Mechanism of the Direct Reduction of Chromite Process as a Clean Ferrochrome Technology
Direct reduction of chromite (DRC) is a promising alternative process for ferrochrome production with the potential to significantly reduce energy consumption and greenhouse gas emissions compared to conventional smelting. In DRC, chromium (Cr) and iron (Fe) from chromite ore incongruently dissolve...
Saved in:
Published in | ACS Engineering Au Vol. 4; no. 1; pp. 125 - 138 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
21.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2694-2488 2694-2488 |
DOI | 10.1021/acsengineeringau.3c00057 |
Cover
Loading…
Abstract | Direct reduction of chromite (DRC) is a promising alternative process for ferrochrome production with the potential to significantly reduce energy consumption and greenhouse gas emissions compared to conventional smelting. In DRC, chromium (Cr) and iron (Fe) from chromite ore incongruently dissolve into a molten salt, which facilitates mass transfer to a carbon (C) reductant where in situ metallization occurs. Consequently, ferrochrome is produced below the slag melting temperatures, achieving substantial energy savings relative to smelting. However, there are significant knowledge gaps in the kinetics, Cr solubility, speciation, and coordination environment which are critical to understanding the fundamental mechanisms of molten salt-assisted carbothermic reactions. To address these knowledge gaps, we performed pyrometallurgical experiments with variable temperature and residence times and analyzed the composition of chromite, ferrochrome, and slag products along with determining the speciation of Cr. Our results indicate that the DRC mechanism can be explained by the following sequential steps: (1) incongruent dissolution of chromite, (2) reduction of dissolved Cr in molten salt/slag, (3) transport of Cr and Fe species in molten media, and (4) reduction on C particles and metallization as Cr–Fe alloys. The discovery of four types of reduced Cr species in the slag indicates that the reduction of Cr3+ to Cr2+ and Cr0 occurred in the molten phase before metallization on solid carbon particles. Thermodynamically, the reduction of CrO(l) to Cr metal is more feasible at a lower temperature than it is for Cr2O3(l) corroborating the accelerated reduction efficiency of the DRC process. |
---|---|
AbstractList | Direct reduction of chromite (DRC) is a promising alternative process for ferrochrome production with the potential to significantly reduce energy consumption and greenhouse gas emissions compared to conventional smelting. In DRC, chromium (Cr) and iron (Fe) from chromite ore incongruently dissolve into a molten salt, which facilitates mass transfer to a carbon (C) reductant where in situ metallization occurs. Consequently, ferrochrome is produced below the slag melting temperatures, achieving substantial energy savings relative to smelting. However, there are significant knowledge gaps in the kinetics, Cr solubility, speciation, and coordination environment which are critical to understanding the fundamental mechanisms of molten salt-assisted carbothermic reactions. To address these knowledge gaps, we performed pyrometallurgical experiments with variable temperature and residence times and analyzed the composition of chromite, ferrochrome, and slag products along with determining the speciation of Cr. Our results indicate that the DRC mechanism can be explained by the following sequential steps: (1) incongruent dissolution of chromite, (2) reduction of dissolved Cr in molten salt/slag, (3) transport of Cr and Fe species in molten media, and (4) reduction on C particles and metallization as Cr-Fe alloys. The discovery of four types of reduced Cr species in the slag indicates that the reduction of Cr
to Cr
and Cr
occurred in the molten phase before metallization on solid carbon particles. Thermodynamically, the reduction of CrO(
) to Cr metal is more feasible at a lower temperature than it is for Cr
O
(
) corroborating the accelerated reduction efficiency of the DRC process. Direct reduction of chromite (DRC) is a promising alternative process for ferrochrome production with the potential to significantly reduce energy consumption and greenhouse gas emissions compared to conventional smelting. In DRC, chromium (Cr) and iron (Fe) from chromite ore incongruently dissolve into a molten salt, which facilitates mass transfer to a carbon (C) reductant where in situ metallization occurs. Consequently, ferrochrome is produced below the slag melting temperatures, achieving substantial energy savings relative to smelting. However, there are significant knowledge gaps in the kinetics, Cr solubility, speciation, and coordination environment which are critical to understanding the fundamental mechanisms of molten salt-assisted carbothermic reactions. To address these knowledge gaps, we performed pyrometallurgical experiments with variable temperature and residence times and analyzed the composition of chromite, ferrochrome, and slag products along with determining the speciation of Cr. Our results indicate that the DRC mechanism can be explained by the following sequential steps: (1) incongruent dissolution of chromite, (2) reduction of dissolved Cr in molten salt/slag, (3) transport of Cr and Fe species in molten media, and (4) reduction on C particles and metallization as Cr–Fe alloys. The discovery of four types of reduced Cr species in the slag indicates that the reduction of Cr3+ to Cr2+ and Cr0 occurred in the molten phase before metallization on solid carbon particles. Thermodynamically, the reduction of CrO(l) to Cr metal is more feasible at a lower temperature than it is for Cr2O3(l) corroborating the accelerated reduction efficiency of the DRC process. Direct reduction of chromite (DRC) is a promising alternative process for ferrochrome production with the potential to significantly reduce energy consumption and greenhouse gas emissions compared to conventional smelting. In DRC, chromium (Cr) and iron (Fe) from chromite ore incongruently dissolve into a molten salt, which facilitates mass transfer to a carbon (C) reductant where in situ metallization occurs. Consequently, ferrochrome is produced below the slag melting temperatures, achieving substantial energy savings relative to smelting. However, there are significant knowledge gaps in the kinetics, Cr solubility, speciation, and coordination environment which are critical to understanding the fundamental mechanisms of molten salt-assisted carbothermic reactions. To address these knowledge gaps, we performed pyrometallurgical experiments with variable temperature and residence times and analyzed the composition of chromite, ferrochrome, and slag products along with determining the speciation of Cr. Our results indicate that the DRC mechanism can be explained by the following sequential steps: (1) incongruent dissolution of chromite, (2) reduction of dissolved Cr in molten salt/slag, (3) transport of Cr and Fe species in molten media, and (4) reduction on C particles and metallization as Cr-Fe alloys. The discovery of four types of reduced Cr species in the slag indicates that the reduction of Cr3+ to Cr2+ and Cr0 occurred in the molten phase before metallization on solid carbon particles. Thermodynamically, the reduction of CrO(l) to Cr metal is more feasible at a lower temperature than it is for Cr2O3(l) corroborating the accelerated reduction efficiency of the DRC process.Direct reduction of chromite (DRC) is a promising alternative process for ferrochrome production with the potential to significantly reduce energy consumption and greenhouse gas emissions compared to conventional smelting. In DRC, chromium (Cr) and iron (Fe) from chromite ore incongruently dissolve into a molten salt, which facilitates mass transfer to a carbon (C) reductant where in situ metallization occurs. Consequently, ferrochrome is produced below the slag melting temperatures, achieving substantial energy savings relative to smelting. However, there are significant knowledge gaps in the kinetics, Cr solubility, speciation, and coordination environment which are critical to understanding the fundamental mechanisms of molten salt-assisted carbothermic reactions. To address these knowledge gaps, we performed pyrometallurgical experiments with variable temperature and residence times and analyzed the composition of chromite, ferrochrome, and slag products along with determining the speciation of Cr. Our results indicate that the DRC mechanism can be explained by the following sequential steps: (1) incongruent dissolution of chromite, (2) reduction of dissolved Cr in molten salt/slag, (3) transport of Cr and Fe species in molten media, and (4) reduction on C particles and metallization as Cr-Fe alloys. The discovery of four types of reduced Cr species in the slag indicates that the reduction of Cr3+ to Cr2+ and Cr0 occurred in the molten phase before metallization on solid carbon particles. Thermodynamically, the reduction of CrO(l) to Cr metal is more feasible at a lower temperature than it is for Cr2O3(l) corroborating the accelerated reduction efficiency of the DRC process. |
Author | Zagrtdenov, Nail Carter, David Paktunc, Dogan Coumans, Jason P. Duguay, Dominique |
AuthorAffiliation | CanmetMINING |
AuthorAffiliation_xml | – name: CanmetMINING |
Author_xml | – sequence: 1 givenname: Dogan orcidid: 0000-0003-4965-3531 surname: Paktunc fullname: Paktunc, Dogan email: dogan.paktunc@nrcan-rncan.gc.ca – sequence: 2 givenname: Jason P. surname: Coumans fullname: Coumans, Jason P. – sequence: 3 givenname: David surname: Carter fullname: Carter, David – sequence: 4 givenname: Nail surname: Zagrtdenov fullname: Zagrtdenov, Nail – sequence: 5 givenname: Dominique surname: Duguay fullname: Duguay, Dominique |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38405365$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/2228386$$D View this record in Osti.gov |
BookMark | eNqFkVtrFTEUhYNU7MX-BQk--XJqbnN7lGOrhYoiFR_DTrLnnBxmkprMPPTfm3FOi_gibEjYfGvtZO1zchJiQEIoZ1ecCf4ebMaw8wEx-bCD-UpaxljVvCBnou7URqi2Pfnrfkoucz4URFRcipq9IqeyVaySdXVGfn5Bu4fg80hjT6c90o8-oZ3od3SznXwMS3-7T3H0E9JvKVrMmUIpuh0QAr3BVJoLgPS-mIU4xN3ja_KyhyHj5fG8ID9uru-3nzd3Xz_dbj_cbUA27bTpHQhZc6W47UH0phHSSeaYa0QtajCMQ2v7WjEnu8aYUhKcs33FmQSGtbwgt6uvi3DQD8mPkB51BK__NGLaaUiTtwNqBXVjesca64xqjQWDrOuMRcMq03RQvN6uXjFPXmdbPmz3NoZQ8tBCiFa2y8B3K_SQ4q8Z86RHny0OAwSMc9aik4IJpdSCvjmisxnRPb_uKf0CtCtgU8w5Yf-McKaXXet_d62Puy5StUoLoQ9xTqGk_H_Zb7JZs48 |
Cites_doi | 10.1127/0077-7757/2004/0179-0265 10.1080/08827508.2020.1854251 10.1016/j.chemphys.2003.12.017 10.1007/BF01204319 10.1016/0016-7037(93)90444-2 10.1039/C6CY00902F 10.1088/1742-6596/430/1/012007 10.3390/min8020045 10.1016/S0713-2743(06)80094-2 10.1063/1.2644637 10.17159/2411-9717/2018/v118n6a4 10.2138/am-2004-5-613 10.17159/2411-9717/2018/v118n12a9 10.2355/tetsutohagane1955.74.6_999 10.1107/S0909049504003681 10.3390/met8010069 10.1016/j.gca.2013.08.003 10.1016/0304-8853(94)00687-3 10.1016/j.jclepro.2017.07.176 10.1021/je60041a027 10.1063/1.4812323 10.1016/S0364-5916(02)00035-4 10.1093/petrology/32.5.909 10.1107/S0909049505012719 10.7185/geochemlet.1926 10.2138/am-1998-7-801 10.1107/S0108270192005481 10.2355/isijinternational.45.798 |
ContentType | Journal Article |
Copyright | Crown © 2023. Published by American Chemical Society Crown © 2023. Published by American Chemical Society. |
Copyright_xml | – notice: Crown © 2023. Published by American Chemical Society – notice: Crown © 2023. Published by American Chemical Society. |
DBID | AAYXX CITATION NPM 7X8 OTOTI DOA |
DOI | 10.1021/acsengineeringau.3c00057 |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2694-2488 |
EndPage | 138 |
ExternalDocumentID | oai_doaj_org_article_4a67bfd07cdb48bcabe099bceb05b79a 2228386 38405365 10_1021_acsengineeringau_3c00057 b566444410 |
Genre | Journal Article |
GroupedDBID | ACS AELXD ALMA_UNASSIGNED_HOLDINGS EBS GROUPED_DOAJ M~E N~. OK1 AAYXX ABBLG ADUCK CITATION NPM 7X8 OTOTI |
ID | FETCH-LOGICAL-a378t-fda2361441cfa2fb723d30d0d72626ab01a8cf640d397bb7bb3addcf5103a0e63 |
IEDL.DBID | DOA |
ISSN | 2694-2488 |
IngestDate | Wed Aug 27 01:21:09 EDT 2025 Mon Feb 26 05:26:18 EST 2024 Fri Jul 11 03:27:57 EDT 2025 Wed Feb 19 02:04:04 EST 2025 Tue Jul 01 00:23:11 EDT 2025 Thu Feb 22 06:31:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | ferrochrome chromium XANES carbothermic Cr−Fe carbide slag chromite EXAFS |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Crown © 2023. Published by American Chemical Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a378t-fda2361441cfa2fb723d30d0d72626ab01a8cf640d397bb7bb3addcf5103a0e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE W31109Eng38; DEFG03 97ER45628 |
ORCID | 0000-0003-4965-3531 0000000349653531 |
OpenAccessLink | https://doaj.org/article/4a67bfd07cdb48bcabe099bceb05b79a |
PMID | 38405365 |
PQID | 2932024446 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4a67bfd07cdb48bcabe099bceb05b79a osti_scitechconnect_2228386 proquest_miscellaneous_2932024446 pubmed_primary_38405365 crossref_primary_10_1021_acsengineeringau_3c00057 acs_journals_10_1021_acsengineeringau_3c00057 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Feb-21 |
PublicationDateYYYYMMDD | 2024-02-21 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-Feb-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS Engineering Au |
PublicationTitleAlternate | ACS Eng. Au |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 Lovering D. G. (ref4/cit4) 2014 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 Riekkola-Vanhanen M (ref2/cit2) 1999 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref19/cit19 ref21/cit21 ref12/cit12 Nell J. (ref26/cit26) 2004 ref15/cit15 ref22/cit22 ref13/cit13 ref30/cit30 International Chromium Development Association (ref1/cit1) 2016 ref24/cit24 Durham P. J. (ref33/cit33) 1988 ref38/cit38 Tromp M. (ref35/cit35) 2007; 882 ref7/cit7 |
References_xml | – ident: ref19/cit19 doi: 10.1127/0077-7757/2004/0179-0265 – start-page: 423 year: 2004 ident: ref26/cit26 publication-title: Journal of the Southern African Institute of Mining and Metallurgy – ident: ref25/cit25 doi: 10.1080/08827508.2020.1854251 – ident: ref34/cit34 doi: 10.1016/j.chemphys.2003.12.017 – ident: ref31/cit31 doi: 10.1007/BF01204319 – ident: ref36/cit36 – ident: ref28/cit28 doi: 10.1016/0016-7037(93)90444-2 – ident: ref32/cit32 doi: 10.1039/C6CY00902F – ident: ref10/cit10 – ident: ref12/cit12 doi: 10.1088/1742-6596/430/1/012007 – ident: ref9/cit9 doi: 10.3390/min8020045 – ident: ref16/cit16 doi: 10.1016/S0713-2743(06)80094-2 – ident: ref22/cit22 – start-page: 53 volume-title: X-ray Absorption, Principles, Applications, Techniques of EXAFS, SEXAFS and XANES year: 1988 ident: ref33/cit33 – volume: 882 start-page: 699 year: 2007 ident: ref35/cit35 publication-title: AIP Conf. Proc. doi: 10.1063/1.2644637 – ident: ref6/cit6 doi: 10.17159/2411-9717/2018/v118n6a4 – ident: ref29/cit29 doi: 10.2138/am-2004-5-613 – volume-title: Finnish expert report on best available techniques in ferrochrome production year: 1999 ident: ref2/cit2 – ident: ref5/cit5 doi: 10.17159/2411-9717/2018/v118n12a9 – ident: ref23/cit23 doi: 10.2355/tetsutohagane1955.74.6_999 – ident: ref13/cit13 doi: 10.1107/S0909049504003681 – ident: ref8/cit8 doi: 10.3390/met8010069 – ident: ref30/cit30 doi: 10.1016/j.gca.2013.08.003 – ident: ref38/cit38 doi: 10.1016/0304-8853(94)00687-3 – ident: ref3/cit3 doi: 10.1016/j.jclepro.2017.07.176 – ident: ref17/cit17 doi: 10.1021/je60041a027 – ident: ref37/cit37 doi: 10.1063/1.4812323 – ident: ref14/cit14 doi: 10.1016/S0364-5916(02)00035-4 – ident: ref20/cit20 doi: 10.1093/petrology/32.5.909 – start-page: 1 volume-title: Molten Salt Technology year: 2014 ident: ref4/cit4 – ident: ref15/cit15 – volume-title: Life Cycle Inventory (LCI) of primary ferrochrome production 2012 year: 2016 ident: ref1/cit1 – ident: ref11/cit11 doi: 10.1107/S0909049505012719 – ident: ref27/cit27 doi: 10.7185/geochemlet.1926 – ident: ref7/cit7 – ident: ref21/cit21 doi: 10.2138/am-1998-7-801 – ident: ref18/cit18 doi: 10.1107/S0108270192005481 – ident: ref24/cit24 doi: 10.2355/isijinternational.45.798 |
SSID | ssj0002513260 |
Score | 2.255125 |
Snippet | Direct reduction of chromite (DRC) is a promising alternative process for ferrochrome production with the potential to significantly reduce energy consumption... |
SourceID | doaj osti proquest pubmed crossref acs |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 125 |
SummonAdditionalLinks | – databaseName: American Chemical Society (ACS) Open Access dbid: N~. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vehBfLu-iOC1miZt0z2quCyCHkTRW8gTBO3Kdvfqb3emW9cHKAqBQmhDMzPJfJlkvgAcxSidz0VILFcxyQLOgzb6IsmlV7xnLDGs0GmL62Jwl10-5A9zIH7YwRfpiXF1-KDmM5Nj6QhoqHlYEEWpyJKvX49ncRX014hIKLRCOZqJQANtD_D81hj5Jld_8U0NhT8-hjjUfoafjRvqr8Byix_Z6VThqzAXqjVY-sQquA73V4HSeR_rZzaMDAEem85r7IZoWkkRVE-suJTbxNpUAWawsPOnYCrWDyO6SYuYDNhH7H0D7voXt-eDpL0_ITFSleMkekPUKgh4XDQiWiWkl9xzrwQuY4zlqSldLDLuEZRYi0XibOcikewZHgq5CZ1qWIVtYDLzuY8W6x369MgNV156i1izJ5xXRRcSlJ9u7b_Wzda2SPV3eetW3l1I3yWtX6a0Gn_45oxUMnufiLGbCrQW3Y4znZlCobFx5bzNSuuMDYiBrQuW51b1TBd2SaEa8QWR5Do6TeTGmuJgssRuHL7rWeMwo70TU4XhpNaIigTCGVw8d2FragCzH5G4SM5lke_8Uwi7sEhtNgny6R50xqNJ2EeIM7YHjU2_AVDr-rE priority: 102 providerName: American Chemical Society |
Title | Mechanism of the Direct Reduction of Chromite Process as a Clean Ferrochrome Technology |
URI | http://dx.doi.org/10.1021/acsengineeringau.3c00057 https://www.ncbi.nlm.nih.gov/pubmed/38405365 https://www.proquest.com/docview/2932024446 https://www.osti.gov/biblio/2228386 https://doaj.org/article/4a67bfd07cdb48bcabe099bceb05b79a |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA_iSQ_it3M6InjtljVtsx11bAxhO6jD3UI-QdBO1u66v9332u5DQfQghBRCQ9OXl_d--Xi_EHLrPTc2Dl2gmfBB5MAOam-TIOZWsK7SyLCCpy3GyXASPUzj6dZVX3gmrKQHLgXXilQioDYTxuqoo43SDkCNNk6zWItuAY3A521NptAGg9cGXMKqozvgx1rKZG7D8KcWTW4QrxReyWRfvFJB3g-PGQyyn4Fn4YAGh-SgQo70rmzxEdlx6THZ3-ITPCEvI4eBvK_ZO515CtCOlhaNPiJBK3YBliMfLkY10SpIgCpItPfmVEoHbo53aCGHAd2sup-SyaD_3BsG1c0JgeKikwfeKiRVAahjvAq9FiG3nFlmRQgTGKVZW3WMTyJmAY5oDYmDnTMe6fUUcwk_I7vpLHUXhPLIxtZrKDfgzT1TTFhuNaDMbmisSGokAPnJSvMzWWxqh235Xd6ykneNtFeSlh8locYf6txjl6zfR0rsogAURVaKIn9TlBqpY4dKQBZIj2vwHJHJJa6A8Q78xs2qnyUMMNw1UambLTIJeCgEIAPT5ho5LxVg3RAO0-OYJ_HlfzSwTvbwQ0W8fPuK7ObzhbsGxJPrBiD-3lOjUHHIR8s-5ONl8xNdjwZ2 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HNSD-HZ9RvBaTZu22T2quKyvPYiit5AnCNqV7e7V3-5Mt-6qoCgECqEN6cwk82WS-QJwGIKwLkt8ZLgMUepxHjTB5VEmnOQtbYhhhU5bdPPOfXr5mD1-uuoLO1FiS2W1iT9hF4iPsc5PGPr08EhYwhtyGmYRk6Rk0N23o3F4Bd02AhOKsFCqZpSgndbneH5rjFyULb-4qIrJHx89HHE_o9DKG7WXYLGGkexkpPdlmPLFCix8IhdchYcbT1m9T-UL6wWGOI-Npjd2S2ytpA-qJ3JcSnFidcYA01jY2bPXBWv7Pl2oRYQGbBKCX4P79vndWSeqr1GItJDNQRScJoYVxD026CQYmQgnuONOJria0YbHumlDnnKH2MQYLAInPRuIa09zn4t1mCl6hd8EJlKXuWCw3qJrD1xz6YQzCDlbiXUyb0CE8lP1MChVtcOdxOq7vFUt7wbEH5JWryN2jT98c0oqGb9P_NhVBVqMqoebSnUu0ea4tM6kTWO18QiFjfWGZ0a2dAO2SaEKYQZx5Vo6VGQHisJhoom_cfChZ4WjjbZQdOF7w1IhOEoQ1eAaugEbIwMYd0TgWjkTebb1TyHsw1zn7uZaXV90r7ZhntqvcubjHZgZ9Id-F1HPwOxV9v0OIKQAZQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRA98KYs5WEkrlmcOIl3j2VhVV4VAip6szx-SAjIVk32wq9nxnG3UAkESJYijRIrtmc8n-2ZzwBPYlTON1UoUOpY1IHmQYy-LRrltZxbZIYVjrY4aPcP61dHzVGOzeFcGPqJnmrq0yE-W_Wxj5lhoHxK8nDG0mfXU-UYc-iLcIlP7ziib2_xYbPFQq6bwAnvsnC6ZlGRruZYnj9Vxm7K9b-4qcTmT48VWd3vkWjySMtr47WrqS0pEOXLdD3g1H0_R_P43429DlczVhV7o3LdgAuhuwnbPzEY3oJPbwOnDn_uv4lVFAQmxTiHivdMCcuDznJm4OU8KpHTEoSlIhZfg-3EMpzwrV3MmiDO9vlvw-HyxcfFfpHvaiis0rOhiN4yjQuBKxdtFVFXyivppdcVLZksytLOXGxr6QkAIVJRNLO6yIR-VoZW3YGtbtWFuyBU7RsfkeSO8EOUVmqvPBKunVfO63YCBfWNybbWm3SMXpXmfIeZ3GETKE-H0hyPFB5_8c0zHvPN-0zCnQQ0UibbtKltq0mxpXYe6xk6i4HwNrqAskE9txPYZY0xhGWYkNdx5JIbDO-5qRk14_GpIhkyaT6nsV1YrXtDCKwi6EQL9QnsjBq2-RFFC_JGtc29f-yER3D53fOlefPy4PUuXOHqU15-eR-2hpN1eEDIasCHyX5-ABd4Ihs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+the+Direct+Reduction+of+Chromite+Process+as+a+Clean+Ferrochrome+Technology&rft.jtitle=ACS+Engineering+Au&rft.au=Dogan+Paktunc&rft.au=Jason+P.+Coumans&rft.au=David+Carter&rft.au=Nail+Zagrtdenov&rft.date=2024-02-21&rft.pub=American+Chemical+Society&rft.eissn=2694-2488&rft.volume=4&rft.issue=1&rft.spage=125&rft.epage=138&rft_id=info:doi/10.1021%2Facsengineeringau.3c00057&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4a67bfd07cdb48bcabe099bceb05b79a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-2488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-2488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-2488&client=summon |