Ultralight Three-Dimensional Boron Nitride Foam with Ultralow Permittivity and Superelasticity
Dielectrics with ultralow permittivity within 2 times that of air, excellent mechanical performance, and high thermal stability are highly attractive to many applications. However, since the finding of silica aerogels in the 1930s, no alternative ultralight porous dielectric with density below 10 mg...
Saved in:
Published in | Nano letters Vol. 13; no. 7; pp. 3232 - 3236 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
10.07.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dielectrics with ultralow permittivity within 2 times that of air, excellent mechanical performance, and high thermal stability are highly attractive to many applications. However, since the finding of silica aerogels in the 1930s, no alternative ultralight porous dielectric with density below 10 mg/cm3 has been developed. Here we present three-dimensional hierarchical boron nitride foam with permittivity of 1.03 times that of air, density of 1.6 mg/cm3, and thermal stability up to 1200 °C obtained by chemical vapor deposition on a nickel foam template. This BN foam exhibits complete recovery after cyclic compression exceeding 70% with permittivity within 1.12 times that of air. Gathering all these exceptional characters, the BN foam should create a breakthrough development of flexible ultralow-permittivity dielectrics and ultralight materials. |
---|---|
AbstractList | Dielectrics with ultralow permittivity within 2 times that of air, excellent mechanical performance, and high thermal stability are highly attractive to many applications. However, since the finding of silica aerogels in the 1930s, no alternative ultralight porous dielectric with density below 10 mg/cm3 has been developed. Here we present three-dimensional hierarchical boron nitride foam with permittivity of 1.03 times that of air, density of 1.6 mg/cm3, and thermal stability up to 1200 °C obtained by chemical vapor deposition on a nickel foam template. This BN foam exhibits complete recovery after cyclic compression exceeding 70% with permittivity within 1.12 times that of air. Gathering all these exceptional characters, the BN foam should create a breakthrough development of flexible ultralow-permittivity dielectrics and ultralight materials. Dielectrics with ultralow permittivity within 2 times that of air, excellent mechanical performance, and high thermal stability are highly attractive to many applications. However, since the finding of silica aerogels in the 1930s, no alternative ultralight porous dielectric with density below 10 mg/cm super(3) has been developed. Here we present three-dimensional hierarchical boron nitride foam with permittivity of 1.03 times that of air, density of 1.6 mg/cm super(3), and thermal stability up to 1200 degree C obtained by chemical vapor deposition on a nickel foam template. This BN foam exhibits complete recovery after cyclic compression exceeding 70% with permittivity within 1.12 times that of air. Gathering all these exceptional characters, the BN foam should create a breakthrough development of flexible ultralow-permittivity dielectrics and ultralight materials. Dielectrics with ultralow permittivity within 2 times that of air, excellent mechanical performance, and high thermal stability are highly attractive to many applications. However, since the finding of silica aerogels in the 1930s, no alternative ultralight porous dielectric with density below 10 mg/cm(3) has been developed. Here we present three-dimensional hierarchical boron nitride foam with permittivity of 1.03 times that of air, density of 1.6 mg/cm(3), and thermal stability up to 1200 °C obtained by chemical vapor deposition on a nickel foam template. This BN foam exhibits complete recovery after cyclic compression exceeding 70% with permittivity within 1.12 times that of air. Gathering all these exceptional characters, the BN foam should create a breakthrough development of flexible ultralow-permittivity dielectrics and ultralight materials.Dielectrics with ultralow permittivity within 2 times that of air, excellent mechanical performance, and high thermal stability are highly attractive to many applications. However, since the finding of silica aerogels in the 1930s, no alternative ultralight porous dielectric with density below 10 mg/cm(3) has been developed. Here we present three-dimensional hierarchical boron nitride foam with permittivity of 1.03 times that of air, density of 1.6 mg/cm(3), and thermal stability up to 1200 °C obtained by chemical vapor deposition on a nickel foam template. This BN foam exhibits complete recovery after cyclic compression exceeding 70% with permittivity within 1.12 times that of air. Gathering all these exceptional characters, the BN foam should create a breakthrough development of flexible ultralow-permittivity dielectrics and ultralight materials. Dielectrics with ultralow permittivity within 2 times that of air, excellent mechanical performance, and high thermal stability are highly attractive to many applications. However, since the finding of silica aerogels in the 1930s, no alternative ultralight porous dielectric with density below 10 mg/cm(3) has been developed. Here we present three-dimensional hierarchical boron nitride foam with permittivity of 1.03 times that of air, density of 1.6 mg/cm(3), and thermal stability up to 1200 °C obtained by chemical vapor deposition on a nickel foam template. This BN foam exhibits complete recovery after cyclic compression exceeding 70% with permittivity within 1.12 times that of air. Gathering all these exceptional characters, the BN foam should create a breakthrough development of flexible ultralow-permittivity dielectrics and ultralight materials. |
Author | Zhou, Jianxin Yin, Jun Li, Xuemei Guo, Wanlin |
AuthorAffiliation | Nanjing University of Aeronautics and Astronautics |
AuthorAffiliation_xml | – name: Nanjing University of Aeronautics and Astronautics |
Author_xml | – sequence: 1 givenname: Jun surname: Yin fullname: Yin, Jun – sequence: 2 givenname: Xuemei surname: Li fullname: Li, Xuemei – sequence: 3 givenname: Jianxin surname: Zhou fullname: Zhou, Jianxin – sequence: 4 givenname: Wanlin surname: Guo fullname: Guo, Wanlin email: wlguo@nuaa.edu.cn |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27572043$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23799859$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEYhYNU7Icu_AOSjWAXY_MxmUyWWlsVigq2W0Nu5o03JZNck0xL_72Re1tBCm6SvOE5h5dzDtFeTBEQeknJW0oYPYmhJ5ST8eYJOqCCk25Qiu09vMd-Hx2Wck0IUVyQZ2ifcanUKNQB-nEVajbB_1xXfLnOAN0HP0MsPkUT8PuUU8RffM1-AnyezIxvfV3jrSjd4m-QZ1-rv_H1Dps44e_LBjIEU6q37e85eupMKPBidx-hq_Ozy9NP3cXXj59P3110hsuxdk5INVmqBjO2WcEAMFkO_WoUo5x6O4JbMe6EZYZTxhyfuBucBUegHXbFj9Cbre8mp18LlKpnXyyEYCKkpWgqBe9lL5j4P9orRfkgJG3oqx26rGaY9Cb72eQ7fR9fA17vAFOsCS6baH35y0khGel54062nM2plAxOt3BMbSG3HH3QlOg_ReqHIpvi-B_Fvelj7G4LY4u-Tktu1ZVHuN-FoqsE |
CitedBy_id | crossref_primary_10_1002_cnma_201700148 crossref_primary_10_1002_bkcs_10712 crossref_primary_10_1016_j_coco_2018_11_002 crossref_primary_10_1021_acsnano_1c09668 crossref_primary_10_1021_am504777g crossref_primary_10_1016_j_matlet_2017_12_065 crossref_primary_10_1016_j_mtnano_2019_01_002 crossref_primary_10_1016_j_jwpe_2024_105916 crossref_primary_10_1038_s41598_019_52788_0 crossref_primary_10_1021_acsami_0c16866 crossref_primary_10_1016_j_compositesb_2019_106915 crossref_primary_10_1016_j_jeurceramsoc_2021_01_037 crossref_primary_10_1016_j_compositesb_2021_109129 crossref_primary_10_1002_adfm_202414042 crossref_primary_10_1088_2053_1591_ab5c6c crossref_primary_10_1039_D0TA05542E crossref_primary_10_1016_j_ceramint_2024_02_013 crossref_primary_10_1016_j_mser_2020_100580 crossref_primary_10_1038_srep10337 crossref_primary_10_1016_j_ceramint_2018_09_283 crossref_primary_10_1016_j_ceramint_2022_11_076 crossref_primary_10_1016_j_mattod_2017_04_027 crossref_primary_10_1039_C5NR01981H crossref_primary_10_1016_j_ceramint_2023_12_037 crossref_primary_10_1002_smll_201600053 crossref_primary_10_1016_j_mtcomm_2015_06_001 crossref_primary_10_1021_acsanm_4c04370 crossref_primary_10_1016_j_ceramint_2024_09_011 crossref_primary_10_1002_sus2_239 crossref_primary_10_1016_j_ceramint_2020_09_010 crossref_primary_10_1007_s42114_021_00286_1 crossref_primary_10_1016_j_fuel_2019_116448 crossref_primary_10_1016_j_mattod_2024_03_002 crossref_primary_10_3390_mi9010023 crossref_primary_10_1002_adma_201704850 crossref_primary_10_1007_s12274_016_1338_9 crossref_primary_10_1063_1_4997774 crossref_primary_10_1021_acsapm_0c00445 crossref_primary_10_1016_j_ceramint_2022_10_259 crossref_primary_10_3365_KJMM_2021_59_7_505 crossref_primary_10_1038_ncomms9849 crossref_primary_10_1021_jz4026535 crossref_primary_10_1109_TDMR_2018_2829156 crossref_primary_10_1126_science_aav7304 crossref_primary_10_1186_s42252_023_00042_2 crossref_primary_10_1039_D3MH00845B crossref_primary_10_1002_adma_201601812 crossref_primary_10_1007_s11664_015_4123_8 crossref_primary_10_1088_0957_4484_25_10_105701 crossref_primary_10_1039_C5CP02192H crossref_primary_10_1039_C6RA18833H crossref_primary_10_1007_s10853_015_9180_0 crossref_primary_10_1002_adfm_201909604 crossref_primary_10_1002_adfm_201910709 crossref_primary_10_2478_bsmm_2024_0015 crossref_primary_10_1002_cnma_201900646 crossref_primary_10_1002_smll_201400292 crossref_primary_10_1039_C7RA09297K crossref_primary_10_1016_j_compositesa_2017_04_018 crossref_primary_10_1021_acs_nanolett_0c04917 crossref_primary_10_1021_acsami_5b02552 crossref_primary_10_1016_j_ijbiomac_2024_133766 crossref_primary_10_1080_03602559_2017_1354253 crossref_primary_10_1016_j_mser_2025_100968 crossref_primary_10_1016_j_apenergy_2019_01_153 crossref_primary_10_1016_j_ceramint_2022_08_188 crossref_primary_10_1016_j_jcis_2017_04_039 crossref_primary_10_1002_adma_202311335 crossref_primary_10_1016_j_jmrt_2023_01_072 crossref_primary_10_1021_acsanm_1c03183 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120268 crossref_primary_10_1016_j_jhazmat_2021_126385 crossref_primary_10_1021_acsnano_9b02182 crossref_primary_10_1039_C8RA06445H crossref_primary_10_1021_acs_chemmater_4c00582 crossref_primary_10_1016_j_compositesa_2016_12_002 crossref_primary_10_1021_acsnano_0c09678 crossref_primary_10_1002_adfm_201801205 crossref_primary_10_1021_acsnano_7b03291 crossref_primary_10_22261_FNAN_UMPBGN crossref_primary_10_26599_NR_2025_94907008 crossref_primary_10_1021_acs_jpclett_2c01431 crossref_primary_10_1016_j_cej_2019_122833 crossref_primary_10_1063_5_0060948 crossref_primary_10_1039_C6CS00218H crossref_primary_10_1126_sciadv_aay6689 crossref_primary_10_1109_TED_2019_2937340 crossref_primary_10_1021_acs_chemmater_7b04800 crossref_primary_10_1093_nsr_nwad129 crossref_primary_10_1038_s41467_020_14875_z crossref_primary_10_1039_C8MH01219A crossref_primary_10_1002_admt_202400106 crossref_primary_10_1021_acsnano_6b06601 crossref_primary_10_1016_j_apsusc_2017_01_066 crossref_primary_10_1016_j_jhazmat_2023_132481 crossref_primary_10_1021_acsami_8b02081 crossref_primary_10_1016_j_mattod_2014_04_003 crossref_primary_10_1039_D1TA02412D crossref_primary_10_1021_acs_chemmater_9b02551 crossref_primary_10_1002_ente_201700618 crossref_primary_10_1016_j_commatsci_2020_110121 crossref_primary_10_1021_nn500059s crossref_primary_10_3390_nano13081305 crossref_primary_10_1016_j_jeurceramsoc_2022_05_040 crossref_primary_10_1016_j_actbio_2020_07_043 crossref_primary_10_1002_smm2_1199 crossref_primary_10_1021_acsnano_5b00087 crossref_primary_10_1016_j_nantod_2019_100799 crossref_primary_10_1021_acsnano_6b08218 crossref_primary_10_3390_polym15183796 crossref_primary_10_1021_acsomega_8b00707 crossref_primary_10_1016_j_carbon_2016_10_034 crossref_primary_10_1007_s10854_017_8037_5 crossref_primary_10_3390_ma15103522 crossref_primary_10_1088_1755_1315_781_5_052016 crossref_primary_10_1021_acs_nanolett_0c00917 crossref_primary_10_1038_s41586_022_04784_0 crossref_primary_10_1002_adfm_202005928 crossref_primary_10_1021_acsami_6b13328 crossref_primary_10_1073_pnas_1713805114 crossref_primary_10_1016_j_compscitech_2017_09_032 crossref_primary_10_1039_D1TA08930G crossref_primary_10_3390_nano10091652 crossref_primary_10_1021_acsami_3c09996 crossref_primary_10_1021_acsami_9b02869 crossref_primary_10_1111_jace_19318 crossref_primary_10_1002_adma_202307690 crossref_primary_10_1039_C7PY00570A crossref_primary_10_1002_pol_20200507 crossref_primary_10_1039_C9RA07835E crossref_primary_10_1002_adfm_201701450 crossref_primary_10_1016_j_mattod_2014_07_006 crossref_primary_10_1002_app_42037 crossref_primary_10_1016_j_coco_2016_10_002 crossref_primary_10_1016_j_nanoen_2015_02_015 crossref_primary_10_1039_C6RA07751J crossref_primary_10_1016_j_apsusc_2021_149655 crossref_primary_10_1038_am_2015_8 crossref_primary_10_1002_adma_202401299 crossref_primary_10_1021_acsami_4c09506 crossref_primary_10_1016_j_chemosphere_2023_140530 crossref_primary_10_1007_s10853_021_05824_2 crossref_primary_10_1016_j_ceramint_2017_12_166 crossref_primary_10_1016_j_mser_2018_06_002 crossref_primary_10_1039_C7RA03808A crossref_primary_10_1002_smll_201501439 crossref_primary_10_1016_j_diamond_2021_108740 crossref_primary_10_1016_j_mattod_2020_09_034 crossref_primary_10_1007_s12274_022_5063_2 crossref_primary_10_1021_acsami_7b16198 crossref_primary_10_1002_adem_202001351 crossref_primary_10_1002_tcr_202000079 crossref_primary_10_1016_j_cej_2021_129896 crossref_primary_10_3390_cryst13071029 crossref_primary_10_1088_1361_6528_ac7c23 crossref_primary_10_1016_j_cej_2014_01_033 crossref_primary_10_1039_C8TC04652B crossref_primary_10_1002_adem_201500424 crossref_primary_10_1016_j_compositesa_2024_108176 crossref_primary_10_1002_adom_202300737 crossref_primary_10_1002_pol_20220179 crossref_primary_10_1016_j_ceramint_2023_04_187 crossref_primary_10_1016_j_jmst_2022_10_077 crossref_primary_10_1007_s12274_020_2897_3 crossref_primary_10_1002_smll_201500210 crossref_primary_10_1557_jmr_2014_226 crossref_primary_10_1016_j_ijheatmasstransfer_2017_08_047 crossref_primary_10_1039_C7RA06297D crossref_primary_10_1016_j_cplett_2020_138002 crossref_primary_10_1080_15376494_2022_2055242 crossref_primary_10_1021_acsanm_3c03432 crossref_primary_10_1039_D0TB02021D crossref_primary_10_1016_j_cej_2024_156224 crossref_primary_10_1016_j_snb_2015_09_138 crossref_primary_10_1039_D2TA08264K crossref_primary_10_1021_acsami_8b08680 crossref_primary_10_1016_j_carbon_2018_07_018 crossref_primary_10_1016_j_nantod_2023_102011 crossref_primary_10_1021_acsnano_5b05533 crossref_primary_10_1002_adfm_201603181 crossref_primary_10_1016_j_cej_2019_05_013 crossref_primary_10_1021_nn402452p crossref_primary_10_1038_srep24187 crossref_primary_10_1016_j_jmst_2020_10_018 crossref_primary_10_1021_acsnano_1c07755 crossref_primary_10_1002_smll_201502173 crossref_primary_10_1016_j_surfin_2024_105258 crossref_primary_10_1007_s12274_023_6369_4 crossref_primary_10_1016_j_mtener_2019_100363 crossref_primary_10_1016_j_mattod_2020_11_020 crossref_primary_10_1016_j_polymer_2022_125440 crossref_primary_10_1021_acs_iecr_1c02217 crossref_primary_10_1002_adfm_201500001 crossref_primary_10_1038_s41467_020_17533_6 crossref_primary_10_1021_acs_chemmater_5b00505 crossref_primary_10_1021_jacs_6b02262 crossref_primary_10_1002_aenm_201601906 |
Cites_doi | 10.1126/science.286.5439.421 10.1038/nmat3001 10.1038/nnano.2010.172 10.1016/j.actamat.2012.03.007 10.1126/science.1211649 10.1038/ncomms2251 10.1021/nl1022139 10.1021/nn1006495 10.1109/45.954642 10.1021/cm00058a028 10.1002/adma.201200491 10.1021/nl1023707 10.1038/nnano.2012.118 10.1017/CBO9781139878326 10.1021/nl203249a 10.1021/nn303082a 10.1126/science.1104962 10.1002/adma.200902986 10.1016/S0022-3093(98)00054-4 10.1021/nn301675f 10.1038/nnano.2007.186 10.1021/nl0808684 10.1002/smll.201001628 10.1111/j.1551-2916.1999.tb20075.x 10.1002/smll.201100990 10.1038/nature11408 10.1038/nmat2968 10.1038/127741a0 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical Society 2014 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW NPM 7X8 7QQ 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/nl401308v |
DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic Ceramic Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Ceramic Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1530-6992 |
EndPage | 3236 |
ExternalDocumentID | 23799859 27572043 10_1021_nl401308v b791958048 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G AAYOK AFFNX IQODW NPM 7X8 7QQ 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a378t-f579dc196a83789e6eedc3e4b8587d4c8efb23f5c2a3122f3d3f6fcef0ecefcb3 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Thu Jul 10 18:14:50 EDT 2025 Fri Jul 11 09:08:47 EDT 2025 Mon Jul 21 05:49:35 EDT 2025 Wed Apr 02 07:24:35 EDT 2025 Tue Jul 01 00:42:54 EDT 2025 Thu Apr 24 22:50:21 EDT 2025 Thu Aug 27 13:50:16 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | superelasticity aerogels Ultralight three-dimensional boron nitride ultralow permittivity Aerogels CVD Thermal properties Superelasticity Dielectric materials Porous materials Boron nitride Template reaction Nickel Permittivity Silica Thermal stability |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a378t-f579dc196a83789e6eedc3e4b8587d4c8efb23f5c2a3122f3d3f6fcef0ecefcb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23799859 |
PQID | 1499136571 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1753474525 proquest_miscellaneous_1499136571 pubmed_primary_23799859 pascalfrancis_primary_27572043 crossref_citationtrail_10_1021_nl401308v crossref_primary_10_1021_nl401308v acs_journals_10_1021_nl401308v |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-07-10 |
PublicationDateYYYYMMDD | 2013-07-10 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Kim K. H. (ref4/cit4) 2012; 7 Levendorf M. P. (ref21/cit21) 2012; 488 Mecklenburg M. (ref6/cit6) 2012; 24 Miller R. D. (ref1/cit1) 1999; 286 ref3/cit3 Fazen P. J. (ref22/cit22) 1995; 7 Song L. (ref17/cit17) 2010; 10 Jacobson N. (ref29/cit29) 1999; 82 Qiu L. (ref9/cit9) 2012; 3 Yamamoto M. (ref11/cit11) 2012; 6 Mishima O. (ref24/cit24) 2000 Schaedler T. A. (ref10/cit10) 2011; 334 Xue J. (ref20/cit20) 2011; 10 Cao X. (ref8/cit8) 2011; 7 Hata K. (ref14/cit14) 2004; 306 Liu L. (ref12/cit12) 2008; 8 Shi Y. (ref23/cit23) 2010; 10 Chen Z. (ref7/cit7) 2011; 10 Torrents A. (ref27/cit27) 2012; 60 Gorbachev R. V. (ref25/cit25) 2011; 7 Aranda L. L. (ref30/cit30) 2001; 20 Gibson L. J. (ref26/cit26) 1997 Golberg D. (ref16/cit16) 2010; 4 Kistler S. S. (ref2/cit2) 1931; 127 Dean C. R. (ref19/cit19) 2010; 5 Gui X. (ref5/cit5) 2010; 22 Schmidt M. (ref13/cit13) 1998; 225 Kim K. K. (ref18/cit18) 2012; 12 Suhr J. (ref28/cit28) 2007; 2 Kim K. K. (ref15/cit15) 2012; 6 |
References_xml | – volume: 286 start-page: 421 issue: 5439 year: 1999 ident: ref1/cit1 publication-title: Science doi: 10.1126/science.286.5439.421 – volume: 10 start-page: 424 issue: 6 year: 2011 ident: ref7/cit7 publication-title: Nat. Mater. doi: 10.1038/nmat3001 – volume: 5 start-page: 722 issue: 10 year: 2010 ident: ref19/cit19 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.172 – volume: 60 start-page: 3511 issue: 8 year: 2012 ident: ref27/cit27 publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.03.007 – volume: 334 start-page: 962 issue: 6058 year: 2011 ident: ref10/cit10 publication-title: Science doi: 10.1126/science.1211649 – volume: 3 start-page: 1241 year: 2012 ident: ref9/cit9 publication-title: Nat. Commun. doi: 10.1038/ncomms2251 – volume: 10 start-page: 3209 issue: 8 year: 2010 ident: ref17/cit17 publication-title: Nano Lett. doi: 10.1021/nl1022139 – volume-title: Electric Refractory Materials year: 2000 ident: ref24/cit24 – volume: 4 start-page: 2979 issue: 6 year: 2010 ident: ref16/cit16 publication-title: ACS Nano doi: 10.1021/nn1006495 – volume: 20 start-page: 12 year: 2001 ident: ref30/cit30 publication-title: Potentials, IEEE doi: 10.1109/45.954642 – volume: 7 start-page: 1942 issue: 10 year: 1995 ident: ref22/cit22 publication-title: Chem. Mater. doi: 10.1021/cm00058a028 – volume: 24 start-page: 3486 issue: 26 year: 2012 ident: ref6/cit6 publication-title: Adv. Mater. doi: 10.1002/adma.201200491 – volume: 10 start-page: 4134 issue: 10 year: 2010 ident: ref23/cit23 publication-title: Nano Lett. doi: 10.1021/nl1023707 – volume: 7 start-page: 562 issue: 9 year: 2012 ident: ref4/cit4 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.118 – volume-title: Cellular Solids Structure and Properties year: 1997 ident: ref26/cit26 doi: 10.1017/CBO9781139878326 – volume: 12 start-page: 161 issue: 1 year: 2012 ident: ref18/cit18 publication-title: Nano Lett. doi: 10.1021/nl203249a – volume: 6 start-page: 8335 issue: 9 year: 2012 ident: ref11/cit11 publication-title: ACS Nano doi: 10.1021/nn303082a – ident: ref3/cit3 – volume: 306 start-page: 1362 issue: 5700 year: 2004 ident: ref14/cit14 publication-title: Science doi: 10.1126/science.1104962 – volume: 22 start-page: 617 issue: 5 year: 2010 ident: ref5/cit5 publication-title: Adv. Mater. doi: 10.1002/adma.200902986 – volume: 225 start-page: 364 year: 1998 ident: ref13/cit13 publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(98)00054-4 – volume: 6 start-page: 8583 issue: 10 year: 2012 ident: ref15/cit15 publication-title: ACS Nano doi: 10.1021/nn301675f – volume: 2 start-page: 417 issue: 7 year: 2007 ident: ref28/cit28 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.186 – volume: 8 start-page: 1965 issue: 7 year: 2008 ident: ref12/cit12 publication-title: Nano Lett. doi: 10.1021/nl0808684 – volume: 7 start-page: 465 issue: 4 year: 2011 ident: ref25/cit25 publication-title: Small doi: 10.1002/smll.201001628 – volume: 82 start-page: 393 issue: 2 year: 1999 ident: ref29/cit29 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.1999.tb20075.x – volume: 7 start-page: 3163 issue: 22 year: 2011 ident: ref8/cit8 publication-title: Small doi: 10.1002/smll.201100990 – volume: 488 start-page: 627 issue: 7413 year: 2012 ident: ref21/cit21 publication-title: Nature doi: 10.1038/nature11408 – volume: 10 start-page: 282 issue: 4 year: 2011 ident: ref20/cit20 publication-title: Nat. Mater. doi: 10.1038/nmat2968 – volume: 127 start-page: 741 issue: 3211 year: 1931 ident: ref2/cit2 publication-title: Nature doi: 10.1038/127741a0 |
SSID | ssj0009350 |
Score | 2.5182152 |
Snippet | Dielectrics with ultralow permittivity within 2 times that of air, excellent mechanical performance, and high thermal stability are highly attractive to many... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3232 |
SubjectTerms | Boron nitride Chemical synthesis methods Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science; rheology Density Dielectric constant Dielectric, piezoelectric, ferroelectric and antiferroelectric materials Dielectrics Dielectrics, piezoelectrics, and ferroelectrics and their properties Exact sciences and technology Foams Materials science Methods of deposition of films and coatings; film growth and epitaxy Methods of nanofabrication Permittivity Physics Thermal properties of condensed matter Thermal properties of small particles, nanocrystals, nanotubes Thermal stability Three dimensional |
Title | Ultralight Three-Dimensional Boron Nitride Foam with Ultralow Permittivity and Superelasticity |
URI | http://dx.doi.org/10.1021/nl401308v https://www.ncbi.nlm.nih.gov/pubmed/23799859 https://www.proquest.com/docview/1499136571 https://www.proquest.com/docview/1753474525 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ZS8QwEB48XhTxPtZjiceDL13bpG3SR69FBEXQBZ8saZrA4tpd3K6Cv95Jj1XxeulDmdA2M9NvJpN8A3AgmDGeEoGTSqodnyfCSRDpHDdSOpJSIejbA85X1-FFx7-8D-4nYP-XCj71jrKeTQFc8TIJ0zQU3GZYx6e3H8y6rGjDip6LeVAk_Jo-6PNQCz1q-AV65gZyiLNgyvYVv8eXBc60F-CsPq1Tbi95bI3ypKXevpM3_vUJizBfxZnkuDSMJZjQ2TLMfmIfXIGHTq9Y5sDsnNyhSrVzZqn-S5oOcmKpDch1N3_uppq0-_KJ2DVbUg7qv5Ibu40mL5tPEJml5HY00PZojGV-xnur0Gmf351eOFW7BUcyLnLHBDxKFXqktCTzkQ4RPhXTfiICwVNfCW0SykygqGQepYalzIRGaeNqvKiErcFU1s_0BhAcqzyXsUhy6kuMCWiCYY_28f8RphigNaCJ-ogrdxnGRSWcevF4ohpwWKsqVhVZue2Z0ftJdG8sOigZOn4San7R91iS8sC26WEN2K0NIEYHs1UTmen-CN8Nc0K7F5B7f8hg0udzWyJuwHppPR9PYBxT2iDa_O-bt2CGFr02OGLjNkzlzyO9gxFPnjQLi38H3Dj8HA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9tAEB5ROLQVgpY-CIWwoFbiYhrv2tn1gQOPRqFAVIlE4oRZr3db1OBE2AHBT-lf6Z_rrO0kgHickHrxwZpd72M8j53ZbwA-C2aMq4TvxJJqx-ORcCLUdE4tUDqQUqHStxecD1r1Zsf7fuQfTcCf4V0YHESKPaV5EH-MLuB-TbrWE6iJizKBck9fXaJ7lm7s7uBefqG08a293XTKCgKOZFxkjvF5ECtkMmlx0wNdR42gmPYi4Qsee0poE1FmfEUlcyk1LGambpQ2NY0PFTHs9wVModFDrWO3uX04BvRlefVXFBjofgXCG6IW3Ryq1XgqvaXxpvsyxcU3RdWMh83aXL01ZuHvaGHyrJbf64MsWlfXdzAj_8-VewMzpVVNNovf4C1M6GQOXt_AWnwHx51ufqjz81dG2sjA2tmxhQ0KUBKyZYEcSOs0Oz-NNWn05BmxJ9SkaNS7JD9s0lBWlNogMonJ4aCv7UUgi3ON795D51km-AEmk16i54FgW-XWGAskp55EC4hGaORpD6VlPUZztAJV3JewFA5pmMf9qRuONqYCa0MOCVUJzW4rhHTvI10dkfYLPJL7iKq32GxESblvixKxCqwM-S5EcWJjRDLRvQGODT1gm_nI3Udo0MX1uA2IV-BjwbTjLzCODrwfLDw152V42Wwf7If7u629T_CK5lVGOFoFizCZnQ_0Etp6WVTNfzoCJ8_Nq_8AIyNjUA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1fT9RAEJ8gJkZixH_gIZ6r0cSXwnW3vd0-8ICcFxC9kMAlPFm3210gHL0L7UH0w_hV_GrMtL0DDOoTiS99aGbb3Z3ZnZmd2d8AvFXCOd-o0Es1t14gE-UlqOm8VmRspLVBpU8XnL_02pv94NN-uD8DPyd3YbATOX4pL4P4tKpHqasRBvzVbEDeQEud1UmU2_b7Obpo-dpWB_n5jvPux72NTa-uIuBpIVXhuVBGqUFB04SdHtk2agUjbJCoUMk0MMq6hAsXGq6Fz7kTqXBtZ6xrWXyYROB378BdCg-Sc7e-sXsJ6ivKCrC4aaALFqlgglx0tauk9Ux-Tes9GOkcGeCqyhl_Nm1LFdedh1_TySkzW45XxkWyYn78hhv5_87eI3hYW9dsvVoOj2HGZk9g7grm4lP42h-UhzsHhwXbQ0G2XocKHFTgJOwDATqw3lFxepRa1h3qE0Yn1axqNDxnO5Q8VFQlN5jOUrY7Hlm6EER41_juGfRvZYALMJsNM_scGLY1fkuISEseaLSEeILGng1w12ynaJY2oIm8ietNIo_L-D_34yljGvB-IiWxqSHaqVLI4CbSN1PSUYVLchNR85qoTSm5DKk4kWjA64nsxbitUKxIZ3Y4xr6hJ0wZkNL_Cw26uoGkwHgDFivBvfyDkOjIh9HSv8b8Cu7tdLrx563e9gu4z8tiIxKNg2WYLU7H9iWafEXSLNcdg2-3LaoXsHBl0w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultralight+Three-Dimensional+Boron+Nitride+Foam+with+Ultralow+Permittivity+and+Superelasticity&rft.jtitle=Nano+letters&rft.au=JUN+YIN&rft.au=XUEMEI+LI&rft.au=JIANXIN+ZHOU&rft.au=WANLIN+GUO&rft.date=2013-07-10&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.volume=13&rft.issue=7&rft.spage=3232&rft.epage=3236&rft_id=info:doi/10.1021%2Fnl401308v&rft.externalDBID=n%2Fa&rft.externalDocID=27572043 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |