Liao, Xu, Yang, Wu, Zhou (bb0825) 2013; 50 Doolittle, Indorante, Mitchell, Kingsbury (bb0225) 1998; 1 Richardson, Wilding, Daniels (bb0575) 1992; 53 Allred, Ehsani, Daniels (bb0015) 2008 Sheets, Hendrickx (bb0635) 1995; 31 Adamchuk, Hummel, Morgan, Upadhyaya (bb0005) 2004; 44 Kachanoski, Gregorich, van Wesenbeeck (bb0410) 1988; 68 Carroll, Oliver (bb0125) 2005; 128 Jaynes (bb0370) 1995 Bekele, Hudnall, Daigle, Prudente, Wolcott (bb0040) 2005; 42 Johnston, Savage, Moolman, du Plessis (bb0400) 1997; 61 Brevik, Fenton, Jaynes (bb0105) 2012; 53 Lesch, Rhoades, Corwin (bb0455) 2000 Jaynes, Colvin, Ambuel (bb0385) 1993 McNeill (bb0505) 1980 Lesch, Strauss, Rhoades (bb0465) 1995; 31 Cook (10.1016/j.geoderma.2014.01.027_bb0160) 1992; 130 Doolittle (10.1016/j.geoderma.2014.01.027_bb0260) 1994; 49 Brevik (10.1016/j.geoderma.2014.01.027_bb0085) 2003; 44 Mankin (10.1016/j.geoderma.2014.01.027_bb0485) 2002; 45 Allred (10.1016/j.geoderma.2014.01.027_bb0015) 2008 Lesch (10.1016/j.geoderma.2014.01.027_bb0465) 1995; 31 Bianchini (10.1016/j.geoderma.2014.01.027_bb0045) 2002; 94 Hedley (10.1016/j.geoderma.2014.01.027_bb0335) 2004; 42 Kachanoski (10.1016/j.geoderma.2014.01.027_bb0410) 1988; 68 Richardson (10.1016/j.geoderma.2014.01.027_bb0580) 1994 Carter (10.1016/j.geoderma.2014.01.027_bb0130) 1993 United States Salinity Laboratory Staff (10.1016/j.geoderma.2014.01.027_bb0745) 1954 Van Meirvenne (10.1016/j.geoderma.2014.01.027_bb0760) 2013; 199 Frogbrook (10.1016/j.geoderma.2014.01.027_bb0310) 2007; 23 Sudduth (10.1016/j.geoderma.2014.01.027_bb0675) 2001; 31 Williams (10.1016/j.geoderma.2014.01.027_bb0805) 1987; 25 Palacky (10.1016/j.geoderma.2014.01.027_bb0550) 1990; 55 Stroh (10.1016/j.geoderma.2014.01.027_bb0665) 1993 Urdanoz (10.1016/j.geoderma.2014.01.027_bb0750) 2012; 28 Waine (10.1016/j.geoderma.2014.01.027_bb0775) 2000 Zalasiewicz (10.1016/j.geoderma.2014.01.027_bb0820) 1985; 18 Scanlon (10.1016/j.geoderma.2014.01.027_bb0620) 1999; 37 Martinez (10.1016/j.geoderma.2014.01.027_bb0490) 2009; 8 Saey (10.1016/j.geoderma.2014.01.027_bb0590) 2012; 77 Brevik (10.1016/j.geoderma.2014.01.027_bb0110) 2006; 7 Doolittle (10.1016/j.geoderma.2014.01.027_bb0235) 1996; 37 Slavich (10.1016/j.geoderma.2014.01.027_bb0645) 1990; 28 Wienhold (10.1016/j.geoderma.2014.01.027_bb0790) 2008 Brevik (10.1016/j.geoderma.2014.01.027_bb0075) 1999; 22 De Smedt (10.1016/j.geoderma.2014.01.027_bb0205) 2013; 199 Saey (10.1016/j.geoderma.2014.01.027_bb0610) 2009; 73 Boettinger (10.1016/j.geoderma.2014.01.027_bb0050) 1997; 11 Mester (10.1016/j.geoderma.2014.01.027_bb0525) 2011; 10 Cook (10.1016/j.geoderma.2014.01.027_bb0165) 1989; 111 Cannon (10.1016/j.geoderma.2014.01.027_bb0120) 1994; 74 Jaynes (10.1016/j.geoderma.2014.01.027_bb0390) 1994; 24 Doolittle (10.1016/j.geoderma.2014.01.027_bb0230) 2002; 57 Dunn (10.1016/j.geoderma.2014.01.027_bb0280) 2007; 47 Wollenhaupt (10.1016/j.geoderma.2014.01.027_bb0815) 1986; 66 Kweon (10.1016/j.geoderma.2014.01.027_bb0445) 2012; 104 Sudduth (10.1016/j.geoderma.2014.01.027_bb0670) 2000 Cook (10.1016/j.geoderma.2014.01.027_bb0150) 1989; 107 Doolittle (10.1016/j.geoderma.2014.01.027_bb0255) 2002; 43 Bekele (10.1016/j.geoderma.2014.01.027_bb0040) 2005; 42 Bourgault (10.1016/j.geoderma.2014.01.027_bb0060) 2012; 76 Brevik (10.1016/j.geoderma.2014.01.027_bb0065) 2012; 53 Cook (10.1016/j.geoderma.2014.01.027_bb0155) 1992; 56 Harvey (10.1016/j.geoderma.2014.01.027_bb0330) 2009; 73 Heilig (10.1016/j.geoderma.2014.01.027_bb0345) 2011; 52 Zhu (10.1016/j.geoderma.2014.01.027_bb0825) 2013; 50 Cockx (10.1016/j.geoderma.2014.01.027_bb0145) 2009; 73 Rhoades (10.1016/j.geoderma.2014.01.027_bb0565) 1989; 53 Slavich (10.1016/j.geoderma.2014.01.027_bb0650) 1990; 11 King (10.1016/j.geoderma.2014.01.027_bb0420) 2005; 6 Zhu (10.1016/j.geoderma.2014.01.027_bb0835) 2010; 74 Farahani (10.1016/j.geoderma.2014.01.027_bb0295) 2007; 96 Lobell (10.1016/j.geoderma.2014.01.027_bb0475) 2010; 39 Brevik (10.1016/j.geoderma.2014.01.027_bb0115) 2010; 83 Saey (10.1016/j.geoderma.2014.01.027_bb0600) 2008; 74 Sudduth (10.1016/j.geoderma.2014.01.027_bb0680) 1993 Adamchuk (10.1016/j.geoderma.2014.01.027_bb0005) 2004; 44 Ammons (10.1016/j.geoderma.2014.01.027_bb0025) 1989; 30 Kravchenko (10.1016/j.geoderma.2014.01.027_bb0440) 2002; 66 Jaynes (10.1016/j.geoderma.2014.01.027_bb0370) 1995 Batte (10.1016/j.geoderma.2014.01.027_bb0035) 2000; 55 Sheets (10.1016/j.geoderma.2014.01.027_bb0635) 1995; 31 United States Department of Agriculture, Natural Resources Conservation Service (10.1016/j.geoderma.2014.01.027_bb0740) 2006 De Smedt (10.1016/j.geoderma.2014.01.027_bb0200) 2013; 40 Meerschman (10.1016/j.geoderma.2014.01.027_bb0515) 2011; 75 Nettleton (10.1016/j.geoderma.2014.01.027_bb0545) 1994; 58 Lesch (10.1016/j.geoderma.2014.01.027_bb0460) 1992; 56 Vitharana (10.1016/j.geoderma.2014.01.027_bb0765) 2008; 148 Johnston (10.1016/j.geoderma.2014.01.027_bb0400) 1997; 61 Korsaeth (10.1016/j.geoderma.2014.01.027_bb0430) 2008 Doolittle (10.1016/j.geoderma.2014.01.027_bb0245) 2000; 41 McKenzie (10.1016/j.geoderma.2014.01.027_bb0500) 1989; 69 Brevik (10.1016/j.geoderma.2014.01.027_bb0100) 2003; 4 Huth (10.1016/j.geoderma.2014.01.027_bb0360) 2007; 45 Corwin (10.1016/j.geoderma.2014.01.027_bb0180) 1984; 48 Rhoades (10.1016/j.geoderma.2014.01.027_bb0560) 1989; 53 Sudduth (10.1016/j.geoderma.2014.01.027_bb0695) 1999 van der Lelij (10.1016/j.geoderma.2014.01.027_bb0755) 1983 Robinson (10.1016/j.geoderma.2014.01.027_bb0585) 2008; 22 Richardson (10.1016/j.geoderma.2014.01.027_bb0575) 1992; 53 Tromp-van Meerveld (10.1016/j.geoderma.2014.01.027_bb0735) 2009; 368 White (10.1016/j.geoderma.2014.01.027_bb0785) 2012; 177 Toushmalani (10.1016/j.geoderma.2014.01.027_bb0715) 2010; 4 Saey (10.1016/j.geoderma.2014.01.027_bb0595) 2012; 189–190 Greenhouse (10.1016/j.geoderma.2014.01.027_bb0320) 1983; 3 Williams (10.1016/j.geoderma.2014.01.027_bb0795) 1990 Williams (10.1016/j.geoderma.2014.01.027_bb0800) 1982; 20 Kravchenko (10.1016/j.geoderma.2014.01.027_bb0435) 2008 Triantafilis (10.1016/j.geoderma.2014.01.027_bb0725) 2013; 211–212 Farahani (10.1016/j.geoderma.2014.01.027_bb0290) 2005; 48 Weller (10.1016/j.geoderma.2014.01.027_bb0780) 2007; 71 James (10.1016/j.geoderma.2014.01.027_bb0365) 2003; 86 Jaynes (10.1016/j.geoderma.2014.01.027_bb0375) 1996 Zhu (10.1016/j.geoderma.2014.01.027_bb0830) 2010; 74 Corwin (10.1016/j.geoderma.2014.01.027_bb0170) 2008 Daniels (10.1016/j.geoderma.2014.01.027_bb0190) 2003 Jaynes (10.1016/j.geoderma.2014.01.027_bb0385) 1993 Sudduth (10.1016/j.geoderma.2014.01.027_bb0700) 1995 Doolittle (10.1016/j.geoderma.2014.01.027_bb0270) 2009; 50 Chen (10.1016/j.geoderma.2014.01.027_bb0140) 2000 Doolittle (10.1016/j.geoderma.2014.01.027_bb0275) 2012 McNeill (10.1016/j.geoderma.2014.01.027_bb0505) 1980 Corwin (10.1016/j.geoderma.2014.01.027_bb0185) 1990; 21 Sudduth (10.1016/j.geoderma.2014.01.027_bb0685) 2003; 95 Triantafilis (10.1016/j.geoderma.2014.01.027_bb0720) 2009; 47 Brevik (10.1016/j.geoderma.2014.01.027_bb0095) 2004; 5 Miller (10.1016/j.geoderma.2014.01.027_bb0530) 2012; 53 Al-Gaadi (10.1016/j.geoderma.2014.01.027_bb0010) 2012; 4 Soil Survey Division Staff (10.1016/j.geoderma.2014.01.027_bb0655) 1993 Lesch (10.1016/j.geoderma.2014.01.027_bb0455) 2000 Doolittle (10.1016/j.geoderma.2014.01.027_bb0220) 2013; 54 Rhoades (10.1016/j.geoderma.2014.01.027_bb0555) 1981; 45 Doolittle (10.1016/j.geoderma.2014.01.027_bb0215) 2013 Saey (10.1016/j.geoderma.2014.01.027_bb0605) 2013; 64 Carroll (10.1016/j.geoderma.2014.01.027_bb0125) 2005; 128 Anderson-Cook (10.1016/j.geoderma.2014.01.027_bb0030) 2002; 66 Cassel (10.1016/j.geoderma.2014.01.027_bb0135) 2009 Saey (10.1016/j.geoderma.2014.01.027_bb0615) 2009; 150 Eigenberg (10.1016/j.geoderma.2014.01.027_bb0285) 2002; 88 Meerschman (10.1016/j.geoderma.2014.01.027_bb0520) 2011; 64 Shaner (10.1016/j.geoderma.2014.01.027_bb0630) 2008; 100 Brevik (10.1016/j.geoderma.2014.01.027_bb0070) 2012; 53 Greve (10.1016/j.geoderma.2014.01.027_bb0325) 2004; 30 Fenton (10.1016/j.geoderma.2014.01.027_bb0300) 1999 Jaynes (10.1016/j.geoderma.2014.01.027_bb0380) 1996; 48 Triantafilis (10.1016/j.geoderma.2014.01.027_bb0730) 2013; 43 Bork (10.1016/j.geoderma.2014.01.027_bb0055) 1998; 51 Lesch (10.1016/j.geoderma.2014.01.027_bb0450) 1998; 62 Morris (10.1016/j.geoderma.2014.01.027_bb0535) 2009; 68 Rhoades (10.1016/j.geoderma.2014.01.027_bb0570) 1976; 40 Allred (10.1016/j.geoderma.2014.01.027_bb0020) 2005; 48 Lück (10.1016/j.geoderma.2014.01.027_bb0480) 2009; 7 de Jong (10.1016/j.geoderma.2014.01.027_bb0195) 1979; 43 Diaz (10.1016/j.geoderma.2014.01.027_bb0210) 1992; 154 Mueller (10.1016/j.geoderma.2014.01.027_bb0540) 2003; 95 Corwin (10.1016/j.geoderma.2014.01.027_bb0175) 1982; 46 McNeill (10.1016/j.geoderma.2014.01.027_bb0510) 1980 Heil (10.1016/j.geoderma.2014.01.027_bb0340) 2012; 39 Doolittle (10.1016/j.geoderma.2014.01.027_bb0265) 2008; 49 Doolittle (10.1016/j.geoderma.2014.01.027_bb0240) 2005; 46 Sherlock (10.1016/j.geoderma.2014.01.027_bb0640) 2003; 17 Williams (10.1016/j.geoderma.2014.01.027_bb0810) 2006; 46 Brevik (10.1016/j.geoderma.2014.01.027_bb0080) 2002; 43 Johnson (10.1016/j.geoderma.2014.01.027_bb0395) 2001; 65 Vitharana (10.1016/j.geoderma.2014.01.027_bb0770) 2008; 143 Doolittle (10.1016/j.geoderma.2014.01.027_bb0225) 1998; 1 Sommer (10.1016/j.geoderma.2014.01.027_bb0660) 2003; 112 Schumann (10.1016/j.geoderma.2014.01.027_bb0625) 2003; 19 McBride (10.1016/j.geoderma.2014.01.027_bb0495) 1990; 54 Sudduth (10.1016/j.geoderma.2014.01.027_bb0705) 2009; 2 Doolittle (10.1016/j.geoderma.2014.01.027_bb0250) 2001; 56 Hezarjaribi (10.1016/j.geoderma.2014.01.027_bb0350) 2007; 56 Brevik (10.1016/j.geoderma.2014.01.027_bb0105) 2012; 53 Freeland (10.1016/j.geoderma.2014.01.027_bb0305) 2002; 18 Thomas (10.1016/j.geoderma.2014.01.027_bb0710) 2009; 47 Brevik (10.1016/j.geoderma.2014.01.027_bb0090) 2004; 45 Lesch (10.1016/j.geoderma.2014.01.027_bb0470) 1995; 31 Sudduth (10.1016/j.geoderma.2014.01.027_bb0690) 2010 Ganjegunte (10.1016/j.geoderma.2014.01.027_bb0315) 2011; 176 Kachanoski (10.1016/j.geoderma.2014.01.027_bb0405) 1990; 70 Hopkins (10.1016/j.geoderma.2014.01.027_bb0355) 1999; 7 Kitchen (10.1016/j.geoderma.2014.01.027_bb0425) 1998 Khakural (10.1016/j.geoderma.2014.01.027_bb0415) 1998; 29 |
References_xml | – volume: 128 start-page: 354 year: 2005 end-page: 374 ident: bb0125 article-title: Exploring the spatial relations between soil physical properties and apparent electrical conductivity publication-title: Geoderma – volume: 45 start-page: 96 year: 2004 end-page: 102 ident: bb0090 article-title: The effect of changes in bulk density on soil electrical conductivity as measured with the Geonics® EM-38 publication-title: Soil Surv. Horiz. – volume: 7 start-page: 393 year: 2006 end-page: 404 ident: bb0110 article-title: Soil electrical conductivity as a function of soil water content and implications for soil mapping publication-title: Precis. Agric. – volume: 20 start-page: 107 year: 1982 end-page: 118 ident: bb0800 article-title: An electromagnetic induction technique for reconnaissance surveys of soil salinity hazards publication-title: Aust. J. Soil Res. – volume: 46 start-page: 1271 year: 2006 end-page: 1277 ident: bb0810 article-title: Spatial variability of regolith leaching and salinity in relation to whole farm planning publication-title: Aust. J. Exp. Agric. – year: 1980 ident: bb0510 article-title: Electromagnetic terrain conductivity measurement at low induction numbers publication-title: Technical Note TN-6 – volume: 68 start-page: 150 year: 2009 end-page: 156 ident: bb0535 article-title: Height-above-ground effects on penetration depth and response of electromagnetic induction soil conductivity meters publication-title: Comput. Electron. Agric. – volume: 73 start-page: 164 year: 2009 end-page: 169 ident: bb0330 article-title: Predicting regional-scale soil variability using single calibrated apparent soil electrical conductivity model publication-title: Soil Sci. Soc. Am. J. – volume: 104 start-page: 1547 year: 2012 end-page: 1557 ident: bb0445 article-title: Toward the ultimate soil survey: sensing multiple soil landscape properties in one pass publication-title: Agron. J. – volume: 47 start-page: 651 year: 2009 end-page: 663 ident: bb0720 article-title: Field level digital mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model publication-title: Aust. J. Soil Res. – volume: 46 start-page: 517 year: 1982 end-page: 520 ident: bb0175 article-title: An improved technique for determining soil electrical conductivity — depth relations from above ground electromagnetic induction measurements publication-title: Soil Sci. Soc. Am. J. – volume: 8 start-page: 586 year: 2009 end-page: 593 ident: bb0490 article-title: Can apparent electrical conductivity improve the spatial characterization of soil organic carbon? publication-title: Vadose Zone J. – volume: 31 start-page: 387 year: 1995 end-page: 398 ident: bb0470 article-title: Spatial prediction of soil salinity using electromagnetic induction techniques. 2. An efficient spatial sampling algorithm suitable for multiple linear regression model identification and estimation publication-title: Water Resour. Res. – volume: 74 start-page: 335 year: 1994 end-page: 343 ident: bb0120 article-title: Soil salinity mapping with electromagnetic induction and satellite-based navigation methods publication-title: Can. J. Soil Sci. – volume: 46 start-page: 169 year: 2005 end-page: 178 ident: bb0240 article-title: Characterizing a lithosequence within the San Rafael Swell of Utah with EMI publication-title: Soil Surv. Horiz. – year: 2010 ident: bb0690 article-title: Site-specific compaction, soil physical property, and crop yield relationships for claypan soils publication-title: Annual International Meeting of American Society of Agricultural and Biological Engineers. Paper No. 1009432 – start-page: 239 year: 1999 end-page: 251 ident: bb0300 article-title: Soil map unit composition and scale of mapping related to interpretations for precision soil and crop management in Iowa publication-title: Proceeding of the 4th International Conference on Precision Agriculture – volume: 24 start-page: 36 year: 1994 end-page: 41 ident: bb0390 article-title: Estimating herbicide partition coefficients from electromagnetic induction measurements publication-title: J. Environ. Qual. – volume: 64 start-page: 183 year: 2011 end-page: 191 ident: bb0520 article-title: Mapping complex soil patterns with multiple-point geostatistics publication-title: Eur. J. Soil Sci. – start-page: 413 year: 2012 end-page: 447 ident: bb0275 article-title: Geophysical investigations of soil-landscape architecture and its impacts on subsurface flow publication-title: Hydropedology: Synergistic Integration of Soil Science and Hydrology – volume: 47 start-page: 328 year: 2009 end-page: 339 ident: bb0710 article-title: Distribution and causes of intricate saline-sodic soil patterns in an upland South Australian hillslope publication-title: Soil Res. – volume: 50 start-page: 625 year: 2013 end-page: 637 ident: bb0825 article-title: Monitoring and prediction of soil moisture spatial–temporal variations from a hydropedological perspective: a review publication-title: Soil Res. – volume: 10 start-page: 1319 year: 2011 end-page: 1330 ident: bb0525 article-title: Quantitative two-layer conductivity inversion of multi-configuration electromagnetic induction measurements publication-title: Vadose Zone J. – volume: 4 start-page: 6433 year: 2010 end-page: 6439 ident: bb0715 article-title: Application of geophysical methods in agriculture publication-title: Aust. J. Basic Appl. Sci. – volume: 3 start-page: 47 year: 1983 end-page: 59 ident: bb0320 article-title: The use of reconnaissance electromagnetic methods to map contaminant migration publication-title: Ground Water Monit. Rev. – year: 1993 ident: bb0130 article-title: Mechanization of soil salinity assessment for mapping publication-title: Winter Meetings of the American Society of Agricultural Engineers, Paper No. 93-1557 – volume: 86 start-page: 421 year: 2003 end-page: 430 ident: bb0365 article-title: Determination of soil type boundaries using electromagnetic induction scanning techniques publication-title: Biosyst. Eng. – year: 1993 ident: bb0680 article-title: Electromagnetic induction sensing of claypan depth publication-title: Winter Meetings of the American Society of Agricultural Engineers, Paper No. 93–1550 – start-page: 255 year: 2008 end-page: 261 ident: bb0435 article-title: Mapping soil drainage classes using topographic and soil electrical conductivity publication-title: Handbook of Agricultural Geophysics – volume: 39 start-page: 35 year: 2010 end-page: 41 ident: bb0475 article-title: Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI publication-title: J. Environ. Qual. – start-page: 17 year: 2008 end-page: 44 ident: bb0170 article-title: Past, present, and future trends in soil electrical conductivity measurements using geophysical methods publication-title: Handbook of Agricultural Geophysics – volume: 74 start-page: 1750 year: 2010 end-page: 1762 ident: bb0830 article-title: Repeated electromagnetic induction surveys for determining subsurface hydrologic dynamics in an agricultural landscape publication-title: Soil Sci. Soc. Am. J. – volume: 112 start-page: 179 year: 2003 end-page: 196 ident: bb0660 article-title: Hierarchical data fusion for mapping soil units at field scale publication-title: Geoderma – start-page: 1 year: 2003 end-page: 5 ident: bb0190 article-title: Geophysics in soil science publication-title: Encyclopedia of Soil Science – volume: 29 start-page: 2055 year: 1998 end-page: 2065 ident: bb0415 article-title: Use of non-contacting electromagnetic inductive method for estimating soil moisture across a landscape publication-title: Commun. Soil Sci. Plant Anal. – start-page: 39 year: 1993 end-page: 42 ident: bb0665 article-title: Assessing the influence of subsoil heterogeneity on vegetation patterns in the Rio Grande Plains of south Texas using electromagnetic induction and geographical information system – volume: 23 start-page: 40 year: 2007 end-page: 51 ident: bb0310 article-title: Identifying management zones in agricultural fields using spatially constrained classification of soil and ancillary data publication-title: Soil Use Manag. – year: 1954 ident: bb0745 article-title: Diagnosis and improvement of saline and alkali soils publication-title: USDA Agricultural Handbook No. 60 – volume: 48 start-page: 2123 year: 2005 end-page: 2135 ident: bb0020 article-title: The impact of temperature and shallow hydrologic conditions on the magnitude and spatial pattern consistency of electromagnetic induction measured soil electrical conductivity publication-title: Trans. Am. Soc. Agric. Eng. – volume: 73 start-page: 1 year: 2009 end-page: 8 ident: bb0145 article-title: Extracting topsoil information from EM38DD sensor data using neural network approach publication-title: Soil Sci. Soc. Am. J. – volume: 48 start-page: 205 year: 1996 end-page: 216 ident: bb0380 article-title: Mapping the areal distribution of soil parameters with geophysical techniques publication-title: Application of GIS to the modeling of non-point sources of pollution in the vadose zone – volume: 64 start-page: 716 year: 2013 end-page: 727 ident: bb0605 article-title: Integrating multi-receiver electromagnetic induction measurements into the interpretation of the soil landscape around the school of gladiators at Carnuntum publication-title: Eur. J. Soil Sci. – year: 2000 ident: bb0775 article-title: Mapping available water content and estimating soil textural class using electromagnetic induction publication-title: EurAgEng Paper No. 00-SW-044, Warwick, United Kingdom – volume: 7 start-page: 380 year: 1999 end-page: 392 ident: bb0355 article-title: Detecting a salinity plume in an unconfined sandy aquifer and assessing secondary soil salinization using electromagnetic induction techniques, North Dakota, USA publication-title: Hydrogeol. J. – volume: 7 start-page: 15 year: 2009 end-page: 25 ident: bb0480 article-title: Electrical conductivity mapping for precision farming publication-title: Near Surf. Geophys. – volume: 42 start-page: 339 year: 2005 end-page: 351 ident: bb0040 article-title: Scale dependent variability of soil electrical conductivity by indirect measures of soil properties publication-title: J. Terrramech. – volume: 56 start-page: 540 year: 1992 end-page: 548 ident: bb0460 article-title: Mapping soil salinity using calibrated electromagnetic induction measurements publication-title: Soil Sci. Soc. Am. J. – volume: 55 start-page: 12 year: 2000 end-page: 18 ident: bb0035 article-title: Factors influencing the profitability of precision farming systems publication-title: J. Soil Water Conserv. – volume: 83 start-page: 23 year: 2010 end-page: 33 ident: bb0115 article-title: Early soil knowledge and the birth and development of soil science publication-title: Catena – volume: 177 start-page: 345 year: 2012 end-page: 354 ident: bb0785 article-title: A multivariate approach for high-resolution soil survey development publication-title: Soil Sci. – volume: 54 start-page: 1 year: 2013 end-page: 10 ident: bb0220 article-title: Using EMI and P-XRF to characterize the magnetic properties and the concentration of metals in soils formed over different lithologies publication-title: Soil Horiz. – volume: 199 start-page: 30 year: 2013 end-page: 36 ident: bb0205 article-title: Exploring the potential of multi-receiver EMI survey for geoarchaeological prospection: A 90 publication-title: Geoderma – volume: 96 start-page: 151 year: 2007 end-page: 159 ident: bb0295 article-title: Map quality and zone delineation as affected by width of parallel swaths with mobile agricultural sensors publication-title: Biosyst. Eng. – volume: 150 start-page: 389 year: 2009 end-page: 395 ident: bb0615 article-title: A pedotransfer function to evaluate the soil profile textural heterogeneity using proximally sensed apparent electrical conductivity publication-title: Geoderma – volume: 53 start-page: 65 year: 1992 end-page: 78 ident: bb0575 article-title: Recharge and discharge of groundwater in aquic conditions illustrated with flow analysis publication-title: Geoderma – volume: 53 start-page: 433 year: 1989 end-page: 439 ident: bb0565 article-title: Soil Electrical conductivity and soil salinity: New formulation and calibrations publication-title: Soil Sci. Soc. Am. J. – year: 2000 ident: bb0455 article-title: ESAP-95 version 2.10R User Manual and Tutorial Guide publication-title: Research Report 146 – volume: 51 start-page: 469 year: 1998 end-page: 474 ident: bb0055 article-title: Soil depth assessment of sagebrush grazing treatments using electromagnetic induction publication-title: J. Range Manag. – volume: 111 start-page: 195 year: 1989 end-page: 212 ident: bb0165 article-title: Spatial variability of groundwater recharge in a semiarid region publication-title: J. Hydrol. – volume: 17 start-page: 1965 year: 2003 end-page: 1977 ident: bb0640 article-title: A new tool for hillslope hydrologists: spatially distributed groundwater level and soil water content measured using electromagnetic induction publication-title: Hydrol. Process. – year: 1994 ident: bb0580 article-title: Assessing discharge characteristics of upland landscapes using electromagnetic induction techniques publication-title: Technical Memorandum 94/3 – volume: 211–212 start-page: 28 year: 2013 end-page: 38 ident: bb0725 article-title: Electromagnetic conductivity imaging (EMCI) of soil using a DUALEM-421 and inversion modeling software (EM4Soil) publication-title: Geoderma – volume: 28 start-page: 108 year: 2012 end-page: 112 ident: bb0750 article-title: Comparison of Geonics EM38 and Dualem 1S electromagnetic induction sensors for the measurement of salinity and other soil properties publication-title: Soil Use Manag. – volume: 48 start-page: 155 year: 2005 end-page: 168 ident: bb0290 article-title: Characterization of soil electrical conductivity variability in irrigated sandy and non-saline fields in Colorado publication-title: Trans. Am. Soc. Agric. Eng. – volume: 199 start-page: 99 year: 2013 end-page: 105 ident: bb0760 article-title: Key variables for the identification of soil management classes in the aeolian landscapes of north–west Europe publication-title: Geoderma – start-page: 1444 year: 2000 end-page: 1451 ident: bb0670 article-title: Measuring and interpreting soil electrical conductivity for precision agriculture publication-title: Proc. Int. Conference Geospatial Information in Agriculture and Forestry. Lake Buena Vista, Florida. June 10–12, 2000 – volume: 68 start-page: 715 year: 1988 end-page: 722 ident: bb0410 article-title: Estimating spatial variations of soil water content using noncontacting electromagnetic inductive methods publication-title: Can. J. Soil Sci. – volume: 54 start-page: 290 year: 1990 end-page: 293 ident: bb0495 article-title: Estimating forest soil quality from terrain measurements of apparent electrical conductivity publication-title: Soil Sci. Soc. Am. J. – volume: 4 start-page: 425 year: 2012 end-page: 434 ident: bb0010 article-title: Employing electromagnetic induction techniques for the assessment of soil compaction publication-title: Am. J. Agric. Biol. Sci. – start-page: 979 year: 1999 end-page: 990 ident: bb0695 article-title: Soil conductivity sensing on claypan soils: Comparison of Electromagnetic Induction and direct methods publication-title: Proceedings of the 4th International Conference on Precision Agriculture – volume: 94 start-page: 1355 year: 2002 end-page: 1366 ident: bb0045 article-title: Soil-sampling alternatives and variable-rate liming for a soybean–corn rotation publication-title: Agron. J. – volume: 11 start-page: 375 year: 1997 end-page: 390 ident: bb0050 article-title: Non-destructive assessments of rangeland soil depth using electromagnetic induction publication-title: Arid Soil Res. Rehabil. – volume: 4 start-page: 331 year: 2003 end-page: 342 ident: bb0100 article-title: Evaluation of the accuracy of a central Iowa soil survey and implications for precision soil management publication-title: Precis. Agric. – volume: 107 start-page: 251 year: 1989 end-page: 265 ident: bb0150 article-title: The calibration of frequency-domain electromagnetic induction meters and their possible use in recharge studies publication-title: J. Hydrol. – volume: 148 start-page: 107 year: 2008 end-page: 112 ident: bb0765 article-title: Upgrading a 1/20,000 soil map with an apparent electrical conductivity survey publication-title: Geoderma – volume: 49 start-page: 102 year: 2008 end-page: 108 ident: bb0265 article-title: Soil scientists revisit a high-intensity soil survey in Northwest Illinois with electromagnetic induction and tradition methods publication-title: Soil Surv. Horiz. – year: 1990 ident: bb0795 article-title: Inferring recharge/discharge areas from multifrequency electromagnetic induction measurements publication-title: CSIRO Division of Water Resources, Tech Memorandum 90/11 – year: 1993 ident: bb0385 article-title: Soil type and crop yields determination from ground conductivity surveys publication-title: 1993 International Meeting of American Society of Agricultural Engineers. Paper No. 933552 – volume: 40 start-page: 651 year: 1976 end-page: 655 ident: bb0570 article-title: Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity publication-title: Soil Sci. Soc. Am. J. – volume: 6 start-page: 167 year: 2005 end-page: 181 ident: bb0420 article-title: Mapping potential crop management zones within fields: use of yield-map series and patterns of soil physical properties identified by electromagnetic induction sensing publication-title: Precis. Agric. – volume: 56 start-page: 1015 year: 1992 end-page: 1022 ident: bb0155 article-title: Depth profiles of electrical conductivity from linear combinations of electromagnetic induction measurements publication-title: Soil Sci. Soc. Am. J. – volume: 5 start-page: 143 year: 2004 end-page: 150 ident: bb0095 article-title: Effect of daily soil temperature fluctuations on soil electrical conductivity as measured with the Geonics® EM-38 publication-title: Precis. Agric. – volume: 73 start-page: 7 year: 2009 end-page: 12 ident: bb0610 article-title: Comparing the EM38DD and DUALEM-21S sensors for depth-to-clay mapping publication-title: Soil Sci. Soc. Am. J. – volume: 50 start-page: 68 year: 2009 end-page: 74 ident: bb0270 article-title: High-intensity soil mapping with the aid of EMI in northern Illinois publication-title: Soil Surv. Horiz. – volume: 47 start-page: 208 year: 2007 end-page: 214 ident: bb0280 article-title: Using electro-magnetic induction technology to identify sampling sites for soil acidity assessment and to determine spatial variability of soil acidity in rice fields publication-title: Aust. J. Exp. Agric. – start-page: 18 year: 2013 end-page: 27 ident: bb0215 publication-title: Technical Report on EMI and Saline Seep Workshop, Great Falls – start-page: 169 year: 1996 end-page: 179 ident: bb0375 article-title: Improved soil mapping using electromagnetic induction surveys publication-title: Proceedings of the 3rd International Conference on Precision Agriculture. June 23–26, 1996, Minneapolis, Minnesota – volume: 176 start-page: 441 year: 2011 end-page: 447 ident: bb0315 article-title: Delineating salinity and sodicity distribution in major soil map units of El Paso, Texas, using electromagnetic induction technique publication-title: Soil Sci. – volume: 100 start-page: 1472 year: 2008 end-page: 1480 ident: bb0630 article-title: How well do zone sampling based soil electrical conductivity maps represent soil variability? publication-title: Agron. J. – volume: 57 start-page: 175 year: 2002 end-page: 182 ident: bb0230 article-title: Comparing three geophysical tools for locating sand blows in alluvial soils of southeast Missouri publication-title: J. Soil Water Conserv. – volume: 52 start-page: 77 year: 2011 end-page: 88 ident: bb0345 article-title: Evaluation of electromagnetic induction to characterize and map sodium-affected soils in the Northern Great Plains publication-title: Soil Surv. Horiz. – volume: 53 start-page: 50 year: 2012 end-page: 54 ident: bb0105 article-title: Use of electrical conductivity to investigate soil homogeneity in Story County, Iowa, USA publication-title: Soil Surv. Horiz. – volume: 53 start-page: 32 year: 2012 end-page: 37 ident: bb0065 article-title: Analysis of the representation of soil map units using a common apparent electrical conductivity sampling design for the mapping of soil properties publication-title: Soil Surv. Horiz. – volume: 45 start-page: 255 year: 1981 end-page: 260 ident: bb0555 article-title: Determining soil electrical conductivity-depth relations using an inductive electromagnetic soil conductivity meter publication-title: Soil Sci. Soc. Am. J. – volume: 45 start-page: 6372 year: 2007 ident: bb0360 article-title: An electromagnetic induction method for monitoring variations in soil moisture in agroforestry systems publication-title: Aust. J. Soil Res. – volume: 44 start-page: 71 year: 2004 end-page: 91 ident: bb0005 article-title: On-the-go soil sensors for precision agriculture publication-title: Comput. Electron. Agric. – start-page: 199 year: 2009 end-page: 233 ident: bb0135 article-title: Mapping soil salinity using ground-based electromagnetic induction publication-title: Remote Sensing of Soil Salinization – volume: 65 start-page: 1829 year: 2001 end-page: 1837 ident: bb0395 article-title: Field-scale conductivity mapping for delineating soil condition publication-title: Soil Sci. Soc. Am. J. – volume: 11 start-page: 7 year: 1990 end-page: 14 ident: bb0650 article-title: Estimation of field scale leaching rates from chloride mass balance and electromagnetic induction measurements publication-title: Irrig. Sci. – volume: 56 start-page: 257 year: 2001 end-page: 262 ident: bb0250 article-title: Comparison of two electromagnetic induction tools in salinity appraisals publication-title: J. Soil Water Conserv. – volume: 2 start-page: 859 year: 2009 end-page: 868 ident: bb0705 publication-title: Estimating depth to argillic soil horizons using apparent electrical conductivity response functions – volume: 39 start-page: 98 year: 2012 end-page: 110 ident: bb0340 article-title: Characterisation of soil texture variability using apparent electrical conductivity at a highly variable site publication-title: Comput. Geosci. – volume: 40 start-page: 1260 year: 2013 end-page: 1267 ident: bb0200 article-title: A multidisciplinary approach to reconstructing Late Glacial and Early Holocene landscapes publication-title: J. Archaeol. Sci. – volume: 62 start-page: 232 year: 1998 end-page: 242 ident: bb0450 article-title: Monitoring for temporal changes in soil salinity using electromagnetic induction techniques publication-title: Soil Sci. Soc. Am. J. – volume: 37 start-page: 11 year: 1996 end-page: 20 ident: bb0235 article-title: Electromagnetic induction investigations of a soil delineation in Reno County, Kansas publication-title: Soil Surv. Horiz. – start-page: 153 year: 1995 end-page: 156 ident: bb0370 article-title: Electromagnetic induction as a mapping aid for precision farming publication-title: Clean Water, Clean Environment, 21st Century: Team Agriculture. Working to Protect Water Resources – start-page: 133 year: 1998 end-page: 139 ident: bb0425 article-title: An evaluation of methods for determining site-specific management zones publication-title: Proceedings of the North Central Extension-Industry Soil Fertility Conference – volume: 95 start-page: 496 year: 2003 end-page: 507 ident: bb0540 article-title: Soil electrical conductivity map variability in limestone soils overlain by loess publication-title: Agron. J. – volume: 30 start-page: 569 year: 2004 end-page: 578 ident: bb0325 article-title: Determining and representing width of soil boundaries using electrical conductivity and MultiGrid publication-title: Comput. Geosci. – year: 1980 ident: bb0505 article-title: Electrical conductivity of soils and rock publication-title: Technical Note TN-5 – volume: 43 start-page: 88 year: 2013 end-page: 95 ident: bb0730 article-title: An inversion approach to generate electromagnetic conductivity images from signal data publication-title: Environ. Model Softw. – volume: 1 start-page: 14 year: 1998 end-page: 19 ident: bb0225 article-title: Where is it safe to build? Searching for geologic hazards in areas of karst publication-title: Conserv. Voices – volume: 69 start-page: 25 year: 1989 end-page: 32 ident: bb0500 article-title: Conversion of electromagnetic inductance readings to saturated paste extract values in soils for different temperature, texture, and moisture conditions publication-title: Can. J. Soil Sci. – year: 1993 ident: bb0655 article-title: Soil survey manual publication-title: USDA Agricultural Handbook No. 18 – volume: 18 start-page: 121 year: 2002 end-page: 126 ident: bb0305 article-title: Mobilized surveying of soil conductivity using electromagnetic induction publication-title: Appl. Eng. Agric. – volume: 66 start-page: 235 year: 2002 end-page: 243 ident: bb0440 article-title: Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity publication-title: Soil Sci. Soc. Am. J. – volume: 25 start-page: 21 year: 1987 end-page: 27 ident: bb0805 article-title: The use of electromagnetic induction to detect the spatial variability of the salt and clay contents of soils publication-title: Aust. J. Soil Res. – start-page: 671 year: 1995 end-page: 681 ident: bb0700 article-title: Electromagnetic induction sensing as an indicator of productivity on claypan soils publication-title: Proceedings of Second International Conference on Precision Management for Agricultural Systems. March 27–30, 1994, Minneapolis, Minnesota – volume: 74 start-page: 58 year: 2008 end-page: 64 ident: bb0600 article-title: Reconstructing the paleotopography beneath the loess cover with the aid of electromagnetic induction sensors publication-title: Catena – volume: 48 start-page: 288 year: 1984 end-page: 291 ident: bb0180 article-title: Measurements of inverted electrical conductivity profiles using electromagnetic induction publication-title: Soil Sci. Soc. Am. J. – start-page: 225 year: 2008 end-page: 231 ident: bb0430 article-title: Relations between a commercial soil survey map based on apparent electrical conductivity (EC publication-title: Handbook of Agricultural Geophysics – volume: 74 start-page: 1763 year: 2010 end-page: 1774 ident: bb0835 article-title: Repeated electromagnetic induction surveys for improving soil mapping in an agricultural landscape publication-title: Soil Sci. Soc. Am. J. – volume: 21 start-page: 861 year: 1990 end-page: 901 ident: bb0185 article-title: Establishing soil electrical conductivity — depth relations from electromagnetic induction measurements publication-title: Commun. Soil Sci. Plant Anal. – year: 2006 ident: bb0740 article-title: Land resource regions and major land resource areas of the United States, Caribbean, and Pacific Basin publication-title: USDA Handbook 296 – volume: 61 start-page: 1627 year: 1997 end-page: 1633 ident: bb0400 article-title: Evaluation of calibration methods for interpreting soil salinity from electromagnetic induction measurements publication-title: Soil Sci. Soc. Am. J. – volume: 31 start-page: 2401 year: 1995 end-page: 2409 ident: bb0635 article-title: Noninvasive soil water content measurements using electromagnetic induction publication-title: Water Resour. Res. – volume: 53 year: 2012 ident: bb0070 article-title: Evaluation of the FieldScout TDR300 for determining volumetric water content in sandy South Georgia Soils publication-title: Soil Horiz. – volume: 75 start-page: 2095 year: 2011 end-page: 2100 ident: bb0515 article-title: Imaging polygonal network of ice-wedge casts with an electromagnetic induction sensor publication-title: Soil Sci. Soc. Am. J. – start-page: 211 year: 2008 end-page: 215 ident: bb0790 article-title: Apparent electrical conductivity for delineating spatial variability in soil properties publication-title: Handbook of Agricultural Geophysics – volume: 18 start-page: 139 year: 1985 end-page: 148 ident: bb0820 article-title: The application of ground conductivity measurements to geological mapping publication-title: Q. J. Eng. Geol. Hydrogeol. – volume: 19 start-page: 675 year: 2003 end-page: 688 ident: bb0625 article-title: Mapping water table depth by electromagnetic induction publication-title: Appl. Eng. Agric. – volume: 22 start-page: 253 year: 1999 end-page: 257 ident: bb0075 article-title: Improved mapping of the Lake Agassiz Herman Strandline by integrating geological and soil maps publication-title: J. Paleolimnol. – volume: 143 start-page: 206 year: 2008 end-page: 215 ident: bb0770 article-title: Key soil and topographic properties to delineate potential management classes for precision agriculture in the European loess area publication-title: Geoderma – volume: 189–190 start-page: 514 year: 2012 end-page: 521 ident: bb0595 article-title: Depth slicing of a multi-receiver EMI measurements to enhance the delineation of contrasting soil features publication-title: Geoderma – volume: 42 start-page: 389 year: 2004 end-page: 400 ident: bb0335 article-title: Rapid identification of soil textural and management zones using electromagnetic induction sensing in soils publication-title: Aust. J. Soil Res. – volume: 43 start-page: 810 year: 1979 end-page: 812 ident: bb0195 article-title: Measurement of apparent electrical conductivity of soils by an electromagnetic induction probe to aid salinity surveys publication-title: Soil Sci. Soc. Am. J. – volume: 31 start-page: 373 year: 1995 end-page: 386 ident: bb0465 article-title: Spatial prediction of soil salinity using electromagnetic induction techniques. 1. Statistical prediction models: a comparison of multiple linear regression and cokriging publication-title: Water Resour. Res. – volume: 41 start-page: 27 year: 2000 end-page: 36 ident: bb0245 article-title: An electromagnetic induction survey of a riparian area in southwest Montana publication-title: Soil Surv. Horiz. – volume: 44 start-page: 16 year: 2003 end-page: 24 ident: bb0085 article-title: Use of the Geonics EM-38 to delineate soil in a loess over till landscape, southwestern Iowa publication-title: Soil Surv. Horiz. – volume: 28 start-page: 443 year: 1990 end-page: 452 ident: bb0645 article-title: Determining EC publication-title: Aust. J. Soil Res. – volume: 22 start-page: 3604 year: 2008 end-page: 3635 ident: bb0585 article-title: Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods publication-title: Hydrol. Process. – volume: 43 start-page: 14 year: 2002 end-page: 21 ident: bb0255 article-title: Mapping bedrock depths with EMI in Costilla County, Colorado publication-title: Soil Surv. Horiz. – volume: 30 start-page: 66 year: 1989 end-page: 70 ident: bb0025 article-title: Application of an aboveground electromagnetic conductivity meter to separate Natraqualfs and Ochraqualfs in Gibson County, Tennessee publication-title: Soil Surv. Horiz. – volume: 49 start-page: 552 year: 1994 end-page: 555 ident: bb0260 article-title: Estimating depth to claypans using electromagnetic inductive methods publication-title: J. Soil Water Conserv. – volume: 88 start-page: 183 year: 2002 end-page: 193 ident: bb0285 article-title: Electrical conductivity monitoring of soil condition and available N with animal manure and a cover crop publication-title: Agric. Ecosyst. Environ. – volume: 37 start-page: 296 year: 1999 end-page: 304 ident: bb0620 article-title: Evaluation of electromagnetic induction as a reconnaissance technique to characterize unsaturated flow in an arid setting publication-title: Ground Water – volume: 66 start-page: 315 year: 1986 end-page: 321 ident: bb0815 article-title: A rapid method for estimating weighted soil salinity from apparent soil electrical conductivity measured with an aboveground electromagnetic induction meter publication-title: Can. J. Soil Sci. – volume: 76 start-page: 2128 year: 2012 end-page: 2135 ident: bb0060 article-title: Manganiferous soils in Maryland: regional extent and field-scale electromagnetic induction survey publication-title: Soil Sci. Soc. Am. J. – volume: 53 start-page: 74 year: 1989 end-page: 79 ident: bb0560 article-title: New calibrations for determining soil electrical conductivity depth relations from electromagnetic measurements publication-title: Soil Sci. Soc. Am. J. – start-page: 3 year: 2008 end-page: 16 ident: bb0015 article-title: General considerations for geophysical methods applied to agriculture publication-title: Handbook of Agricultural Geophysics – volume: 53 start-page: 11 year: 2012 end-page: 15 ident: bb0530 article-title: The need to continue improving soil survey maps publication-title: Soil Horiz. – volume: 77 start-page: 382 year: 2012 end-page: 390 ident: bb0590 article-title: Identifying soil patterns at different spatial scales with a multi-receiver EMI sensor publication-title: Soil Sci. Soc. Am. J. – volume: 368 start-page: 56 year: 2009 end-page: 67 ident: bb0735 article-title: Assessment of multi-frequency electromagnetic induction for determining soil moisture patterns at the hillslope scale publication-title: J. Hydrol. – volume: 58 start-page: 1190 year: 1994 end-page: 1193 ident: bb0545 article-title: Sodium-affected soil electrical identification in south-central Illinois by electromagnetic induction publication-title: Soil Sci. Soc. Am. J. – volume: 95 start-page: 472 year: 2003 end-page: 482 ident: bb0685 article-title: Comparison of electromagnetic induction and direct sensing of soil electrical conductivity publication-title: Agron. J. – volume: 71 start-page: 1740 year: 2007 end-page: 1747 ident: bb0780 article-title: Mapping clay content across boundaries at the landscape scale with electromagnetic induction publication-title: Soil Sci. Soc. Am. J. – start-page: 2037 year: 2000 end-page: 2048 ident: bb0140 article-title: Mapping soil hardpans with penetrometer and electrical conductivity publication-title: 2000 ASAE Annual International Meeting, Technical Papers: Engineering Solutions for a New Century – volume: 55 start-page: 1596 year: 1990 end-page: 1604 ident: bb0550 article-title: Mapping of Quaternary sediments in northeastern Ontario using ground electromagnetic methods publication-title: Geophysics – volume: 66 start-page: 1562 year: 2002 end-page: 1570 ident: bb0030 article-title: Differentiating soil types using electromagnetic conductivity and crop yield maps publication-title: Soil Sci. Soc. Am. J. – year: 1983 ident: bb0755 article-title: Use of Electromagnetic Induction Instrument (type EM-38) for Mapping Soil Salinity – volume: 130 start-page: 201 year: 1992 end-page: 229 ident: bb0160 article-title: The application of electromagnetic techniques to groundwater recharge investigations publication-title: J. Hydrol. – volume: 56 start-page: 53 year: 2007 end-page: 65 ident: bb0350 article-title: Feasibility study of monitoring the total available water content using non-invasive electromagnetic induction-based and electrode-based soil electrical conductivity measurements publication-title: Irrig. Drain. – volume: 70 start-page: 537 year: 1990 end-page: 541 ident: bb0405 article-title: Field scale patterns of soil water storage from non-contacting measurements of bulk electrical conductivity publication-title: Can. J. Soil Sci. – volume: 154 start-page: 151 year: 1992 end-page: 157 ident: bb0210 article-title: Salinity estimates in irrigated soils using electromagnetic induction publication-title: Soil Sci. – volume: 43 start-page: 9 year: 2002 end-page: 13 ident: bb0080 article-title: The relative influence of soil water, clay, temperature, and carbonate minerals on soil electrical conductivity readings with an EM-38 along a Mollisol catena in central Iowa publication-title: Soil Surv. Horiz. – volume: 45 start-page: 99 year: 2002 end-page: 107 ident: bb0485 article-title: Field assessment of saline seep remediation using electromagnetic induction publication-title: Trans. Am. Soc. Agric. Eng. – volume: 31 start-page: 239 year: 2001 end-page: 264 ident: bb0675 article-title: Accuracy issues in electromagnetic induction sensing of electrical conductivity for precision agriculture publication-title: Comput. Electron. Agric. – volume: 58 start-page: 1190 year: 1994 ident: 10.1016/j.geoderma.2014.01.027_bb0545 article-title: Sodium-affected soil electrical identification in south-central Illinois by electromagnetic induction publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1994.03615995005800040026x – year: 1993 ident: 10.1016/j.geoderma.2014.01.027_bb0130 article-title: Mechanization of soil salinity assessment for mapping – volume: 176 start-page: 441 issue: 8 year: 2011 ident: 10.1016/j.geoderma.2014.01.027_bb0315 article-title: Delineating salinity and sodicity distribution in major soil map units of El Paso, Texas, using electromagnetic induction technique publication-title: Soil Sci. doi: 10.1097/SS.0b013e318221f11a – start-page: 255 year: 2008 ident: 10.1016/j.geoderma.2014.01.027_bb0435 article-title: Mapping soil drainage classes using topographic and soil electrical conductivity – volume: 4 start-page: 6433 issue: 12 year: 2010 ident: 10.1016/j.geoderma.2014.01.027_bb0715 article-title: Application of geophysical methods in agriculture publication-title: Aust. J. Basic Appl. Sci. – start-page: 413 year: 2012 ident: 10.1016/j.geoderma.2014.01.027_bb0275 article-title: Geophysical investigations of soil-landscape architecture and its impacts on subsurface flow – volume: 43 start-page: 9 year: 2002 ident: 10.1016/j.geoderma.2014.01.027_bb0080 article-title: The relative influence of soil water, clay, temperature, and carbonate minerals on soil electrical conductivity readings with an EM-38 along a Mollisol catena in central Iowa publication-title: Soil Surv. Horiz. doi: 10.2136/sh2002.1.0009 – volume: 47 start-page: 208 year: 2007 ident: 10.1016/j.geoderma.2014.01.027_bb0280 article-title: Using electro-magnetic induction technology to identify sampling sites for soil acidity assessment and to determine spatial variability of soil acidity in rice fields publication-title: Aust. J. Exp. Agric. doi: 10.1071/EA05102 – volume: 199 start-page: 99 year: 2013 ident: 10.1016/j.geoderma.2014.01.027_bb0760 article-title: Key variables for the identification of soil management classes in the aeolian landscapes of north–west Europe publication-title: Geoderma doi: 10.1016/j.geoderma.2012.07.017 – start-page: 199 year: 2009 ident: 10.1016/j.geoderma.2014.01.027_bb0135 article-title: Mapping soil salinity using ground-based electromagnetic induction – volume: 46 start-page: 169 issue: 4 year: 2005 ident: 10.1016/j.geoderma.2014.01.027_bb0240 article-title: Characterizing a lithosequence within the San Rafael Swell of Utah with EMI publication-title: Soil Surv. Horiz. doi: 10.2136/sh2005.4.0169 – volume: 73 start-page: 7 issue: 1 year: 2009 ident: 10.1016/j.geoderma.2014.01.027_bb0610 article-title: Comparing the EM38DD and DUALEM-21S sensors for depth-to-clay mapping publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2008.0079 – volume: 42 start-page: 389 year: 2004 ident: 10.1016/j.geoderma.2014.01.027_bb0335 article-title: Rapid identification of soil textural and management zones using electromagnetic induction sensing in soils publication-title: Aust. J. Soil Res. doi: 10.1071/SR03149 – volume: 48 start-page: 205 year: 1996 ident: 10.1016/j.geoderma.2014.01.027_bb0380 article-title: Mapping the areal distribution of soil parameters with geophysical techniques – volume: 66 start-page: 235 year: 2002 ident: 10.1016/j.geoderma.2014.01.027_bb0440 article-title: Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.0235 – volume: 51 start-page: 469 year: 1998 ident: 10.1016/j.geoderma.2014.01.027_bb0055 article-title: Soil depth assessment of sagebrush grazing treatments using electromagnetic induction publication-title: J. Range Manag. doi: 10.2307/4003336 – volume: 22 start-page: 3604 year: 2008 ident: 10.1016/j.geoderma.2014.01.027_bb0585 article-title: Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods publication-title: Hydrol. Process. doi: 10.1002/hyp.6963 – volume: 74 start-page: 58 year: 2008 ident: 10.1016/j.geoderma.2014.01.027_bb0600 article-title: Reconstructing the paleotopography beneath the loess cover with the aid of electromagnetic induction sensors publication-title: Catena doi: 10.1016/j.catena.2008.03.007 – volume: 21 start-page: 861 issue: 11&12 year: 1990 ident: 10.1016/j.geoderma.2014.01.027_bb0185 article-title: Establishing soil electrical conductivity — depth relations from electromagnetic induction measurements publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103629009368275 – year: 1993 ident: 10.1016/j.geoderma.2014.01.027_bb0655 article-title: Soil survey manual – volume: 62 start-page: 232 year: 1998 ident: 10.1016/j.geoderma.2014.01.027_bb0450 article-title: Monitoring for temporal changes in soil salinity using electromagnetic induction techniques publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1998.03615995006200010030x – start-page: 1 year: 2003 ident: 10.1016/j.geoderma.2014.01.027_bb0190 article-title: Geophysics in soil science – volume: 77 start-page: 382 year: 2012 ident: 10.1016/j.geoderma.2014.01.027_bb0590 article-title: Identifying soil patterns at different spatial scales with a multi-receiver EMI sensor publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2012.0276 – volume: 31 start-page: 2401 year: 1995 ident: 10.1016/j.geoderma.2014.01.027_bb0635 article-title: Noninvasive soil water content measurements using electromagnetic induction publication-title: Water Resour. Res. doi: 10.1029/95WR01949 – volume: 70 start-page: 537 year: 1990 ident: 10.1016/j.geoderma.2014.01.027_bb0405 article-title: Field scale patterns of soil water storage from non-contacting measurements of bulk electrical conductivity publication-title: Can. J. Soil Sci. doi: 10.4141/cjss90-056 – volume: 100 start-page: 1472 issue: 5 year: 2008 ident: 10.1016/j.geoderma.2014.01.027_bb0630 article-title: How well do zone sampling based soil electrical conductivity maps represent soil variability? publication-title: Agron. J. doi: 10.2134/agronj2008.0060 – volume: 7 start-page: 393 year: 2006 ident: 10.1016/j.geoderma.2014.01.027_bb0110 article-title: Soil electrical conductivity as a function of soil water content and implications for soil mapping publication-title: Precis. Agric. doi: 10.1007/s11119-006-9021-x – volume: 95 start-page: 472 year: 2003 ident: 10.1016/j.geoderma.2014.01.027_bb0685 article-title: Comparison of electromagnetic induction and direct sensing of soil electrical conductivity publication-title: Agron. J. doi: 10.2134/agronj2003.0472 – volume: 37 start-page: 296 issue: 2 year: 1999 ident: 10.1016/j.geoderma.2014.01.027_bb0620 article-title: Evaluation of electromagnetic induction as a reconnaissance technique to characterize unsaturated flow in an arid setting publication-title: Ground Water doi: 10.1111/j.1745-6584.1999.tb00987.x – volume: 199 start-page: 30 year: 2013 ident: 10.1016/j.geoderma.2014.01.027_bb0205 article-title: Exploring the potential of multi-receiver EMI survey for geoarchaeological prospection: A 90ha dataset publication-title: Geoderma doi: 10.1016/j.geoderma.2012.07.019 – volume: 7 start-page: 380 year: 1999 ident: 10.1016/j.geoderma.2014.01.027_bb0355 article-title: Detecting a salinity plume in an unconfined sandy aquifer and assessing secondary soil salinization using electromagnetic induction techniques, North Dakota, USA publication-title: Hydrogeol. J. doi: 10.1007/s100400050210 – year: 2000 ident: 10.1016/j.geoderma.2014.01.027_bb0775 article-title: Mapping available water content and estimating soil textural class using electromagnetic induction – volume: 40 start-page: 651 year: 1976 ident: 10.1016/j.geoderma.2014.01.027_bb0570 article-title: Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1976.03615995004000050017x – start-page: 1444 year: 2000 ident: 10.1016/j.geoderma.2014.01.027_bb0670 article-title: Measuring and interpreting soil electrical conductivity for precision agriculture – volume: 88 start-page: 183 year: 2002 ident: 10.1016/j.geoderma.2014.01.027_bb0285 article-title: Electrical conductivity monitoring of soil condition and available N with animal manure and a cover crop publication-title: Agric. Ecosyst. Environ. doi: 10.1016/S0167-8809(01)00256-0 – start-page: 153 year: 1995 ident: 10.1016/j.geoderma.2014.01.027_bb0370 article-title: Electromagnetic induction as a mapping aid for precision farming – volume: 154 start-page: 151 issue: 2 year: 1992 ident: 10.1016/j.geoderma.2014.01.027_bb0210 article-title: Salinity estimates in irrigated soils using electromagnetic induction publication-title: Soil Sci. doi: 10.1097/00010694-199208000-00009 – volume: 104 start-page: 1547 issue: 6 year: 2012 ident: 10.1016/j.geoderma.2014.01.027_bb0445 article-title: Toward the ultimate soil survey: sensing multiple soil landscape properties in one pass publication-title: Agron. J. doi: 10.2134/agronj2012.0156 – volume: 10 start-page: 1319 year: 2011 ident: 10.1016/j.geoderma.2014.01.027_bb0525 article-title: Quantitative two-layer conductivity inversion of multi-configuration electromagnetic induction measurements publication-title: Vadose Zone J. doi: 10.2136/vzj2011.0035 – volume: 44 start-page: 16 year: 2003 ident: 10.1016/j.geoderma.2014.01.027_bb0085 article-title: Use of the Geonics EM-38 to delineate soil in a loess over till landscape, southwestern Iowa publication-title: Soil Surv. Horiz. doi: 10.2136/sh2003.1.0016 – volume: 11 start-page: 375 year: 1997 ident: 10.1016/j.geoderma.2014.01.027_bb0050 article-title: Non-destructive assessments of rangeland soil depth using electromagnetic induction publication-title: Arid Soil Res. Rehabil. doi: 10.1080/15324989709381490 – volume: 150 start-page: 389 year: 2009 ident: 10.1016/j.geoderma.2014.01.027_bb0615 article-title: A pedotransfer function to evaluate the soil profile textural heterogeneity using proximally sensed apparent electrical conductivity publication-title: Geoderma doi: 10.1016/j.geoderma.2009.02.024 – volume: 55 start-page: 1596 year: 1990 ident: 10.1016/j.geoderma.2014.01.027_bb0550 article-title: Mapping of Quaternary sediments in northeastern Ontario using ground electromagnetic methods publication-title: Geophysics doi: 10.1190/1.1442811 – start-page: 169 year: 1996 ident: 10.1016/j.geoderma.2014.01.027_bb0375 article-title: Improved soil mapping using electromagnetic induction surveys – volume: 66 start-page: 1562 issue: 5 year: 2002 ident: 10.1016/j.geoderma.2014.01.027_bb0030 article-title: Differentiating soil types using electromagnetic conductivity and crop yield maps publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.1562 – volume: 53 start-page: 32 issue: 2 year: 2012 ident: 10.1016/j.geoderma.2014.01.027_bb0065 article-title: Analysis of the representation of soil map units using a common apparent electrical conductivity sampling design for the mapping of soil properties publication-title: Soil Surv. Horiz. doi: 10.2136/sh12-01-0002 – volume: 64 start-page: 183 year: 2011 ident: 10.1016/j.geoderma.2014.01.027_bb0520 article-title: Mapping complex soil patterns with multiple-point geostatistics publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12033 – start-page: 979 year: 1999 ident: 10.1016/j.geoderma.2014.01.027_bb0695 article-title: Soil conductivity sensing on claypan soils: Comparison of Electromagnetic Induction and direct methods – volume: 4 start-page: 331 year: 2003 ident: 10.1016/j.geoderma.2014.01.027_bb0100 article-title: Evaluation of the accuracy of a central Iowa soil survey and implications for precision soil management publication-title: Precis. Agric. doi: 10.1023/A:1024960708561 – volume: 44 start-page: 71 year: 2004 ident: 10.1016/j.geoderma.2014.01.027_bb0005 article-title: On-the-go soil sensors for precision agriculture publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2004.03.002 – volume: 43 start-page: 810 year: 1979 ident: 10.1016/j.geoderma.2014.01.027_bb0195 article-title: Measurement of apparent electrical conductivity of soils by an electromagnetic induction probe to aid salinity surveys publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1979.03615995004300040040x – volume: 68 start-page: 715 year: 1988 ident: 10.1016/j.geoderma.2014.01.027_bb0410 article-title: Estimating spatial variations of soil water content using noncontacting electromagnetic inductive methods publication-title: Can. J. Soil Sci. doi: 10.4141/cjss88-069 – volume: 37 start-page: 11 year: 1996 ident: 10.1016/j.geoderma.2014.01.027_bb0235 article-title: Electromagnetic induction investigations of a soil delineation in Reno County, Kansas publication-title: Soil Surv. Horiz. doi: 10.2136/sh1996.1.0011 – volume: 48 start-page: 2123 issue: 6 year: 2005 ident: 10.1016/j.geoderma.2014.01.027_bb0020 article-title: The impact of temperature and shallow hydrologic conditions on the magnitude and spatial pattern consistency of electromagnetic induction measured soil electrical conductivity publication-title: Trans. Am. Soc. Agric. Eng. doi: 10.13031/2013.20098 – volume: 42 start-page: 339 year: 2005 ident: 10.1016/j.geoderma.2014.01.027_bb0040 article-title: Scale dependent variability of soil electrical conductivity by indirect measures of soil properties publication-title: J. Terrramech. doi: 10.1016/j.jterra.2004.12.004 – volume: 8 start-page: 586 issue: 3 year: 2009 ident: 10.1016/j.geoderma.2014.01.027_bb0490 article-title: Can apparent electrical conductivity improve the spatial characterization of soil organic carbon? publication-title: Vadose Zone J. doi: 10.2136/vzj2008.0123 – volume: 41 start-page: 27 issue: 2 year: 2000 ident: 10.1016/j.geoderma.2014.01.027_bb0245 article-title: An electromagnetic induction survey of a riparian area in southwest Montana publication-title: Soil Surv. Horiz. doi: 10.2136/sh2000.2.0027 – volume: 45 start-page: 6372 year: 2007 ident: 10.1016/j.geoderma.2014.01.027_bb0360 article-title: An electromagnetic induction method for monitoring variations in soil moisture in agroforestry systems publication-title: Aust. J. Soil Res. doi: 10.1071/SR06093 – volume: 29 start-page: 2055 issue: 11–14 year: 1998 ident: 10.1016/j.geoderma.2014.01.027_bb0415 article-title: Use of non-contacting electromagnetic inductive method for estimating soil moisture across a landscape publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103629809370093 – year: 2010 ident: 10.1016/j.geoderma.2014.01.027_bb0690 article-title: Site-specific compaction, soil physical property, and crop yield relationships for claypan soils – volume: 74 start-page: 1750 year: 2010 ident: 10.1016/j.geoderma.2014.01.027_bb0830 article-title: Repeated electromagnetic induction surveys for determining subsurface hydrologic dynamics in an agricultural landscape publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2010.0055 – volume: 53 start-page: 65 year: 1992 ident: 10.1016/j.geoderma.2014.01.027_bb0575 article-title: Recharge and discharge of groundwater in aquic conditions illustrated with flow analysis publication-title: Geoderma doi: 10.1016/0016-7061(92)90021-X – start-page: 225 year: 2008 ident: 10.1016/j.geoderma.2014.01.027_bb0430 article-title: Relations between a commercial soil survey map based on apparent electrical conductivity (ECa) and measured soil properties on a moronic soil in southeast Norway – volume: 189–190 start-page: 514 year: 2012 ident: 10.1016/j.geoderma.2014.01.027_bb0595 article-title: Depth slicing of a multi-receiver EMI measurements to enhance the delineation of contrasting soil features publication-title: Geoderma doi: 10.1016/j.geoderma.2012.06.010 – volume: 28 start-page: 108 year: 2012 ident: 10.1016/j.geoderma.2014.01.027_bb0750 article-title: Comparison of Geonics EM38 and Dualem 1S electromagnetic induction sensors for the measurement of salinity and other soil properties publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2011.00386.x – volume: 45 start-page: 255 year: 1981 ident: 10.1016/j.geoderma.2014.01.027_bb0555 article-title: Determining soil electrical conductivity-depth relations using an inductive electromagnetic soil conductivity meter publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1981.03615995004500020006x – volume: 75 start-page: 2095 issue: 6 year: 2011 ident: 10.1016/j.geoderma.2014.01.027_bb0515 article-title: Imaging polygonal network of ice-wedge casts with an electromagnetic induction sensor publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2011.0063 – volume: 56 start-page: 53 year: 2007 ident: 10.1016/j.geoderma.2014.01.027_bb0350 article-title: Feasibility study of monitoring the total available water content using non-invasive electromagnetic induction-based and electrode-based soil electrical conductivity measurements publication-title: Irrig. Drain. doi: 10.1002/ird.289 – volume: 55 start-page: 12 year: 2000 ident: 10.1016/j.geoderma.2014.01.027_bb0035 article-title: Factors influencing the profitability of precision farming systems publication-title: J. Soil Water Conserv. doi: 10.1080/00224561.2000.12457301 – volume: 2 start-page: 859 year: 2009 ident: 10.1016/j.geoderma.2014.01.027_bb0705 – volume: 128 start-page: 354 year: 2005 ident: 10.1016/j.geoderma.2014.01.027_bb0125 article-title: Exploring the spatial relations between soil physical properties and apparent electrical conductivity publication-title: Geoderma doi: 10.1016/j.geoderma.2005.03.008 – volume: 96 start-page: 151 issue: 2 year: 2007 ident: 10.1016/j.geoderma.2014.01.027_bb0295 article-title: Map quality and zone delineation as affected by width of parallel swaths with mobile agricultural sensors publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2006.10.010 – volume: 56 start-page: 1015 year: 1992 ident: 10.1016/j.geoderma.2014.01.027_bb0155 article-title: Depth profiles of electrical conductivity from linear combinations of electromagnetic induction measurements publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1992.03615995005600040003x – volume: 43 start-page: 88 year: 2013 ident: 10.1016/j.geoderma.2014.01.027_bb0730 article-title: An inversion approach to generate electromagnetic conductivity images from signal data publication-title: Environ. Model Softw. doi: 10.1016/j.envsoft.2013.01.012 – start-page: 18 year: 2013 ident: 10.1016/j.geoderma.2014.01.027_bb0215 – volume: 57 start-page: 175 issue: 3 year: 2002 ident: 10.1016/j.geoderma.2014.01.027_bb0230 article-title: Comparing three geophysical tools for locating sand blows in alluvial soils of southeast Missouri publication-title: J. Soil Water Conserv. doi: 10.1080/00224561.2002.12457433 – volume: 61 start-page: 1627 year: 1997 ident: 10.1016/j.geoderma.2014.01.027_bb0400 article-title: Evaluation of calibration methods for interpreting soil salinity from electromagnetic induction measurements publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1997.03615995006100060013x – volume: 31 start-page: 239 year: 2001 ident: 10.1016/j.geoderma.2014.01.027_bb0675 article-title: Accuracy issues in electromagnetic induction sensing of electrical conductivity for precision agriculture publication-title: Comput. Electron. Agric. doi: 10.1016/S0168-1699(00)00185-X – volume: 45 start-page: 99 issue: 1 year: 2002 ident: 10.1016/j.geoderma.2014.01.027_bb0485 article-title: Field assessment of saline seep remediation using electromagnetic induction publication-title: Trans. Am. Soc. Agric. Eng. doi: 10.13031/2013.7879 – volume: 112 start-page: 179 year: 2003 ident: 10.1016/j.geoderma.2014.01.027_bb0660 article-title: Hierarchical data fusion for mapping soil units at field scale publication-title: Geoderma doi: 10.1016/S0016-7061(02)00305-1 – volume: 11 start-page: 7 year: 1990 ident: 10.1016/j.geoderma.2014.01.027_bb0650 article-title: Estimation of field scale leaching rates from chloride mass balance and electromagnetic induction measurements publication-title: Irrig. Sci. doi: 10.1007/BF00189989 – volume: 47 start-page: 328 issue: 3 year: 2009 ident: 10.1016/j.geoderma.2014.01.027_bb0710 article-title: Distribution and causes of intricate saline-sodic soil patterns in an upland South Australian hillslope publication-title: Soil Res. doi: 10.1071/SR07191 – volume: 71 start-page: 1740 issue: 6 year: 2007 ident: 10.1016/j.geoderma.2014.01.027_bb0780 article-title: Mapping clay content across boundaries at the landscape scale with electromagnetic induction publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2006.0177 – volume: 54 start-page: 290 issue: 1 year: 1990 ident: 10.1016/j.geoderma.2014.01.027_bb0495 article-title: Estimating forest soil quality from terrain measurements of apparent electrical conductivity publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1990.03615995005400010047x – volume: 66 start-page: 315 year: 1986 ident: 10.1016/j.geoderma.2014.01.027_bb0815 article-title: A rapid method for estimating weighted soil salinity from apparent soil electrical conductivity measured with an aboveground electromagnetic induction meter publication-title: Can. J. Soil Sci. doi: 10.4141/cjss86-032 – volume: 53 issue: 6 year: 2012 ident: 10.1016/j.geoderma.2014.01.027_bb0070 article-title: Evaluation of the FieldScout TDR300 for determining volumetric water content in sandy South Georgia Soils publication-title: Soil Horiz. doi: 10.2136/sh12-05-0018 – volume: 30 start-page: 569 year: 2004 ident: 10.1016/j.geoderma.2014.01.027_bb0325 article-title: Determining and representing width of soil boundaries using electrical conductivity and MultiGrid publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2004.01.005 – volume: 83 start-page: 23 year: 2010 ident: 10.1016/j.geoderma.2014.01.027_bb0115 article-title: Early soil knowledge and the birth and development of soil science publication-title: Catena doi: 10.1016/j.catena.2010.06.011 – start-page: 211 year: 2008 ident: 10.1016/j.geoderma.2014.01.027_bb0790 article-title: Apparent electrical conductivity for delineating spatial variability in soil properties – start-page: 17 year: 2008 ident: 10.1016/j.geoderma.2014.01.027_bb0170 article-title: Past, present, and future trends in soil electrical conductivity measurements using geophysical methods – volume: 74 start-page: 335 year: 1994 ident: 10.1016/j.geoderma.2014.01.027_bb0120 article-title: Soil salinity mapping with electromagnetic induction and satellite-based navigation methods publication-title: Can. J. Soil Sci. doi: 10.4141/cjss94-046 – volume: 3 start-page: 47 issue: 2 year: 1983 ident: 10.1016/j.geoderma.2014.01.027_bb0320 article-title: The use of reconnaissance electromagnetic methods to map contaminant migration publication-title: Ground Water Monit. Rev. doi: 10.1111/j.1745-6592.1983.tb01199.x – volume: 22 start-page: 253 issue: 3 year: 1999 ident: 10.1016/j.geoderma.2014.01.027_bb0075 article-title: Improved mapping of the Lake Agassiz Herman Strandline by integrating geological and soil maps publication-title: J. Paleolimnol. doi: 10.1023/A:1008050510681 – year: 1990 ident: 10.1016/j.geoderma.2014.01.027_bb0795 article-title: Inferring recharge/discharge areas from multifrequency electromagnetic induction measurements – year: 1980 ident: 10.1016/j.geoderma.2014.01.027_bb0510 article-title: Electromagnetic terrain conductivity measurement at low induction numbers – year: 1993 ident: 10.1016/j.geoderma.2014.01.027_bb0680 article-title: Electromagnetic induction sensing of claypan depth – year: 1980 ident: 10.1016/j.geoderma.2014.01.027_bb0505 article-title: Electrical conductivity of soils and rock – volume: 48 start-page: 288 year: 1984 ident: 10.1016/j.geoderma.2014.01.027_bb0180 article-title: Measurements of inverted electrical conductivity profiles using electromagnetic induction publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1984.03615995004800020011x – volume: 17 start-page: 1965 year: 2003 ident: 10.1016/j.geoderma.2014.01.027_bb0640 article-title: A new tool for hillslope hydrologists: spatially distributed groundwater level and soil water content measured using electromagnetic induction publication-title: Hydrol. Process. doi: 10.1002/hyp.1221 – volume: 130 start-page: 201 year: 1992 ident: 10.1016/j.geoderma.2014.01.027_bb0160 article-title: The application of electromagnetic techniques to groundwater recharge investigations publication-title: J. Hydrol. doi: 10.1016/0022-1694(92)90111-8 – volume: 50 start-page: 68 issue: 2 year: 2009 ident: 10.1016/j.geoderma.2014.01.027_bb0270 article-title: High-intensity soil mapping with the aid of EMI in northern Illinois publication-title: Soil Surv. Horiz. doi: 10.2136/sh2009.2.0068 – year: 1994 ident: 10.1016/j.geoderma.2014.01.027_bb0580 article-title: Assessing discharge characteristics of upland landscapes using electromagnetic induction techniques – volume: 46 start-page: 517 year: 1982 ident: 10.1016/j.geoderma.2014.01.027_bb0175 article-title: An improved technique for determining soil electrical conductivity — depth relations from above ground electromagnetic induction measurements publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1982.03615995004600030014x – start-page: 3 year: 2008 ident: 10.1016/j.geoderma.2014.01.027_bb0015 article-title: General considerations for geophysical methods applied to agriculture – volume: 64 start-page: 716 year: 2013 ident: 10.1016/j.geoderma.2014.01.027_bb0605 article-title: Integrating multi-receiver electromagnetic induction measurements into the interpretation of the soil landscape around the school of gladiators at Carnuntum publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12067 – volume: 4 start-page: 425 year: 2012 ident: 10.1016/j.geoderma.2014.01.027_bb0010 article-title: Employing electromagnetic induction techniques for the assessment of soil compaction publication-title: Am. J. Agric. Biol. Sci. – volume: 54 start-page: 1 issue: 3 year: 2013 ident: 10.1016/j.geoderma.2014.01.027_bb0220 article-title: Using EMI and P-XRF to characterize the magnetic properties and the concentration of metals in soils formed over different lithologies publication-title: Soil Horiz. doi: 10.2136/sh13-01-0009 – volume: 7 start-page: 15 issue: 1 year: 2009 ident: 10.1016/j.geoderma.2014.01.027_bb0480 article-title: Electrical conductivity mapping for precision farming publication-title: Near Surf. Geophys. doi: 10.3997/1873-0604.2008031 – volume: 65 start-page: 1829 year: 2001 ident: 10.1016/j.geoderma.2014.01.027_bb0395 article-title: Field-scale conductivity mapping for delineating soil condition publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.1829 – volume: 49 start-page: 552 issue: 6 year: 1994 ident: 10.1016/j.geoderma.2014.01.027_bb0260 article-title: Estimating depth to claypans using electromagnetic inductive methods publication-title: J. Soil Water Conserv. doi: 10.1080/00224561.1994.12456905 – volume: 43 start-page: 14 issue: 1 year: 2002 ident: 10.1016/j.geoderma.2014.01.027_bb0255 article-title: Mapping bedrock depths with EMI in Costilla County, Colorado publication-title: Soil Surv. Horiz. doi: 10.2136/sh2002.1.0014 – volume: 49 start-page: 102 issue: 4 year: 2008 ident: 10.1016/j.geoderma.2014.01.027_bb0265 article-title: Soil scientists revisit a high-intensity soil survey in Northwest Illinois with electromagnetic induction and tradition methods publication-title: Soil Surv. Horiz. doi: 10.2136/sh2008.4.0102 – year: 2006 ident: 10.1016/j.geoderma.2014.01.027_bb0740 article-title: Land resource regions and major land resource areas of the United States, Caribbean, and Pacific Basin – volume: 53 start-page: 11 year: 2012 ident: 10.1016/j.geoderma.2014.01.027_bb0530 article-title: The need to continue improving soil survey maps publication-title: Soil Horiz. doi: 10.2136/sh12-02-0005 – start-page: 671 year: 1995 ident: 10.1016/j.geoderma.2014.01.027_bb0700 article-title: Electromagnetic induction sensing as an indicator of productivity on claypan soils – start-page: 2037 year: 2000 ident: 10.1016/j.geoderma.2014.01.027_bb0140 article-title: Mapping soil hardpans with penetrometer and electrical conductivity – year: 2000 ident: 10.1016/j.geoderma.2014.01.027_bb0455 article-title: ESAP-95 version 2.10R User Manual and Tutorial Guide – volume: 45 start-page: 96 year: 2004 ident: 10.1016/j.geoderma.2014.01.027_bb0090 article-title: The effect of changes in bulk density on soil electrical conductivity as measured with the Geonics® EM-38 publication-title: Soil Surv. Horiz. doi: 10.2136/sh2004.3.0096 – volume: 30 start-page: 66 year: 1989 ident: 10.1016/j.geoderma.2014.01.027_bb0025 article-title: Application of an aboveground electromagnetic conductivity meter to separate Natraqualfs and Ochraqualfs in Gibson County, Tennessee publication-title: Soil Surv. Horiz. doi: 10.2136/sh1989.3.0066 – volume: 1 start-page: 14 issue: 2 year: 1998 ident: 10.1016/j.geoderma.2014.01.027_bb0225 article-title: Where is it safe to build? Searching for geologic hazards in areas of karst publication-title: Conserv. Voices – volume: 23 start-page: 40 year: 2007 ident: 10.1016/j.geoderma.2014.01.027_bb0310 article-title: Identifying management zones in agricultural fields using spatially constrained classification of soil and ancillary data publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2006.00065.x – volume: 50 start-page: 625 issue: 8 year: 2013 ident: 10.1016/j.geoderma.2014.01.027_bb0825 article-title: Monitoring and prediction of soil moisture spatial–temporal variations from a hydropedological perspective: a review publication-title: Soil Res. doi: 10.1071/SR12228 – volume: 95 start-page: 496 year: 2003 ident: 10.1016/j.geoderma.2014.01.027_bb0540 article-title: Soil electrical conductivity map variability in limestone soils overlain by loess publication-title: Agron. J. doi: 10.2134/agronj2003.0496 – volume: 177 start-page: 345 issue: 5 year: 2012 ident: 10.1016/j.geoderma.2014.01.027_bb0785 article-title: A multivariate approach for high-resolution soil survey development publication-title: Soil Sci. doi: 10.1097/SS.0b013e31824e14d6 – volume: 368 start-page: 56 year: 2009 ident: 10.1016/j.geoderma.2014.01.027_bb0735 article-title: Assessment of multi-frequency electromagnetic induction for determining soil moisture patterns at the hillslope scale publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.01.037 – volume: 53 start-page: 50 issue: 5 year: 2012 ident: 10.1016/j.geoderma.2014.01.027_bb0105 article-title: Use of electrical conductivity to investigate soil homogeneity in Story County, Iowa, USA publication-title: Soil Surv. Horiz. doi: 10.2136/sh12-04-0013 – volume: 19 start-page: 675 issue: 6 year: 2003 ident: 10.1016/j.geoderma.2014.01.027_bb0625 article-title: Mapping water table depth by electromagnetic induction publication-title: Appl. Eng. Agric. doi: 10.13031/2013.15663 – volume: 52 start-page: 77 year: 2011 ident: 10.1016/j.geoderma.2014.01.027_bb0345 article-title: Evaluation of electromagnetic induction to characterize and map sodium-affected soils in the Northern Great Plains publication-title: Soil Surv. Horiz. doi: 10.2136/sh2011.3.0077 – volume: 39 start-page: 35 year: 2010 ident: 10.1016/j.geoderma.2014.01.027_bb0475 article-title: Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI publication-title: J. Environ. Qual. doi: 10.2134/jeq2009.0140 – volume: 211–212 start-page: 28 year: 2013 ident: 10.1016/j.geoderma.2014.01.027_bb0725 article-title: Electromagnetic conductivity imaging (EMCI) of soil using a DUALEM-421 and inversion modeling software (EM4Soil) publication-title: Geoderma doi: 10.1016/j.geoderma.2013.06.001 – volume: 73 start-page: 164 year: 2009 ident: 10.1016/j.geoderma.2014.01.027_bb0330 article-title: Predicting regional-scale soil variability using single calibrated apparent soil electrical conductivity model publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2008.0074 – volume: 31 start-page: 373 year: 1995 ident: 10.1016/j.geoderma.2014.01.027_bb0465 article-title: Spatial prediction of soil salinity using electromagnetic induction techniques. 1. Statistical prediction models: a comparison of multiple linear regression and cokriging publication-title: Water Resour. Res. doi: 10.1029/94WR02179 – start-page: 133 year: 1998 ident: 10.1016/j.geoderma.2014.01.027_bb0425 article-title: An evaluation of methods for determining site-specific management zones – volume: 48 start-page: 155 issue: 1 year: 2005 ident: 10.1016/j.geoderma.2014.01.027_bb0290 article-title: Characterization of soil electrical conductivity variability in irrigated sandy and non-saline fields in Colorado publication-title: Trans. Am. Soc. Agric. Eng. doi: 10.13031/2013.17959 – volume: 148 start-page: 107 year: 2008 ident: 10.1016/j.geoderma.2014.01.027_bb0765 article-title: Upgrading a 1/20,000 soil map with an apparent electrical conductivity survey publication-title: Geoderma doi: 10.1016/j.geoderma.2008.09.013 – year: 1983 ident: 10.1016/j.geoderma.2014.01.027_bb0755 – volume: 39 start-page: 98 year: 2012 ident: 10.1016/j.geoderma.2014.01.027_bb0340 article-title: Characterisation of soil texture variability using apparent electrical conductivity at a highly variable site publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2011.06.017 – volume: 18 start-page: 121 issue: 1 year: 2002 ident: 10.1016/j.geoderma.2014.01.027_bb0305 article-title: Mobilized surveying of soil conductivity using electromagnetic induction publication-title: Appl. Eng. Agric. doi: 10.13031/2013.7701 – volume: 20 start-page: 107 year: 1982 ident: 10.1016/j.geoderma.2014.01.027_bb0800 article-title: An electromagnetic induction technique for reconnaissance surveys of soil salinity hazards publication-title: Aust. J. Soil Res. doi: 10.1071/SR9820107 – volume: 5 start-page: 143 year: 2004 ident: 10.1016/j.geoderma.2014.01.027_bb0095 article-title: Effect of daily soil temperature fluctuations on soil electrical conductivity as measured with the Geonics® EM-38 publication-title: Precis. Agric. doi: 10.1023/B:PRAG.0000022359.79184.92 – volume: 40 start-page: 1260 year: 2013 ident: 10.1016/j.geoderma.2014.01.027_bb0200 article-title: A multidisciplinary approach to reconstructing Late Glacial and Early Holocene landscapes publication-title: J. Archaeol. Sci. doi: 10.1016/j.jas.2012.09.004 – volume: 28 start-page: 443 year: 1990 ident: 10.1016/j.geoderma.2014.01.027_bb0645 article-title: Determining ECa-depth profiles from electromagnetic induction measurements publication-title: Aust. J. Soil Res. doi: 10.1071/SR9900443 – volume: 53 start-page: 433 year: 1989 ident: 10.1016/j.geoderma.2014.01.027_bb0565 article-title: Soil Electrical conductivity and soil salinity: New formulation and calibrations publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1989.03615995005300020020x – volume: 74 start-page: 1763 year: 2010 ident: 10.1016/j.geoderma.2014.01.027_bb0835 article-title: Repeated electromagnetic induction surveys for improving soil mapping in an agricultural landscape publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2010.0056 – volume: 56 start-page: 540 year: 1992 ident: 10.1016/j.geoderma.2014.01.027_bb0460 article-title: Mapping soil salinity using calibrated electromagnetic induction measurements publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1992.03615995005600020031x – volume: 76 start-page: 2128 year: 2012 ident: 10.1016/j.geoderma.2014.01.027_bb0060 article-title: Manganiferous soils in Maryland: regional extent and field-scale electromagnetic induction survey publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2012.0091 – volume: 107 start-page: 251 year: 1989 ident: 10.1016/j.geoderma.2014.01.027_bb0150 article-title: The calibration of frequency-domain electromagnetic induction meters and their possible use in recharge studies publication-title: J. Hydrol. doi: 10.1016/0022-1694(89)90060-7 – volume: 18 start-page: 139 year: 1985 ident: 10.1016/j.geoderma.2014.01.027_bb0820 article-title: The application of ground conductivity measurements to geological mapping publication-title: Q. J. Eng. Geol. Hydrogeol. doi: 10.1144/GSL.QJEG.1985.018.02.03 – volume: 68 start-page: 150 year: 2009 ident: 10.1016/j.geoderma.2014.01.027_bb0535 article-title: Height-above-ground effects on penetration depth and response of electromagnetic induction soil conductivity meters publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2009.05.009 – volume: 73 start-page: 1 issue: 6 year: 2009 ident: 10.1016/j.geoderma.2014.01.027_bb0145 article-title: Extracting topsoil information from EM38DD sensor data using neural network approach publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2008.0277 – volume: 47 start-page: 651 year: 2009 ident: 10.1016/j.geoderma.2014.01.027_bb0720 article-title: Field level digital mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model publication-title: Aust. J. Soil Res. doi: 10.1071/SR08240 – volume: 143 start-page: 206 year: 2008 ident: 10.1016/j.geoderma.2014.01.027_bb0770 article-title: Key soil and topographic properties to delineate potential management classes for precision agriculture in the European loess area publication-title: Geoderma doi: 10.1016/j.geoderma.2007.11.003 – volume: 6 start-page: 167 year: 2005 ident: 10.1016/j.geoderma.2014.01.027_bb0420 article-title: Mapping potential crop management zones within fields: use of yield-map series and patterns of soil physical properties identified by electromagnetic induction sensing publication-title: Precis. Agric. doi: 10.1007/s11119-005-1033-4 – volume: 53 start-page: 74 year: 1989 ident: 10.1016/j.geoderma.2014.01.027_bb0560 article-title: New calibrations for determining soil electrical conductivity depth relations from electromagnetic measurements publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1989.03615995005300010014x – volume: 56 start-page: 257 issue: 3 year: 2001 ident: 10.1016/j.geoderma.2014.01.027_bb0250 article-title: Comparison of two electromagnetic induction tools in salinity appraisals publication-title: J. Soil Water Conserv. doi: 10.1080/00224561.2001.12457389 – year: 1993 ident: 10.1016/j.geoderma.2014.01.027_bb0385 article-title: Soil type and crop yields determination from ground conductivity surveys – volume: 24 start-page: 36 year: 1994 ident: 10.1016/j.geoderma.2014.01.027_bb0390 article-title: Estimating herbicide partition coefficients from electromagnetic induction measurements publication-title: J. Environ. Qual. doi: 10.2134/jeq1995.00472425002400010005x – start-page: 39 year: 1993 ident: 10.1016/j.geoderma.2014.01.027_bb0665 – volume: 46 start-page: 1271 year: 2006 ident: 10.1016/j.geoderma.2014.01.027_bb0810 article-title: Spatial variability of regolith leaching and salinity in relation to whole farm planning publication-title: Aust. J. Exp. Agric. doi: 10.1071/EA04110 – volume: 94 start-page: 1355 year: 2002 ident: 10.1016/j.geoderma.2014.01.027_bb0045 article-title: Soil-sampling alternatives and variable-rate liming for a soybean–corn rotation publication-title: Agron. J. doi: 10.2134/agronj2002.1355 – start-page: 239 year: 1999 ident: 10.1016/j.geoderma.2014.01.027_bb0300 article-title: Soil map unit composition and scale of mapping related to interpretations for precision soil and crop management in Iowa – volume: 69 start-page: 25 year: 1989 ident: 10.1016/j.geoderma.2014.01.027_bb0500 article-title: Conversion of electromagnetic inductance readings to saturated paste extract values in soils for different temperature, texture, and moisture conditions publication-title: Can. J. Soil Sci. doi: 10.4141/cjss89-003 – year: 1954 ident: 10.1016/j.geoderma.2014.01.027_bb0745 article-title: Diagnosis and improvement of saline and alkali soils – volume: 111 start-page: 195 year: 1989 ident: 10.1016/j.geoderma.2014.01.027_bb0165 article-title: Spatial variability of groundwater recharge in a semiarid region publication-title: J. Hydrol. doi: 10.1016/0022-1694(89)90260-6 – volume: 86 start-page: 421 issue: 4 year: 2003 ident: 10.1016/j.geoderma.2014.01.027_bb0365 article-title: Determination of soil type boundaries using electromagnetic induction scanning techniques publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2003.09.001 – volume: 25 start-page: 21 year: 1987 ident: 10.1016/j.geoderma.2014.01.027_bb0805 article-title: The use of electromagnetic induction to detect the spatial variability of the salt and clay contents of soils publication-title: Aust. J. Soil Res. doi: 10.1071/SR9870021 – volume: 31 start-page: 387 year: 1995 ident: 10.1016/j.geoderma.2014.01.027_bb0470 article-title: Spatial prediction of soil salinity using electromagnetic induction techniques. 2. An efficient spatial sampling algorithm suitable for multiple linear regression model identification and estimation publication-title: Water Resour. Res. doi: 10.1029/94WR02180 |
SSID | ssj0017020 |
Score | 2.5734062 |
SecondaryResourceType | review_article |
Snippet | Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 33 |
SubjectTerms | Agronomy. Soil science and plant productions Apparent conductivity Bedrock Biological and medical sciences Earth sciences Earth, ocean, space electrical conductivity Electromagnetic induction electromagnetic induction techniques Electromagnetic interference Exact sciences and technology Fundamental and applied biological sciences. Psychology georeferencing landscapes Moisture content Sampling soil heterogeneity soil horizons Soil mapping soil organic matter soil salinity Soil spatial characterization soil surveys soil texture soil types soil water soil water content Soils Surface layer Surficial geology Texture |
Title | The use of electromagnetic induction techniques in soils studies |
URI | https://dx.doi.org/10.1016/j.geoderma.2014.01.027 https://www.proquest.com/docview/1520363348 https://www.proquest.com/docview/1642311157 https://www.proquest.com/docview/1836673202 |
Volume | 223-225 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swELYQe9mE0DaGKIzKSLxmjWsnjt9WoaFuEzyB1DfLduyqFaRV077y27lLnGoIjT7wmMhWkrvL3Xfy3XeEXAbuBHcSi8JKm4giuMSmwSdW-oZdxNlm3NvNbT6-F38m2WSPXHW9MFhWGX1_69Mbbx3vDKI0B8vZDHt8WS4hHEGKgMADG36FkGjlP562ZR5MppGakeUJrv6nS3gOOsKBYw3_EBMtfaf8X4A6WJoaxBbaeRevXHcTj64_k8MIJOmofdcvZM9XX8mn0XQVyTT8EfkJNkA3taeLQOO4m0czrbBtkUIq3vLG0i2Law03ab2YPdS0bqsLv5H76193V-MkTkxIDJdqDT7VKq54blgomc0NzwpXiDIXpXRp6aQE-MatkLZUzHmmyrTMuHQh5NL4AuLZMdmvFpU_ITSo1A_l0HnHvVAGEmWRYQVNLoySENd7JOvEpF2kE8epFg-6qxub6068GsWrU6ZBvD0y2O5btoQaO3eoTgv6hWlo8Po79_ZfqG37SEBVCpBY0SMXnR41_Fh4WmIqv9jUGoANHnJz8dYayN44Q76iN9YUHEerDtPh6Ts-5Ix8xKu2UPg72V-vNv4c4NDa9ht775MPo99_x7fPBWAKag |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROFBUIcpDbHnUSFzDxmsnjm8gVLS0wAkkbpbt2GhXkF2R3Wt_e8eJswIh4NCrYyvJjD0Peeb7AI49s5xZEYrCSpPwwtvEpN4lRrgGXcSahu7t-iYf3vHf99n9Epx3vTChrDLa_tamN9Y6jvSjNPvT0Sj0-NJcoDvCFCEEHsUXWOF4fAONwcnfRZ0HFWnEZqR5Eqa_aBMeo5IC41gDQER5i98p3vNQ36a6Rrn5lvDije1uHNLFBqzHSJKctR_7HZZctQlrZw_PEU3DbcEpbgIyrx2ZeBL5bp70QxX6Fgnm4i1wLFnAuNY4SOrJ6LEmdVteuA13F79uz4dJpExINBNyhkbVSCZZrqkvqck1ywpb8DLnpbBpaYXA-I0ZLkwpqXVUlmmZMWG9z4V2BTq0HViuJpXbBeJl6gZiYJ1ljkuNmTLPQglNzrUU6Nh7kHViUjbiiQdai0fVFY6NVSdeFcSrUqpQvD3oL9ZNW0SNT1fITgvq1d5QaPY_XXv4Sm2LV2JYJTEUK3pw1OlR4ckK1yW6cpN5rTCyCbfcjH80B9M3RgNg0QdzCha4VQfp4Md__MhPWB3eXl-pq8ubP3vwNTxpq4b3YXn2PHcHGBvNzGGz9_8B_0wL-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+use+of+electromagnetic+induction+techniques+in+soils+studies&rft.jtitle=Geoderma&rft.au=Doolittle%2C+James+A&rft.au=Brevik%2C+Eric+C.&rft.date=2014-07-01&rft.issn=0016-7061&rft.volume=223-225+p.33-45&rft.spage=33&rft.epage=45&rft_id=info:doi/10.1016%2Fj.geoderma.2014.01.027&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |