Ultralight Three-Dimensional Boron Nitride Foam with Ultralow Permittivity and Superelasticity

Dielectrics with ultralow permittivity within 2 times that of air, excellent mechanical performance, and high thermal stability are highly attractive to many applications. However, since the finding of silica aerogels in the 1930s, no alternative ultralight porous dielectric with density below 10 mg...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 13; no. 7; pp. 3232 - 3236
Main Authors Yin, Jun, Li, Xuemei, Zhou, Jianxin, Guo, Wanlin
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 10.07.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dielectrics with ultralow permittivity within 2 times that of air, excellent mechanical performance, and high thermal stability are highly attractive to many applications. However, since the finding of silica aerogels in the 1930s, no alternative ultralight porous dielectric with density below 10 mg/cm3 has been developed. Here we present three-dimensional hierarchical boron nitride foam with permittivity of 1.03 times that of air, density of 1.6 mg/cm3, and thermal stability up to 1200 °C obtained by chemical vapor deposition on a nickel foam template. This BN foam exhibits complete recovery after cyclic compression exceeding 70% with permittivity within 1.12 times that of air. Gathering all these exceptional characters, the BN foam should create a breakthrough development of flexible ultralow-permittivity dielectrics and ultralight materials.
AbstractList Dielectrics with ultralow permittivity within 2 times that of air, excellent mechanical performance, and high thermal stability are highly attractive to many applications. However, since the finding of silica aerogels in the 1930s, no alternative ultralight porous dielectric with density below 10 mg/cm3 has been developed. Here we present three-dimensional hierarchical boron nitride foam with permittivity of 1.03 times that of air, density of 1.6 mg/cm3, and thermal stability up to 1200 °C obtained by chemical vapor deposition on a nickel foam template. This BN foam exhibits complete recovery after cyclic compression exceeding 70% with permittivity within 1.12 times that of air. Gathering all these exceptional characters, the BN foam should create a breakthrough development of flexible ultralow-permittivity dielectrics and ultralight materials.
Dielectrics with ultralow permittivity within 2 times that of air, excellent mechanical performance, and high thermal stability are highly attractive to many applications. However, since the finding of silica aerogels in the 1930s, no alternative ultralight porous dielectric with density below 10 mg/cm super(3) has been developed. Here we present three-dimensional hierarchical boron nitride foam with permittivity of 1.03 times that of air, density of 1.6 mg/cm super(3), and thermal stability up to 1200 degree C obtained by chemical vapor deposition on a nickel foam template. This BN foam exhibits complete recovery after cyclic compression exceeding 70% with permittivity within 1.12 times that of air. Gathering all these exceptional characters, the BN foam should create a breakthrough development of flexible ultralow-permittivity dielectrics and ultralight materials.
Dielectrics with ultralow permittivity within 2 times that of air, excellent mechanical performance, and high thermal stability are highly attractive to many applications. However, since the finding of silica aerogels in the 1930s, no alternative ultralight porous dielectric with density below 10 mg/cm(3) has been developed. Here we present three-dimensional hierarchical boron nitride foam with permittivity of 1.03 times that of air, density of 1.6 mg/cm(3), and thermal stability up to 1200 °C obtained by chemical vapor deposition on a nickel foam template. This BN foam exhibits complete recovery after cyclic compression exceeding 70% with permittivity within 1.12 times that of air. Gathering all these exceptional characters, the BN foam should create a breakthrough development of flexible ultralow-permittivity dielectrics and ultralight materials.Dielectrics with ultralow permittivity within 2 times that of air, excellent mechanical performance, and high thermal stability are highly attractive to many applications. However, since the finding of silica aerogels in the 1930s, no alternative ultralight porous dielectric with density below 10 mg/cm(3) has been developed. Here we present three-dimensional hierarchical boron nitride foam with permittivity of 1.03 times that of air, density of 1.6 mg/cm(3), and thermal stability up to 1200 °C obtained by chemical vapor deposition on a nickel foam template. This BN foam exhibits complete recovery after cyclic compression exceeding 70% with permittivity within 1.12 times that of air. Gathering all these exceptional characters, the BN foam should create a breakthrough development of flexible ultralow-permittivity dielectrics and ultralight materials.
Dielectrics with ultralow permittivity within 2 times that of air, excellent mechanical performance, and high thermal stability are highly attractive to many applications. However, since the finding of silica aerogels in the 1930s, no alternative ultralight porous dielectric with density below 10 mg/cm(3) has been developed. Here we present three-dimensional hierarchical boron nitride foam with permittivity of 1.03 times that of air, density of 1.6 mg/cm(3), and thermal stability up to 1200 °C obtained by chemical vapor deposition on a nickel foam template. This BN foam exhibits complete recovery after cyclic compression exceeding 70% with permittivity within 1.12 times that of air. Gathering all these exceptional characters, the BN foam should create a breakthrough development of flexible ultralow-permittivity dielectrics and ultralight materials.
Author Zhou, Jianxin
Yin, Jun
Li, Xuemei
Guo, Wanlin
AuthorAffiliation Nanjing University of Aeronautics and Astronautics
AuthorAffiliation_xml – name: Nanjing University of Aeronautics and Astronautics
Author_xml – sequence: 1
  givenname: Jun
  surname: Yin
  fullname: Yin, Jun
– sequence: 2
  givenname: Xuemei
  surname: Li
  fullname: Li, Xuemei
– sequence: 3
  givenname: Jianxin
  surname: Zhou
  fullname: Zhou, Jianxin
– sequence: 4
  givenname: Wanlin
  surname: Guo
  fullname: Guo, Wanlin
  email: wlguo@nuaa.edu.cn
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27572043$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23799859$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEYhYNU7Icu_AOSjWAXY_MxmUyWWlsVigq2W0Nu5o03JZNck0xL_72Re1tBCm6SvOE5h5dzDtFeTBEQeknJW0oYPYmhJ5ST8eYJOqCCk25Qiu09vMd-Hx2Wck0IUVyQZ2ifcanUKNQB-nEVajbB_1xXfLnOAN0HP0MsPkUT8PuUU8RffM1-AnyezIxvfV3jrSjd4m-QZ1-rv_H1Dps44e_LBjIEU6q37e85eupMKPBidx-hq_Ozy9NP3cXXj59P3110hsuxdk5INVmqBjO2WcEAMFkO_WoUo5x6O4JbMe6EZYZTxhyfuBucBUegHXbFj9Cbre8mp18LlKpnXyyEYCKkpWgqBe9lL5j4P9orRfkgJG3oqx26rGaY9Cb72eQ7fR9fA17vAFOsCS6baH35y0khGel54062nM2plAxOt3BMbSG3HH3QlOg_ReqHIpvi-B_Fvelj7G4LY4u-Tktu1ZVHuN-FoqsE
CitedBy_id crossref_primary_10_1002_cnma_201700148
crossref_primary_10_1002_bkcs_10712
crossref_primary_10_1016_j_coco_2018_11_002
crossref_primary_10_1021_acsnano_1c09668
crossref_primary_10_1021_am504777g
crossref_primary_10_1016_j_matlet_2017_12_065
crossref_primary_10_1016_j_mtnano_2019_01_002
crossref_primary_10_1016_j_jwpe_2024_105916
crossref_primary_10_1038_s41598_019_52788_0
crossref_primary_10_1021_acsami_0c16866
crossref_primary_10_1016_j_compositesb_2019_106915
crossref_primary_10_1016_j_jeurceramsoc_2021_01_037
crossref_primary_10_1016_j_compositesb_2021_109129
crossref_primary_10_1002_adfm_202414042
crossref_primary_10_1088_2053_1591_ab5c6c
crossref_primary_10_1039_D0TA05542E
crossref_primary_10_1016_j_ceramint_2024_02_013
crossref_primary_10_1016_j_mser_2020_100580
crossref_primary_10_1038_srep10337
crossref_primary_10_1016_j_ceramint_2018_09_283
crossref_primary_10_1016_j_ceramint_2022_11_076
crossref_primary_10_1016_j_mattod_2017_04_027
crossref_primary_10_1039_C5NR01981H
crossref_primary_10_1016_j_ceramint_2023_12_037
crossref_primary_10_1002_smll_201600053
crossref_primary_10_1016_j_mtcomm_2015_06_001
crossref_primary_10_1021_acsanm_4c04370
crossref_primary_10_1016_j_ceramint_2024_09_011
crossref_primary_10_1002_sus2_239
crossref_primary_10_1016_j_ceramint_2020_09_010
crossref_primary_10_1007_s42114_021_00286_1
crossref_primary_10_1016_j_fuel_2019_116448
crossref_primary_10_1016_j_mattod_2024_03_002
crossref_primary_10_3390_mi9010023
crossref_primary_10_1002_adma_201704850
crossref_primary_10_1007_s12274_016_1338_9
crossref_primary_10_1063_1_4997774
crossref_primary_10_1021_acsapm_0c00445
crossref_primary_10_1016_j_ceramint_2022_10_259
crossref_primary_10_3365_KJMM_2021_59_7_505
crossref_primary_10_1038_ncomms9849
crossref_primary_10_1021_jz4026535
crossref_primary_10_1109_TDMR_2018_2829156
crossref_primary_10_1126_science_aav7304
crossref_primary_10_1186_s42252_023_00042_2
crossref_primary_10_1039_D3MH00845B
crossref_primary_10_1002_adma_201601812
crossref_primary_10_1007_s11664_015_4123_8
crossref_primary_10_1088_0957_4484_25_10_105701
crossref_primary_10_1039_C5CP02192H
crossref_primary_10_1039_C6RA18833H
crossref_primary_10_1007_s10853_015_9180_0
crossref_primary_10_1002_adfm_201909604
crossref_primary_10_1002_adfm_201910709
crossref_primary_10_2478_bsmm_2024_0015
crossref_primary_10_1002_cnma_201900646
crossref_primary_10_1002_smll_201400292
crossref_primary_10_1039_C7RA09297K
crossref_primary_10_1016_j_compositesa_2017_04_018
crossref_primary_10_1021_acs_nanolett_0c04917
crossref_primary_10_1021_acsami_5b02552
crossref_primary_10_1016_j_ijbiomac_2024_133766
crossref_primary_10_1080_03602559_2017_1354253
crossref_primary_10_1016_j_mser_2025_100968
crossref_primary_10_1016_j_apenergy_2019_01_153
crossref_primary_10_1016_j_ceramint_2022_08_188
crossref_primary_10_1016_j_jcis_2017_04_039
crossref_primary_10_1002_adma_202311335
crossref_primary_10_1016_j_jmrt_2023_01_072
crossref_primary_10_1021_acsanm_1c03183
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120268
crossref_primary_10_1016_j_jhazmat_2021_126385
crossref_primary_10_1021_acsnano_9b02182
crossref_primary_10_1039_C8RA06445H
crossref_primary_10_1021_acs_chemmater_4c00582
crossref_primary_10_1016_j_compositesa_2016_12_002
crossref_primary_10_1021_acsnano_0c09678
crossref_primary_10_1002_adfm_201801205
crossref_primary_10_1021_acsnano_7b03291
crossref_primary_10_22261_FNAN_UMPBGN
crossref_primary_10_26599_NR_2025_94907008
crossref_primary_10_1021_acs_jpclett_2c01431
crossref_primary_10_1016_j_cej_2019_122833
crossref_primary_10_1063_5_0060948
crossref_primary_10_1039_C6CS00218H
crossref_primary_10_1126_sciadv_aay6689
crossref_primary_10_1109_TED_2019_2937340
crossref_primary_10_1021_acs_chemmater_7b04800
crossref_primary_10_1093_nsr_nwad129
crossref_primary_10_1038_s41467_020_14875_z
crossref_primary_10_1039_C8MH01219A
crossref_primary_10_1002_admt_202400106
crossref_primary_10_1021_acsnano_6b06601
crossref_primary_10_1016_j_apsusc_2017_01_066
crossref_primary_10_1016_j_jhazmat_2023_132481
crossref_primary_10_1021_acsami_8b02081
crossref_primary_10_1016_j_mattod_2014_04_003
crossref_primary_10_1039_D1TA02412D
crossref_primary_10_1021_acs_chemmater_9b02551
crossref_primary_10_1002_ente_201700618
crossref_primary_10_1016_j_commatsci_2020_110121
crossref_primary_10_1021_nn500059s
crossref_primary_10_3390_nano13081305
crossref_primary_10_1016_j_jeurceramsoc_2022_05_040
crossref_primary_10_1016_j_actbio_2020_07_043
crossref_primary_10_1002_smm2_1199
crossref_primary_10_1021_acsnano_5b00087
crossref_primary_10_1016_j_nantod_2019_100799
crossref_primary_10_1021_acsnano_6b08218
crossref_primary_10_3390_polym15183796
crossref_primary_10_1021_acsomega_8b00707
crossref_primary_10_1016_j_carbon_2016_10_034
crossref_primary_10_1007_s10854_017_8037_5
crossref_primary_10_3390_ma15103522
crossref_primary_10_1088_1755_1315_781_5_052016
crossref_primary_10_1021_acs_nanolett_0c00917
crossref_primary_10_1038_s41586_022_04784_0
crossref_primary_10_1002_adfm_202005928
crossref_primary_10_1021_acsami_6b13328
crossref_primary_10_1073_pnas_1713805114
crossref_primary_10_1016_j_compscitech_2017_09_032
crossref_primary_10_1039_D1TA08930G
crossref_primary_10_3390_nano10091652
crossref_primary_10_1021_acsami_3c09996
crossref_primary_10_1021_acsami_9b02869
crossref_primary_10_1111_jace_19318
crossref_primary_10_1002_adma_202307690
crossref_primary_10_1039_C7PY00570A
crossref_primary_10_1002_pol_20200507
crossref_primary_10_1039_C9RA07835E
crossref_primary_10_1002_adfm_201701450
crossref_primary_10_1016_j_mattod_2014_07_006
crossref_primary_10_1002_app_42037
crossref_primary_10_1016_j_coco_2016_10_002
crossref_primary_10_1016_j_nanoen_2015_02_015
crossref_primary_10_1039_C6RA07751J
crossref_primary_10_1016_j_apsusc_2021_149655
crossref_primary_10_1038_am_2015_8
crossref_primary_10_1002_adma_202401299
crossref_primary_10_1021_acsami_4c09506
crossref_primary_10_1016_j_chemosphere_2023_140530
crossref_primary_10_1007_s10853_021_05824_2
crossref_primary_10_1016_j_ceramint_2017_12_166
crossref_primary_10_1016_j_mser_2018_06_002
crossref_primary_10_1039_C7RA03808A
crossref_primary_10_1002_smll_201501439
crossref_primary_10_1016_j_diamond_2021_108740
crossref_primary_10_1016_j_mattod_2020_09_034
crossref_primary_10_1007_s12274_022_5063_2
crossref_primary_10_1021_acsami_7b16198
crossref_primary_10_1002_adem_202001351
crossref_primary_10_1002_tcr_202000079
crossref_primary_10_1016_j_cej_2021_129896
crossref_primary_10_3390_cryst13071029
crossref_primary_10_1088_1361_6528_ac7c23
crossref_primary_10_1016_j_cej_2014_01_033
crossref_primary_10_1039_C8TC04652B
crossref_primary_10_1002_adem_201500424
crossref_primary_10_1016_j_compositesa_2024_108176
crossref_primary_10_1002_adom_202300737
crossref_primary_10_1002_pol_20220179
crossref_primary_10_1016_j_ceramint_2023_04_187
crossref_primary_10_1016_j_jmst_2022_10_077
crossref_primary_10_1007_s12274_020_2897_3
crossref_primary_10_1002_smll_201500210
crossref_primary_10_1557_jmr_2014_226
crossref_primary_10_1016_j_ijheatmasstransfer_2017_08_047
crossref_primary_10_1039_C7RA06297D
crossref_primary_10_1016_j_cplett_2020_138002
crossref_primary_10_1080_15376494_2022_2055242
crossref_primary_10_1021_acsanm_3c03432
crossref_primary_10_1039_D0TB02021D
crossref_primary_10_1016_j_cej_2024_156224
crossref_primary_10_1016_j_snb_2015_09_138
crossref_primary_10_1039_D2TA08264K
crossref_primary_10_1021_acsami_8b08680
crossref_primary_10_1016_j_carbon_2018_07_018
crossref_primary_10_1016_j_nantod_2023_102011
crossref_primary_10_1021_acsnano_5b05533
crossref_primary_10_1002_adfm_201603181
crossref_primary_10_1016_j_cej_2019_05_013
crossref_primary_10_1021_nn402452p
crossref_primary_10_1038_srep24187
crossref_primary_10_1016_j_jmst_2020_10_018
crossref_primary_10_1021_acsnano_1c07755
crossref_primary_10_1002_smll_201502173
crossref_primary_10_1016_j_surfin_2024_105258
crossref_primary_10_1007_s12274_023_6369_4
crossref_primary_10_1016_j_mtener_2019_100363
crossref_primary_10_1016_j_mattod_2020_11_020
crossref_primary_10_1016_j_polymer_2022_125440
crossref_primary_10_1021_acs_iecr_1c02217
crossref_primary_10_1002_adfm_201500001
crossref_primary_10_1038_s41467_020_17533_6
crossref_primary_10_1021_acs_chemmater_5b00505
crossref_primary_10_1021_jacs_6b02262
crossref_primary_10_1002_aenm_201601906
Cites_doi 10.1126/science.286.5439.421
10.1038/nmat3001
10.1038/nnano.2010.172
10.1016/j.actamat.2012.03.007
10.1126/science.1211649
10.1038/ncomms2251
10.1021/nl1022139
10.1021/nn1006495
10.1109/45.954642
10.1021/cm00058a028
10.1002/adma.201200491
10.1021/nl1023707
10.1038/nnano.2012.118
10.1017/CBO9781139878326
10.1021/nl203249a
10.1021/nn303082a
10.1126/science.1104962
10.1002/adma.200902986
10.1016/S0022-3093(98)00054-4
10.1021/nn301675f
10.1038/nnano.2007.186
10.1021/nl0808684
10.1002/smll.201001628
10.1111/j.1551-2916.1999.tb20075.x
10.1002/smll.201100990
10.1038/nature11408
10.1038/nmat2968
10.1038/127741a0
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
2014 INIST-CNRS
Copyright_xml – notice: Copyright © 2013 American Chemical Society
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7X8
7QQ
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nl401308v
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
Ceramic Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1530-6992
EndPage 3236
ExternalDocumentID 23799859
27572043
10_1021_nl401308v
b791958048
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
AAYOK
AFFNX
IQODW
NPM
7X8
7QQ
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a378t-f579dc196a83789e6eedc3e4b8587d4c8efb23f5c2a3122f3d3f6fcef0ecefcb3
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Thu Jul 10 18:14:50 EDT 2025
Fri Jul 11 09:08:47 EDT 2025
Mon Jul 21 05:49:35 EDT 2025
Wed Apr 02 07:24:35 EDT 2025
Tue Jul 01 00:42:54 EDT 2025
Thu Apr 24 22:50:21 EDT 2025
Thu Aug 27 13:50:16 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords superelasticity
aerogels
Ultralight
three-dimensional
boron nitride
ultralow permittivity
Aerogels
CVD
Thermal properties
Superelasticity
Dielectric materials
Porous materials
Boron nitride
Template reaction
Nickel
Permittivity
Silica
Thermal stability
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a378t-f579dc196a83789e6eedc3e4b8587d4c8efb23f5c2a3122f3d3f6fcef0ecefcb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23799859
PQID 1499136571
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_1753474525
proquest_miscellaneous_1499136571
pubmed_primary_23799859
pascalfrancis_primary_27572043
crossref_citationtrail_10_1021_nl401308v
crossref_primary_10_1021_nl401308v
acs_journals_10_1021_nl401308v
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-10
PublicationDateYYYYMMDD 2013-07-10
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-10
  day: 10
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Kim K. H. (ref4/cit4) 2012; 7
Levendorf M. P. (ref21/cit21) 2012; 488
Mecklenburg M. (ref6/cit6) 2012; 24
Miller R. D. (ref1/cit1) 1999; 286
ref3/cit3
Fazen P. J. (ref22/cit22) 1995; 7
Song L. (ref17/cit17) 2010; 10
Jacobson N. (ref29/cit29) 1999; 82
Qiu L. (ref9/cit9) 2012; 3
Yamamoto M. (ref11/cit11) 2012; 6
Mishima O. (ref24/cit24) 2000
Schaedler T. A. (ref10/cit10) 2011; 334
Xue J. (ref20/cit20) 2011; 10
Cao X. (ref8/cit8) 2011; 7
Hata K. (ref14/cit14) 2004; 306
Liu L. (ref12/cit12) 2008; 8
Shi Y. (ref23/cit23) 2010; 10
Chen Z. (ref7/cit7) 2011; 10
Torrents A. (ref27/cit27) 2012; 60
Gorbachev R. V. (ref25/cit25) 2011; 7
Aranda L. L. (ref30/cit30) 2001; 20
Gibson L. J. (ref26/cit26) 1997
Golberg D. (ref16/cit16) 2010; 4
Kistler S. S. (ref2/cit2) 1931; 127
Dean C. R. (ref19/cit19) 2010; 5
Gui X. (ref5/cit5) 2010; 22
Schmidt M. (ref13/cit13) 1998; 225
Kim K. K. (ref18/cit18) 2012; 12
Suhr J. (ref28/cit28) 2007; 2
Kim K. K. (ref15/cit15) 2012; 6
References_xml – volume: 286
  start-page: 421
  issue: 5439
  year: 1999
  ident: ref1/cit1
  publication-title: Science
  doi: 10.1126/science.286.5439.421
– volume: 10
  start-page: 424
  issue: 6
  year: 2011
  ident: ref7/cit7
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3001
– volume: 5
  start-page: 722
  issue: 10
  year: 2010
  ident: ref19/cit19
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.172
– volume: 60
  start-page: 3511
  issue: 8
  year: 2012
  ident: ref27/cit27
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.03.007
– volume: 334
  start-page: 962
  issue: 6058
  year: 2011
  ident: ref10/cit10
  publication-title: Science
  doi: 10.1126/science.1211649
– volume: 3
  start-page: 1241
  year: 2012
  ident: ref9/cit9
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2251
– volume: 10
  start-page: 3209
  issue: 8
  year: 2010
  ident: ref17/cit17
  publication-title: Nano Lett.
  doi: 10.1021/nl1022139
– volume-title: Electric Refractory Materials
  year: 2000
  ident: ref24/cit24
– volume: 4
  start-page: 2979
  issue: 6
  year: 2010
  ident: ref16/cit16
  publication-title: ACS Nano
  doi: 10.1021/nn1006495
– volume: 20
  start-page: 12
  year: 2001
  ident: ref30/cit30
  publication-title: Potentials, IEEE
  doi: 10.1109/45.954642
– volume: 7
  start-page: 1942
  issue: 10
  year: 1995
  ident: ref22/cit22
  publication-title: Chem. Mater.
  doi: 10.1021/cm00058a028
– volume: 24
  start-page: 3486
  issue: 26
  year: 2012
  ident: ref6/cit6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200491
– volume: 10
  start-page: 4134
  issue: 10
  year: 2010
  ident: ref23/cit23
  publication-title: Nano Lett.
  doi: 10.1021/nl1023707
– volume: 7
  start-page: 562
  issue: 9
  year: 2012
  ident: ref4/cit4
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.118
– volume-title: Cellular Solids Structure and Properties
  year: 1997
  ident: ref26/cit26
  doi: 10.1017/CBO9781139878326
– volume: 12
  start-page: 161
  issue: 1
  year: 2012
  ident: ref18/cit18
  publication-title: Nano Lett.
  doi: 10.1021/nl203249a
– volume: 6
  start-page: 8335
  issue: 9
  year: 2012
  ident: ref11/cit11
  publication-title: ACS Nano
  doi: 10.1021/nn303082a
– ident: ref3/cit3
– volume: 306
  start-page: 1362
  issue: 5700
  year: 2004
  ident: ref14/cit14
  publication-title: Science
  doi: 10.1126/science.1104962
– volume: 22
  start-page: 617
  issue: 5
  year: 2010
  ident: ref5/cit5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200902986
– volume: 225
  start-page: 364
  year: 1998
  ident: ref13/cit13
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(98)00054-4
– volume: 6
  start-page: 8583
  issue: 10
  year: 2012
  ident: ref15/cit15
  publication-title: ACS Nano
  doi: 10.1021/nn301675f
– volume: 2
  start-page: 417
  issue: 7
  year: 2007
  ident: ref28/cit28
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.186
– volume: 8
  start-page: 1965
  issue: 7
  year: 2008
  ident: ref12/cit12
  publication-title: Nano Lett.
  doi: 10.1021/nl0808684
– volume: 7
  start-page: 465
  issue: 4
  year: 2011
  ident: ref25/cit25
  publication-title: Small
  doi: 10.1002/smll.201001628
– volume: 82
  start-page: 393
  issue: 2
  year: 1999
  ident: ref29/cit29
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.1999.tb20075.x
– volume: 7
  start-page: 3163
  issue: 22
  year: 2011
  ident: ref8/cit8
  publication-title: Small
  doi: 10.1002/smll.201100990
– volume: 488
  start-page: 627
  issue: 7413
  year: 2012
  ident: ref21/cit21
  publication-title: Nature
  doi: 10.1038/nature11408
– volume: 10
  start-page: 282
  issue: 4
  year: 2011
  ident: ref20/cit20
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2968
– volume: 127
  start-page: 741
  issue: 3211
  year: 1931
  ident: ref2/cit2
  publication-title: Nature
  doi: 10.1038/127741a0
SSID ssj0009350
Score 2.5182152
Snippet Dielectrics with ultralow permittivity within 2 times that of air, excellent mechanical performance, and high thermal stability are highly attractive to many...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3232
SubjectTerms Boron nitride
Chemical synthesis methods
Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science; rheology
Density
Dielectric constant
Dielectric, piezoelectric, ferroelectric and antiferroelectric materials
Dielectrics
Dielectrics, piezoelectrics, and ferroelectrics and their properties
Exact sciences and technology
Foams
Materials science
Methods of deposition of films and coatings; film growth and epitaxy
Methods of nanofabrication
Permittivity
Physics
Thermal properties of condensed matter
Thermal properties of small particles, nanocrystals, nanotubes
Thermal stability
Three dimensional
Title Ultralight Three-Dimensional Boron Nitride Foam with Ultralow Permittivity and Superelasticity
URI http://dx.doi.org/10.1021/nl401308v
https://www.ncbi.nlm.nih.gov/pubmed/23799859
https://www.proquest.com/docview/1499136571
https://www.proquest.com/docview/1753474525
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ZS8QwEB48XhTxPtZjiceDL13bpG3SR69FBEXQBZ8saZrA4tpd3K6Cv95Jj1XxeulDmdA2M9NvJpN8A3AgmDGeEoGTSqodnyfCSRDpHDdSOpJSIejbA85X1-FFx7-8D-4nYP-XCj71jrKeTQFc8TIJ0zQU3GZYx6e3H8y6rGjDip6LeVAk_Jo-6PNQCz1q-AV65gZyiLNgyvYVv8eXBc60F-CsPq1Tbi95bI3ypKXevpM3_vUJizBfxZnkuDSMJZjQ2TLMfmIfXIGHTq9Y5sDsnNyhSrVzZqn-S5oOcmKpDch1N3_uppq0-_KJ2DVbUg7qv5Ibu40mL5tPEJml5HY00PZojGV-xnur0Gmf351eOFW7BUcyLnLHBDxKFXqktCTzkQ4RPhXTfiICwVNfCW0SykygqGQepYalzIRGaeNqvKiErcFU1s_0BhAcqzyXsUhy6kuMCWiCYY_28f8RphigNaCJ-ogrdxnGRSWcevF4ohpwWKsqVhVZue2Z0ftJdG8sOigZOn4San7R91iS8sC26WEN2K0NIEYHs1UTmen-CN8Nc0K7F5B7f8hg0udzWyJuwHppPR9PYBxT2iDa_O-bt2CGFr02OGLjNkzlzyO9gxFPnjQLi38H3Dj8HA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9tAEB5ROLQVgpY-CIWwoFbiYhrv2tn1gQOPRqFAVIlE4oRZr3db1OBE2AHBT-lf6Z_rrO0kgHickHrxwZpd72M8j53ZbwA-C2aMq4TvxJJqx-ORcCLUdE4tUDqQUqHStxecD1r1Zsf7fuQfTcCf4V0YHESKPaV5EH-MLuB-TbrWE6iJizKBck9fXaJ7lm7s7uBefqG08a293XTKCgKOZFxkjvF5ECtkMmlx0wNdR42gmPYi4Qsee0poE1FmfEUlcyk1LGambpQ2NY0PFTHs9wVModFDrWO3uX04BvRlefVXFBjofgXCG6IW3Ryq1XgqvaXxpvsyxcU3RdWMh83aXL01ZuHvaGHyrJbf64MsWlfXdzAj_8-VewMzpVVNNovf4C1M6GQOXt_AWnwHx51ufqjz81dG2sjA2tmxhQ0KUBKyZYEcSOs0Oz-NNWn05BmxJ9SkaNS7JD9s0lBWlNogMonJ4aCv7UUgi3ON795D51km-AEmk16i54FgW-XWGAskp55EC4hGaORpD6VlPUZztAJV3JewFA5pmMf9qRuONqYCa0MOCVUJzW4rhHTvI10dkfYLPJL7iKq32GxESblvixKxCqwM-S5EcWJjRDLRvQGODT1gm_nI3Udo0MX1uA2IV-BjwbTjLzCODrwfLDw152V42Wwf7If7u629T_CK5lVGOFoFizCZnQ_0Etp6WVTNfzoCJ8_Nq_8AIyNjUA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1fT9RAEJ8gJkZixH_gIZ6r0cSXwnW3vd0-8ICcFxC9kMAlPFm3210gHL0L7UH0w_hV_GrMtL0DDOoTiS99aGbb3Z3ZnZmd2d8AvFXCOd-o0Es1t14gE-UlqOm8VmRspLVBpU8XnL_02pv94NN-uD8DPyd3YbATOX4pL4P4tKpHqasRBvzVbEDeQEud1UmU2_b7Obpo-dpWB_n5jvPux72NTa-uIuBpIVXhuVBGqUFB04SdHtk2agUjbJCoUMk0MMq6hAsXGq6Fz7kTqXBtZ6xrWXyYROB378BdCg-Sc7e-sXsJ6ivKCrC4aaALFqlgglx0tauk9Ux-Tes9GOkcGeCqyhl_Nm1LFdedh1_TySkzW45XxkWyYn78hhv5_87eI3hYW9dsvVoOj2HGZk9g7grm4lP42h-UhzsHhwXbQ0G2XocKHFTgJOwDATqw3lFxepRa1h3qE0Yn1axqNDxnO5Q8VFQlN5jOUrY7Hlm6EER41_juGfRvZYALMJsNM_scGLY1fkuISEseaLSEeILGng1w12ynaJY2oIm8ietNIo_L-D_34yljGvB-IiWxqSHaqVLI4CbSN1PSUYVLchNR85qoTSm5DKk4kWjA64nsxbitUKxIZ3Y4xr6hJ0wZkNL_Cw26uoGkwHgDFivBvfyDkOjIh9HSv8b8Cu7tdLrx563e9gu4z8tiIxKNg2WYLU7H9iWafEXSLNcdg2-3LaoXsHBl0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultralight+Three-Dimensional+Boron+Nitride+Foam+with+Ultralow+Permittivity+and+Superelasticity&rft.jtitle=Nano+letters&rft.au=JUN+YIN&rft.au=XUEMEI+LI&rft.au=JIANXIN+ZHOU&rft.au=WANLIN+GUO&rft.date=2013-07-10&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.volume=13&rft.issue=7&rft.spage=3232&rft.epage=3236&rft_id=info:doi/10.1021%2Fnl401308v&rft.externalDBID=n%2Fa&rft.externalDocID=27572043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon