Mechanism of the Direct Reduction of Chromite Process as a Clean Ferrochrome Technology

Direct reduction of chromite (DRC) is a promising alternative process for ferrochrome production with the potential to significantly reduce energy consumption and greenhouse gas emissions compared to conventional smelting. In DRC, chromium (Cr) and iron (Fe) from chromite ore incongruently dissolve...

Full description

Saved in:
Bibliographic Details
Published inACS Engineering Au Vol. 4; no. 1; pp. 125 - 138
Main Authors Paktunc, Dogan, Coumans, Jason P., Carter, David, Zagrtdenov, Nail, Duguay, Dominique
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.02.2024
Subjects
Online AccessGet full text
ISSN2694-2488
2694-2488
DOI10.1021/acsengineeringau.3c00057

Cover

Loading…
Abstract Direct reduction of chromite (DRC) is a promising alternative process for ferrochrome production with the potential to significantly reduce energy consumption and greenhouse gas emissions compared to conventional smelting. In DRC, chromium (Cr) and iron (Fe) from chromite ore incongruently dissolve into a molten salt, which facilitates mass transfer to a carbon (C) reductant where in situ metallization occurs. Consequently, ferrochrome is produced below the slag melting temperatures, achieving substantial energy savings relative to smelting. However, there are significant knowledge gaps in the kinetics, Cr solubility, speciation, and coordination environment which are critical to understanding the fundamental mechanisms of molten salt-assisted carbothermic reactions. To address these knowledge gaps, we performed pyrometallurgical experiments with variable temperature and residence times and analyzed the composition of chromite, ferrochrome, and slag products along with determining the speciation of Cr. Our results indicate that the DRC mechanism can be explained by the following sequential steps: (1) incongruent dissolution of chromite, (2) reduction of dissolved Cr in molten salt/slag, (3) transport of Cr and Fe species in molten media, and (4) reduction on C particles and metallization as Cr–Fe alloys. The discovery of four types of reduced Cr species in the slag indicates that the reduction of Cr3+ to Cr2+ and Cr0 occurred in the molten phase before metallization on solid carbon particles. Thermodynamically, the reduction of CrO­(l) to Cr metal is more feasible at a lower temperature than it is for Cr2O3(l) corroborating the accelerated reduction efficiency of the DRC process.
AbstractList Direct reduction of chromite (DRC) is a promising alternative process for ferrochrome production with the potential to significantly reduce energy consumption and greenhouse gas emissions compared to conventional smelting. In DRC, chromium (Cr) and iron (Fe) from chromite ore incongruently dissolve into a molten salt, which facilitates mass transfer to a carbon (C) reductant where in situ metallization occurs. Consequently, ferrochrome is produced below the slag melting temperatures, achieving substantial energy savings relative to smelting. However, there are significant knowledge gaps in the kinetics, Cr solubility, speciation, and coordination environment which are critical to understanding the fundamental mechanisms of molten salt-assisted carbothermic reactions. To address these knowledge gaps, we performed pyrometallurgical experiments with variable temperature and residence times and analyzed the composition of chromite, ferrochrome, and slag products along with determining the speciation of Cr. Our results indicate that the DRC mechanism can be explained by the following sequential steps: (1) incongruent dissolution of chromite, (2) reduction of dissolved Cr in molten salt/slag, (3) transport of Cr and Fe species in molten media, and (4) reduction on C particles and metallization as Cr-Fe alloys. The discovery of four types of reduced Cr species in the slag indicates that the reduction of Cr to Cr and Cr occurred in the molten phase before metallization on solid carbon particles. Thermodynamically, the reduction of CrO( ) to Cr metal is more feasible at a lower temperature than it is for Cr O ( ) corroborating the accelerated reduction efficiency of the DRC process.
Direct reduction of chromite (DRC) is a promising alternative process for ferrochrome production with the potential to significantly reduce energy consumption and greenhouse gas emissions compared to conventional smelting. In DRC, chromium (Cr) and iron (Fe) from chromite ore incongruently dissolve into a molten salt, which facilitates mass transfer to a carbon (C) reductant where in situ metallization occurs. Consequently, ferrochrome is produced below the slag melting temperatures, achieving substantial energy savings relative to smelting. However, there are significant knowledge gaps in the kinetics, Cr solubility, speciation, and coordination environment which are critical to understanding the fundamental mechanisms of molten salt-assisted carbothermic reactions. To address these knowledge gaps, we performed pyrometallurgical experiments with variable temperature and residence times and analyzed the composition of chromite, ferrochrome, and slag products along with determining the speciation of Cr. Our results indicate that the DRC mechanism can be explained by the following sequential steps: (1) incongruent dissolution of chromite, (2) reduction of dissolved Cr in molten salt/slag, (3) transport of Cr and Fe species in molten media, and (4) reduction on C particles and metallization as Cr–Fe alloys. The discovery of four types of reduced Cr species in the slag indicates that the reduction of Cr3+ to Cr2+ and Cr0 occurred in the molten phase before metallization on solid carbon particles. Thermodynamically, the reduction of CrO­(l) to Cr metal is more feasible at a lower temperature than it is for Cr2O3(l) corroborating the accelerated reduction efficiency of the DRC process.
Direct reduction of chromite (DRC) is a promising alternative process for ferrochrome production with the potential to significantly reduce energy consumption and greenhouse gas emissions compared to conventional smelting. In DRC, chromium (Cr) and iron (Fe) from chromite ore incongruently dissolve into a molten salt, which facilitates mass transfer to a carbon (C) reductant where in situ metallization occurs. Consequently, ferrochrome is produced below the slag melting temperatures, achieving substantial energy savings relative to smelting. However, there are significant knowledge gaps in the kinetics, Cr solubility, speciation, and coordination environment which are critical to understanding the fundamental mechanisms of molten salt-assisted carbothermic reactions. To address these knowledge gaps, we performed pyrometallurgical experiments with variable temperature and residence times and analyzed the composition of chromite, ferrochrome, and slag products along with determining the speciation of Cr. Our results indicate that the DRC mechanism can be explained by the following sequential steps: (1) incongruent dissolution of chromite, (2) reduction of dissolved Cr in molten salt/slag, (3) transport of Cr and Fe species in molten media, and (4) reduction on C particles and metallization as Cr-Fe alloys. The discovery of four types of reduced Cr species in the slag indicates that the reduction of Cr3+ to Cr2+ and Cr0 occurred in the molten phase before metallization on solid carbon particles. Thermodynamically, the reduction of CrO(l) to Cr metal is more feasible at a lower temperature than it is for Cr2O3(l) corroborating the accelerated reduction efficiency of the DRC process.Direct reduction of chromite (DRC) is a promising alternative process for ferrochrome production with the potential to significantly reduce energy consumption and greenhouse gas emissions compared to conventional smelting. In DRC, chromium (Cr) and iron (Fe) from chromite ore incongruently dissolve into a molten salt, which facilitates mass transfer to a carbon (C) reductant where in situ metallization occurs. Consequently, ferrochrome is produced below the slag melting temperatures, achieving substantial energy savings relative to smelting. However, there are significant knowledge gaps in the kinetics, Cr solubility, speciation, and coordination environment which are critical to understanding the fundamental mechanisms of molten salt-assisted carbothermic reactions. To address these knowledge gaps, we performed pyrometallurgical experiments with variable temperature and residence times and analyzed the composition of chromite, ferrochrome, and slag products along with determining the speciation of Cr. Our results indicate that the DRC mechanism can be explained by the following sequential steps: (1) incongruent dissolution of chromite, (2) reduction of dissolved Cr in molten salt/slag, (3) transport of Cr and Fe species in molten media, and (4) reduction on C particles and metallization as Cr-Fe alloys. The discovery of four types of reduced Cr species in the slag indicates that the reduction of Cr3+ to Cr2+ and Cr0 occurred in the molten phase before metallization on solid carbon particles. Thermodynamically, the reduction of CrO(l) to Cr metal is more feasible at a lower temperature than it is for Cr2O3(l) corroborating the accelerated reduction efficiency of the DRC process.
Author Zagrtdenov, Nail
Carter, David
Paktunc, Dogan
Coumans, Jason P.
Duguay, Dominique
AuthorAffiliation CanmetMINING
AuthorAffiliation_xml – name: CanmetMINING
Author_xml – sequence: 1
  givenname: Dogan
  orcidid: 0000-0003-4965-3531
  surname: Paktunc
  fullname: Paktunc, Dogan
  email: dogan.paktunc@nrcan-rncan.gc.ca
– sequence: 2
  givenname: Jason P.
  surname: Coumans
  fullname: Coumans, Jason P.
– sequence: 3
  givenname: David
  surname: Carter
  fullname: Carter, David
– sequence: 4
  givenname: Nail
  surname: Zagrtdenov
  fullname: Zagrtdenov, Nail
– sequence: 5
  givenname: Dominique
  surname: Duguay
  fullname: Duguay, Dominique
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38405365$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2228386$$D View this record in Osti.gov
BookMark eNqFkVtrFTEUhYNU7MX-BQk--XJqbnN7lGOrhYoiFR_DTrLnnBxmkprMPPTfm3FOi_gibEjYfGvtZO1zchJiQEIoZ1ecCf4ebMaw8wEx-bCD-UpaxljVvCBnou7URqi2Pfnrfkoucz4URFRcipq9IqeyVaySdXVGfn5Bu4fg80hjT6c90o8-oZ3od3SznXwMS3-7T3H0E9JvKVrMmUIpuh0QAr3BVJoLgPS-mIU4xN3ja_KyhyHj5fG8ID9uru-3nzd3Xz_dbj_cbUA27bTpHQhZc6W47UH0phHSSeaYa0QtajCMQ2v7WjEnu8aYUhKcs33FmQSGtbwgt6uvi3DQD8mPkB51BK__NGLaaUiTtwNqBXVjesca64xqjQWDrOuMRcMq03RQvN6uXjFPXmdbPmz3NoZQ8tBCiFa2y8B3K_SQ4q8Z86RHny0OAwSMc9aik4IJpdSCvjmisxnRPb_uKf0CtCtgU8w5Yf-McKaXXet_d62Puy5StUoLoQ9xTqGk_H_Zb7JZs48
Cites_doi 10.1127/0077-7757/2004/0179-0265
10.1080/08827508.2020.1854251
10.1016/j.chemphys.2003.12.017
10.1007/BF01204319
10.1016/0016-7037(93)90444-2
10.1039/C6CY00902F
10.1088/1742-6596/430/1/012007
10.3390/min8020045
10.1016/S0713-2743(06)80094-2
10.1063/1.2644637
10.17159/2411-9717/2018/v118n6a4
10.2138/am-2004-5-613
10.17159/2411-9717/2018/v118n12a9
10.2355/tetsutohagane1955.74.6_999
10.1107/S0909049504003681
10.3390/met8010069
10.1016/j.gca.2013.08.003
10.1016/0304-8853(94)00687-3
10.1016/j.jclepro.2017.07.176
10.1021/je60041a027
10.1063/1.4812323
10.1016/S0364-5916(02)00035-4
10.1093/petrology/32.5.909
10.1107/S0909049505012719
10.7185/geochemlet.1926
10.2138/am-1998-7-801
10.1107/S0108270192005481
10.2355/isijinternational.45.798
ContentType Journal Article
Copyright Crown © 2023. Published by American Chemical Society
Crown © 2023. Published by American Chemical Society.
Copyright_xml – notice: Crown © 2023. Published by American Chemical Society
– notice: Crown © 2023. Published by American Chemical Society.
DBID AAYXX
CITATION
NPM
7X8
OTOTI
DOA
DOI 10.1021/acsengineeringau.3c00057
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2694-2488
EndPage 138
ExternalDocumentID oai_doaj_org_article_4a67bfd07cdb48bcabe099bceb05b79a
2228386
38405365
10_1021_acsengineeringau_3c00057
b566444410
Genre Journal Article
GroupedDBID ACS
AELXD
ALMA_UNASSIGNED_HOLDINGS
EBS
GROUPED_DOAJ
M~E
N~.
OK1
AAYXX
ABBLG
ADUCK
CITATION
NPM
7X8
OTOTI
ID FETCH-LOGICAL-a378t-fda2361441cfa2fb723d30d0d72626ab01a8cf640d397bb7bb3addcf5103a0e63
IEDL.DBID DOA
ISSN 2694-2488
IngestDate Wed Aug 27 01:21:09 EDT 2025
Mon Feb 26 05:26:18 EST 2024
Fri Jul 11 03:27:57 EDT 2025
Wed Feb 19 02:04:04 EST 2025
Tue Jul 01 00:23:11 EDT 2025
Thu Feb 22 06:31:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ferrochrome
chromium
XANES
carbothermic
Cr−Fe carbide
slag
chromite
EXAFS
Language English
License https://creativecommons.org/licenses/by/4.0
Crown © 2023. Published by American Chemical Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a378t-fda2361441cfa2fb723d30d0d72626ab01a8cf640d397bb7bb3addcf5103a0e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
W31109Eng38; DEFG03 97ER45628
ORCID 0000-0003-4965-3531
0000000349653531
OpenAccessLink https://doaj.org/article/4a67bfd07cdb48bcabe099bceb05b79a
PMID 38405365
PQID 2932024446
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_4a67bfd07cdb48bcabe099bceb05b79a
osti_scitechconnect_2228386
proquest_miscellaneous_2932024446
pubmed_primary_38405365
crossref_primary_10_1021_acsengineeringau_3c00057
acs_journals_10_1021_acsengineeringau_3c00057
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Feb-21
PublicationDateYYYYMMDD 2024-02-21
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-Feb-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS Engineering Au
PublicationTitleAlternate ACS Eng. Au
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
Lovering D. G. (ref4/cit4) 2014
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
Riekkola-Vanhanen M (ref2/cit2) 1999
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref19/cit19
ref21/cit21
ref12/cit12
Nell J. (ref26/cit26) 2004
ref15/cit15
ref22/cit22
ref13/cit13
ref30/cit30
International Chromium Development Association (ref1/cit1) 2016
ref24/cit24
Durham P. J. (ref33/cit33) 1988
ref38/cit38
Tromp M. (ref35/cit35) 2007; 882
ref7/cit7
References_xml – ident: ref19/cit19
  doi: 10.1127/0077-7757/2004/0179-0265
– start-page: 423
  year: 2004
  ident: ref26/cit26
  publication-title: Journal of the Southern African Institute of Mining and Metallurgy
– ident: ref25/cit25
  doi: 10.1080/08827508.2020.1854251
– ident: ref34/cit34
  doi: 10.1016/j.chemphys.2003.12.017
– ident: ref31/cit31
  doi: 10.1007/BF01204319
– ident: ref36/cit36
– ident: ref28/cit28
  doi: 10.1016/0016-7037(93)90444-2
– ident: ref32/cit32
  doi: 10.1039/C6CY00902F
– ident: ref10/cit10
– ident: ref12/cit12
  doi: 10.1088/1742-6596/430/1/012007
– ident: ref9/cit9
  doi: 10.3390/min8020045
– ident: ref16/cit16
  doi: 10.1016/S0713-2743(06)80094-2
– ident: ref22/cit22
– start-page: 53
  volume-title: X-ray Absorption, Principles, Applications, Techniques of EXAFS, SEXAFS and XANES
  year: 1988
  ident: ref33/cit33
– volume: 882
  start-page: 699
  year: 2007
  ident: ref35/cit35
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.2644637
– ident: ref6/cit6
  doi: 10.17159/2411-9717/2018/v118n6a4
– ident: ref29/cit29
  doi: 10.2138/am-2004-5-613
– volume-title: Finnish expert report on best available techniques in ferrochrome production
  year: 1999
  ident: ref2/cit2
– ident: ref5/cit5
  doi: 10.17159/2411-9717/2018/v118n12a9
– ident: ref23/cit23
  doi: 10.2355/tetsutohagane1955.74.6_999
– ident: ref13/cit13
  doi: 10.1107/S0909049504003681
– ident: ref8/cit8
  doi: 10.3390/met8010069
– ident: ref30/cit30
  doi: 10.1016/j.gca.2013.08.003
– ident: ref38/cit38
  doi: 10.1016/0304-8853(94)00687-3
– ident: ref3/cit3
  doi: 10.1016/j.jclepro.2017.07.176
– ident: ref17/cit17
  doi: 10.1021/je60041a027
– ident: ref37/cit37
  doi: 10.1063/1.4812323
– ident: ref14/cit14
  doi: 10.1016/S0364-5916(02)00035-4
– ident: ref20/cit20
  doi: 10.1093/petrology/32.5.909
– start-page: 1
  volume-title: Molten Salt Technology
  year: 2014
  ident: ref4/cit4
– ident: ref15/cit15
– volume-title: Life Cycle Inventory (LCI) of primary ferrochrome production 2012
  year: 2016
  ident: ref1/cit1
– ident: ref11/cit11
  doi: 10.1107/S0909049505012719
– ident: ref27/cit27
  doi: 10.7185/geochemlet.1926
– ident: ref7/cit7
– ident: ref21/cit21
  doi: 10.2138/am-1998-7-801
– ident: ref18/cit18
  doi: 10.1107/S0108270192005481
– ident: ref24/cit24
  doi: 10.2355/isijinternational.45.798
SSID ssj0002513260
Score 2.255125
Snippet Direct reduction of chromite (DRC) is a promising alternative process for ferrochrome production with the potential to significantly reduce energy consumption...
SourceID doaj
osti
proquest
pubmed
crossref
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 125
SummonAdditionalLinks – databaseName: American Chemical Society (ACS) Open Access
  dbid: N~.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vehBfLu-iOC1miZt0z2quCyCHkTRW8gTBO3Kdvfqb3emW9cHKAqBQmhDMzPJfJlkvgAcxSidz0VILFcxyQLOgzb6IsmlV7xnLDGs0GmL62Jwl10-5A9zIH7YwRfpiXF1-KDmM5Nj6QhoqHlYEEWpyJKvX49ncRX014hIKLRCOZqJQANtD_D81hj5Jld_8U0NhT8-hjjUfoafjRvqr8Byix_Z6VThqzAXqjVY-sQquA73V4HSeR_rZzaMDAEem85r7IZoWkkRVE-suJTbxNpUAWawsPOnYCrWDyO6SYuYDNhH7H0D7voXt-eDpL0_ITFSleMkekPUKgh4XDQiWiWkl9xzrwQuY4zlqSldLDLuEZRYi0XibOcikewZHgq5CZ1qWIVtYDLzuY8W6x369MgNV156i1izJ5xXRRcSlJ9u7b_Wzda2SPV3eetW3l1I3yWtX6a0Gn_45oxUMnufiLGbCrQW3Y4znZlCobFx5bzNSuuMDYiBrQuW51b1TBd2SaEa8QWR5Do6TeTGmuJgssRuHL7rWeMwo70TU4XhpNaIigTCGVw8d2FragCzH5G4SM5lke_8Uwi7sEhtNgny6R50xqNJ2EeIM7YHjU2_AVDr-rE
  priority: 102
  providerName: American Chemical Society
Title Mechanism of the Direct Reduction of Chromite Process as a Clean Ferrochrome Technology
URI http://dx.doi.org/10.1021/acsengineeringau.3c00057
https://www.ncbi.nlm.nih.gov/pubmed/38405365
https://www.proquest.com/docview/2932024446
https://www.osti.gov/biblio/2228386
https://doaj.org/article/4a67bfd07cdb48bcabe099bceb05b79a
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA_iSQ_it3M6InjtljVtsx11bAxhO6jD3UI-QdBO1u66v9332u5DQfQghBRCQ9OXl_d--Xi_EHLrPTc2Dl2gmfBB5MAOam-TIOZWsK7SyLCCpy3GyXASPUzj6dZVX3gmrKQHLgXXilQioDYTxuqoo43SDkCNNk6zWItuAY3A521NptAGg9cGXMKqozvgx1rKZG7D8KcWTW4QrxReyWRfvFJB3g-PGQyyn4Fn4YAGh-SgQo70rmzxEdlx6THZ3-ITPCEvI4eBvK_ZO515CtCOlhaNPiJBK3YBliMfLkY10SpIgCpItPfmVEoHbo53aCGHAd2sup-SyaD_3BsG1c0JgeKikwfeKiRVAahjvAq9FiG3nFlmRQgTGKVZW3WMTyJmAY5oDYmDnTMe6fUUcwk_I7vpLHUXhPLIxtZrKDfgzT1TTFhuNaDMbmisSGokAPnJSvMzWWxqh235Xd6ykneNtFeSlh8locYf6txjl6zfR0rsogAURVaKIn9TlBqpY4dKQBZIj2vwHJHJJa6A8Q78xs2qnyUMMNw1UambLTIJeCgEIAPT5ho5LxVg3RAO0-OYJ_HlfzSwTvbwQ0W8fPuK7ObzhbsGxJPrBiD-3lOjUHHIR8s-5ONl8xNdjwZ2
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HNSD-HZ9RvBaTZu22T2quKyvPYiit5AnCNqV7e7V3-5Mt-6qoCgECqEN6cwk82WS-QJwGIKwLkt8ZLgMUepxHjTB5VEmnOQtbYhhhU5bdPPOfXr5mD1-uuoLO1FiS2W1iT9hF4iPsc5PGPr08EhYwhtyGmYRk6Rk0N23o3F4Bd02AhOKsFCqZpSgndbneH5rjFyULb-4qIrJHx89HHE_o9DKG7WXYLGGkexkpPdlmPLFCix8IhdchYcbT1m9T-UL6wWGOI-Npjd2S2ytpA-qJ3JcSnFidcYA01jY2bPXBWv7Pl2oRYQGbBKCX4P79vndWSeqr1GItJDNQRScJoYVxD026CQYmQgnuONOJria0YbHumlDnnKH2MQYLAInPRuIa09zn4t1mCl6hd8EJlKXuWCw3qJrD1xz6YQzCDlbiXUyb0CE8lP1MChVtcOdxOq7vFUt7wbEH5JWryN2jT98c0oqGb9P_NhVBVqMqoebSnUu0ea4tM6kTWO18QiFjfWGZ0a2dAO2SaEKYQZx5Vo6VGQHisJhoom_cfChZ4WjjbZQdOF7w1IhOEoQ1eAaugEbIwMYd0TgWjkTebb1TyHsw1zn7uZaXV90r7ZhntqvcubjHZgZ9Id-F1HPwOxV9v0OIKQAZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRA98KYs5WEkrlmcOIl3j2VhVV4VAip6szx-SAjIVk32wq9nxnG3UAkESJYijRIrtmc8n-2ZzwBPYlTON1UoUOpY1IHmQYy-LRrltZxbZIYVjrY4aPcP61dHzVGOzeFcGPqJnmrq0yE-W_Wxj5lhoHxK8nDG0mfXU-UYc-iLcIlP7ziib2_xYbPFQq6bwAnvsnC6ZlGRruZYnj9Vxm7K9b-4qcTmT48VWd3vkWjySMtr47WrqS0pEOXLdD3g1H0_R_P43429DlczVhV7o3LdgAuhuwnbPzEY3oJPbwOnDn_uv4lVFAQmxTiHivdMCcuDznJm4OU8KpHTEoSlIhZfg-3EMpzwrV3MmiDO9vlvw-HyxcfFfpHvaiis0rOhiN4yjQuBKxdtFVFXyivppdcVLZksytLOXGxr6QkAIVJRNLO6yIR-VoZW3YGtbtWFuyBU7RsfkeSO8EOUVmqvPBKunVfO63YCBfWNybbWm3SMXpXmfIeZ3GETKE-H0hyPFB5_8c0zHvPN-0zCnQQ0UibbtKltq0mxpXYe6xk6i4HwNrqAskE9txPYZY0xhGWYkNdx5JIbDO-5qRk14_GpIhkyaT6nsV1YrXtDCKwi6EQL9QnsjBq2-RFFC_JGtc29f-yER3D53fOlefPy4PUuXOHqU15-eR-2hpN1eEDIasCHyX5-ABd4Ihs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+the+Direct+Reduction+of+Chromite+Process+as+a+Clean+Ferrochrome+Technology&rft.jtitle=ACS+Engineering+Au&rft.au=Dogan+Paktunc&rft.au=Jason+P.+Coumans&rft.au=David+Carter&rft.au=Nail+Zagrtdenov&rft.date=2024-02-21&rft.pub=American+Chemical+Society&rft.eissn=2694-2488&rft.volume=4&rft.issue=1&rft.spage=125&rft.epage=138&rft_id=info:doi/10.1021%2Facsengineeringau.3c00057&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4a67bfd07cdb48bcabe099bceb05b79a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-2488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-2488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-2488&client=summon