The use of electromagnetic induction techniques in soils studies

Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; asse...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 223-225; pp. 33 - 45
Main Authors Doolittle, James A., Brevik, Eric C.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.07.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales. •We review the use of electromagnetic induction (EMI) techniques in soils studies.•EMI allows the rapid collection of large amounts of spatially-oriented data.•Diffuse boundaries between soil map units can be well characterized with EMI.•A wide range of soil properties can be characterized.
AbstractList Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (EC sub(a)) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales.
Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales. •We review the use of electromagnetic induction (EMI) techniques in soils studies.•EMI allows the rapid collection of large amounts of spatially-oriented data.•Diffuse boundaries between soil map units can be well characterized with EMI.•A wide range of soil properties can be characterized.
Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales.
Author Brevik, Eric C.
Doolittle, James A.
Author_xml – sequence: 1
  givenname: James A.
  surname: Doolittle
  fullname: Doolittle, James A.
  email: jim.doolittle@lin.usda.gov
  organization: USDA-NRCS-NSSC, 11 Campus Boulevard, Suite 200, Newtown Square, PA 19073, United States
– sequence: 2
  givenname: Eric C.
  orcidid: 0000-0002-6004-0018
  surname: Brevik
  fullname: Brevik, Eric C.
  email: Eric.Brevik@dickinsonstate.edu
  organization: Department of Natural Sciences, 291 Campus Drive, Dickinson State University, Dickinson, ND 58601, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28399768$$DView record in Pascal Francis
BookMark eNqFkU1LxDAQhoMouH78BelF8NKaSdqkBQ-K-AWCFz2HbDLVLN1Ek1Tw39uy6sHLnoYZnncY5jkguz54JOQEaAUUxPmqesVgMa51xSjUFYWKMrlDFtBKVgrWdLtkQSeylFTAPjlIaTW1kjK6IJfPb1iMCYvQFzigyTGs9avH7EzhvB1NdsEXGc2bdx8jpmlYpOCGVKQ8WofpiOz1ekh4_FMPycvtzfP1ffn4dPdwffVYai67XAJddrzjQkNvYSk0b1rT1lbUVhpqjZSNaPiylkvbgUHoLLUNl6bvhdTY1sAPydlm73sM8yFZrV0yOAzaYxiTgpYLITmjbDsqasYBoJHb0YZRLjiv2wk9_UF1Mnroo_bGJfUe3VrHL8Va3nVSzJzYcCaGlCL2fwhQNQtTK_UrTM3CFAU1CZuCF_-CxmU9_z9H7Ybt8ctNHCcLnw6jSsahN2hdnLwqG9y2Fd-9vbbf
CODEN GEDMAB
CitedBy_id crossref_primary_10_1016_j_compag_2022_107512
crossref_primary_10_1016_j_rineng_2024_101777
crossref_primary_10_1016_j_geoderma_2020_114291
crossref_primary_10_1007_s12665_016_6179_z
crossref_primary_10_1016_j_atech_2024_100697
crossref_primary_10_1016_j_agwat_2019_02_045
crossref_primary_10_1016_j_quaint_2022_10_008
crossref_primary_10_2136_sssaj2014_11_0447
crossref_primary_10_3390_atmos13010073
crossref_primary_10_1016_j_geoderma_2020_114852
crossref_primary_10_3389_fsoil_2023_1290591
crossref_primary_10_3390_soilsystems4040061
crossref_primary_10_1002_fes3_52
crossref_primary_10_1002_hyp_13453
crossref_primary_10_1007_s42729_020_00367_y
crossref_primary_10_1016_j_catena_2021_105190
crossref_primary_10_3390_applmech3030049
crossref_primary_10_5194_hess_27_4317_2023
crossref_primary_10_1016_j_geoderma_2024_116914
crossref_primary_10_1007_s40333_022_0052_6
crossref_primary_10_1016_j_geodrs_2020_e00336
crossref_primary_10_1109_LGRS_2017_2683400
crossref_primary_10_2136_vzj2016_12_0129
crossref_primary_10_1007_s12517_021_06557_x
crossref_primary_10_1016_j_wasman_2022_03_007
crossref_primary_10_5897_AJAR2016_11088
crossref_primary_10_1007_s11356_023_29658_4
crossref_primary_10_5194_hess_22_1509_2018
crossref_primary_10_1016_j_trgeo_2025_101531
crossref_primary_10_1007_s11119_024_10191_4
crossref_primary_10_1016_j_geoderma_2014_04_020
crossref_primary_10_3389_fpls_2025_1512598
crossref_primary_10_1111_sum_12411
crossref_primary_10_1016_j_compag_2019_02_010
crossref_primary_10_1111_sum_12772
crossref_primary_10_3390_rs15081975
crossref_primary_10_1007_s11119_016_9435_z
crossref_primary_10_1002_saj2_20153
crossref_primary_10_1016_j_foodchem_2019_01_012
crossref_primary_10_3390_agronomy6040057
crossref_primary_10_1016_j_geoderma_2015_11_020
crossref_primary_10_1016_j_scitotenv_2017_08_001
crossref_primary_10_3390_rs14236066
crossref_primary_10_1371_journal_pone_0153377
crossref_primary_10_1016_j_jhydrol_2015_07_023
crossref_primary_10_3389_fenvs_2022_883533
crossref_primary_10_3390_rs14133020
crossref_primary_10_1016_j_biosystemseng_2021_09_007
crossref_primary_10_1016_j_scitotenv_2017_02_136
crossref_primary_10_1016_j_geodrs_2024_e00795
crossref_primary_10_1016_j_gsd_2024_101169
crossref_primary_10_2136_sssaj2016_12_0432
crossref_primary_10_1007_s11119_021_09826_7
crossref_primary_10_1071_SR13305
crossref_primary_10_3390_s22041508
crossref_primary_10_1016_j_catena_2024_108520
crossref_primary_10_1016_j_jasrep_2018_04_005
crossref_primary_10_1016_j_jhydrol_2016_10_017
crossref_primary_10_1016_j_jhydrol_2024_130957
crossref_primary_10_3390_s22103882
crossref_primary_10_1016_j_jhydrol_2018_03_046
crossref_primary_10_1016_j_scitotenv_2016_10_224
crossref_primary_10_3390_rs8121022
crossref_primary_10_1007_s11356_017_1062_3
crossref_primary_10_3390_geosciences10110446
crossref_primary_10_3390_w14193049
crossref_primary_10_1016_j_scitotenv_2023_164957
crossref_primary_10_1016_j_jappgeo_2020_103965
crossref_primary_10_1071_SR22260
crossref_primary_10_1016_j_agwat_2023_108472
crossref_primary_10_5194_hess_21_495_2017
crossref_primary_10_1097_SS_0000000000000213
crossref_primary_10_1016_j_catena_2016_03_011
crossref_primary_10_1111_ejss_13010
crossref_primary_10_1007_s12665_015_4535_z
crossref_primary_10_3390_geosciences10090349
crossref_primary_10_1016_j_jenvman_2021_114123
crossref_primary_10_3390_s17112540
crossref_primary_10_1016_j_geoderma_2020_114253
crossref_primary_10_23939_istcmtm2018_01_028
crossref_primary_10_1016_j_geoderma_2019_114084
crossref_primary_10_1029_2019GL082745
crossref_primary_10_1016_j_geoderma_2016_09_027
crossref_primary_10_1002_vzj2_20062
crossref_primary_10_1002_vzj2_20060
crossref_primary_10_1016_j_geoderma_2015_07_015
crossref_primary_10_1002_vzj2_20080
crossref_primary_10_3390_f16010086
crossref_primary_10_1007_s12665_024_11643_w
crossref_primary_10_1007_s11104_019_04237_0
crossref_primary_10_1002_nsg_12159
crossref_primary_10_3390_soilsystems7040088
crossref_primary_10_1016_j_scitotenv_2024_172344
crossref_primary_10_1007_s00477_019_01667_1
crossref_primary_10_1007_s13593_022_00798_0
crossref_primary_10_1111_ejss_12390
crossref_primary_10_4236_as_2022_138058
crossref_primary_10_1016_j_compag_2016_11_013
crossref_primary_10_1016_j_catena_2016_07_023
crossref_primary_10_1016_j_geomorph_2024_109283
crossref_primary_10_2136_sssaj2017_10_0356
crossref_primary_10_1016_j_jappgeo_2020_103944
crossref_primary_10_3390_soilsystems8010011
crossref_primary_10_1016_j_scitotenv_2020_136510
crossref_primary_10_1080_1065657X_2020_1772906
crossref_primary_10_1144_qjegh2019_113
crossref_primary_10_3390_agriculture14091527
crossref_primary_10_1007_s12665_016_6361_3
crossref_primary_10_32389_JEEG22_007
crossref_primary_10_1016_j_jappgeo_2017_09_015
crossref_primary_10_2136_sssaj2017_09_0327
crossref_primary_10_1007_s12517_020_05620_3
crossref_primary_10_1117_1_JRS_12_036015
crossref_primary_10_3389_fgene_2023_1164935
crossref_primary_10_1016_j_scitotenv_2023_165503
crossref_primary_10_1016_j_biosystemseng_2016_03_011
crossref_primary_10_1007_s13157_023_01686_3
crossref_primary_10_1002_ldr_4205
crossref_primary_10_3390_app14219623
crossref_primary_10_1016_j_geoderma_2023_116419
crossref_primary_10_3390_su10082826
crossref_primary_10_1016_j_jhydrol_2017_03_067
crossref_primary_10_5194_soil_10_843_2024
crossref_primary_10_1088_1755_1315_1458_1_012013
crossref_primary_10_19047_0136_1694_2020_103_149_167
crossref_primary_10_3390_s19235280
crossref_primary_10_3390_w12030880
crossref_primary_10_53759_832X_JCIMS202402009
crossref_primary_10_1002_2015WR017016
crossref_primary_10_1016_j_jhydrol_2024_131161
crossref_primary_10_1371_journal_pone_0127996
crossref_primary_10_1016_j_scitotenv_2023_165730
crossref_primary_10_1093_gji_ggaa531
crossref_primary_10_1016_j_enggeo_2021_106125
crossref_primary_10_1002_vzj2_20099
crossref_primary_10_3390_rs15112932
crossref_primary_10_1002_vzj2_20097
crossref_primary_10_1016_j_biosystemseng_2016_07_002
crossref_primary_10_1007_s12665_021_09368_1
crossref_primary_10_3390_app131911107
crossref_primary_10_1002_arp_1814
crossref_primary_10_1007_s11368_024_03801_1
crossref_primary_10_1111_sum_12261
crossref_primary_10_5194_soil_1_117_2015
crossref_primary_10_1016_j_still_2023_105953
crossref_primary_10_1002_vzj2_20389
crossref_primary_10_1007_s11119_015_9423_8
crossref_primary_10_1016_j_earscirev_2021_103586
crossref_primary_10_1016_j_catena_2016_06_021
crossref_primary_10_1093_gji_ggad298
crossref_primary_10_1007_s13201_022_01619_1
crossref_primary_10_1016_j_catena_2016_10_005
crossref_primary_10_21285_2686_9993_2023_46_3_270_281
crossref_primary_10_3390_rs15071772
crossref_primary_10_1002_saj2_20799
crossref_primary_10_1016_j_jclepro_2016_11_154
crossref_primary_10_2136_vzj2014_10_0150
crossref_primary_10_3389_fsoil_2024_1346028
crossref_primary_10_3389_fenvs_2021_712831
crossref_primary_10_1016_j_advwatres_2023_104462
crossref_primary_10_1016_j_catena_2022_106395
crossref_primary_10_3390_rs12020239
crossref_primary_10_3390_agronomy12051019
crossref_primary_10_3390_rs14246243
crossref_primary_10_1007_s10712_020_09625_1
crossref_primary_10_3390_agriculture12060883
crossref_primary_10_1016_j_atech_2023_100330
crossref_primary_10_32389_JEEG20_001
crossref_primary_10_3390_agronomy8100224
crossref_primary_10_1016_j_catena_2016_09_018
crossref_primary_10_1016_j_geoderma_2018_07_047
crossref_primary_10_3390_w14071158
crossref_primary_10_1016_j_still_2018_08_007
crossref_primary_10_3390_w14071157
crossref_primary_10_1029_2023RG000804
crossref_primary_10_1016_j_scitotenv_2020_142030
crossref_primary_10_1016_j_geoderma_2020_114908
crossref_primary_10_1109_ACCESS_2021_3052478
crossref_primary_10_1007_s11368_019_02390_8
crossref_primary_10_3390_w11101964
crossref_primary_10_1002_nsg_12324
crossref_primary_10_1016_j_geoderma_2024_117028
crossref_primary_10_1346_CCMN_2017_064074
crossref_primary_10_3390_rs12162601
crossref_primary_10_1016_j_enggeo_2024_107749
crossref_primary_10_1007_s10712_018_9471_5
crossref_primary_10_5424_sjar_2022201_18631
crossref_primary_10_3390_rs12030482
crossref_primary_10_1007_s12665_018_7687_9
crossref_primary_10_2136_sssaj2015_05_0187
crossref_primary_10_1016_j_advwatres_2022_104156
crossref_primary_10_1016_j_geoderma_2017_04_028
crossref_primary_10_1016_j_catena_2017_12_036
crossref_primary_10_1002_dep2_279
crossref_primary_10_1016_j_biosystemseng_2022_02_017
crossref_primary_10_1080_00103624_2014_988582
crossref_primary_10_5194_hess_26_55_2022
crossref_primary_10_1080_02571862_2023_2294448
crossref_primary_10_2136_sssaj2018_02_0074
crossref_primary_10_1190_geo2022_0443_1
crossref_primary_10_1016_j_geoderma_2019_114086
crossref_primary_10_1088_1361_6501_ac632b
crossref_primary_10_17660_ActaHortic_2021_1314_15
crossref_primary_10_1007_s11600_019_00306_1
crossref_primary_10_3390_s20082330
crossref_primary_10_1016_j_biosystemseng_2014_07_006
crossref_primary_10_1016_j_enggeo_2018_12_015
crossref_primary_10_1002_vzj2_20174
crossref_primary_10_1016_j_geoderma_2015_05_017
crossref_primary_10_1002_crso_20401
crossref_primary_10_3390_s19214753
crossref_primary_10_1029_2018RG000611
crossref_primary_10_3390_s20143922
crossref_primary_10_1016_j_advwatres_2024_104815
crossref_primary_10_1016_j_jhydrol_2025_133116
crossref_primary_10_1002_2016WR019330
crossref_primary_10_1029_2018RG000618
crossref_primary_10_1016_j_geoderma_2015_09_022
crossref_primary_10_1111_sum_12344
crossref_primary_10_2166_wst_2015_125
crossref_primary_10_3390_land12101932
crossref_primary_10_1016_j_geoderma_2017_10_045
crossref_primary_10_1007_s12517_021_07735_7
crossref_primary_10_1071_SR17220
crossref_primary_10_3390_su12166362
crossref_primary_10_1071_SR15043
crossref_primary_10_3390_s22041496
crossref_primary_10_3390_app122010550
crossref_primary_10_1093_jge_gxz029
crossref_primary_10_3390_soilsystems2010011
crossref_primary_10_1007_s11104_023_06316_9
crossref_primary_10_1016_j_geoderma_2024_117095
crossref_primary_10_1016_j_jappgeo_2017_02_011
crossref_primary_10_47245_archimede_0007_act_14
crossref_primary_10_1186_s40538_024_00620_x
crossref_primary_10_1002_saj2_20350
crossref_primary_10_1016_j_coldregions_2018_11_008
crossref_primary_10_3390_agronomy12010183
crossref_primary_10_1007_s11770_025_1161_8
crossref_primary_10_1016_j_agwat_2020_106652
crossref_primary_10_1016_j_agwat_2021_107246
crossref_primary_10_1177_0309133319889048
crossref_primary_10_5424_sjar_2018164_13071
crossref_primary_10_1016_j_catena_2019_02_031
crossref_primary_10_1016_j_scitotenv_2024_172398
crossref_primary_10_1109_TMAG_2016_2518993
crossref_primary_10_19047_0136_1694_2020_105_57_90
crossref_primary_10_1007_s11119_018_09630_w
crossref_primary_10_3390_soilsystems8040128
crossref_primary_10_1007_s11119_016_9481_6
crossref_primary_10_1016_j_scitotenv_2019_05_037
crossref_primary_10_1016_j_geoderma_2019_02_024
crossref_primary_10_1016_j_geodrs_2017_07_003
crossref_primary_10_1016_j_compag_2025_110108
crossref_primary_10_3390_rs12182973
crossref_primary_10_1016_j_compag_2014_11_014
crossref_primary_10_1007_s11104_014_2207_5
crossref_primary_10_3389_fsoil_2024_1239497
crossref_primary_10_36783_18069657rbcs20230101
crossref_primary_10_1190_geo2023_0358_1
crossref_primary_10_1016_j_jappgeo_2016_05_004
crossref_primary_10_3390_s24134159
crossref_primary_10_1016_j_earscirev_2018_10_005
crossref_primary_10_1016_j_jappgeo_2016_01_010
crossref_primary_10_1029_2021WR030696
crossref_primary_10_1016_j_measurement_2024_116534
crossref_primary_10_1016_j_still_2020_104867
crossref_primary_10_1016_j_geoderma_2018_11_030
crossref_primary_10_1016_j_geoderma_2015_04_013
crossref_primary_10_1029_2024GC011519
crossref_primary_10_3390_soilsystems4040062
crossref_primary_10_5194_soil_1_287_2015
crossref_primary_10_3390_rs14143389
crossref_primary_10_1016_j_geoderma_2015_10_014
crossref_primary_10_1016_j_enggeo_2018_09_001
crossref_primary_10_1016_j_geoderma_2020_114525
crossref_primary_10_1111_sum_12359
crossref_primary_10_3390_s21082800
crossref_primary_10_1007_s12665_024_11558_6
Cites_doi 10.2136/sssaj1994.03615995005800040026x
10.1097/SS.0b013e318221f11a
10.2136/sh2002.1.0009
10.1071/EA05102
10.1016/j.geoderma.2012.07.017
10.2136/sh2005.4.0169
10.2136/sssaj2008.0079
10.1071/SR03149
10.2136/sssaj2002.0235
10.2307/4003336
10.1002/hyp.6963
10.1016/j.catena.2008.03.007
10.1080/00103629009368275
10.2136/sssaj1998.03615995006200010030x
10.2136/sssaj2012.0276
10.1029/95WR01949
10.4141/cjss90-056
10.2134/agronj2008.0060
10.1007/s11119-006-9021-x
10.2134/agronj2003.0472
10.1111/j.1745-6584.1999.tb00987.x
10.1016/j.geoderma.2012.07.019
10.1007/s100400050210
10.2136/sssaj1976.03615995004000050017x
10.1016/S0167-8809(01)00256-0
10.1097/00010694-199208000-00009
10.2134/agronj2012.0156
10.2136/vzj2011.0035
10.2136/sh2003.1.0016
10.1080/15324989709381490
10.1016/j.geoderma.2009.02.024
10.1190/1.1442811
10.2136/sssaj2002.1562
10.2136/sh12-01-0002
10.1111/ejss.12033
10.1023/A:1024960708561
10.1016/j.compag.2004.03.002
10.2136/sssaj1979.03615995004300040040x
10.4141/cjss88-069
10.2136/sh1996.1.0011
10.13031/2013.20098
10.1016/j.jterra.2004.12.004
10.2136/vzj2008.0123
10.2136/sh2000.2.0027
10.1071/SR06093
10.1080/00103629809370093
10.2136/sssaj2010.0055
10.1016/0016-7061(92)90021-X
10.1016/j.geoderma.2012.06.010
10.1111/j.1475-2743.2011.00386.x
10.2136/sssaj1981.03615995004500020006x
10.2136/sssaj2011.0063
10.1002/ird.289
10.1080/00224561.2000.12457301
10.1016/j.geoderma.2005.03.008
10.1016/j.biosystemseng.2006.10.010
10.2136/sssaj1992.03615995005600040003x
10.1016/j.envsoft.2013.01.012
10.1080/00224561.2002.12457433
10.2136/sssaj1997.03615995006100060013x
10.1016/S0168-1699(00)00185-X
10.13031/2013.7879
10.1016/S0016-7061(02)00305-1
10.1007/BF00189989
10.1071/SR07191
10.2136/sssaj2006.0177
10.2136/sssaj1990.03615995005400010047x
10.4141/cjss86-032
10.2136/sh12-05-0018
10.1016/j.cageo.2004.01.005
10.1016/j.catena.2010.06.011
10.4141/cjss94-046
10.1111/j.1745-6592.1983.tb01199.x
10.1023/A:1008050510681
10.2136/sssaj1984.03615995004800020011x
10.1002/hyp.1221
10.1016/0022-1694(92)90111-8
10.2136/sh2009.2.0068
10.2136/sssaj1982.03615995004600030014x
10.1111/ejss.12067
10.2136/sh13-01-0009
10.3997/1873-0604.2008031
10.2136/sssaj2001.1829
10.1080/00224561.1994.12456905
10.2136/sh2002.1.0014
10.2136/sh2008.4.0102
10.2136/sh12-02-0005
10.2136/sh2004.3.0096
10.2136/sh1989.3.0066
10.1111/j.1475-2743.2006.00065.x
10.1071/SR12228
10.2134/agronj2003.0496
10.1097/SS.0b013e31824e14d6
10.1016/j.jhydrol.2009.01.037
10.2136/sh12-04-0013
10.13031/2013.15663
10.2136/sh2011.3.0077
10.2134/jeq2009.0140
10.1016/j.geoderma.2013.06.001
10.2136/sssaj2008.0074
10.1029/94WR02179
10.13031/2013.17959
10.1016/j.geoderma.2008.09.013
10.1016/j.cageo.2011.06.017
10.13031/2013.7701
10.1071/SR9820107
10.1023/B:PRAG.0000022359.79184.92
10.1016/j.jas.2012.09.004
10.1071/SR9900443
10.2136/sssaj1989.03615995005300020020x
10.2136/sssaj2010.0056
10.2136/sssaj1992.03615995005600020031x
10.2136/sssaj2012.0091
10.1016/0022-1694(89)90060-7
10.1144/GSL.QJEG.1985.018.02.03
10.1016/j.compag.2009.05.009
10.2136/sssaj2008.0277
10.1071/SR08240
10.1016/j.geoderma.2007.11.003
10.1007/s11119-005-1033-4
10.2136/sssaj1989.03615995005300010014x
10.1080/00224561.2001.12457389
10.2134/jeq1995.00472425002400010005x
10.1071/EA04110
10.2134/agronj2002.1355
10.4141/cjss89-003
10.1016/0022-1694(89)90260-6
10.1016/j.biosystemseng.2003.09.001
10.1071/SR9870021
10.1029/94WR02180
ContentType Journal Article
Copyright 2014 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7UA
C1K
F1W
H96
L.G
8FD
FR3
KR7
7S9
L.6
DOI 10.1016/j.geoderma.2014.01.027
DatabaseName CrossRef
Pascal-Francis
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Technology Research Database

AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 45
ExternalDocumentID 28399768
10_1016_j_geoderma_2014_01_027
S0016706114000548
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
7UA
C1K
F1W
H96
L.G
8FD
FR3
KR7
7S9
L.6
ID FETCH-LOGICAL-a379t-10b93936a1fd1b6a358c84d64d7c0dc775653b47bd91ce19d0d537cff67ae8413
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 11:12:29 EDT 2025
Fri Jul 11 15:23:57 EDT 2025
Thu Jul 10 19:18:17 EDT 2025
Wed Apr 02 07:25:08 EDT 2025
Tue Jul 01 05:06:21 EDT 2025
Thu Apr 24 22:59:46 EDT 2025
Fri Feb 23 02:20:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil spatial characterization
Apparent conductivity
Electromagnetic induction
Soil mapping
salinity
Spatial variability
soil moisture
textures
Property of soil
source rocks
measurement sensor
cartography
electromagnetic induction
depth
bedrock
organic materials
pH
compaction
spatial variations
electrical conductivity
soils
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a379t-10b93936a1fd1b6a358c84d64d7c0dc775653b47bd91ce19d0d537cff67ae8413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6004-0018
PQID 1520363348
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_1836673202
proquest_miscellaneous_1642311157
proquest_miscellaneous_1520363348
pascalfrancis_primary_28399768
crossref_primary_10_1016_j_geoderma_2014_01_027
crossref_citationtrail_10_1016_j_geoderma_2014_01_027
elsevier_sciencedirect_doi_10_1016_j_geoderma_2014_01_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-00
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-00
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Geoderma
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Huth, Poulton (bb0360) 2007; 45
Mueller, Hartsock, Stombaugh, Shearer, Cornelius, Barnhisel (bb0540) 2003; 95
Saey, Simpson, Vermeersch, Cockx, Van Meirvenne (bb0610) 2009; 73
United States Department of Agriculture, Natural Resources Conservation Service (bb0740) 2006
Heil, Schmidhalter (bb0340) 2012; 39
Heilig, Kempenich, Doolittle, Brevik, Ulmer (bb0345) 2011; 52
Johnson, Doran, Duke, Wienhold, Eskridge, Shanahan (bb0395) 2001; 65
Bork, West, Doolittle, Boettinger (bb0055) 1998; 51
Sudduth, Kitchen, Chung, Drummond (bb0690) 2010
Ammons, Timpson, Newton (bb0025) 1989; 30
De Smedt, Van Meirvenne, Davies, Bats, Saey, Du Reu, Meerschman, Gelorini, Zwertvaegher, Antrop, Bourgeois, De Maeyer, Finke, Verniers, Crombé (bb0200) 2013; 40
James, Waine, Bradley, Taylor, Godwin (bb0365) 2003; 86
Sudduth, Kitchen, Bollero, Bullock, Wiebold (bb0685) 2003; 95
Diaz, Herrero (bb0210) 1992; 154
Rhoades, Corwin (bb0555) 1981; 45
Thomas, Fitzpatrick, Heinson (bb0710) 2009; 47
Doolittle, Windhorn, Withers, McLeese (bb0270) 2009; 50
Richardson, Williams (bb0580) 1994
Rhoades, Manteghi, Shouse, Alves (bb0565) 1989; 53
Doolittle, Indorante, Potter, Hefner, McCauley (bb0230) 2002; 57
Hedley, Yule, Eastwood, Sheperd, Arnold (bb0335) 2004; 42
Chen, Kissel, Adkins (bb0140) 2000
Jaynes, Novak, Moorman, Cambardella (bb0390) 1994; 24
Sherlock, McDonnell (bb0640) 2003; 17
Cook, Walker, Buselli, Potts, Dodds (bb0160) 1992; 130
Mester, van der Kruk, Zimmermann, Vereecken (bb0525) 2011; 10
Khakural, Robert, Hugins (bb0415) 1998; 29
Sudduth, Kitchen, Myers, Drummond (bb0705) 2009; 2
Brevik, Fenton (bb0080) 2002; 43
Bourgault, Rabenhorst (bb0060) 2012; 76
Brevik, Fenton (bb0075) 1999; 22
Al-Gaadi (bb0010) 2012; 4
Corwin, Rhoades (bb0175) 1982; 46
Doolittle, Sudduth, Kitchen, Indorante (bb0260) 1994; 49
Zalasiewicz, Mathers, Cornwell (bb0820) 1985; 18
Zhu, Lin, Doolittle (bb0830) 2010; 74
Meerschman, Van Meirvenne, De Smedt, Saey, Islam, Meeuws, Van De Vijver, Ghysels (bb0515) 2011; 75
King, Dampney, Lark, Wheeler, Bradley, Mayr (bb0420) 2005; 6
Toushmalani (bb0715) 2010; 4
Vitharana, Van Meirvenne, Simpson, Cockx, De Baerdemaeker (bb0770) 2008; 143
Kitchen, Sudduth, Drummond (bb0425) 1998
Farahani, Flynn (bb0295) 2007; 96
Kweon (bb0445) 2012; 104
Doolittle, Noble, Leinard (bb0245) 2000; 41
Doolittle (bb0215) 2013
Jaynes (bb0375) 1996
Daniels, Allred, Collins, Doolittle (bb0190) 2003
Hopkins, Richardson (bb0355) 1999; 7
Palacky, Stephens (bb0550) 1990; 55
de Jong, Ballantyne, Cameron, Read (bb0195) 1979; 43
Hezarjaribi, Sourell (bb0350) 2007; 56
Morris (bb0535) 2009; 68
Brevik, Hartemink (bb0115) 2010; 83
Lück, Gebbers, Ruehlmann, Sprangenberg (bb0480) 2009; 7
Doolittle, Zhu, Zhang, Guo, Lin (bb0275) 2012
Brevik, Batten (bb0070) 2012; 53
Triantafilis, Terhune, Monteiro Santos (bb0730) 2013; 43
Wienhold, Doran (bb0790) 2008
Cockx, Van Meirvenne, Vitharana, Verbeke, Simpson, Saey, Van Coille (bb0145) 2009; 73
Cassel, Goorahoo, Zoldoske, Adhikari (bb0135) 2009
Slavich (bb0645) 1990; 28
Greenhouse, Slaine (bb0320) 1983; 3
Triantafilis, Lesch, La Lau, Buchanan (bb0720) 2009; 47
Sudduth, Drummond, Kitchen (bb0670) 2000
Lesch, Rhoades, Lund, Corwin (bb0460) 1992; 56
Kravchenko (bb0435) 2008
Sudduth, Kitchen (bb0680) 1993
Brevik, Fenton, Jaynes (bb0100) 2003; 4
Cannon, McKenzie, Lachapelle (bb0120) 1994; 74
Williams, Hoey (bb0805) 1987; 25
Doolittle, Chibirka, Muniz, Shaw (bb0220) 2013; 54
Ganjegunte, Braun (bb0315) 2011; 176
Kravchenko, Bollero, Omonode, Bullock (bb0440) 2002; 66
Mankin, Karthikeyan (bb0485) 2002; 45
Anderson-Cook, Alley, Roygard, Khosla, Noble, Doolittle (bb0030) 2002; 66
Doolittle, Neild, Sasser, Tuttle (bb0240) 2005; 46
Williams, Walker, Anderson (bb0810) 2006; 46
Brevik, Fenton (bb0085) 2003; 44
Saey, Van Meirvenne, Vermeersch, Ameloot, Cockx (bb0615) 2009; 150
McBride, Gordon, Shrive (bb0495) 1990; 54
Doolittle, Stube, Price, Kelly (bb0255) 2002; 43
Zhu, Lin, Doolittle (bb0835) 2010; 74
Allred, Ehsani, Saraswat (bb0020) 2005; 48
Brevik (bb0065) 2012; 53
Lobell, Lesch, Corwin, Ulmer, Anderson, Potts, Doolittle, Matos, Baltes (bb0475) 2010; 39
van der Lelij (bb0755) 1983
Wollenhaupt, Richardson, Foss, Doll (bb0815) 1986; 66
Brevik, Fenton (bb0090) 2004; 45
Williams, Baker (bb0800) 1982; 20
Sudduth, Kitchen, Drummond (bb0695) 1999
Lesch, Strauss, Rhoades (bb0470) 1995; 31
Tromp-van Meerveld, McDonnell (bb0735) 2009; 368
Stroh, Archer, Wilding, Doolittle (bb0665) 1993
McKenzie, Chomistek, Clark (bb0500) 1989; 69
Williams, Arunin (bb0795) 1990
Eigenberg, Doran, Nienaber, Ferguson, Woodbury (bb0285) 2002; 88
Freeland, Yoder, Ammons, Leonard (bb0305) 2002; 18
Slavich, Yang (bb0650) 1990; 11
Meerschman, Van Meirvenne, Van De Vijver, De Smedt, Saey, Islam, Saey (bb0520) 2011; 64
Boettinger, Doolittle, West, Bork, Schupp (bb0050) 1997; 11
Sudduth, Kitchen, Hughes, Drummond (bb0700) 1995
Nettleton, Bushue, Doolittle, Endres, Indorante (bb0545) 1994; 58
Saey, De Smedt, Monirul Islam, Meerschman, Van De Vijver, Lehouck, Van Meirvenne (bb0595) 2012; 189–190
Cook, Walker, Jolly (bb0165) 1989; 111
Saey, Simpson, Vitharana, Vermeersch, Vermang, Van Meirvenne (bb0600) 2008; 74
Jaynes (bb0380) 1996; 48
United States Salinity Laboratory Staff (bb0745) 1954
Harvey, Morgan (bb0330) 2009; 73
De Smedt, Saey, Lehouck, Stichelbaut, Meerschman, Islam, Van De Vijver, Van Meirvenne (bb0205) 2013; 199
Corwin, Rhoades (bb0180) 1984; 48
Rhoades, Lesch, Shouse, Alves (bb0560) 1989; 53
Van Meirvenne, Islam, De Smedt, Meerschman, Van De Vijver, Saey (bb0760) 2013; 199
Fenton, Lauterbach (bb0300) 1999
Sudduth, Drummond, Kitchen (bb0675) 2001; 31
Dunn, Beecher (bb0280) 2007; 47
Vitharana, Saey, Cockx, Simpson, Vermeersch, Van Meirvenne (bb0765) 2008; 148
Robinson, Binley, Crook, Day-Lewis, Ferré, Grauch, Knight, Knoll, Lakshmi, Miller, Nyquist, Pellerin, Singha, Slater (bb0585) 2008; 22
Scanlon, Paine, Goldsmith (bb0620) 1999; 37
Triantafilis, Monteiro Santos (bb0725) 2013; 211–212
Miller (bb0530) 2012; 53
Cook, Hughes, Walker, Allison (bb0150) 1989; 107
Doolittle, Peterson, Wheeler (bb0250) 2001; 56
Sommer, Wehrhan, Zipprich, Weller, Castell, Ehrich, Tandler, Selige (bb0660) 2003; 112
Saey, De Smedt, De Clercq, Meerschman, Islam, Van Meirvenne (bb0590) 2012; 77
Corwin, Rhoades (bb0185) 1990; 21
Waine, Blackmore, Godwin (bb0775) 2000
Rhoades, Raats, Prather (bb0570) 1976; 40
Shaner, Kosla, Brodahl, Buchleiter, Farahani (bb0630) 2008; 100
Batte (bb0035) 2000; 55
Doolittle, Murphy, Parks, Warner (bb0235) 1996; 37
Brevik, Fenton, Horton (bb0095) 2004; 5
Farahani, Buchleiter, Brodahl (bb0290) 2005; 48
Lesch, Herrero, Rhoades (bb0450) 1998; 62
Saey, Van Meirvenne, De Smedt, Neubauer, Trink, Verhoeven, Seren (bb0605) 2013; 64
Doolittle, Windhorn, Withers, Zwicker, Heisner, McLeese (bb0265) 2008; 49
McNeill (bb0510) 1980
Greve, Greve (bb0325) 2004; 30
Corwin (bb0170) 2008
Cook, Walker (bb0155) 1992; 56
White, Shaw, Raper, Rodekohr, Wood (bb0785) 2012; 177
Bianchini, Mallarino (bb0045) 2002; 94
Korsaeth, Riley, Kværnø, Vestgarden (bb0430) 2008
Weller, Zipprich, Sommer, Castell, Wehrhan (bb0780) 2007; 71
Soil Survey Division Staff (bb0655) 1993
Brevik, Fenton, Lazari (bb0110) 2006; 7
Schumann, Zaman (bb0625) 2003; 19
Urdanoz, Aragüés (bb0750) 2012; 28
Frogbrook, Oliver (bb0310) 2007; 23
Kachanoski, de Jong, van Wesenbeeck (bb0405) 1990; 70
Martinez, Vanderlinden, Ordóñez, Muriel (bb0490) 2009; 8
Carter, Rhoades, Cesson (bb0130) 1993
Zhu, Liao, Xu, Yang, Wu, Zhou (bb0825) 2013; 50
Doolittle, Indorante, Mitchell, Kingsbury (bb0225) 1998; 1
Richardson, Wilding, Daniels (bb0575) 1992; 53
Allred, Ehsani, Daniels (bb0015) 2008
Sheets, Hendrickx (bb0635) 1995; 31
Adamchuk, Hummel, Morgan, Upadhyaya (bb0005) 2004; 44
Kachanoski, Gregorich, van Wesenbeeck (bb0410) 1988; 68
Carroll, Oliver (bb0125) 2005; 128
Jaynes (bb0370) 1995
Bekele, Hudnall, Daigle, Prudente, Wolcott (bb0040) 2005; 42
Johnston, Savage, Moolman, du Plessis (bb0400) 1997; 61
Brevik, Fenton, Jaynes (bb0105) 2012; 53
Lesch, Rhoades, Corwin (bb0455) 2000
Jaynes, Colvin, Ambuel (bb0385) 1993
McNeill (bb0505) 1980
Lesch, Strauss, Rhoades (bb0465) 1995; 31
Cook (10.1016/j.geoderma.2014.01.027_bb0160) 1992; 130
Doolittle (10.1016/j.geoderma.2014.01.027_bb0260) 1994; 49
Brevik (10.1016/j.geoderma.2014.01.027_bb0085) 2003; 44
Mankin (10.1016/j.geoderma.2014.01.027_bb0485) 2002; 45
Allred (10.1016/j.geoderma.2014.01.027_bb0015) 2008
Lesch (10.1016/j.geoderma.2014.01.027_bb0465) 1995; 31
Bianchini (10.1016/j.geoderma.2014.01.027_bb0045) 2002; 94
Hedley (10.1016/j.geoderma.2014.01.027_bb0335) 2004; 42
Kachanoski (10.1016/j.geoderma.2014.01.027_bb0410) 1988; 68
Richardson (10.1016/j.geoderma.2014.01.027_bb0580) 1994
Carter (10.1016/j.geoderma.2014.01.027_bb0130) 1993
United States Salinity Laboratory Staff (10.1016/j.geoderma.2014.01.027_bb0745) 1954
Van Meirvenne (10.1016/j.geoderma.2014.01.027_bb0760) 2013; 199
Frogbrook (10.1016/j.geoderma.2014.01.027_bb0310) 2007; 23
Sudduth (10.1016/j.geoderma.2014.01.027_bb0675) 2001; 31
Williams (10.1016/j.geoderma.2014.01.027_bb0805) 1987; 25
Palacky (10.1016/j.geoderma.2014.01.027_bb0550) 1990; 55
Stroh (10.1016/j.geoderma.2014.01.027_bb0665) 1993
Urdanoz (10.1016/j.geoderma.2014.01.027_bb0750) 2012; 28
Waine (10.1016/j.geoderma.2014.01.027_bb0775) 2000
Zalasiewicz (10.1016/j.geoderma.2014.01.027_bb0820) 1985; 18
Scanlon (10.1016/j.geoderma.2014.01.027_bb0620) 1999; 37
Martinez (10.1016/j.geoderma.2014.01.027_bb0490) 2009; 8
Saey (10.1016/j.geoderma.2014.01.027_bb0590) 2012; 77
Brevik (10.1016/j.geoderma.2014.01.027_bb0110) 2006; 7
Doolittle (10.1016/j.geoderma.2014.01.027_bb0235) 1996; 37
Slavich (10.1016/j.geoderma.2014.01.027_bb0645) 1990; 28
Wienhold (10.1016/j.geoderma.2014.01.027_bb0790) 2008
Brevik (10.1016/j.geoderma.2014.01.027_bb0075) 1999; 22
De Smedt (10.1016/j.geoderma.2014.01.027_bb0205) 2013; 199
Saey (10.1016/j.geoderma.2014.01.027_bb0610) 2009; 73
Boettinger (10.1016/j.geoderma.2014.01.027_bb0050) 1997; 11
Mester (10.1016/j.geoderma.2014.01.027_bb0525) 2011; 10
Cook (10.1016/j.geoderma.2014.01.027_bb0165) 1989; 111
Cannon (10.1016/j.geoderma.2014.01.027_bb0120) 1994; 74
Jaynes (10.1016/j.geoderma.2014.01.027_bb0390) 1994; 24
Doolittle (10.1016/j.geoderma.2014.01.027_bb0230) 2002; 57
Dunn (10.1016/j.geoderma.2014.01.027_bb0280) 2007; 47
Wollenhaupt (10.1016/j.geoderma.2014.01.027_bb0815) 1986; 66
Kweon (10.1016/j.geoderma.2014.01.027_bb0445) 2012; 104
Sudduth (10.1016/j.geoderma.2014.01.027_bb0670) 2000
Cook (10.1016/j.geoderma.2014.01.027_bb0150) 1989; 107
Doolittle (10.1016/j.geoderma.2014.01.027_bb0255) 2002; 43
Bekele (10.1016/j.geoderma.2014.01.027_bb0040) 2005; 42
Bourgault (10.1016/j.geoderma.2014.01.027_bb0060) 2012; 76
Brevik (10.1016/j.geoderma.2014.01.027_bb0065) 2012; 53
Cook (10.1016/j.geoderma.2014.01.027_bb0155) 1992; 56
Harvey (10.1016/j.geoderma.2014.01.027_bb0330) 2009; 73
Heilig (10.1016/j.geoderma.2014.01.027_bb0345) 2011; 52
Zhu (10.1016/j.geoderma.2014.01.027_bb0825) 2013; 50
Cockx (10.1016/j.geoderma.2014.01.027_bb0145) 2009; 73
Rhoades (10.1016/j.geoderma.2014.01.027_bb0565) 1989; 53
Slavich (10.1016/j.geoderma.2014.01.027_bb0650) 1990; 11
King (10.1016/j.geoderma.2014.01.027_bb0420) 2005; 6
Zhu (10.1016/j.geoderma.2014.01.027_bb0835) 2010; 74
Farahani (10.1016/j.geoderma.2014.01.027_bb0295) 2007; 96
Lobell (10.1016/j.geoderma.2014.01.027_bb0475) 2010; 39
Brevik (10.1016/j.geoderma.2014.01.027_bb0115) 2010; 83
Saey (10.1016/j.geoderma.2014.01.027_bb0600) 2008; 74
Sudduth (10.1016/j.geoderma.2014.01.027_bb0680) 1993
Adamchuk (10.1016/j.geoderma.2014.01.027_bb0005) 2004; 44
Ammons (10.1016/j.geoderma.2014.01.027_bb0025) 1989; 30
Kravchenko (10.1016/j.geoderma.2014.01.027_bb0440) 2002; 66
Jaynes (10.1016/j.geoderma.2014.01.027_bb0370) 1995
Batte (10.1016/j.geoderma.2014.01.027_bb0035) 2000; 55
Sheets (10.1016/j.geoderma.2014.01.027_bb0635) 1995; 31
United States Department of Agriculture, Natural Resources Conservation Service (10.1016/j.geoderma.2014.01.027_bb0740) 2006
De Smedt (10.1016/j.geoderma.2014.01.027_bb0200) 2013; 40
Meerschman (10.1016/j.geoderma.2014.01.027_bb0515) 2011; 75
Nettleton (10.1016/j.geoderma.2014.01.027_bb0545) 1994; 58
Lesch (10.1016/j.geoderma.2014.01.027_bb0460) 1992; 56
Vitharana (10.1016/j.geoderma.2014.01.027_bb0765) 2008; 148
Johnston (10.1016/j.geoderma.2014.01.027_bb0400) 1997; 61
Korsaeth (10.1016/j.geoderma.2014.01.027_bb0430) 2008
Doolittle (10.1016/j.geoderma.2014.01.027_bb0245) 2000; 41
McKenzie (10.1016/j.geoderma.2014.01.027_bb0500) 1989; 69
Brevik (10.1016/j.geoderma.2014.01.027_bb0100) 2003; 4
Huth (10.1016/j.geoderma.2014.01.027_bb0360) 2007; 45
Corwin (10.1016/j.geoderma.2014.01.027_bb0180) 1984; 48
Rhoades (10.1016/j.geoderma.2014.01.027_bb0560) 1989; 53
Sudduth (10.1016/j.geoderma.2014.01.027_bb0695) 1999
van der Lelij (10.1016/j.geoderma.2014.01.027_bb0755) 1983
Robinson (10.1016/j.geoderma.2014.01.027_bb0585) 2008; 22
Richardson (10.1016/j.geoderma.2014.01.027_bb0575) 1992; 53
Tromp-van Meerveld (10.1016/j.geoderma.2014.01.027_bb0735) 2009; 368
White (10.1016/j.geoderma.2014.01.027_bb0785) 2012; 177
Toushmalani (10.1016/j.geoderma.2014.01.027_bb0715) 2010; 4
Saey (10.1016/j.geoderma.2014.01.027_bb0595) 2012; 189–190
Greenhouse (10.1016/j.geoderma.2014.01.027_bb0320) 1983; 3
Williams (10.1016/j.geoderma.2014.01.027_bb0795) 1990
Williams (10.1016/j.geoderma.2014.01.027_bb0800) 1982; 20
Kravchenko (10.1016/j.geoderma.2014.01.027_bb0435) 2008
Triantafilis (10.1016/j.geoderma.2014.01.027_bb0725) 2013; 211–212
Farahani (10.1016/j.geoderma.2014.01.027_bb0290) 2005; 48
Weller (10.1016/j.geoderma.2014.01.027_bb0780) 2007; 71
James (10.1016/j.geoderma.2014.01.027_bb0365) 2003; 86
Jaynes (10.1016/j.geoderma.2014.01.027_bb0375) 1996
Zhu (10.1016/j.geoderma.2014.01.027_bb0830) 2010; 74
Corwin (10.1016/j.geoderma.2014.01.027_bb0170) 2008
Daniels (10.1016/j.geoderma.2014.01.027_bb0190) 2003
Jaynes (10.1016/j.geoderma.2014.01.027_bb0385) 1993
Sudduth (10.1016/j.geoderma.2014.01.027_bb0700) 1995
Doolittle (10.1016/j.geoderma.2014.01.027_bb0270) 2009; 50
Chen (10.1016/j.geoderma.2014.01.027_bb0140) 2000
Doolittle (10.1016/j.geoderma.2014.01.027_bb0275) 2012
McNeill (10.1016/j.geoderma.2014.01.027_bb0505) 1980
Corwin (10.1016/j.geoderma.2014.01.027_bb0185) 1990; 21
Sudduth (10.1016/j.geoderma.2014.01.027_bb0685) 2003; 95
Triantafilis (10.1016/j.geoderma.2014.01.027_bb0720) 2009; 47
Brevik (10.1016/j.geoderma.2014.01.027_bb0095) 2004; 5
Miller (10.1016/j.geoderma.2014.01.027_bb0530) 2012; 53
Al-Gaadi (10.1016/j.geoderma.2014.01.027_bb0010) 2012; 4
Soil Survey Division Staff (10.1016/j.geoderma.2014.01.027_bb0655) 1993
Lesch (10.1016/j.geoderma.2014.01.027_bb0455) 2000
Doolittle (10.1016/j.geoderma.2014.01.027_bb0220) 2013; 54
Rhoades (10.1016/j.geoderma.2014.01.027_bb0555) 1981; 45
Doolittle (10.1016/j.geoderma.2014.01.027_bb0215) 2013
Saey (10.1016/j.geoderma.2014.01.027_bb0605) 2013; 64
Carroll (10.1016/j.geoderma.2014.01.027_bb0125) 2005; 128
Anderson-Cook (10.1016/j.geoderma.2014.01.027_bb0030) 2002; 66
Cassel (10.1016/j.geoderma.2014.01.027_bb0135) 2009
Saey (10.1016/j.geoderma.2014.01.027_bb0615) 2009; 150
Eigenberg (10.1016/j.geoderma.2014.01.027_bb0285) 2002; 88
Meerschman (10.1016/j.geoderma.2014.01.027_bb0520) 2011; 64
Shaner (10.1016/j.geoderma.2014.01.027_bb0630) 2008; 100
Brevik (10.1016/j.geoderma.2014.01.027_bb0070) 2012; 53
Greve (10.1016/j.geoderma.2014.01.027_bb0325) 2004; 30
Fenton (10.1016/j.geoderma.2014.01.027_bb0300) 1999
Jaynes (10.1016/j.geoderma.2014.01.027_bb0380) 1996; 48
Triantafilis (10.1016/j.geoderma.2014.01.027_bb0730) 2013; 43
Bork (10.1016/j.geoderma.2014.01.027_bb0055) 1998; 51
Lesch (10.1016/j.geoderma.2014.01.027_bb0450) 1998; 62
Morris (10.1016/j.geoderma.2014.01.027_bb0535) 2009; 68
Rhoades (10.1016/j.geoderma.2014.01.027_bb0570) 1976; 40
Allred (10.1016/j.geoderma.2014.01.027_bb0020) 2005; 48
Lück (10.1016/j.geoderma.2014.01.027_bb0480) 2009; 7
de Jong (10.1016/j.geoderma.2014.01.027_bb0195) 1979; 43
Diaz (10.1016/j.geoderma.2014.01.027_bb0210) 1992; 154
Mueller (10.1016/j.geoderma.2014.01.027_bb0540) 2003; 95
Corwin (10.1016/j.geoderma.2014.01.027_bb0175) 1982; 46
McNeill (10.1016/j.geoderma.2014.01.027_bb0510) 1980
Heil (10.1016/j.geoderma.2014.01.027_bb0340) 2012; 39
Doolittle (10.1016/j.geoderma.2014.01.027_bb0265) 2008; 49
Doolittle (10.1016/j.geoderma.2014.01.027_bb0240) 2005; 46
Sherlock (10.1016/j.geoderma.2014.01.027_bb0640) 2003; 17
Williams (10.1016/j.geoderma.2014.01.027_bb0810) 2006; 46
Brevik (10.1016/j.geoderma.2014.01.027_bb0080) 2002; 43
Johnson (10.1016/j.geoderma.2014.01.027_bb0395) 2001; 65
Vitharana (10.1016/j.geoderma.2014.01.027_bb0770) 2008; 143
Doolittle (10.1016/j.geoderma.2014.01.027_bb0225) 1998; 1
Sommer (10.1016/j.geoderma.2014.01.027_bb0660) 2003; 112
Schumann (10.1016/j.geoderma.2014.01.027_bb0625) 2003; 19
McBride (10.1016/j.geoderma.2014.01.027_bb0495) 1990; 54
Sudduth (10.1016/j.geoderma.2014.01.027_bb0705) 2009; 2
Doolittle (10.1016/j.geoderma.2014.01.027_bb0250) 2001; 56
Hezarjaribi (10.1016/j.geoderma.2014.01.027_bb0350) 2007; 56
Brevik (10.1016/j.geoderma.2014.01.027_bb0105) 2012; 53
Freeland (10.1016/j.geoderma.2014.01.027_bb0305) 2002; 18
Thomas (10.1016/j.geoderma.2014.01.027_bb0710) 2009; 47
Brevik (10.1016/j.geoderma.2014.01.027_bb0090) 2004; 45
Lesch (10.1016/j.geoderma.2014.01.027_bb0470) 1995; 31
Sudduth (10.1016/j.geoderma.2014.01.027_bb0690) 2010
Ganjegunte (10.1016/j.geoderma.2014.01.027_bb0315) 2011; 176
Kachanoski (10.1016/j.geoderma.2014.01.027_bb0405) 1990; 70
Hopkins (10.1016/j.geoderma.2014.01.027_bb0355) 1999; 7
Kitchen (10.1016/j.geoderma.2014.01.027_bb0425) 1998
Khakural (10.1016/j.geoderma.2014.01.027_bb0415) 1998; 29
References_xml – volume: 128
  start-page: 354
  year: 2005
  end-page: 374
  ident: bb0125
  article-title: Exploring the spatial relations between soil physical properties and apparent electrical conductivity
  publication-title: Geoderma
– volume: 45
  start-page: 96
  year: 2004
  end-page: 102
  ident: bb0090
  article-title: The effect of changes in bulk density on soil electrical conductivity as measured with the Geonics® EM-38
  publication-title: Soil Surv. Horiz.
– volume: 7
  start-page: 393
  year: 2006
  end-page: 404
  ident: bb0110
  article-title: Soil electrical conductivity as a function of soil water content and implications for soil mapping
  publication-title: Precis. Agric.
– volume: 20
  start-page: 107
  year: 1982
  end-page: 118
  ident: bb0800
  article-title: An electromagnetic induction technique for reconnaissance surveys of soil salinity hazards
  publication-title: Aust. J. Soil Res.
– volume: 46
  start-page: 1271
  year: 2006
  end-page: 1277
  ident: bb0810
  article-title: Spatial variability of regolith leaching and salinity in relation to whole farm planning
  publication-title: Aust. J. Exp. Agric.
– year: 1980
  ident: bb0510
  article-title: Electromagnetic terrain conductivity measurement at low induction numbers
  publication-title: Technical Note TN-6
– volume: 68
  start-page: 150
  year: 2009
  end-page: 156
  ident: bb0535
  article-title: Height-above-ground effects on penetration depth and response of electromagnetic induction soil conductivity meters
  publication-title: Comput. Electron. Agric.
– volume: 73
  start-page: 164
  year: 2009
  end-page: 169
  ident: bb0330
  article-title: Predicting regional-scale soil variability using single calibrated apparent soil electrical conductivity model
  publication-title: Soil Sci. Soc. Am. J.
– volume: 104
  start-page: 1547
  year: 2012
  end-page: 1557
  ident: bb0445
  article-title: Toward the ultimate soil survey: sensing multiple soil landscape properties in one pass
  publication-title: Agron. J.
– volume: 47
  start-page: 651
  year: 2009
  end-page: 663
  ident: bb0720
  article-title: Field level digital mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model
  publication-title: Aust. J. Soil Res.
– volume: 46
  start-page: 517
  year: 1982
  end-page: 520
  ident: bb0175
  article-title: An improved technique for determining soil electrical conductivity — depth relations from above ground electromagnetic induction measurements
  publication-title: Soil Sci. Soc. Am. J.
– volume: 8
  start-page: 586
  year: 2009
  end-page: 593
  ident: bb0490
  article-title: Can apparent electrical conductivity improve the spatial characterization of soil organic carbon?
  publication-title: Vadose Zone J.
– volume: 31
  start-page: 387
  year: 1995
  end-page: 398
  ident: bb0470
  article-title: Spatial prediction of soil salinity using electromagnetic induction techniques. 2. An efficient spatial sampling algorithm suitable for multiple linear regression model identification and estimation
  publication-title: Water Resour. Res.
– volume: 74
  start-page: 335
  year: 1994
  end-page: 343
  ident: bb0120
  article-title: Soil salinity mapping with electromagnetic induction and satellite-based navigation methods
  publication-title: Can. J. Soil Sci.
– volume: 46
  start-page: 169
  year: 2005
  end-page: 178
  ident: bb0240
  article-title: Characterizing a lithosequence within the San Rafael Swell of Utah with EMI
  publication-title: Soil Surv. Horiz.
– year: 2010
  ident: bb0690
  article-title: Site-specific compaction, soil physical property, and crop yield relationships for claypan soils
  publication-title: Annual International Meeting of American Society of Agricultural and Biological Engineers. Paper No. 1009432
– start-page: 239
  year: 1999
  end-page: 251
  ident: bb0300
  article-title: Soil map unit composition and scale of mapping related to interpretations for precision soil and crop management in Iowa
  publication-title: Proceeding of the 4th International Conference on Precision Agriculture
– volume: 24
  start-page: 36
  year: 1994
  end-page: 41
  ident: bb0390
  article-title: Estimating herbicide partition coefficients from electromagnetic induction measurements
  publication-title: J. Environ. Qual.
– volume: 64
  start-page: 183
  year: 2011
  end-page: 191
  ident: bb0520
  article-title: Mapping complex soil patterns with multiple-point geostatistics
  publication-title: Eur. J. Soil Sci.
– start-page: 413
  year: 2012
  end-page: 447
  ident: bb0275
  article-title: Geophysical investigations of soil-landscape architecture and its impacts on subsurface flow
  publication-title: Hydropedology: Synergistic Integration of Soil Science and Hydrology
– volume: 47
  start-page: 328
  year: 2009
  end-page: 339
  ident: bb0710
  article-title: Distribution and causes of intricate saline-sodic soil patterns in an upland South Australian hillslope
  publication-title: Soil Res.
– volume: 50
  start-page: 625
  year: 2013
  end-page: 637
  ident: bb0825
  article-title: Monitoring and prediction of soil moisture spatial–temporal variations from a hydropedological perspective: a review
  publication-title: Soil Res.
– volume: 10
  start-page: 1319
  year: 2011
  end-page: 1330
  ident: bb0525
  article-title: Quantitative two-layer conductivity inversion of multi-configuration electromagnetic induction measurements
  publication-title: Vadose Zone J.
– volume: 4
  start-page: 6433
  year: 2010
  end-page: 6439
  ident: bb0715
  article-title: Application of geophysical methods in agriculture
  publication-title: Aust. J. Basic Appl. Sci.
– volume: 3
  start-page: 47
  year: 1983
  end-page: 59
  ident: bb0320
  article-title: The use of reconnaissance electromagnetic methods to map contaminant migration
  publication-title: Ground Water Monit. Rev.
– year: 1993
  ident: bb0130
  article-title: Mechanization of soil salinity assessment for mapping
  publication-title: Winter Meetings of the American Society of Agricultural Engineers, Paper No. 93-1557
– volume: 86
  start-page: 421
  year: 2003
  end-page: 430
  ident: bb0365
  article-title: Determination of soil type boundaries using electromagnetic induction scanning techniques
  publication-title: Biosyst. Eng.
– year: 1993
  ident: bb0680
  article-title: Electromagnetic induction sensing of claypan depth
  publication-title: Winter Meetings of the American Society of Agricultural Engineers, Paper No. 93–1550
– start-page: 255
  year: 2008
  end-page: 261
  ident: bb0435
  article-title: Mapping soil drainage classes using topographic and soil electrical conductivity
  publication-title: Handbook of Agricultural Geophysics
– volume: 39
  start-page: 35
  year: 2010
  end-page: 41
  ident: bb0475
  article-title: Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI
  publication-title: J. Environ. Qual.
– start-page: 17
  year: 2008
  end-page: 44
  ident: bb0170
  article-title: Past, present, and future trends in soil electrical conductivity measurements using geophysical methods
  publication-title: Handbook of Agricultural Geophysics
– volume: 74
  start-page: 1750
  year: 2010
  end-page: 1762
  ident: bb0830
  article-title: Repeated electromagnetic induction surveys for determining subsurface hydrologic dynamics in an agricultural landscape
  publication-title: Soil Sci. Soc. Am. J.
– volume: 112
  start-page: 179
  year: 2003
  end-page: 196
  ident: bb0660
  article-title: Hierarchical data fusion for mapping soil units at field scale
  publication-title: Geoderma
– start-page: 1
  year: 2003
  end-page: 5
  ident: bb0190
  article-title: Geophysics in soil science
  publication-title: Encyclopedia of Soil Science
– volume: 29
  start-page: 2055
  year: 1998
  end-page: 2065
  ident: bb0415
  article-title: Use of non-contacting electromagnetic inductive method for estimating soil moisture across a landscape
  publication-title: Commun. Soil Sci. Plant Anal.
– start-page: 39
  year: 1993
  end-page: 42
  ident: bb0665
  article-title: Assessing the influence of subsoil heterogeneity on vegetation patterns in the Rio Grande Plains of south Texas using electromagnetic induction and geographical information system
– volume: 23
  start-page: 40
  year: 2007
  end-page: 51
  ident: bb0310
  article-title: Identifying management zones in agricultural fields using spatially constrained classification of soil and ancillary data
  publication-title: Soil Use Manag.
– year: 1954
  ident: bb0745
  article-title: Diagnosis and improvement of saline and alkali soils
  publication-title: USDA Agricultural Handbook No. 60
– volume: 48
  start-page: 2123
  year: 2005
  end-page: 2135
  ident: bb0020
  article-title: The impact of temperature and shallow hydrologic conditions on the magnitude and spatial pattern consistency of electromagnetic induction measured soil electrical conductivity
  publication-title: Trans. Am. Soc. Agric. Eng.
– volume: 73
  start-page: 1
  year: 2009
  end-page: 8
  ident: bb0145
  article-title: Extracting topsoil information from EM38DD sensor data using neural network approach
  publication-title: Soil Sci. Soc. Am. J.
– volume: 48
  start-page: 205
  year: 1996
  end-page: 216
  ident: bb0380
  article-title: Mapping the areal distribution of soil parameters with geophysical techniques
  publication-title: Application of GIS to the modeling of non-point sources of pollution in the vadose zone
– volume: 64
  start-page: 716
  year: 2013
  end-page: 727
  ident: bb0605
  article-title: Integrating multi-receiver electromagnetic induction measurements into the interpretation of the soil landscape around the school of gladiators at Carnuntum
  publication-title: Eur. J. Soil Sci.
– year: 2000
  ident: bb0775
  article-title: Mapping available water content and estimating soil textural class using electromagnetic induction
  publication-title: EurAgEng Paper No. 00-SW-044, Warwick, United Kingdom
– volume: 7
  start-page: 380
  year: 1999
  end-page: 392
  ident: bb0355
  article-title: Detecting a salinity plume in an unconfined sandy aquifer and assessing secondary soil salinization using electromagnetic induction techniques, North Dakota, USA
  publication-title: Hydrogeol. J.
– volume: 7
  start-page: 15
  year: 2009
  end-page: 25
  ident: bb0480
  article-title: Electrical conductivity mapping for precision farming
  publication-title: Near Surf. Geophys.
– volume: 42
  start-page: 339
  year: 2005
  end-page: 351
  ident: bb0040
  article-title: Scale dependent variability of soil electrical conductivity by indirect measures of soil properties
  publication-title: J. Terrramech.
– volume: 56
  start-page: 540
  year: 1992
  end-page: 548
  ident: bb0460
  article-title: Mapping soil salinity using calibrated electromagnetic induction measurements
  publication-title: Soil Sci. Soc. Am. J.
– volume: 55
  start-page: 12
  year: 2000
  end-page: 18
  ident: bb0035
  article-title: Factors influencing the profitability of precision farming systems
  publication-title: J. Soil Water Conserv.
– volume: 83
  start-page: 23
  year: 2010
  end-page: 33
  ident: bb0115
  article-title: Early soil knowledge and the birth and development of soil science
  publication-title: Catena
– volume: 177
  start-page: 345
  year: 2012
  end-page: 354
  ident: bb0785
  article-title: A multivariate approach for high-resolution soil survey development
  publication-title: Soil Sci.
– volume: 54
  start-page: 1
  year: 2013
  end-page: 10
  ident: bb0220
  article-title: Using EMI and P-XRF to characterize the magnetic properties and the concentration of metals in soils formed over different lithologies
  publication-title: Soil Horiz.
– volume: 199
  start-page: 30
  year: 2013
  end-page: 36
  ident: bb0205
  article-title: Exploring the potential of multi-receiver EMI survey for geoarchaeological prospection: A 90
  publication-title: Geoderma
– volume: 96
  start-page: 151
  year: 2007
  end-page: 159
  ident: bb0295
  article-title: Map quality and zone delineation as affected by width of parallel swaths with mobile agricultural sensors
  publication-title: Biosyst. Eng.
– volume: 150
  start-page: 389
  year: 2009
  end-page: 395
  ident: bb0615
  article-title: A pedotransfer function to evaluate the soil profile textural heterogeneity using proximally sensed apparent electrical conductivity
  publication-title: Geoderma
– volume: 53
  start-page: 65
  year: 1992
  end-page: 78
  ident: bb0575
  article-title: Recharge and discharge of groundwater in aquic conditions illustrated with flow analysis
  publication-title: Geoderma
– volume: 53
  start-page: 433
  year: 1989
  end-page: 439
  ident: bb0565
  article-title: Soil Electrical conductivity and soil salinity: New formulation and calibrations
  publication-title: Soil Sci. Soc. Am. J.
– year: 2000
  ident: bb0455
  article-title: ESAP-95 version 2.10R User Manual and Tutorial Guide
  publication-title: Research Report 146
– volume: 51
  start-page: 469
  year: 1998
  end-page: 474
  ident: bb0055
  article-title: Soil depth assessment of sagebrush grazing treatments using electromagnetic induction
  publication-title: J. Range Manag.
– volume: 111
  start-page: 195
  year: 1989
  end-page: 212
  ident: bb0165
  article-title: Spatial variability of groundwater recharge in a semiarid region
  publication-title: J. Hydrol.
– volume: 17
  start-page: 1965
  year: 2003
  end-page: 1977
  ident: bb0640
  article-title: A new tool for hillslope hydrologists: spatially distributed groundwater level and soil water content measured using electromagnetic induction
  publication-title: Hydrol. Process.
– year: 1994
  ident: bb0580
  article-title: Assessing discharge characteristics of upland landscapes using electromagnetic induction techniques
  publication-title: Technical Memorandum 94/3
– volume: 211–212
  start-page: 28
  year: 2013
  end-page: 38
  ident: bb0725
  article-title: Electromagnetic conductivity imaging (EMCI) of soil using a DUALEM-421 and inversion modeling software (EM4Soil)
  publication-title: Geoderma
– volume: 28
  start-page: 108
  year: 2012
  end-page: 112
  ident: bb0750
  article-title: Comparison of Geonics EM38 and Dualem 1S electromagnetic induction sensors for the measurement of salinity and other soil properties
  publication-title: Soil Use Manag.
– volume: 48
  start-page: 155
  year: 2005
  end-page: 168
  ident: bb0290
  article-title: Characterization of soil electrical conductivity variability in irrigated sandy and non-saline fields in Colorado
  publication-title: Trans. Am. Soc. Agric. Eng.
– volume: 199
  start-page: 99
  year: 2013
  end-page: 105
  ident: bb0760
  article-title: Key variables for the identification of soil management classes in the aeolian landscapes of north–west Europe
  publication-title: Geoderma
– start-page: 1444
  year: 2000
  end-page: 1451
  ident: bb0670
  article-title: Measuring and interpreting soil electrical conductivity for precision agriculture
  publication-title: Proc. Int. Conference Geospatial Information in Agriculture and Forestry. Lake Buena Vista, Florida. June 10–12, 2000
– volume: 68
  start-page: 715
  year: 1988
  end-page: 722
  ident: bb0410
  article-title: Estimating spatial variations of soil water content using noncontacting electromagnetic inductive methods
  publication-title: Can. J. Soil Sci.
– volume: 54
  start-page: 290
  year: 1990
  end-page: 293
  ident: bb0495
  article-title: Estimating forest soil quality from terrain measurements of apparent electrical conductivity
  publication-title: Soil Sci. Soc. Am. J.
– volume: 4
  start-page: 425
  year: 2012
  end-page: 434
  ident: bb0010
  article-title: Employing electromagnetic induction techniques for the assessment of soil compaction
  publication-title: Am. J. Agric. Biol. Sci.
– start-page: 979
  year: 1999
  end-page: 990
  ident: bb0695
  article-title: Soil conductivity sensing on claypan soils: Comparison of Electromagnetic Induction and direct methods
  publication-title: Proceedings of the 4th International Conference on Precision Agriculture
– volume: 94
  start-page: 1355
  year: 2002
  end-page: 1366
  ident: bb0045
  article-title: Soil-sampling alternatives and variable-rate liming for a soybean–corn rotation
  publication-title: Agron. J.
– volume: 11
  start-page: 375
  year: 1997
  end-page: 390
  ident: bb0050
  article-title: Non-destructive assessments of rangeland soil depth using electromagnetic induction
  publication-title: Arid Soil Res. Rehabil.
– volume: 4
  start-page: 331
  year: 2003
  end-page: 342
  ident: bb0100
  article-title: Evaluation of the accuracy of a central Iowa soil survey and implications for precision soil management
  publication-title: Precis. Agric.
– volume: 107
  start-page: 251
  year: 1989
  end-page: 265
  ident: bb0150
  article-title: The calibration of frequency-domain electromagnetic induction meters and their possible use in recharge studies
  publication-title: J. Hydrol.
– volume: 148
  start-page: 107
  year: 2008
  end-page: 112
  ident: bb0765
  article-title: Upgrading a 1/20,000 soil map with an apparent electrical conductivity survey
  publication-title: Geoderma
– volume: 49
  start-page: 102
  year: 2008
  end-page: 108
  ident: bb0265
  article-title: Soil scientists revisit a high-intensity soil survey in Northwest Illinois with electromagnetic induction and tradition methods
  publication-title: Soil Surv. Horiz.
– year: 1990
  ident: bb0795
  article-title: Inferring recharge/discharge areas from multifrequency electromagnetic induction measurements
  publication-title: CSIRO Division of Water Resources, Tech Memorandum 90/11
– year: 1993
  ident: bb0385
  article-title: Soil type and crop yields determination from ground conductivity surveys
  publication-title: 1993 International Meeting of American Society of Agricultural Engineers. Paper No. 933552
– volume: 40
  start-page: 651
  year: 1976
  end-page: 655
  ident: bb0570
  article-title: Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity
  publication-title: Soil Sci. Soc. Am. J.
– volume: 6
  start-page: 167
  year: 2005
  end-page: 181
  ident: bb0420
  article-title: Mapping potential crop management zones within fields: use of yield-map series and patterns of soil physical properties identified by electromagnetic induction sensing
  publication-title: Precis. Agric.
– volume: 56
  start-page: 1015
  year: 1992
  end-page: 1022
  ident: bb0155
  article-title: Depth profiles of electrical conductivity from linear combinations of electromagnetic induction measurements
  publication-title: Soil Sci. Soc. Am. J.
– volume: 5
  start-page: 143
  year: 2004
  end-page: 150
  ident: bb0095
  article-title: Effect of daily soil temperature fluctuations on soil electrical conductivity as measured with the Geonics® EM-38
  publication-title: Precis. Agric.
– volume: 73
  start-page: 7
  year: 2009
  end-page: 12
  ident: bb0610
  article-title: Comparing the EM38DD and DUALEM-21S sensors for depth-to-clay mapping
  publication-title: Soil Sci. Soc. Am. J.
– volume: 50
  start-page: 68
  year: 2009
  end-page: 74
  ident: bb0270
  article-title: High-intensity soil mapping with the aid of EMI in northern Illinois
  publication-title: Soil Surv. Horiz.
– volume: 47
  start-page: 208
  year: 2007
  end-page: 214
  ident: bb0280
  article-title: Using electro-magnetic induction technology to identify sampling sites for soil acidity assessment and to determine spatial variability of soil acidity in rice fields
  publication-title: Aust. J. Exp. Agric.
– start-page: 18
  year: 2013
  end-page: 27
  ident: bb0215
  publication-title: Technical Report on EMI and Saline Seep Workshop, Great Falls
– start-page: 169
  year: 1996
  end-page: 179
  ident: bb0375
  article-title: Improved soil mapping using electromagnetic induction surveys
  publication-title: Proceedings of the 3rd International Conference on Precision Agriculture. June 23–26, 1996, Minneapolis, Minnesota
– volume: 176
  start-page: 441
  year: 2011
  end-page: 447
  ident: bb0315
  article-title: Delineating salinity and sodicity distribution in major soil map units of El Paso, Texas, using electromagnetic induction technique
  publication-title: Soil Sci.
– volume: 100
  start-page: 1472
  year: 2008
  end-page: 1480
  ident: bb0630
  article-title: How well do zone sampling based soil electrical conductivity maps represent soil variability?
  publication-title: Agron. J.
– volume: 57
  start-page: 175
  year: 2002
  end-page: 182
  ident: bb0230
  article-title: Comparing three geophysical tools for locating sand blows in alluvial soils of southeast Missouri
  publication-title: J. Soil Water Conserv.
– volume: 52
  start-page: 77
  year: 2011
  end-page: 88
  ident: bb0345
  article-title: Evaluation of electromagnetic induction to characterize and map sodium-affected soils in the Northern Great Plains
  publication-title: Soil Surv. Horiz.
– volume: 53
  start-page: 50
  year: 2012
  end-page: 54
  ident: bb0105
  article-title: Use of electrical conductivity to investigate soil homogeneity in Story County, Iowa, USA
  publication-title: Soil Surv. Horiz.
– volume: 53
  start-page: 32
  year: 2012
  end-page: 37
  ident: bb0065
  article-title: Analysis of the representation of soil map units using a common apparent electrical conductivity sampling design for the mapping of soil properties
  publication-title: Soil Surv. Horiz.
– volume: 45
  start-page: 255
  year: 1981
  end-page: 260
  ident: bb0555
  article-title: Determining soil electrical conductivity-depth relations using an inductive electromagnetic soil conductivity meter
  publication-title: Soil Sci. Soc. Am. J.
– volume: 45
  start-page: 6372
  year: 2007
  ident: bb0360
  article-title: An electromagnetic induction method for monitoring variations in soil moisture in agroforestry systems
  publication-title: Aust. J. Soil Res.
– volume: 44
  start-page: 71
  year: 2004
  end-page: 91
  ident: bb0005
  article-title: On-the-go soil sensors for precision agriculture
  publication-title: Comput. Electron. Agric.
– start-page: 199
  year: 2009
  end-page: 233
  ident: bb0135
  article-title: Mapping soil salinity using ground-based electromagnetic induction
  publication-title: Remote Sensing of Soil Salinization
– volume: 65
  start-page: 1829
  year: 2001
  end-page: 1837
  ident: bb0395
  article-title: Field-scale conductivity mapping for delineating soil condition
  publication-title: Soil Sci. Soc. Am. J.
– volume: 11
  start-page: 7
  year: 1990
  end-page: 14
  ident: bb0650
  article-title: Estimation of field scale leaching rates from chloride mass balance and electromagnetic induction measurements
  publication-title: Irrig. Sci.
– volume: 56
  start-page: 257
  year: 2001
  end-page: 262
  ident: bb0250
  article-title: Comparison of two electromagnetic induction tools in salinity appraisals
  publication-title: J. Soil Water Conserv.
– volume: 2
  start-page: 859
  year: 2009
  end-page: 868
  ident: bb0705
  publication-title: Estimating depth to argillic soil horizons using apparent electrical conductivity response functions
– volume: 39
  start-page: 98
  year: 2012
  end-page: 110
  ident: bb0340
  article-title: Characterisation of soil texture variability using apparent electrical conductivity at a highly variable site
  publication-title: Comput. Geosci.
– volume: 40
  start-page: 1260
  year: 2013
  end-page: 1267
  ident: bb0200
  article-title: A multidisciplinary approach to reconstructing Late Glacial and Early Holocene landscapes
  publication-title: J. Archaeol. Sci.
– volume: 62
  start-page: 232
  year: 1998
  end-page: 242
  ident: bb0450
  article-title: Monitoring for temporal changes in soil salinity using electromagnetic induction techniques
  publication-title: Soil Sci. Soc. Am. J.
– volume: 37
  start-page: 11
  year: 1996
  end-page: 20
  ident: bb0235
  article-title: Electromagnetic induction investigations of a soil delineation in Reno County, Kansas
  publication-title: Soil Surv. Horiz.
– start-page: 153
  year: 1995
  end-page: 156
  ident: bb0370
  article-title: Electromagnetic induction as a mapping aid for precision farming
  publication-title: Clean Water, Clean Environment, 21st Century: Team Agriculture. Working to Protect Water Resources
– start-page: 133
  year: 1998
  end-page: 139
  ident: bb0425
  article-title: An evaluation of methods for determining site-specific management zones
  publication-title: Proceedings of the North Central Extension-Industry Soil Fertility Conference
– volume: 95
  start-page: 496
  year: 2003
  end-page: 507
  ident: bb0540
  article-title: Soil electrical conductivity map variability in limestone soils overlain by loess
  publication-title: Agron. J.
– volume: 30
  start-page: 569
  year: 2004
  end-page: 578
  ident: bb0325
  article-title: Determining and representing width of soil boundaries using electrical conductivity and MultiGrid
  publication-title: Comput. Geosci.
– year: 1980
  ident: bb0505
  article-title: Electrical conductivity of soils and rock
  publication-title: Technical Note TN-5
– volume: 43
  start-page: 88
  year: 2013
  end-page: 95
  ident: bb0730
  article-title: An inversion approach to generate electromagnetic conductivity images from signal data
  publication-title: Environ. Model Softw.
– volume: 1
  start-page: 14
  year: 1998
  end-page: 19
  ident: bb0225
  article-title: Where is it safe to build? Searching for geologic hazards in areas of karst
  publication-title: Conserv. Voices
– volume: 69
  start-page: 25
  year: 1989
  end-page: 32
  ident: bb0500
  article-title: Conversion of electromagnetic inductance readings to saturated paste extract values in soils for different temperature, texture, and moisture conditions
  publication-title: Can. J. Soil Sci.
– year: 1993
  ident: bb0655
  article-title: Soil survey manual
  publication-title: USDA Agricultural Handbook No. 18
– volume: 18
  start-page: 121
  year: 2002
  end-page: 126
  ident: bb0305
  article-title: Mobilized surveying of soil conductivity using electromagnetic induction
  publication-title: Appl. Eng. Agric.
– volume: 66
  start-page: 235
  year: 2002
  end-page: 243
  ident: bb0440
  article-title: Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity
  publication-title: Soil Sci. Soc. Am. J.
– volume: 25
  start-page: 21
  year: 1987
  end-page: 27
  ident: bb0805
  article-title: The use of electromagnetic induction to detect the spatial variability of the salt and clay contents of soils
  publication-title: Aust. J. Soil Res.
– start-page: 671
  year: 1995
  end-page: 681
  ident: bb0700
  article-title: Electromagnetic induction sensing as an indicator of productivity on claypan soils
  publication-title: Proceedings of Second International Conference on Precision Management for Agricultural Systems. March 27–30, 1994, Minneapolis, Minnesota
– volume: 74
  start-page: 58
  year: 2008
  end-page: 64
  ident: bb0600
  article-title: Reconstructing the paleotopography beneath the loess cover with the aid of electromagnetic induction sensors
  publication-title: Catena
– volume: 48
  start-page: 288
  year: 1984
  end-page: 291
  ident: bb0180
  article-title: Measurements of inverted electrical conductivity profiles using electromagnetic induction
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 225
  year: 2008
  end-page: 231
  ident: bb0430
  article-title: Relations between a commercial soil survey map based on apparent electrical conductivity (EC
  publication-title: Handbook of Agricultural Geophysics
– volume: 74
  start-page: 1763
  year: 2010
  end-page: 1774
  ident: bb0835
  article-title: Repeated electromagnetic induction surveys for improving soil mapping in an agricultural landscape
  publication-title: Soil Sci. Soc. Am. J.
– volume: 21
  start-page: 861
  year: 1990
  end-page: 901
  ident: bb0185
  article-title: Establishing soil electrical conductivity — depth relations from electromagnetic induction measurements
  publication-title: Commun. Soil Sci. Plant Anal.
– year: 2006
  ident: bb0740
  article-title: Land resource regions and major land resource areas of the United States, Caribbean, and Pacific Basin
  publication-title: USDA Handbook 296
– volume: 61
  start-page: 1627
  year: 1997
  end-page: 1633
  ident: bb0400
  article-title: Evaluation of calibration methods for interpreting soil salinity from electromagnetic induction measurements
  publication-title: Soil Sci. Soc. Am. J.
– volume: 31
  start-page: 2401
  year: 1995
  end-page: 2409
  ident: bb0635
  article-title: Noninvasive soil water content measurements using electromagnetic induction
  publication-title: Water Resour. Res.
– volume: 53
  year: 2012
  ident: bb0070
  article-title: Evaluation of the FieldScout TDR300 for determining volumetric water content in sandy South Georgia Soils
  publication-title: Soil Horiz.
– volume: 75
  start-page: 2095
  year: 2011
  end-page: 2100
  ident: bb0515
  article-title: Imaging polygonal network of ice-wedge casts with an electromagnetic induction sensor
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 211
  year: 2008
  end-page: 215
  ident: bb0790
  article-title: Apparent electrical conductivity for delineating spatial variability in soil properties
  publication-title: Handbook of Agricultural Geophysics
– volume: 18
  start-page: 139
  year: 1985
  end-page: 148
  ident: bb0820
  article-title: The application of ground conductivity measurements to geological mapping
  publication-title: Q. J. Eng. Geol. Hydrogeol.
– volume: 19
  start-page: 675
  year: 2003
  end-page: 688
  ident: bb0625
  article-title: Mapping water table depth by electromagnetic induction
  publication-title: Appl. Eng. Agric.
– volume: 22
  start-page: 253
  year: 1999
  end-page: 257
  ident: bb0075
  article-title: Improved mapping of the Lake Agassiz Herman Strandline by integrating geological and soil maps
  publication-title: J. Paleolimnol.
– volume: 143
  start-page: 206
  year: 2008
  end-page: 215
  ident: bb0770
  article-title: Key soil and topographic properties to delineate potential management classes for precision agriculture in the European loess area
  publication-title: Geoderma
– volume: 189–190
  start-page: 514
  year: 2012
  end-page: 521
  ident: bb0595
  article-title: Depth slicing of a multi-receiver EMI measurements to enhance the delineation of contrasting soil features
  publication-title: Geoderma
– volume: 42
  start-page: 389
  year: 2004
  end-page: 400
  ident: bb0335
  article-title: Rapid identification of soil textural and management zones using electromagnetic induction sensing in soils
  publication-title: Aust. J. Soil Res.
– volume: 43
  start-page: 810
  year: 1979
  end-page: 812
  ident: bb0195
  article-title: Measurement of apparent electrical conductivity of soils by an electromagnetic induction probe to aid salinity surveys
  publication-title: Soil Sci. Soc. Am. J.
– volume: 31
  start-page: 373
  year: 1995
  end-page: 386
  ident: bb0465
  article-title: Spatial prediction of soil salinity using electromagnetic induction techniques. 1. Statistical prediction models: a comparison of multiple linear regression and cokriging
  publication-title: Water Resour. Res.
– volume: 41
  start-page: 27
  year: 2000
  end-page: 36
  ident: bb0245
  article-title: An electromagnetic induction survey of a riparian area in southwest Montana
  publication-title: Soil Surv. Horiz.
– volume: 44
  start-page: 16
  year: 2003
  end-page: 24
  ident: bb0085
  article-title: Use of the Geonics EM-38 to delineate soil in a loess over till landscape, southwestern Iowa
  publication-title: Soil Surv. Horiz.
– volume: 28
  start-page: 443
  year: 1990
  end-page: 452
  ident: bb0645
  article-title: Determining EC
  publication-title: Aust. J. Soil Res.
– volume: 22
  start-page: 3604
  year: 2008
  end-page: 3635
  ident: bb0585
  article-title: Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods
  publication-title: Hydrol. Process.
– volume: 43
  start-page: 14
  year: 2002
  end-page: 21
  ident: bb0255
  article-title: Mapping bedrock depths with EMI in Costilla County, Colorado
  publication-title: Soil Surv. Horiz.
– volume: 30
  start-page: 66
  year: 1989
  end-page: 70
  ident: bb0025
  article-title: Application of an aboveground electromagnetic conductivity meter to separate Natraqualfs and Ochraqualfs in Gibson County, Tennessee
  publication-title: Soil Surv. Horiz.
– volume: 49
  start-page: 552
  year: 1994
  end-page: 555
  ident: bb0260
  article-title: Estimating depth to claypans using electromagnetic inductive methods
  publication-title: J. Soil Water Conserv.
– volume: 88
  start-page: 183
  year: 2002
  end-page: 193
  ident: bb0285
  article-title: Electrical conductivity monitoring of soil condition and available N with animal manure and a cover crop
  publication-title: Agric. Ecosyst. Environ.
– volume: 37
  start-page: 296
  year: 1999
  end-page: 304
  ident: bb0620
  article-title: Evaluation of electromagnetic induction as a reconnaissance technique to characterize unsaturated flow in an arid setting
  publication-title: Ground Water
– volume: 66
  start-page: 315
  year: 1986
  end-page: 321
  ident: bb0815
  article-title: A rapid method for estimating weighted soil salinity from apparent soil electrical conductivity measured with an aboveground electromagnetic induction meter
  publication-title: Can. J. Soil Sci.
– volume: 76
  start-page: 2128
  year: 2012
  end-page: 2135
  ident: bb0060
  article-title: Manganiferous soils in Maryland: regional extent and field-scale electromagnetic induction survey
  publication-title: Soil Sci. Soc. Am. J.
– volume: 53
  start-page: 74
  year: 1989
  end-page: 79
  ident: bb0560
  article-title: New calibrations for determining soil electrical conductivity depth relations from electromagnetic measurements
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 3
  year: 2008
  end-page: 16
  ident: bb0015
  article-title: General considerations for geophysical methods applied to agriculture
  publication-title: Handbook of Agricultural Geophysics
– volume: 53
  start-page: 11
  year: 2012
  end-page: 15
  ident: bb0530
  article-title: The need to continue improving soil survey maps
  publication-title: Soil Horiz.
– volume: 77
  start-page: 382
  year: 2012
  end-page: 390
  ident: bb0590
  article-title: Identifying soil patterns at different spatial scales with a multi-receiver EMI sensor
  publication-title: Soil Sci. Soc. Am. J.
– volume: 368
  start-page: 56
  year: 2009
  end-page: 67
  ident: bb0735
  article-title: Assessment of multi-frequency electromagnetic induction for determining soil moisture patterns at the hillslope scale
  publication-title: J. Hydrol.
– volume: 58
  start-page: 1190
  year: 1994
  end-page: 1193
  ident: bb0545
  article-title: Sodium-affected soil electrical identification in south-central Illinois by electromagnetic induction
  publication-title: Soil Sci. Soc. Am. J.
– volume: 95
  start-page: 472
  year: 2003
  end-page: 482
  ident: bb0685
  article-title: Comparison of electromagnetic induction and direct sensing of soil electrical conductivity
  publication-title: Agron. J.
– volume: 71
  start-page: 1740
  year: 2007
  end-page: 1747
  ident: bb0780
  article-title: Mapping clay content across boundaries at the landscape scale with electromagnetic induction
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 2037
  year: 2000
  end-page: 2048
  ident: bb0140
  article-title: Mapping soil hardpans with penetrometer and electrical conductivity
  publication-title: 2000 ASAE Annual International Meeting, Technical Papers: Engineering Solutions for a New Century
– volume: 55
  start-page: 1596
  year: 1990
  end-page: 1604
  ident: bb0550
  article-title: Mapping of Quaternary sediments in northeastern Ontario using ground electromagnetic methods
  publication-title: Geophysics
– volume: 66
  start-page: 1562
  year: 2002
  end-page: 1570
  ident: bb0030
  article-title: Differentiating soil types using electromagnetic conductivity and crop yield maps
  publication-title: Soil Sci. Soc. Am. J.
– year: 1983
  ident: bb0755
  article-title: Use of Electromagnetic Induction Instrument (type EM-38) for Mapping Soil Salinity
– volume: 130
  start-page: 201
  year: 1992
  end-page: 229
  ident: bb0160
  article-title: The application of electromagnetic techniques to groundwater recharge investigations
  publication-title: J. Hydrol.
– volume: 56
  start-page: 53
  year: 2007
  end-page: 65
  ident: bb0350
  article-title: Feasibility study of monitoring the total available water content using non-invasive electromagnetic induction-based and electrode-based soil electrical conductivity measurements
  publication-title: Irrig. Drain.
– volume: 70
  start-page: 537
  year: 1990
  end-page: 541
  ident: bb0405
  article-title: Field scale patterns of soil water storage from non-contacting measurements of bulk electrical conductivity
  publication-title: Can. J. Soil Sci.
– volume: 154
  start-page: 151
  year: 1992
  end-page: 157
  ident: bb0210
  article-title: Salinity estimates in irrigated soils using electromagnetic induction
  publication-title: Soil Sci.
– volume: 43
  start-page: 9
  year: 2002
  end-page: 13
  ident: bb0080
  article-title: The relative influence of soil water, clay, temperature, and carbonate minerals on soil electrical conductivity readings with an EM-38 along a Mollisol catena in central Iowa
  publication-title: Soil Surv. Horiz.
– volume: 45
  start-page: 99
  year: 2002
  end-page: 107
  ident: bb0485
  article-title: Field assessment of saline seep remediation using electromagnetic induction
  publication-title: Trans. Am. Soc. Agric. Eng.
– volume: 31
  start-page: 239
  year: 2001
  end-page: 264
  ident: bb0675
  article-title: Accuracy issues in electromagnetic induction sensing of electrical conductivity for precision agriculture
  publication-title: Comput. Electron. Agric.
– volume: 58
  start-page: 1190
  year: 1994
  ident: 10.1016/j.geoderma.2014.01.027_bb0545
  article-title: Sodium-affected soil electrical identification in south-central Illinois by electromagnetic induction
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1994.03615995005800040026x
– year: 1993
  ident: 10.1016/j.geoderma.2014.01.027_bb0130
  article-title: Mechanization of soil salinity assessment for mapping
– volume: 176
  start-page: 441
  issue: 8
  year: 2011
  ident: 10.1016/j.geoderma.2014.01.027_bb0315
  article-title: Delineating salinity and sodicity distribution in major soil map units of El Paso, Texas, using electromagnetic induction technique
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e318221f11a
– start-page: 255
  year: 2008
  ident: 10.1016/j.geoderma.2014.01.027_bb0435
  article-title: Mapping soil drainage classes using topographic and soil electrical conductivity
– volume: 4
  start-page: 6433
  issue: 12
  year: 2010
  ident: 10.1016/j.geoderma.2014.01.027_bb0715
  article-title: Application of geophysical methods in agriculture
  publication-title: Aust. J. Basic Appl. Sci.
– start-page: 413
  year: 2012
  ident: 10.1016/j.geoderma.2014.01.027_bb0275
  article-title: Geophysical investigations of soil-landscape architecture and its impacts on subsurface flow
– volume: 43
  start-page: 9
  year: 2002
  ident: 10.1016/j.geoderma.2014.01.027_bb0080
  article-title: The relative influence of soil water, clay, temperature, and carbonate minerals on soil electrical conductivity readings with an EM-38 along a Mollisol catena in central Iowa
  publication-title: Soil Surv. Horiz.
  doi: 10.2136/sh2002.1.0009
– volume: 47
  start-page: 208
  year: 2007
  ident: 10.1016/j.geoderma.2014.01.027_bb0280
  article-title: Using electro-magnetic induction technology to identify sampling sites for soil acidity assessment and to determine spatial variability of soil acidity in rice fields
  publication-title: Aust. J. Exp. Agric.
  doi: 10.1071/EA05102
– volume: 199
  start-page: 99
  year: 2013
  ident: 10.1016/j.geoderma.2014.01.027_bb0760
  article-title: Key variables for the identification of soil management classes in the aeolian landscapes of north–west Europe
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.07.017
– start-page: 199
  year: 2009
  ident: 10.1016/j.geoderma.2014.01.027_bb0135
  article-title: Mapping soil salinity using ground-based electromagnetic induction
– volume: 46
  start-page: 169
  issue: 4
  year: 2005
  ident: 10.1016/j.geoderma.2014.01.027_bb0240
  article-title: Characterizing a lithosequence within the San Rafael Swell of Utah with EMI
  publication-title: Soil Surv. Horiz.
  doi: 10.2136/sh2005.4.0169
– volume: 73
  start-page: 7
  issue: 1
  year: 2009
  ident: 10.1016/j.geoderma.2014.01.027_bb0610
  article-title: Comparing the EM38DD and DUALEM-21S sensors for depth-to-clay mapping
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2008.0079
– volume: 42
  start-page: 389
  year: 2004
  ident: 10.1016/j.geoderma.2014.01.027_bb0335
  article-title: Rapid identification of soil textural and management zones using electromagnetic induction sensing in soils
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR03149
– volume: 48
  start-page: 205
  year: 1996
  ident: 10.1016/j.geoderma.2014.01.027_bb0380
  article-title: Mapping the areal distribution of soil parameters with geophysical techniques
– volume: 66
  start-page: 235
  year: 2002
  ident: 10.1016/j.geoderma.2014.01.027_bb0440
  article-title: Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.0235
– volume: 51
  start-page: 469
  year: 1998
  ident: 10.1016/j.geoderma.2014.01.027_bb0055
  article-title: Soil depth assessment of sagebrush grazing treatments using electromagnetic induction
  publication-title: J. Range Manag.
  doi: 10.2307/4003336
– volume: 22
  start-page: 3604
  year: 2008
  ident: 10.1016/j.geoderma.2014.01.027_bb0585
  article-title: Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.6963
– volume: 74
  start-page: 58
  year: 2008
  ident: 10.1016/j.geoderma.2014.01.027_bb0600
  article-title: Reconstructing the paleotopography beneath the loess cover with the aid of electromagnetic induction sensors
  publication-title: Catena
  doi: 10.1016/j.catena.2008.03.007
– volume: 21
  start-page: 861
  issue: 11&12
  year: 1990
  ident: 10.1016/j.geoderma.2014.01.027_bb0185
  article-title: Establishing soil electrical conductivity — depth relations from electromagnetic induction measurements
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103629009368275
– year: 1993
  ident: 10.1016/j.geoderma.2014.01.027_bb0655
  article-title: Soil survey manual
– volume: 62
  start-page: 232
  year: 1998
  ident: 10.1016/j.geoderma.2014.01.027_bb0450
  article-title: Monitoring for temporal changes in soil salinity using electromagnetic induction techniques
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1998.03615995006200010030x
– start-page: 1
  year: 2003
  ident: 10.1016/j.geoderma.2014.01.027_bb0190
  article-title: Geophysics in soil science
– volume: 77
  start-page: 382
  year: 2012
  ident: 10.1016/j.geoderma.2014.01.027_bb0590
  article-title: Identifying soil patterns at different spatial scales with a multi-receiver EMI sensor
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2012.0276
– volume: 31
  start-page: 2401
  year: 1995
  ident: 10.1016/j.geoderma.2014.01.027_bb0635
  article-title: Noninvasive soil water content measurements using electromagnetic induction
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR01949
– volume: 70
  start-page: 537
  year: 1990
  ident: 10.1016/j.geoderma.2014.01.027_bb0405
  article-title: Field scale patterns of soil water storage from non-contacting measurements of bulk electrical conductivity
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss90-056
– volume: 100
  start-page: 1472
  issue: 5
  year: 2008
  ident: 10.1016/j.geoderma.2014.01.027_bb0630
  article-title: How well do zone sampling based soil electrical conductivity maps represent soil variability?
  publication-title: Agron. J.
  doi: 10.2134/agronj2008.0060
– volume: 7
  start-page: 393
  year: 2006
  ident: 10.1016/j.geoderma.2014.01.027_bb0110
  article-title: Soil electrical conductivity as a function of soil water content and implications for soil mapping
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-006-9021-x
– volume: 95
  start-page: 472
  year: 2003
  ident: 10.1016/j.geoderma.2014.01.027_bb0685
  article-title: Comparison of electromagnetic induction and direct sensing of soil electrical conductivity
  publication-title: Agron. J.
  doi: 10.2134/agronj2003.0472
– volume: 37
  start-page: 296
  issue: 2
  year: 1999
  ident: 10.1016/j.geoderma.2014.01.027_bb0620
  article-title: Evaluation of electromagnetic induction as a reconnaissance technique to characterize unsaturated flow in an arid setting
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.1999.tb00987.x
– volume: 199
  start-page: 30
  year: 2013
  ident: 10.1016/j.geoderma.2014.01.027_bb0205
  article-title: Exploring the potential of multi-receiver EMI survey for geoarchaeological prospection: A 90ha dataset
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.07.019
– volume: 7
  start-page: 380
  year: 1999
  ident: 10.1016/j.geoderma.2014.01.027_bb0355
  article-title: Detecting a salinity plume in an unconfined sandy aquifer and assessing secondary soil salinization using electromagnetic induction techniques, North Dakota, USA
  publication-title: Hydrogeol. J.
  doi: 10.1007/s100400050210
– year: 2000
  ident: 10.1016/j.geoderma.2014.01.027_bb0775
  article-title: Mapping available water content and estimating soil textural class using electromagnetic induction
– volume: 40
  start-page: 651
  year: 1976
  ident: 10.1016/j.geoderma.2014.01.027_bb0570
  article-title: Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1976.03615995004000050017x
– start-page: 1444
  year: 2000
  ident: 10.1016/j.geoderma.2014.01.027_bb0670
  article-title: Measuring and interpreting soil electrical conductivity for precision agriculture
– volume: 88
  start-page: 183
  year: 2002
  ident: 10.1016/j.geoderma.2014.01.027_bb0285
  article-title: Electrical conductivity monitoring of soil condition and available N with animal manure and a cover crop
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/S0167-8809(01)00256-0
– start-page: 153
  year: 1995
  ident: 10.1016/j.geoderma.2014.01.027_bb0370
  article-title: Electromagnetic induction as a mapping aid for precision farming
– volume: 154
  start-page: 151
  issue: 2
  year: 1992
  ident: 10.1016/j.geoderma.2014.01.027_bb0210
  article-title: Salinity estimates in irrigated soils using electromagnetic induction
  publication-title: Soil Sci.
  doi: 10.1097/00010694-199208000-00009
– volume: 104
  start-page: 1547
  issue: 6
  year: 2012
  ident: 10.1016/j.geoderma.2014.01.027_bb0445
  article-title: Toward the ultimate soil survey: sensing multiple soil landscape properties in one pass
  publication-title: Agron. J.
  doi: 10.2134/agronj2012.0156
– volume: 10
  start-page: 1319
  year: 2011
  ident: 10.1016/j.geoderma.2014.01.027_bb0525
  article-title: Quantitative two-layer conductivity inversion of multi-configuration electromagnetic induction measurements
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2011.0035
– volume: 44
  start-page: 16
  year: 2003
  ident: 10.1016/j.geoderma.2014.01.027_bb0085
  article-title: Use of the Geonics EM-38 to delineate soil in a loess over till landscape, southwestern Iowa
  publication-title: Soil Surv. Horiz.
  doi: 10.2136/sh2003.1.0016
– volume: 11
  start-page: 375
  year: 1997
  ident: 10.1016/j.geoderma.2014.01.027_bb0050
  article-title: Non-destructive assessments of rangeland soil depth using electromagnetic induction
  publication-title: Arid Soil Res. Rehabil.
  doi: 10.1080/15324989709381490
– volume: 150
  start-page: 389
  year: 2009
  ident: 10.1016/j.geoderma.2014.01.027_bb0615
  article-title: A pedotransfer function to evaluate the soil profile textural heterogeneity using proximally sensed apparent electrical conductivity
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.02.024
– volume: 55
  start-page: 1596
  year: 1990
  ident: 10.1016/j.geoderma.2014.01.027_bb0550
  article-title: Mapping of Quaternary sediments in northeastern Ontario using ground electromagnetic methods
  publication-title: Geophysics
  doi: 10.1190/1.1442811
– start-page: 169
  year: 1996
  ident: 10.1016/j.geoderma.2014.01.027_bb0375
  article-title: Improved soil mapping using electromagnetic induction surveys
– volume: 66
  start-page: 1562
  issue: 5
  year: 2002
  ident: 10.1016/j.geoderma.2014.01.027_bb0030
  article-title: Differentiating soil types using electromagnetic conductivity and crop yield maps
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.1562
– volume: 53
  start-page: 32
  issue: 2
  year: 2012
  ident: 10.1016/j.geoderma.2014.01.027_bb0065
  article-title: Analysis of the representation of soil map units using a common apparent electrical conductivity sampling design for the mapping of soil properties
  publication-title: Soil Surv. Horiz.
  doi: 10.2136/sh12-01-0002
– volume: 64
  start-page: 183
  year: 2011
  ident: 10.1016/j.geoderma.2014.01.027_bb0520
  article-title: Mapping complex soil patterns with multiple-point geostatistics
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12033
– start-page: 979
  year: 1999
  ident: 10.1016/j.geoderma.2014.01.027_bb0695
  article-title: Soil conductivity sensing on claypan soils: Comparison of Electromagnetic Induction and direct methods
– volume: 4
  start-page: 331
  year: 2003
  ident: 10.1016/j.geoderma.2014.01.027_bb0100
  article-title: Evaluation of the accuracy of a central Iowa soil survey and implications for precision soil management
  publication-title: Precis. Agric.
  doi: 10.1023/A:1024960708561
– volume: 44
  start-page: 71
  year: 2004
  ident: 10.1016/j.geoderma.2014.01.027_bb0005
  article-title: On-the-go soil sensors for precision agriculture
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2004.03.002
– volume: 43
  start-page: 810
  year: 1979
  ident: 10.1016/j.geoderma.2014.01.027_bb0195
  article-title: Measurement of apparent electrical conductivity of soils by an electromagnetic induction probe to aid salinity surveys
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1979.03615995004300040040x
– volume: 68
  start-page: 715
  year: 1988
  ident: 10.1016/j.geoderma.2014.01.027_bb0410
  article-title: Estimating spatial variations of soil water content using noncontacting electromagnetic inductive methods
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss88-069
– volume: 37
  start-page: 11
  year: 1996
  ident: 10.1016/j.geoderma.2014.01.027_bb0235
  article-title: Electromagnetic induction investigations of a soil delineation in Reno County, Kansas
  publication-title: Soil Surv. Horiz.
  doi: 10.2136/sh1996.1.0011
– volume: 48
  start-page: 2123
  issue: 6
  year: 2005
  ident: 10.1016/j.geoderma.2014.01.027_bb0020
  article-title: The impact of temperature and shallow hydrologic conditions on the magnitude and spatial pattern consistency of electromagnetic induction measured soil electrical conductivity
  publication-title: Trans. Am. Soc. Agric. Eng.
  doi: 10.13031/2013.20098
– volume: 42
  start-page: 339
  year: 2005
  ident: 10.1016/j.geoderma.2014.01.027_bb0040
  article-title: Scale dependent variability of soil electrical conductivity by indirect measures of soil properties
  publication-title: J. Terrramech.
  doi: 10.1016/j.jterra.2004.12.004
– volume: 8
  start-page: 586
  issue: 3
  year: 2009
  ident: 10.1016/j.geoderma.2014.01.027_bb0490
  article-title: Can apparent electrical conductivity improve the spatial characterization of soil organic carbon?
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2008.0123
– volume: 41
  start-page: 27
  issue: 2
  year: 2000
  ident: 10.1016/j.geoderma.2014.01.027_bb0245
  article-title: An electromagnetic induction survey of a riparian area in southwest Montana
  publication-title: Soil Surv. Horiz.
  doi: 10.2136/sh2000.2.0027
– volume: 45
  start-page: 6372
  year: 2007
  ident: 10.1016/j.geoderma.2014.01.027_bb0360
  article-title: An electromagnetic induction method for monitoring variations in soil moisture in agroforestry systems
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR06093
– volume: 29
  start-page: 2055
  issue: 11–14
  year: 1998
  ident: 10.1016/j.geoderma.2014.01.027_bb0415
  article-title: Use of non-contacting electromagnetic inductive method for estimating soil moisture across a landscape
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103629809370093
– year: 2010
  ident: 10.1016/j.geoderma.2014.01.027_bb0690
  article-title: Site-specific compaction, soil physical property, and crop yield relationships for claypan soils
– volume: 74
  start-page: 1750
  year: 2010
  ident: 10.1016/j.geoderma.2014.01.027_bb0830
  article-title: Repeated electromagnetic induction surveys for determining subsurface hydrologic dynamics in an agricultural landscape
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2010.0055
– volume: 53
  start-page: 65
  year: 1992
  ident: 10.1016/j.geoderma.2014.01.027_bb0575
  article-title: Recharge and discharge of groundwater in aquic conditions illustrated with flow analysis
  publication-title: Geoderma
  doi: 10.1016/0016-7061(92)90021-X
– start-page: 225
  year: 2008
  ident: 10.1016/j.geoderma.2014.01.027_bb0430
  article-title: Relations between a commercial soil survey map based on apparent electrical conductivity (ECa) and measured soil properties on a moronic soil in southeast Norway
– volume: 189–190
  start-page: 514
  year: 2012
  ident: 10.1016/j.geoderma.2014.01.027_bb0595
  article-title: Depth slicing of a multi-receiver EMI measurements to enhance the delineation of contrasting soil features
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.06.010
– volume: 28
  start-page: 108
  year: 2012
  ident: 10.1016/j.geoderma.2014.01.027_bb0750
  article-title: Comparison of Geonics EM38 and Dualem 1S electromagnetic induction sensors for the measurement of salinity and other soil properties
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2011.00386.x
– volume: 45
  start-page: 255
  year: 1981
  ident: 10.1016/j.geoderma.2014.01.027_bb0555
  article-title: Determining soil electrical conductivity-depth relations using an inductive electromagnetic soil conductivity meter
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1981.03615995004500020006x
– volume: 75
  start-page: 2095
  issue: 6
  year: 2011
  ident: 10.1016/j.geoderma.2014.01.027_bb0515
  article-title: Imaging polygonal network of ice-wedge casts with an electromagnetic induction sensor
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2011.0063
– volume: 56
  start-page: 53
  year: 2007
  ident: 10.1016/j.geoderma.2014.01.027_bb0350
  article-title: Feasibility study of monitoring the total available water content using non-invasive electromagnetic induction-based and electrode-based soil electrical conductivity measurements
  publication-title: Irrig. Drain.
  doi: 10.1002/ird.289
– volume: 55
  start-page: 12
  year: 2000
  ident: 10.1016/j.geoderma.2014.01.027_bb0035
  article-title: Factors influencing the profitability of precision farming systems
  publication-title: J. Soil Water Conserv.
  doi: 10.1080/00224561.2000.12457301
– volume: 2
  start-page: 859
  year: 2009
  ident: 10.1016/j.geoderma.2014.01.027_bb0705
– volume: 128
  start-page: 354
  year: 2005
  ident: 10.1016/j.geoderma.2014.01.027_bb0125
  article-title: Exploring the spatial relations between soil physical properties and apparent electrical conductivity
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.03.008
– volume: 96
  start-page: 151
  issue: 2
  year: 2007
  ident: 10.1016/j.geoderma.2014.01.027_bb0295
  article-title: Map quality and zone delineation as affected by width of parallel swaths with mobile agricultural sensors
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2006.10.010
– volume: 56
  start-page: 1015
  year: 1992
  ident: 10.1016/j.geoderma.2014.01.027_bb0155
  article-title: Depth profiles of electrical conductivity from linear combinations of electromagnetic induction measurements
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1992.03615995005600040003x
– volume: 43
  start-page: 88
  year: 2013
  ident: 10.1016/j.geoderma.2014.01.027_bb0730
  article-title: An inversion approach to generate electromagnetic conductivity images from signal data
  publication-title: Environ. Model Softw.
  doi: 10.1016/j.envsoft.2013.01.012
– start-page: 18
  year: 2013
  ident: 10.1016/j.geoderma.2014.01.027_bb0215
– volume: 57
  start-page: 175
  issue: 3
  year: 2002
  ident: 10.1016/j.geoderma.2014.01.027_bb0230
  article-title: Comparing three geophysical tools for locating sand blows in alluvial soils of southeast Missouri
  publication-title: J. Soil Water Conserv.
  doi: 10.1080/00224561.2002.12457433
– volume: 61
  start-page: 1627
  year: 1997
  ident: 10.1016/j.geoderma.2014.01.027_bb0400
  article-title: Evaluation of calibration methods for interpreting soil salinity from electromagnetic induction measurements
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1997.03615995006100060013x
– volume: 31
  start-page: 239
  year: 2001
  ident: 10.1016/j.geoderma.2014.01.027_bb0675
  article-title: Accuracy issues in electromagnetic induction sensing of electrical conductivity for precision agriculture
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/S0168-1699(00)00185-X
– volume: 45
  start-page: 99
  issue: 1
  year: 2002
  ident: 10.1016/j.geoderma.2014.01.027_bb0485
  article-title: Field assessment of saline seep remediation using electromagnetic induction
  publication-title: Trans. Am. Soc. Agric. Eng.
  doi: 10.13031/2013.7879
– volume: 112
  start-page: 179
  year: 2003
  ident: 10.1016/j.geoderma.2014.01.027_bb0660
  article-title: Hierarchical data fusion for mapping soil units at field scale
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(02)00305-1
– volume: 11
  start-page: 7
  year: 1990
  ident: 10.1016/j.geoderma.2014.01.027_bb0650
  article-title: Estimation of field scale leaching rates from chloride mass balance and electromagnetic induction measurements
  publication-title: Irrig. Sci.
  doi: 10.1007/BF00189989
– volume: 47
  start-page: 328
  issue: 3
  year: 2009
  ident: 10.1016/j.geoderma.2014.01.027_bb0710
  article-title: Distribution and causes of intricate saline-sodic soil patterns in an upland South Australian hillslope
  publication-title: Soil Res.
  doi: 10.1071/SR07191
– volume: 71
  start-page: 1740
  issue: 6
  year: 2007
  ident: 10.1016/j.geoderma.2014.01.027_bb0780
  article-title: Mapping clay content across boundaries at the landscape scale with electromagnetic induction
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2006.0177
– volume: 54
  start-page: 290
  issue: 1
  year: 1990
  ident: 10.1016/j.geoderma.2014.01.027_bb0495
  article-title: Estimating forest soil quality from terrain measurements of apparent electrical conductivity
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1990.03615995005400010047x
– volume: 66
  start-page: 315
  year: 1986
  ident: 10.1016/j.geoderma.2014.01.027_bb0815
  article-title: A rapid method for estimating weighted soil salinity from apparent soil electrical conductivity measured with an aboveground electromagnetic induction meter
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss86-032
– volume: 53
  issue: 6
  year: 2012
  ident: 10.1016/j.geoderma.2014.01.027_bb0070
  article-title: Evaluation of the FieldScout TDR300 for determining volumetric water content in sandy South Georgia Soils
  publication-title: Soil Horiz.
  doi: 10.2136/sh12-05-0018
– volume: 30
  start-page: 569
  year: 2004
  ident: 10.1016/j.geoderma.2014.01.027_bb0325
  article-title: Determining and representing width of soil boundaries using electrical conductivity and MultiGrid
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2004.01.005
– volume: 83
  start-page: 23
  year: 2010
  ident: 10.1016/j.geoderma.2014.01.027_bb0115
  article-title: Early soil knowledge and the birth and development of soil science
  publication-title: Catena
  doi: 10.1016/j.catena.2010.06.011
– start-page: 211
  year: 2008
  ident: 10.1016/j.geoderma.2014.01.027_bb0790
  article-title: Apparent electrical conductivity for delineating spatial variability in soil properties
– start-page: 17
  year: 2008
  ident: 10.1016/j.geoderma.2014.01.027_bb0170
  article-title: Past, present, and future trends in soil electrical conductivity measurements using geophysical methods
– volume: 74
  start-page: 335
  year: 1994
  ident: 10.1016/j.geoderma.2014.01.027_bb0120
  article-title: Soil salinity mapping with electromagnetic induction and satellite-based navigation methods
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss94-046
– volume: 3
  start-page: 47
  issue: 2
  year: 1983
  ident: 10.1016/j.geoderma.2014.01.027_bb0320
  article-title: The use of reconnaissance electromagnetic methods to map contaminant migration
  publication-title: Ground Water Monit. Rev.
  doi: 10.1111/j.1745-6592.1983.tb01199.x
– volume: 22
  start-page: 253
  issue: 3
  year: 1999
  ident: 10.1016/j.geoderma.2014.01.027_bb0075
  article-title: Improved mapping of the Lake Agassiz Herman Strandline by integrating geological and soil maps
  publication-title: J. Paleolimnol.
  doi: 10.1023/A:1008050510681
– year: 1990
  ident: 10.1016/j.geoderma.2014.01.027_bb0795
  article-title: Inferring recharge/discharge areas from multifrequency electromagnetic induction measurements
– year: 1980
  ident: 10.1016/j.geoderma.2014.01.027_bb0510
  article-title: Electromagnetic terrain conductivity measurement at low induction numbers
– year: 1993
  ident: 10.1016/j.geoderma.2014.01.027_bb0680
  article-title: Electromagnetic induction sensing of claypan depth
– year: 1980
  ident: 10.1016/j.geoderma.2014.01.027_bb0505
  article-title: Electrical conductivity of soils and rock
– volume: 48
  start-page: 288
  year: 1984
  ident: 10.1016/j.geoderma.2014.01.027_bb0180
  article-title: Measurements of inverted electrical conductivity profiles using electromagnetic induction
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1984.03615995004800020011x
– volume: 17
  start-page: 1965
  year: 2003
  ident: 10.1016/j.geoderma.2014.01.027_bb0640
  article-title: A new tool for hillslope hydrologists: spatially distributed groundwater level and soil water content measured using electromagnetic induction
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.1221
– volume: 130
  start-page: 201
  year: 1992
  ident: 10.1016/j.geoderma.2014.01.027_bb0160
  article-title: The application of electromagnetic techniques to groundwater recharge investigations
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(92)90111-8
– volume: 50
  start-page: 68
  issue: 2
  year: 2009
  ident: 10.1016/j.geoderma.2014.01.027_bb0270
  article-title: High-intensity soil mapping with the aid of EMI in northern Illinois
  publication-title: Soil Surv. Horiz.
  doi: 10.2136/sh2009.2.0068
– year: 1994
  ident: 10.1016/j.geoderma.2014.01.027_bb0580
  article-title: Assessing discharge characteristics of upland landscapes using electromagnetic induction techniques
– volume: 46
  start-page: 517
  year: 1982
  ident: 10.1016/j.geoderma.2014.01.027_bb0175
  article-title: An improved technique for determining soil electrical conductivity — depth relations from above ground electromagnetic induction measurements
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1982.03615995004600030014x
– start-page: 3
  year: 2008
  ident: 10.1016/j.geoderma.2014.01.027_bb0015
  article-title: General considerations for geophysical methods applied to agriculture
– volume: 64
  start-page: 716
  year: 2013
  ident: 10.1016/j.geoderma.2014.01.027_bb0605
  article-title: Integrating multi-receiver electromagnetic induction measurements into the interpretation of the soil landscape around the school of gladiators at Carnuntum
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12067
– volume: 4
  start-page: 425
  year: 2012
  ident: 10.1016/j.geoderma.2014.01.027_bb0010
  article-title: Employing electromagnetic induction techniques for the assessment of soil compaction
  publication-title: Am. J. Agric. Biol. Sci.
– volume: 54
  start-page: 1
  issue: 3
  year: 2013
  ident: 10.1016/j.geoderma.2014.01.027_bb0220
  article-title: Using EMI and P-XRF to characterize the magnetic properties and the concentration of metals in soils formed over different lithologies
  publication-title: Soil Horiz.
  doi: 10.2136/sh13-01-0009
– volume: 7
  start-page: 15
  issue: 1
  year: 2009
  ident: 10.1016/j.geoderma.2014.01.027_bb0480
  article-title: Electrical conductivity mapping for precision farming
  publication-title: Near Surf. Geophys.
  doi: 10.3997/1873-0604.2008031
– volume: 65
  start-page: 1829
  year: 2001
  ident: 10.1016/j.geoderma.2014.01.027_bb0395
  article-title: Field-scale conductivity mapping for delineating soil condition
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.1829
– volume: 49
  start-page: 552
  issue: 6
  year: 1994
  ident: 10.1016/j.geoderma.2014.01.027_bb0260
  article-title: Estimating depth to claypans using electromagnetic inductive methods
  publication-title: J. Soil Water Conserv.
  doi: 10.1080/00224561.1994.12456905
– volume: 43
  start-page: 14
  issue: 1
  year: 2002
  ident: 10.1016/j.geoderma.2014.01.027_bb0255
  article-title: Mapping bedrock depths with EMI in Costilla County, Colorado
  publication-title: Soil Surv. Horiz.
  doi: 10.2136/sh2002.1.0014
– volume: 49
  start-page: 102
  issue: 4
  year: 2008
  ident: 10.1016/j.geoderma.2014.01.027_bb0265
  article-title: Soil scientists revisit a high-intensity soil survey in Northwest Illinois with electromagnetic induction and tradition methods
  publication-title: Soil Surv. Horiz.
  doi: 10.2136/sh2008.4.0102
– year: 2006
  ident: 10.1016/j.geoderma.2014.01.027_bb0740
  article-title: Land resource regions and major land resource areas of the United States, Caribbean, and Pacific Basin
– volume: 53
  start-page: 11
  year: 2012
  ident: 10.1016/j.geoderma.2014.01.027_bb0530
  article-title: The need to continue improving soil survey maps
  publication-title: Soil Horiz.
  doi: 10.2136/sh12-02-0005
– start-page: 671
  year: 1995
  ident: 10.1016/j.geoderma.2014.01.027_bb0700
  article-title: Electromagnetic induction sensing as an indicator of productivity on claypan soils
– start-page: 2037
  year: 2000
  ident: 10.1016/j.geoderma.2014.01.027_bb0140
  article-title: Mapping soil hardpans with penetrometer and electrical conductivity
– year: 2000
  ident: 10.1016/j.geoderma.2014.01.027_bb0455
  article-title: ESAP-95 version 2.10R User Manual and Tutorial Guide
– volume: 45
  start-page: 96
  year: 2004
  ident: 10.1016/j.geoderma.2014.01.027_bb0090
  article-title: The effect of changes in bulk density on soil electrical conductivity as measured with the Geonics® EM-38
  publication-title: Soil Surv. Horiz.
  doi: 10.2136/sh2004.3.0096
– volume: 30
  start-page: 66
  year: 1989
  ident: 10.1016/j.geoderma.2014.01.027_bb0025
  article-title: Application of an aboveground electromagnetic conductivity meter to separate Natraqualfs and Ochraqualfs in Gibson County, Tennessee
  publication-title: Soil Surv. Horiz.
  doi: 10.2136/sh1989.3.0066
– volume: 1
  start-page: 14
  issue: 2
  year: 1998
  ident: 10.1016/j.geoderma.2014.01.027_bb0225
  article-title: Where is it safe to build? Searching for geologic hazards in areas of karst
  publication-title: Conserv. Voices
– volume: 23
  start-page: 40
  year: 2007
  ident: 10.1016/j.geoderma.2014.01.027_bb0310
  article-title: Identifying management zones in agricultural fields using spatially constrained classification of soil and ancillary data
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2006.00065.x
– volume: 50
  start-page: 625
  issue: 8
  year: 2013
  ident: 10.1016/j.geoderma.2014.01.027_bb0825
  article-title: Monitoring and prediction of soil moisture spatial–temporal variations from a hydropedological perspective: a review
  publication-title: Soil Res.
  doi: 10.1071/SR12228
– volume: 95
  start-page: 496
  year: 2003
  ident: 10.1016/j.geoderma.2014.01.027_bb0540
  article-title: Soil electrical conductivity map variability in limestone soils overlain by loess
  publication-title: Agron. J.
  doi: 10.2134/agronj2003.0496
– volume: 177
  start-page: 345
  issue: 5
  year: 2012
  ident: 10.1016/j.geoderma.2014.01.027_bb0785
  article-title: A multivariate approach for high-resolution soil survey development
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e31824e14d6
– volume: 368
  start-page: 56
  year: 2009
  ident: 10.1016/j.geoderma.2014.01.027_bb0735
  article-title: Assessment of multi-frequency electromagnetic induction for determining soil moisture patterns at the hillslope scale
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.01.037
– volume: 53
  start-page: 50
  issue: 5
  year: 2012
  ident: 10.1016/j.geoderma.2014.01.027_bb0105
  article-title: Use of electrical conductivity to investigate soil homogeneity in Story County, Iowa, USA
  publication-title: Soil Surv. Horiz.
  doi: 10.2136/sh12-04-0013
– volume: 19
  start-page: 675
  issue: 6
  year: 2003
  ident: 10.1016/j.geoderma.2014.01.027_bb0625
  article-title: Mapping water table depth by electromagnetic induction
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/2013.15663
– volume: 52
  start-page: 77
  year: 2011
  ident: 10.1016/j.geoderma.2014.01.027_bb0345
  article-title: Evaluation of electromagnetic induction to characterize and map sodium-affected soils in the Northern Great Plains
  publication-title: Soil Surv. Horiz.
  doi: 10.2136/sh2011.3.0077
– volume: 39
  start-page: 35
  year: 2010
  ident: 10.1016/j.geoderma.2014.01.027_bb0475
  article-title: Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2009.0140
– volume: 211–212
  start-page: 28
  year: 2013
  ident: 10.1016/j.geoderma.2014.01.027_bb0725
  article-title: Electromagnetic conductivity imaging (EMCI) of soil using a DUALEM-421 and inversion modeling software (EM4Soil)
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.06.001
– volume: 73
  start-page: 164
  year: 2009
  ident: 10.1016/j.geoderma.2014.01.027_bb0330
  article-title: Predicting regional-scale soil variability using single calibrated apparent soil electrical conductivity model
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2008.0074
– volume: 31
  start-page: 373
  year: 1995
  ident: 10.1016/j.geoderma.2014.01.027_bb0465
  article-title: Spatial prediction of soil salinity using electromagnetic induction techniques. 1. Statistical prediction models: a comparison of multiple linear regression and cokriging
  publication-title: Water Resour. Res.
  doi: 10.1029/94WR02179
– start-page: 133
  year: 1998
  ident: 10.1016/j.geoderma.2014.01.027_bb0425
  article-title: An evaluation of methods for determining site-specific management zones
– volume: 48
  start-page: 155
  issue: 1
  year: 2005
  ident: 10.1016/j.geoderma.2014.01.027_bb0290
  article-title: Characterization of soil electrical conductivity variability in irrigated sandy and non-saline fields in Colorado
  publication-title: Trans. Am. Soc. Agric. Eng.
  doi: 10.13031/2013.17959
– volume: 148
  start-page: 107
  year: 2008
  ident: 10.1016/j.geoderma.2014.01.027_bb0765
  article-title: Upgrading a 1/20,000 soil map with an apparent electrical conductivity survey
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.09.013
– year: 1983
  ident: 10.1016/j.geoderma.2014.01.027_bb0755
– volume: 39
  start-page: 98
  year: 2012
  ident: 10.1016/j.geoderma.2014.01.027_bb0340
  article-title: Characterisation of soil texture variability using apparent electrical conductivity at a highly variable site
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.06.017
– volume: 18
  start-page: 121
  issue: 1
  year: 2002
  ident: 10.1016/j.geoderma.2014.01.027_bb0305
  article-title: Mobilized surveying of soil conductivity using electromagnetic induction
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/2013.7701
– volume: 20
  start-page: 107
  year: 1982
  ident: 10.1016/j.geoderma.2014.01.027_bb0800
  article-title: An electromagnetic induction technique for reconnaissance surveys of soil salinity hazards
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR9820107
– volume: 5
  start-page: 143
  year: 2004
  ident: 10.1016/j.geoderma.2014.01.027_bb0095
  article-title: Effect of daily soil temperature fluctuations on soil electrical conductivity as measured with the Geonics® EM-38
  publication-title: Precis. Agric.
  doi: 10.1023/B:PRAG.0000022359.79184.92
– volume: 40
  start-page: 1260
  year: 2013
  ident: 10.1016/j.geoderma.2014.01.027_bb0200
  article-title: A multidisciplinary approach to reconstructing Late Glacial and Early Holocene landscapes
  publication-title: J. Archaeol. Sci.
  doi: 10.1016/j.jas.2012.09.004
– volume: 28
  start-page: 443
  year: 1990
  ident: 10.1016/j.geoderma.2014.01.027_bb0645
  article-title: Determining ECa-depth profiles from electromagnetic induction measurements
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR9900443
– volume: 53
  start-page: 433
  year: 1989
  ident: 10.1016/j.geoderma.2014.01.027_bb0565
  article-title: Soil Electrical conductivity and soil salinity: New formulation and calibrations
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1989.03615995005300020020x
– volume: 74
  start-page: 1763
  year: 2010
  ident: 10.1016/j.geoderma.2014.01.027_bb0835
  article-title: Repeated electromagnetic induction surveys for improving soil mapping in an agricultural landscape
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2010.0056
– volume: 56
  start-page: 540
  year: 1992
  ident: 10.1016/j.geoderma.2014.01.027_bb0460
  article-title: Mapping soil salinity using calibrated electromagnetic induction measurements
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1992.03615995005600020031x
– volume: 76
  start-page: 2128
  year: 2012
  ident: 10.1016/j.geoderma.2014.01.027_bb0060
  article-title: Manganiferous soils in Maryland: regional extent and field-scale electromagnetic induction survey
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2012.0091
– volume: 107
  start-page: 251
  year: 1989
  ident: 10.1016/j.geoderma.2014.01.027_bb0150
  article-title: The calibration of frequency-domain electromagnetic induction meters and their possible use in recharge studies
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(89)90060-7
– volume: 18
  start-page: 139
  year: 1985
  ident: 10.1016/j.geoderma.2014.01.027_bb0820
  article-title: The application of ground conductivity measurements to geological mapping
  publication-title: Q. J. Eng. Geol. Hydrogeol.
  doi: 10.1144/GSL.QJEG.1985.018.02.03
– volume: 68
  start-page: 150
  year: 2009
  ident: 10.1016/j.geoderma.2014.01.027_bb0535
  article-title: Height-above-ground effects on penetration depth and response of electromagnetic induction soil conductivity meters
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2009.05.009
– volume: 73
  start-page: 1
  issue: 6
  year: 2009
  ident: 10.1016/j.geoderma.2014.01.027_bb0145
  article-title: Extracting topsoil information from EM38DD sensor data using neural network approach
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2008.0277
– volume: 47
  start-page: 651
  year: 2009
  ident: 10.1016/j.geoderma.2014.01.027_bb0720
  article-title: Field level digital mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR08240
– volume: 143
  start-page: 206
  year: 2008
  ident: 10.1016/j.geoderma.2014.01.027_bb0770
  article-title: Key soil and topographic properties to delineate potential management classes for precision agriculture in the European loess area
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.11.003
– volume: 6
  start-page: 167
  year: 2005
  ident: 10.1016/j.geoderma.2014.01.027_bb0420
  article-title: Mapping potential crop management zones within fields: use of yield-map series and patterns of soil physical properties identified by electromagnetic induction sensing
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-005-1033-4
– volume: 53
  start-page: 74
  year: 1989
  ident: 10.1016/j.geoderma.2014.01.027_bb0560
  article-title: New calibrations for determining soil electrical conductivity depth relations from electromagnetic measurements
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1989.03615995005300010014x
– volume: 56
  start-page: 257
  issue: 3
  year: 2001
  ident: 10.1016/j.geoderma.2014.01.027_bb0250
  article-title: Comparison of two electromagnetic induction tools in salinity appraisals
  publication-title: J. Soil Water Conserv.
  doi: 10.1080/00224561.2001.12457389
– year: 1993
  ident: 10.1016/j.geoderma.2014.01.027_bb0385
  article-title: Soil type and crop yields determination from ground conductivity surveys
– volume: 24
  start-page: 36
  year: 1994
  ident: 10.1016/j.geoderma.2014.01.027_bb0390
  article-title: Estimating herbicide partition coefficients from electromagnetic induction measurements
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1995.00472425002400010005x
– start-page: 39
  year: 1993
  ident: 10.1016/j.geoderma.2014.01.027_bb0665
– volume: 46
  start-page: 1271
  year: 2006
  ident: 10.1016/j.geoderma.2014.01.027_bb0810
  article-title: Spatial variability of regolith leaching and salinity in relation to whole farm planning
  publication-title: Aust. J. Exp. Agric.
  doi: 10.1071/EA04110
– volume: 94
  start-page: 1355
  year: 2002
  ident: 10.1016/j.geoderma.2014.01.027_bb0045
  article-title: Soil-sampling alternatives and variable-rate liming for a soybean–corn rotation
  publication-title: Agron. J.
  doi: 10.2134/agronj2002.1355
– start-page: 239
  year: 1999
  ident: 10.1016/j.geoderma.2014.01.027_bb0300
  article-title: Soil map unit composition and scale of mapping related to interpretations for precision soil and crop management in Iowa
– volume: 69
  start-page: 25
  year: 1989
  ident: 10.1016/j.geoderma.2014.01.027_bb0500
  article-title: Conversion of electromagnetic inductance readings to saturated paste extract values in soils for different temperature, texture, and moisture conditions
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss89-003
– year: 1954
  ident: 10.1016/j.geoderma.2014.01.027_bb0745
  article-title: Diagnosis and improvement of saline and alkali soils
– volume: 111
  start-page: 195
  year: 1989
  ident: 10.1016/j.geoderma.2014.01.027_bb0165
  article-title: Spatial variability of groundwater recharge in a semiarid region
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(89)90260-6
– volume: 86
  start-page: 421
  issue: 4
  year: 2003
  ident: 10.1016/j.geoderma.2014.01.027_bb0365
  article-title: Determination of soil type boundaries using electromagnetic induction scanning techniques
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2003.09.001
– volume: 25
  start-page: 21
  year: 1987
  ident: 10.1016/j.geoderma.2014.01.027_bb0805
  article-title: The use of electromagnetic induction to detect the spatial variability of the salt and clay contents of soils
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR9870021
– volume: 31
  start-page: 387
  year: 1995
  ident: 10.1016/j.geoderma.2014.01.027_bb0470
  article-title: Spatial prediction of soil salinity using electromagnetic induction techniques. 2. An efficient spatial sampling algorithm suitable for multiple linear regression model identification and estimation
  publication-title: Water Resour. Res.
  doi: 10.1029/94WR02180
SSID ssj0017020
Score 2.5734062
SecondaryResourceType review_article
Snippet Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 33
SubjectTerms Agronomy. Soil science and plant productions
Apparent conductivity
Bedrock
Biological and medical sciences
Earth sciences
Earth, ocean, space
electrical conductivity
Electromagnetic induction
electromagnetic induction techniques
Electromagnetic interference
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
georeferencing
landscapes
Moisture content
Sampling
soil heterogeneity
soil horizons
Soil mapping
soil organic matter
soil salinity
Soil spatial characterization
soil surveys
soil texture
soil types
soil water
soil water content
Soils
Surface layer
Surficial geology
Texture
Title The use of electromagnetic induction techniques in soils studies
URI https://dx.doi.org/10.1016/j.geoderma.2014.01.027
https://www.proquest.com/docview/1520363348
https://www.proquest.com/docview/1642311157
https://www.proquest.com/docview/1836673202
Volume 223-225
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swELYQe9mE0DaGKIzKSLxmjWsnjt9WoaFuEzyB1DfLduyqFaRV077y27lLnGoIjT7wmMhWkrvL3Xfy3XeEXAbuBHcSi8JKm4giuMSmwSdW-oZdxNlm3NvNbT6-F38m2WSPXHW9MFhWGX1_69Mbbx3vDKI0B8vZDHt8WS4hHEGKgMADG36FkGjlP562ZR5MppGakeUJrv6nS3gOOsKBYw3_EBMtfaf8X4A6WJoaxBbaeRevXHcTj64_k8MIJOmofdcvZM9XX8mn0XQVyTT8EfkJNkA3taeLQOO4m0czrbBtkUIq3vLG0i2Law03ab2YPdS0bqsLv5H76193V-MkTkxIDJdqDT7VKq54blgomc0NzwpXiDIXpXRp6aQE-MatkLZUzHmmyrTMuHQh5NL4AuLZMdmvFpU_ITSo1A_l0HnHvVAGEmWRYQVNLoySENd7JOvEpF2kE8epFg-6qxub6068GsWrU6ZBvD0y2O5btoQaO3eoTgv6hWlo8Po79_ZfqG37SEBVCpBY0SMXnR41_Fh4WmIqv9jUGoANHnJz8dYayN44Q76iN9YUHEerDtPh6Ts-5Ix8xKu2UPg72V-vNv4c4NDa9ht775MPo99_x7fPBWAKag
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROFBUIcpDbHnUSFzDxmsnjm8gVLS0wAkkbpbt2GhXkF2R3Wt_e8eJswIh4NCrYyvJjD0Peeb7AI49s5xZEYrCSpPwwtvEpN4lRrgGXcSahu7t-iYf3vHf99n9Epx3vTChrDLa_tamN9Y6jvSjNPvT0Sj0-NJcoDvCFCEEHsUXWOF4fAONwcnfRZ0HFWnEZqR5Eqa_aBMeo5IC41gDQER5i98p3vNQ36a6Rrn5lvDije1uHNLFBqzHSJKctR_7HZZctQlrZw_PEU3DbcEpbgIyrx2ZeBL5bp70QxX6Fgnm4i1wLFnAuNY4SOrJ6LEmdVteuA13F79uz4dJpExINBNyhkbVSCZZrqkvqck1ywpb8DLnpbBpaYXA-I0ZLkwpqXVUlmmZMWG9z4V2BTq0HViuJpXbBeJl6gZiYJ1ljkuNmTLPQglNzrUU6Nh7kHViUjbiiQdai0fVFY6NVSdeFcSrUqpQvD3oL9ZNW0SNT1fITgvq1d5QaPY_XXv4Sm2LV2JYJTEUK3pw1OlR4ckK1yW6cpN5rTCyCbfcjH80B9M3RgNg0QdzCha4VQfp4Md__MhPWB3eXl-pq8ubP3vwNTxpq4b3YXn2PHcHGBvNzGGz9_8B_0wL-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+use+of+electromagnetic+induction+techniques+in+soils+studies&rft.jtitle=Geoderma&rft.au=Doolittle%2C+James+A&rft.au=Brevik%2C+Eric+C.&rft.date=2014-07-01&rft.issn=0016-7061&rft.volume=223-225+p.33-45&rft.spage=33&rft.epage=45&rft_id=info:doi/10.1016%2Fj.geoderma.2014.01.027&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon