Metal flux from hydrothermal vents increased by organic complexation
Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Mounting evidence suggests that organic compounds bind to and stabilize metals in hydrothermal fluids, thereby increasing metal flux to the open ocean. Hydrothermal vents in the sea floor release...
Saved in:
Published in | Nature geoscience Vol. 4; no. 3; pp. 145 - 150 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2011
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Mounting evidence suggests that organic compounds bind to and stabilize metals in hydrothermal fluids, thereby increasing metal flux to the open ocean.
Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Until recently, it was assumed that most of the metal released was incorporated into sulphide or oxide minerals, and that the net flux of most hydrothermally derived metals to the open ocean was negligible. However, mounting evidence suggests that organic compounds bind to and stabilize metals in hydrothermal fluids, increasing trace-metal flux to the global ocean.
In situ
measurements reveal that hydrothermally derived chromium, copper and iron bind to organic molecules on mixing with sea water. Geochemical model simulations based on data from two hydrothermal vent sites suggest that complexation significantly increases metal flux from hydrothermal systems. According to these simulations, hydrothermal fluids could account for 9% and 14% of the deep-ocean dissolved iron and copper budgets respectively. A similar role for organic complexation can be inferred for the hydrothermal fluxes of other metals, such as manganese and zinc. |
---|---|
AbstractList | Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Until recently, it was assumed that most of the metal released was incorporated into sulphide or oxide minerals, and that the net flux of most hydrothermally derived metals to the open ocean was negligible. However, mounting evidence suggests that organic compounds bind to and stabilize metals in hydrothermal fluids, increasing trace-metal flux to the global ocean. In situ measurements reveal that hydrothermally derived chromium, copper and iron bind to organic molecules on mixing with sea water. Geochemical model simulations based on data from two hydrothermal vent sites suggest that complexation significantly increases metal flux from hydrothermal systems. According to these simulations, hydrothermal fluids could account for 9% and 14% of the deep-ocean dissolved iron and copper budgets respectively. A similar role for organic complexation can be inferred for the hydrothermal fluxes of other metals, such as manganese and zinc. Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Mounting evidence suggests that organic compounds bind to and stabilize metals in hydrothermal fluids, thereby increasing metal flux to the open ocean. Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Until recently, it was assumed that most of the metal released was incorporated into sulphide or oxide minerals, and that the net flux of most hydrothermally derived metals to the open ocean was negligible. However, mounting evidence suggests that organic compounds bind to and stabilize metals in hydrothermal fluids, increasing trace-metal flux to the global ocean. In situ measurements reveal that hydrothermally derived chromium, copper and iron bind to organic molecules on mixing with sea water. Geochemical model simulations based on data from two hydrothermal vent sites suggest that complexation significantly increases metal flux from hydrothermal systems. According to these simulations, hydrothermal fluids could account for 9% and 14% of the deep-ocean dissolved iron and copper budgets respectively. A similar role for organic complexation can be inferred for the hydrothermal fluxes of other metals, such as manganese and zinc. |
Author | Sander, Sylvia G. Koschinsky, Andrea |
Author_xml | – sequence: 1 givenname: Sylvia G. surname: Sander fullname: Sander, Sylvia G. email: sylvias@chemistry.otago.ac.nz organization: Department of Chemistry, Marine and Freshwater Chemistry, University of Otago – sequence: 2 givenname: Andrea surname: Koschinsky fullname: Koschinsky, Andrea organization: School of Engineering and Science, Earth and Space Sciences Program, Jacobs University Bremen |
BookMark | eNptkE9LAzEQxYNUsK2CHyHgRQ9bk012N3uUWv9AxYuelyQ7227ZTWqSSvvtjdaCFE8zPH5v5s2M0MBYAwhdUjKhhIlbswBLiRAnaEiLLE1IScTg0IuSn6GR9ytCcsKLbIjuXyDIDjfdZosbZ3u83NXOhiW4PsqfYILHrdEOpIcaqx22biFNq7G2_bqDrQytNefotJGdh4vfOkbvD7O36VMyf318nt7NE8kKERKAmgnguaxTymslKRREKlVyUZfQZHlTqkyVSihRpkCU5jTNdVGAYJIJzjM2Rlf7uWtnPzbgQ7WyG2fiyireTojgjPJITfaUdtZ7B02l2_CTMzjZdhH9pkV1-FQ0XB8Z1q7tpdv9h97sUR-RqLq_CY7YL3FTekI |
CitedBy_id | crossref_primary_10_1038_s41598_018_27407_z crossref_primary_10_1071_MF19167 crossref_primary_10_1155_2020_4260806 crossref_primary_10_1016_j_chemgeo_2016_08_027 crossref_primary_10_1111_gbi_12025 crossref_primary_10_1016_j_jmarsys_2022_103800 crossref_primary_10_1071_MF16335 crossref_primary_10_1016_j_chemgeo_2020_119982 crossref_primary_10_1016_j_marchem_2019_103672 crossref_primary_10_1038_s41467_019_09580_5 crossref_primary_10_1016_j_marchem_2014_10_001 crossref_primary_10_3354_meps10082 crossref_primary_10_1016_j_epsl_2011_12_031 crossref_primary_10_1016_j_lithos_2018_07_022 crossref_primary_10_3389_fmars_2016_00075 crossref_primary_10_1016_j_gca_2016_06_027 crossref_primary_10_1016_j_palaeo_2020_109598 crossref_primary_10_1016_j_epsl_2015_04_030 crossref_primary_10_1016_j_precamres_2017_05_006 crossref_primary_10_1016_j_chemgeo_2018_12_021 crossref_primary_10_1016_j_marchem_2014_10_012 crossref_primary_10_1016_j_gca_2019_04_026 crossref_primary_10_1016_j_marchem_2014_09_001 crossref_primary_10_1016_j_marchem_2015_04_007 crossref_primary_10_18654_1000_0569_2020_06_17 crossref_primary_10_1016_j_watres_2020_115923 crossref_primary_10_3389_feart_2015_00060 crossref_primary_10_1038_ismej_2012_63 crossref_primary_10_1109_JOE_2016_2552779 crossref_primary_10_1016_j_gca_2021_10_032 crossref_primary_10_1016_j_chemgeo_2018_08_006 crossref_primary_10_1016_j_palaeo_2018_01_047 crossref_primary_10_1029_2011GC003704 crossref_primary_10_1016_j_chemosphere_2015_01_006 crossref_primary_10_1002_elan_201500140 crossref_primary_10_3389_fmars_2024_1304118 crossref_primary_10_1016_j_marchem_2024_104401 crossref_primary_10_1080_02757540_2012_666531 crossref_primary_10_1073_pnas_1400643111 crossref_primary_10_2343_geochemj_2_0374 crossref_primary_10_1016_j_rgg_2015_09_003 crossref_primary_10_1016_j_chemgeo_2017_02_021 crossref_primary_10_1029_2012RG000393 crossref_primary_10_1016_j_chemgeo_2022_120756 crossref_primary_10_1371_journal_pone_0292593 crossref_primary_10_3847_PSJ_abfb7a crossref_primary_10_1371_journal_pone_0207774 crossref_primary_10_3389_fmicb_2024_1390451 crossref_primary_10_1016_j_marchem_2017_12_004 crossref_primary_10_1029_2018JC014713 crossref_primary_10_1038_nature14577 crossref_primary_10_3389_fmars_2019_00329 crossref_primary_10_1016_j_marchem_2017_08_003 crossref_primary_10_1071_EN17150 crossref_primary_10_1029_2021JB023597 crossref_primary_10_3389_fmars_2021_782734 crossref_primary_10_1016_j_epsl_2013_06_004 crossref_primary_10_1002_lno_12634 crossref_primary_10_1002_2015GC005831 crossref_primary_10_3354_meps13558 crossref_primary_10_1029_2023GL103738 crossref_primary_10_1016_j_epsl_2014_08_014 crossref_primary_10_1016_j_gca_2017_09_050 crossref_primary_10_52396_JUSTC_2022_0085 crossref_primary_10_1016_j_quascirev_2013_11_018 crossref_primary_10_1016_j_epsl_2022_117943 crossref_primary_10_1016_j_chemgeo_2019_01_001 crossref_primary_10_1016_j_epsl_2024_118916 crossref_primary_10_1002_jobm_201700580 crossref_primary_10_3389_fmars_2020_00568 crossref_primary_10_1038_s41467_017_01694_y crossref_primary_10_1016_j_margeo_2017_12_005 crossref_primary_10_1016_j_chemgeo_2016_05_001 crossref_primary_10_1038_ngeo2900 crossref_primary_10_1016_j_gca_2017_05_020 crossref_primary_10_1007_s12601_019_0032_8 crossref_primary_10_1016_j_epsl_2012_11_040 crossref_primary_10_3389_fmicb_2015_00994 crossref_primary_10_1016_j_gca_2014_05_038 crossref_primary_10_1016_j_epsl_2016_10_054 crossref_primary_10_1029_2018GC008082 crossref_primary_10_1016_j_gca_2020_01_031 crossref_primary_10_1007_s12517_023_11210_w crossref_primary_10_3389_fmars_2024_1426906 crossref_primary_10_1016_j_jmarsys_2022_103826 crossref_primary_10_1016_j_chemgeo_2020_119760 crossref_primary_10_1016_j_gca_2014_04_003 crossref_primary_10_22201_igl_05437652e_2018_7_1_217 crossref_primary_10_1016_j_epsl_2018_06_030 crossref_primary_10_1016_j_gca_2023_05_024 crossref_primary_10_1016_j_marchem_2012_07_001 crossref_primary_10_1016_j_scitotenv_2023_166714 crossref_primary_10_1038_s41598_022_25320_0 crossref_primary_10_1038_s43247_024_01689_w crossref_primary_10_1016_j_gca_2024_07_033 crossref_primary_10_1038_s41561_020_0579_0 crossref_primary_10_5194_bg_20_2613_2023 crossref_primary_10_1111_1462_2920_16285 crossref_primary_10_1016_j_marchem_2014_06_003 crossref_primary_10_1002_2017GL074384 crossref_primary_10_1016_j_orggeochem_2020_104141 crossref_primary_10_1016_j_gca_2019_08_018 crossref_primary_10_1016_j_marpolbul_2017_10_079 crossref_primary_10_3390_atmos10070414 crossref_primary_10_1016_j_gca_2020_09_016 crossref_primary_10_1016_j_marpol_2022_105006 crossref_primary_10_3389_fmars_2018_00531 crossref_primary_10_3389_fmicb_2017_01042 crossref_primary_10_1016_j_marchem_2012_03_002 crossref_primary_10_1016_j_dsr2_2015_06_004 crossref_primary_10_1038_s43247_022_00597_1 crossref_primary_10_1016_j_marchem_2025_104513 crossref_primary_10_3390_jmse12010046 crossref_primary_10_1029_2022GB007363 crossref_primary_10_1016_j_gca_2022_09_026 crossref_primary_10_1021_acsearthspacechem_0c00067 crossref_primary_10_1016_j_dsr_2021_103630 crossref_primary_10_1016_j_marchem_2011_10_003 crossref_primary_10_1016_j_marchem_2020_103841 crossref_primary_10_1038_s41598_021_97813_3 crossref_primary_10_1016_j_marchem_2015_10_003 crossref_primary_10_1016_j_gca_2022_05_002 crossref_primary_10_1016_j_gca_2019_06_045 crossref_primary_10_1016_j_marpolbul_2012_06_015 crossref_primary_10_5194_bg_21_5233_2024 crossref_primary_10_1016_j_marchem_2017_02_001 crossref_primary_10_1016_j_dsr2_2014_11_016 crossref_primary_10_1073_pnas_1418778111 crossref_primary_10_1016_j_chemgeo_2013_12_013 crossref_primary_10_1016_j_gca_2016_04_039 crossref_primary_10_1016_j_chemgeo_2020_119570 crossref_primary_10_1071_MF19213 crossref_primary_10_3389_fmars_2022_796376 crossref_primary_10_1016_j_dsr2_2014_11_013 crossref_primary_10_1016_j_margeo_2019_105975 crossref_primary_10_1089_ast_2021_0203 crossref_primary_10_1146_annurev_marine_032822_103431 crossref_primary_10_1016_j_dsr_2021_103529 crossref_primary_10_1098_rsta_2016_0035 crossref_primary_10_1073_pnas_1420188112 crossref_primary_10_1016_j_gca_2012_04_003 crossref_primary_10_1016_j_gca_2017_06_019 crossref_primary_10_1016_j_precamres_2016_10_007 crossref_primary_10_2343_geochemj_2_0408 crossref_primary_10_1016_j_epsl_2017_09_006 crossref_primary_10_1080_01490451_2018_1440035 crossref_primary_10_1007_s10498_021_09393_3 crossref_primary_10_1029_2017GB005839 crossref_primary_10_1126_sciadv_adh0474 crossref_primary_10_1134_S0016702915030040 crossref_primary_10_3389_fmicb_2022_845562 crossref_primary_10_1016_j_biteb_2022_101040 crossref_primary_10_1016_j_chemgeo_2024_121994 crossref_primary_10_1111_gbi_12336 crossref_primary_10_1111_gbi_12457 crossref_primary_10_1016_j_sesci_2020_06_001 crossref_primary_10_1016_j_precamres_2018_05_009 crossref_primary_10_1016_j_marpolbul_2020_111513 crossref_primary_10_1038_s41396_022_01195_x crossref_primary_10_1016_j_chemgeo_2020_119679 crossref_primary_10_1016_j_marchem_2017_06_011 crossref_primary_10_2343_geochemj_2_0545 crossref_primary_10_2343_geochemj_2_0300 crossref_primary_10_1016_j_epsl_2013_05_019 crossref_primary_10_1016_j_watres_2017_01_001 crossref_primary_10_1029_2011JG001679 crossref_primary_10_3389_fmars_2023_1219594 crossref_primary_10_1134_S1819714023020045 crossref_primary_10_3389_frmbi_2024_1401831 crossref_primary_10_1021_acsearthspacechem_1c00113 crossref_primary_10_1098_rsta_2015_0292 crossref_primary_10_1016_j_jaap_2015_04_005 crossref_primary_10_1016_j_envpol_2014_07_012 crossref_primary_10_1016_j_chemgeo_2017_11_005 crossref_primary_10_1038_s43247_024_01564_8 crossref_primary_10_3390_min11111233 crossref_primary_10_1016_j_marchem_2018_01_011 crossref_primary_10_1038_s41561_017_0044_x crossref_primary_10_3389_fmicb_2021_631885 crossref_primary_10_1002_2017GL073315 crossref_primary_10_1016_j_gca_2017_03_016 crossref_primary_10_1016_j_gca_2021_05_049 crossref_primary_10_1016_j_epsl_2013_05_047 crossref_primary_10_5194_bg_14_1123_2017 crossref_primary_10_1016_j_chemgeo_2020_120018 crossref_primary_10_1016_j_orggeochem_2017_05_003 crossref_primary_10_1038_s41396_021_01065_y crossref_primary_10_1126_science_adc8751 crossref_primary_10_1021_acsearthspacechem_0c00150 crossref_primary_10_1016_j_gca_2022_12_010 crossref_primary_10_1029_2019GB006326 crossref_primary_10_3389_fmars_2016_00139 crossref_primary_10_1016_j_chemgeo_2019_119379 crossref_primary_10_1016_j_gca_2019_06_004 crossref_primary_10_1007_s11001_016_9275_2 crossref_primary_10_1016_j_scitotenv_2021_145367 crossref_primary_10_3390_min10110969 crossref_primary_10_3847_PSJ_ad2462 crossref_primary_10_1016_j_epsl_2020_116297 crossref_primary_10_1038_ngeo1893 crossref_primary_10_1016_j_gca_2016_01_018 crossref_primary_10_1016_j_rsma_2021_102112 crossref_primary_10_3389_fmars_2017_00019 crossref_primary_10_1016_j_epsl_2015_03_012 crossref_primary_10_1021_acsearthspacechem_1c00377 crossref_primary_10_1038_ncomms4192 crossref_primary_10_1038_s43247_022_00518_2 crossref_primary_10_1134_S1028334X22040134 crossref_primary_10_1016_j_precamres_2018_02_009 crossref_primary_10_1016_j_gca_2022_06_038 crossref_primary_10_1016_j_dsr_2015_09_005 crossref_primary_10_1016_j_dsr2_2015_04_013 crossref_primary_10_1155_2018_7692839 crossref_primary_10_1016_j_gca_2015_08_012 crossref_primary_10_1016_j_epsl_2014_01_001 crossref_primary_10_1016_j_gsf_2018_12_005 crossref_primary_10_1002_2015GB005357 crossref_primary_10_1016_j_marchem_2017_05_012 crossref_primary_10_1016_j_marchem_2017_11_007 crossref_primary_10_1017_S1473550421000331 crossref_primary_10_1080_27669645_2021_2003009 crossref_primary_10_3390_min12101219 crossref_primary_10_1016_j_chemgeo_2015_07_021 crossref_primary_10_1002_2017JG004067 crossref_primary_10_1073_pnas_2300491120 crossref_primary_10_1016_j_chemgeo_2022_120942 crossref_primary_10_1016_j_chemgeo_2017_01_013 crossref_primary_10_1016_j_chemgeo_2021_120404 |
Cites_doi | 10.1038/ngeo818 10.2343/geochemj.1.0081 10.1186/1467-4866-9-6 10.1023/A:1004175211848 10.1126/science.1102556 10.1038/321033a0 10.1016/S0009-2541(01)00351-5 10.1016/S0144-8617(97)00109-4 10.1071/EN06086 10.1016/j.scitotenv.2008.09.056 10.1016/j.epsl.2006.02.043 10.1016/0304-4203(95)00031-L 10.1016/j.epsl.2004.06.001 10.1130/G24726A.1 10.1016/j.margeo.2009.07.012 10.1029/2005GB002505 10.1038/35071069 10.1073/pnas.1010963108 10.1016/j.dsr.2006.12.013 10.1029/144GM16 10.1186/1467-4866-2-65 10.1016/j.dsr.2006.09.003 10.4319/lo.2010.55.3.1271 10.1126/science.1132876 10.1016/j.epsl.2005.03.008 10.1016/j.gca.2009.10.045 10.1016/0016-7037(93)90343-U 10.1016/j.gca.2006.04.031 10.1016/j.epsl.2008.01.048 10.1016/S0012-821X(01)00397-1 10.1186/1467-4866-3-11 10.1029/2006GC001509 10.1071/EN04053 10.1038/ngeo433 10.1021/es801884r 10.1038/ngeo440 10.4319/lo.1989.34.2.0269 10.1126/science.1083545 10.1016/j.gca.2003.06.001 10.1016/0012-821X(79)90061-X 10.1146/annurev.earth.24.1.191 10.4319/lo.1988.33.5.1084 10.1016/j.chemgeo.2008.10.034 10.1016/S0304-4203(01)00074-3 10.1016/S0304-4203(00)00042-6 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2011 Copyright Nature Publishing Group Mar 2011 |
Copyright_xml | – notice: Springer Nature Limited 2011 – notice: Copyright Nature Publishing Group Mar 2011 |
DBID | AAYXX CITATION 7SN 7TG 7TN 7UA 8FE 8FH AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G LK8 M7P PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1038/ngeo1088 |
DatabaseName | CrossRef Ecology Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Biological Sciences Biological Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Biological Science Database ProQuest SciTech Collection Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1752-0908 |
EndPage | 150 |
ExternalDocumentID | 2721408411 10_1038_ngeo1088 |
GroupedDBID | 0R~ 123 29M 39C 5BI 5S5 70F 8FE 8FH AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ACBWK ACGFS ACPRK ACUHS ADBBV AENEX AEUYN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BKSAR CCPQU CS3 DB5 EBS EE. EJD EXGXG F5P FEDTE FQGFK FSGXE HCIFZ HVGLF HZ~ LK5 M7P M7R N9A NNMJJ O9- ODYON P2P PCBAR RNT RNTTT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG Y6R ~02 AAYXX AFANA ALPWD ATHPR CITATION PHGZM PHGZT 7SN 7TG 7TN 7UA AZQEC C1K DWQXO F1W GNUQQ H96 KL. L.G LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-a378t-eed38e46ad214dba1e70abb948d9ef56f9b5b9b8b892e0bc4126c77e83a384453 |
IEDL.DBID | BENPR |
ISSN | 1752-0894 |
IngestDate | Wed Jul 16 16:02:01 EDT 2025 Tue Jul 01 01:09:59 EDT 2025 Thu Apr 24 23:06:26 EDT 2025 Fri Feb 21 02:39:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a378t-eed38e46ad214dba1e70abb948d9ef56f9b5b9b8b892e0bc4126c77e83a384453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
PQID | 1030084314 |
PQPubID | 546301 |
PageCount | 6 |
ParticipantIDs | proquest_journals_1030084314 crossref_citationtrail_10_1038_ngeo1088 crossref_primary_10_1038_ngeo1088 springer_journals_10_1038_ngeo1088 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-03-01 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature geoscience |
PublicationTitleAbbrev | Nature Geosci |
PublicationYear | 2011 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | DittmarTPaengJA heat-induced molecular signature in marine dissolved organic matterNature Geosci.2009217517910.1038/ngeo440 KoschinskyAHydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5 degrees S on the Mid-Atlantic RidgeGeology20083661561810.1130/G24726A.1 SanderSGKoschinskyAMassothGJStottMHunterKAOrganic complexation of copper in deep-sea hydrothermal vent systemsEnviron. Chem.20074818910.1071/EN06086 BennettSAThe distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumesEarth Planet. Sci. Lett.200827015716710.1016/j.epsl.2008.01.048 SchmidtKFluid elemental and stable isotope composition of the Nibelungen hydrothermal field (8°18′S, Mid-Atlantic Ridge): Constraints on fluid origin in a heterogeneous lithosphere settingChem. Geol.20102801218 LilleyMDFeelyRATrefryJHSeafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions1995369391 SevermannSThe effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36 degrees 14′ NEarth Planet. Sci. Lett.2004225637610.1016/j.epsl.2004.06.001 SanderSKoschinskyAOnboard-ship redox speciation of chromium in diffuse hydrothermal fluids from the North Fiji BasinMar. Chem.2000718310210.1016/S0304-4203(00)00042-6 Von Damm, K. L. in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions (eds Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S. & Thomson, R. E.) 222–247 (Geophysical Monograph 91, American Geophysical Union, 1995). CoaleKHBrulandKWCopper complexation in the northeast PacificLimnol. Oceanogr.1988331084110110.4319/lo.1988.33.5.1084 MawjiEHydroxamate siderophores: Occurrence and importance in the Atlantic OceanEnviron. Sci. Technol.2008428675868010.1021/es801884r LutherGWIIIChemical speciation drives hydrothermal vent ecologyNature200141081381610.1038/35071069 DesbruyèresDA review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controlsHydrobiologia200044020121610.1023/A:1004175211848 BergquistBABoyleEADissolved iron in the tropical and subtropical Atlantic OceanGlob. Biogeochem. Cycles200620GB101510.1029/2005GB002505 UssherSJAchterbergEPWorsfoldPJMarine biogeochemistry of ironEnviron. Chem.20041678010.1071/EN04053 BoydPWIbisanmiESanderSGHunterKAJacksonGARemineralization of upper ocean particles: Implications for iron biogeochemistryLimnol. Oceanogr.2010551271128810.4319/lo.2010.55.3.1271 KelleyDSA serpentinite-hosted ecosystem: The Lost City hydrothermal fieldScience20053071428143410.1126/science.1102556 DupontCLMoffettJWBidigareRRAhnerBADistributions of dissolved and particulate biogenic thiols in the subartic Pacific OceanDeep-Sea Res. I2006531961197410.1016/j.dsr.2006.09.003 ChuN-CEvidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through timeEarth Planet. Sci. Lett.200624520221710.1016/j.epsl.2006.02.043 KonnCHydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted ventsChem. Geol.200925829931410.1016/j.chemgeo.2008.10.034 SchulteMDRogersKLThiols in hydrothermal solutions: standard partial molal properties and their role in the organic geochemistry of hydrothermal environmentsGeochim. Cosmochim. Acta2004681087109710.1016/j.gca.2003.06.001 EdmondJMRidge crest hydrothermal activity and the balances of the major and minor elements in the ocean - Galapagos DataEarth Planet. Sci. Lett.19794611810.1016/0012-821X(79)90061-X BrulandKWComplexation of zinc by natural organic ligands in the central north PacificLimnol. Oceanogr.19893226928510.4319/lo.1989.34.2.0269 SarradinPMSpeciation of dissolved copper within an active hydrothermal edifice on the Lucky Strike vent field (MAR, 37 degrees N)Sci. Total Environ.200940786987810.1016/j.scitotenv.2008.09.056 StathamPJGermanCRConnellyDPIron (II) distribution and oxidation kinetics in hydrothermal plumes at the Kairei and Edmond vent sites Indian OceanEarth Planet. Sci. Lett200526358859610.1016/j.epsl.2005.03.008 HanningtonMDde RondeCEJPetersenSEconomic Geology: One Hundredth Anniversary Volume: 1905–20052005111141 HaaseKMDiking, young volcanism and diffuse hydrothermal activity on the southern Mid-Atlantic Ridge: The Lilliput field at 9°33′SMar. Geol.2009266526410.1016/j.margeo.2009.07.012 HasslerCSSchoemannVNicholsCMButlerECVBoydPWSaccharides enhance iron bioavailability to Southern Ocean phytoplanktonP. Natl Acad. Sci. USA20111081076108110.1073/pnas.1010963108 RonaPAKlinkhammerGNelsonTATrefryJHElderfieldHBlack smokers, massive sulphides and vent biota at the Mid-Atlantic RidgeNature1986321333710.1038/321033a0 Von DammKLLilleyMDSubseafloor Biosphere at Mid-Ocean Ranges200424526810.1029/144GM16 MorelFMMPriceIGThe biogeochemical cycles of trace metals in the oceansScience200330094494710.1126/science.1083545 RueELBrulandKWComplexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new ligand equilibration/adsorptive cathodic stripping voltammetric methodMar. Chem.19955011713810.1016/0304-4203(95)00031-L DouvilleEThe Rainbow vent fluids (36°14′N, MAR): The influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluidsChem. Geol.2002184374810.1016/S0009-2541(01)00351-5 LangSQButterfieldDASchulteMKelleyDSLilleyMDElevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal fieldGeochim. Cosmochim. Acta20107494195210.1016/j.gca.2009.10.045 Hsu-KimHMullaughKMTsangJTYucelMLutherGWIIIFormation of Zn- and Fe-sulfides near hydrothermal vents at the Eastern Lau Spreading Center: implications for sulfide bioavailability to chemoautotrophsGeochem. Trans.20089610.1186/1467-4866-9-6 LangSQButterfieldDALilleyMDJohnsonHlPHedgesJIDissolved organic carbon in ridge-axes and ridge-flank hydrothermal systemsGeochim. Cosmochim. Acta2006703830384210.1016/j.gca.2006.04.031 LiuXMilleroFJThe solubility of iron in seawaterMar. Chem.200277435410.1016/S0304-4203(01)00074-3 MandernackKWTeboBMManganese scavanging and oxidation at hydrothermal vents and in vent plumesGeochim. Cosmochim. Acta1993573907392310.1016/0016-7037(93)90343-U HaaseKMYoung volcanism and related hydrothermal activity at 5°S on the slow-spreading southern Mid-Atlantic RidgeGeochem. Geophys. Geosyst.20078Q1100210.1029/2006GC001509 LutherGWIIIRozanTFWitterALewisBMetal-organic complexation in the marine environmentGeochem. Trans.200126510.1186/1467-4866-2-65 ByrneRHInorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratiosGeochem. Trans.20023111610.1186/1467-4866-3-11 TagliabueAHydrothermal contribution to the oceanic dissolved iron inventoryNature Geosci.2010325225610.1038/ngeo818 KlevenzVSumoondurAOstertag-HenningCKoschinskyAConcentrations and distributions of dissolved amino acids in fluids from Mid-Atlantic Ridge hydrothermal ventsGeochem. J.20104438739710.2343/geochemj.1.0081 LoaëcMOlierRGuezennecJChelating properties of bacterial exopolysaccharides from deep-sea hydrothermal ventsCarbohyd. Polym.199835657010.1016/S0144-8617(97)00109-4 HolmNGCharlouJLInitial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic RidgeEarth Planet. Sci. Lett.20011911810.1016/S0012-821X(01)00397-1 MoffettJWDupontCCu complexation by organic ligands in the sub-arctic NW Pacific and Bering SeaDeep-Sea Res. I20075458659510.1016/j.dsr.2006.12.013 TonerBMPreservation of iron(II) by carbon-rich matrices in a hydrothermal plumeNature Geosci.2009219720110.1038/ngeo433 ElderfieldHSchulzAMid-ocean ridge hydrothermal fluxes and the chemical composition of the oceanAnnu. Rev. Earth Planet. Sci.19962419122410.1146/annurev.earth.24.1.191 TrouwborstREClementBGTeboBMGlazerBTLutherGWIIISoluble Mn(III) in suboxic zonesScience20063131955195710.1126/science.1132876 C Konn (BFngeo1088_CR38) 2009; 258 E Mawji (BFngeo1088_CR43) 2008; 42 BFngeo1088_CR18 V Klevenz (BFngeo1088_CR40) 2010; 44 X Liu (BFngeo1088_CR21) 2002; 77 N-C Chu (BFngeo1088_CR29) 2006; 245 CL Dupont (BFngeo1088_CR41) 2006; 53 SG Sander (BFngeo1088_CR14) 2007; 4 BA Bergquist (BFngeo1088_CR24) 2006; 20 S Sander (BFngeo1088_CR13) 2000; 71 K Schmidt (BFngeo1088_CR5) 2010; 280 CS Hassler (BFngeo1088_CR44) 2011; 108 SJ Ussher (BFngeo1088_CR19) 2004; 1 RE Trouwborst (BFngeo1088_CR34) 2006; 313 H Elderfield (BFngeo1088_CR7) 1996; 24 M Loaëc (BFngeo1088_CR12) 1998; 35 S Severmann (BFngeo1088_CR28) 2004; 225 GW Luther III (BFngeo1088_CR31) 2001; 410 KH Coale (BFngeo1088_CR25) 1988; 33 JM Edmond (BFngeo1088_CR6) 1979; 46 H Hsu-Kim (BFngeo1088_CR32) 2008; 9 GW Luther III (BFngeo1088_CR10) 2001; 2 RH Byrne (BFngeo1088_CR9) 2002; 3 PM Sarradin (BFngeo1088_CR16) 2009; 407 KW Bruland (BFngeo1088_CR35) 1989; 32 MD Hannington (BFngeo1088_CR1) 2005 KL Von Damm (BFngeo1088_CR4) 2004 KM Haase (BFngeo1088_CR47) 2007; 8 MD Lilley (BFngeo1088_CR8) 1995 MD Schulte (BFngeo1088_CR42) 2004; 68 BM Toner (BFngeo1088_CR17) 2009; 2 KM Haase (BFngeo1088_CR3) 2009; 266 EL Rue (BFngeo1088_CR23) 1995; 50 D Desbruyères (BFngeo1088_CR49) 2000; 440 E Douville (BFngeo1088_CR26) 2002; 184 NG Holm (BFngeo1088_CR37) 2001; 191 FMM Morel (BFngeo1088_CR11) 2003; 300 PW Boyd (BFngeo1088_CR22) 2010; 55 A Tagliabue (BFngeo1088_CR27) 2010; 3 SA Bennett (BFngeo1088_CR15) 2008; 270 KW Mandernack (BFngeo1088_CR33) 1993; 57 SQ Lang (BFngeo1088_CR39) 2010; 74 PA Rona (BFngeo1088_CR46) 1986; 321 T Dittmar (BFngeo1088_CR45) 2009; 2 A Koschinsky (BFngeo1088_CR2) 2008; 36 DS Kelley (BFngeo1088_CR48) 2005; 307 JW Moffett (BFngeo1088_CR20) 2007; 54 SQ Lang (BFngeo1088_CR36) 2006; 70 PJ Statham (BFngeo1088_CR30) 2005; 263 |
References_xml | – reference: BennettSAThe distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumesEarth Planet. Sci. Lett.200827015716710.1016/j.epsl.2008.01.048 – reference: LutherGWIIIRozanTFWitterALewisBMetal-organic complexation in the marine environmentGeochem. Trans.200126510.1186/1467-4866-2-65 – reference: KlevenzVSumoondurAOstertag-HenningCKoschinskyAConcentrations and distributions of dissolved amino acids in fluids from Mid-Atlantic Ridge hydrothermal ventsGeochem. J.20104438739710.2343/geochemj.1.0081 – reference: SevermannSThe effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36 degrees 14′ NEarth Planet. Sci. Lett.2004225637610.1016/j.epsl.2004.06.001 – reference: DouvilleEThe Rainbow vent fluids (36°14′N, MAR): The influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluidsChem. Geol.2002184374810.1016/S0009-2541(01)00351-5 – reference: LoaëcMOlierRGuezennecJChelating properties of bacterial exopolysaccharides from deep-sea hydrothermal ventsCarbohyd. Polym.199835657010.1016/S0144-8617(97)00109-4 – reference: SarradinPMSpeciation of dissolved copper within an active hydrothermal edifice on the Lucky Strike vent field (MAR, 37 degrees N)Sci. Total Environ.200940786987810.1016/j.scitotenv.2008.09.056 – reference: LutherGWIIIChemical speciation drives hydrothermal vent ecologyNature200141081381610.1038/35071069 – reference: HaaseKMDiking, young volcanism and diffuse hydrothermal activity on the southern Mid-Atlantic Ridge: The Lilliput field at 9°33′SMar. Geol.2009266526410.1016/j.margeo.2009.07.012 – reference: Von DammKLLilleyMDSubseafloor Biosphere at Mid-Ocean Ranges200424526810.1029/144GM16 – reference: MoffettJWDupontCCu complexation by organic ligands in the sub-arctic NW Pacific and Bering SeaDeep-Sea Res. I20075458659510.1016/j.dsr.2006.12.013 – reference: CoaleKHBrulandKWCopper complexation in the northeast PacificLimnol. Oceanogr.1988331084110110.4319/lo.1988.33.5.1084 – reference: DupontCLMoffettJWBidigareRRAhnerBADistributions of dissolved and particulate biogenic thiols in the subartic Pacific OceanDeep-Sea Res. I2006531961197410.1016/j.dsr.2006.09.003 – reference: SchmidtKFluid elemental and stable isotope composition of the Nibelungen hydrothermal field (8°18′S, Mid-Atlantic Ridge): Constraints on fluid origin in a heterogeneous lithosphere settingChem. Geol.20102801218 – reference: BrulandKWComplexation of zinc by natural organic ligands in the central north PacificLimnol. Oceanogr.19893226928510.4319/lo.1989.34.2.0269 – reference: Hsu-KimHMullaughKMTsangJTYucelMLutherGWIIIFormation of Zn- and Fe-sulfides near hydrothermal vents at the Eastern Lau Spreading Center: implications for sulfide bioavailability to chemoautotrophsGeochem. Trans.20089610.1186/1467-4866-9-6 – reference: BergquistBABoyleEADissolved iron in the tropical and subtropical Atlantic OceanGlob. Biogeochem. Cycles200620GB101510.1029/2005GB002505 – reference: StathamPJGermanCRConnellyDPIron (II) distribution and oxidation kinetics in hydrothermal plumes at the Kairei and Edmond vent sites Indian OceanEarth Planet. Sci. Lett200526358859610.1016/j.epsl.2005.03.008 – reference: MorelFMMPriceIGThe biogeochemical cycles of trace metals in the oceansScience200330094494710.1126/science.1083545 – reference: HolmNGCharlouJLInitial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic RidgeEarth Planet. Sci. Lett.20011911810.1016/S0012-821X(01)00397-1 – reference: SanderSKoschinskyAOnboard-ship redox speciation of chromium in diffuse hydrothermal fluids from the North Fiji BasinMar. Chem.2000718310210.1016/S0304-4203(00)00042-6 – reference: RonaPAKlinkhammerGNelsonTATrefryJHElderfieldHBlack smokers, massive sulphides and vent biota at the Mid-Atlantic RidgeNature1986321333710.1038/321033a0 – reference: KoschinskyAHydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5 degrees S on the Mid-Atlantic RidgeGeology20083661561810.1130/G24726A.1 – reference: TonerBMPreservation of iron(II) by carbon-rich matrices in a hydrothermal plumeNature Geosci.2009219720110.1038/ngeo433 – reference: RueELBrulandKWComplexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new ligand equilibration/adsorptive cathodic stripping voltammetric methodMar. Chem.19955011713810.1016/0304-4203(95)00031-L – reference: HasslerCSSchoemannVNicholsCMButlerECVBoydPWSaccharides enhance iron bioavailability to Southern Ocean phytoplanktonP. Natl Acad. Sci. USA20111081076108110.1073/pnas.1010963108 – reference: HanningtonMDde RondeCEJPetersenSEconomic Geology: One Hundredth Anniversary Volume: 1905–20052005111141 – reference: BoydPWIbisanmiESanderSGHunterKAJacksonGARemineralization of upper ocean particles: Implications for iron biogeochemistryLimnol. Oceanogr.2010551271128810.4319/lo.2010.55.3.1271 – reference: DesbruyèresDA review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controlsHydrobiologia200044020121610.1023/A:1004175211848 – reference: ChuN-CEvidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through timeEarth Planet. Sci. Lett.200624520221710.1016/j.epsl.2006.02.043 – reference: DittmarTPaengJA heat-induced molecular signature in marine dissolved organic matterNature Geosci.2009217517910.1038/ngeo440 – reference: EdmondJMRidge crest hydrothermal activity and the balances of the major and minor elements in the ocean - Galapagos DataEarth Planet. Sci. Lett.19794611810.1016/0012-821X(79)90061-X – reference: KelleyDSA serpentinite-hosted ecosystem: The Lost City hydrothermal fieldScience20053071428143410.1126/science.1102556 – reference: KonnCHydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted ventsChem. Geol.200925829931410.1016/j.chemgeo.2008.10.034 – reference: Von Damm, K. L. in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions (eds Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S. & Thomson, R. E.) 222–247 (Geophysical Monograph 91, American Geophysical Union, 1995). – reference: LiuXMilleroFJThe solubility of iron in seawaterMar. Chem.200277435410.1016/S0304-4203(01)00074-3 – reference: MawjiEHydroxamate siderophores: Occurrence and importance in the Atlantic OceanEnviron. Sci. Technol.2008428675868010.1021/es801884r – reference: ElderfieldHSchulzAMid-ocean ridge hydrothermal fluxes and the chemical composition of the oceanAnnu. Rev. Earth Planet. Sci.19962419122410.1146/annurev.earth.24.1.191 – reference: UssherSJAchterbergEPWorsfoldPJMarine biogeochemistry of ironEnviron. Chem.20041678010.1071/EN04053 – reference: TagliabueAHydrothermal contribution to the oceanic dissolved iron inventoryNature Geosci.2010325225610.1038/ngeo818 – reference: HaaseKMYoung volcanism and related hydrothermal activity at 5°S on the slow-spreading southern Mid-Atlantic RidgeGeochem. Geophys. Geosyst.20078Q1100210.1029/2006GC001509 – reference: MandernackKWTeboBMManganese scavanging and oxidation at hydrothermal vents and in vent plumesGeochim. Cosmochim. Acta1993573907392310.1016/0016-7037(93)90343-U – reference: LangSQButterfieldDASchulteMKelleyDSLilleyMDElevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal fieldGeochim. Cosmochim. Acta20107494195210.1016/j.gca.2009.10.045 – reference: SchulteMDRogersKLThiols in hydrothermal solutions: standard partial molal properties and their role in the organic geochemistry of hydrothermal environmentsGeochim. Cosmochim. Acta2004681087109710.1016/j.gca.2003.06.001 – reference: ByrneRHInorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratiosGeochem. Trans.20023111610.1186/1467-4866-3-11 – reference: SanderSGKoschinskyAMassothGJStottMHunterKAOrganic complexation of copper in deep-sea hydrothermal vent systemsEnviron. Chem.20074818910.1071/EN06086 – reference: LangSQButterfieldDALilleyMDJohnsonHlPHedgesJIDissolved organic carbon in ridge-axes and ridge-flank hydrothermal systemsGeochim. Cosmochim. Acta2006703830384210.1016/j.gca.2006.04.031 – reference: TrouwborstREClementBGTeboBMGlazerBTLutherGWIIISoluble Mn(III) in suboxic zonesScience20063131955195710.1126/science.1132876 – reference: LilleyMDFeelyRATrefryJHSeafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions1995369391 – volume: 3 start-page: 252 year: 2010 ident: BFngeo1088_CR27 publication-title: Nature Geosci. doi: 10.1038/ngeo818 – volume: 44 start-page: 387 year: 2010 ident: BFngeo1088_CR40 publication-title: Geochem. J. doi: 10.2343/geochemj.1.0081 – start-page: 111 volume-title: Economic Geology: One Hundredth Anniversary Volume: 1905–2005 year: 2005 ident: BFngeo1088_CR1 – volume: 9 start-page: 6 year: 2008 ident: BFngeo1088_CR32 publication-title: Geochem. Trans. doi: 10.1186/1467-4866-9-6 – volume: 440 start-page: 201 year: 2000 ident: BFngeo1088_CR49 publication-title: Hydrobiologia doi: 10.1023/A:1004175211848 – volume: 307 start-page: 1428 year: 2005 ident: BFngeo1088_CR48 publication-title: Science doi: 10.1126/science.1102556 – volume: 321 start-page: 33 year: 1986 ident: BFngeo1088_CR46 publication-title: Nature doi: 10.1038/321033a0 – volume: 184 start-page: 37 year: 2002 ident: BFngeo1088_CR26 publication-title: Chem. Geol. doi: 10.1016/S0009-2541(01)00351-5 – volume: 35 start-page: 65 year: 1998 ident: BFngeo1088_CR12 publication-title: Carbohyd. Polym. doi: 10.1016/S0144-8617(97)00109-4 – volume: 4 start-page: 81 year: 2007 ident: BFngeo1088_CR14 publication-title: Environ. Chem. doi: 10.1071/EN06086 – volume: 407 start-page: 869 year: 2009 ident: BFngeo1088_CR16 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2008.09.056 – volume: 245 start-page: 202 year: 2006 ident: BFngeo1088_CR29 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2006.02.043 – volume: 50 start-page: 117 year: 1995 ident: BFngeo1088_CR23 publication-title: Mar. Chem. doi: 10.1016/0304-4203(95)00031-L – volume: 225 start-page: 63 year: 2004 ident: BFngeo1088_CR28 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2004.06.001 – volume: 36 start-page: 615 year: 2008 ident: BFngeo1088_CR2 publication-title: Geology doi: 10.1130/G24726A.1 – volume: 266 start-page: 52 year: 2009 ident: BFngeo1088_CR3 publication-title: Mar. Geol. doi: 10.1016/j.margeo.2009.07.012 – volume: 20 start-page: GB1015 year: 2006 ident: BFngeo1088_CR24 publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2005GB002505 – volume: 410 start-page: 813 year: 2001 ident: BFngeo1088_CR31 publication-title: Nature doi: 10.1038/35071069 – volume: 108 start-page: 1076 year: 2011 ident: BFngeo1088_CR44 publication-title: P. Natl Acad. Sci. USA doi: 10.1073/pnas.1010963108 – volume: 54 start-page: 586 year: 2007 ident: BFngeo1088_CR20 publication-title: Deep-Sea Res. I doi: 10.1016/j.dsr.2006.12.013 – start-page: 245 volume-title: Subseafloor Biosphere at Mid-Ocean Ranges year: 2004 ident: BFngeo1088_CR4 doi: 10.1029/144GM16 – volume: 2 start-page: 65 year: 2001 ident: BFngeo1088_CR10 publication-title: Geochem. Trans. doi: 10.1186/1467-4866-2-65 – volume: 53 start-page: 1961 year: 2006 ident: BFngeo1088_CR41 publication-title: Deep-Sea Res. I doi: 10.1016/j.dsr.2006.09.003 – volume: 55 start-page: 1271 year: 2010 ident: BFngeo1088_CR22 publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2010.55.3.1271 – volume: 313 start-page: 1955 year: 2006 ident: BFngeo1088_CR34 publication-title: Science doi: 10.1126/science.1132876 – start-page: 369 volume-title: Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions year: 1995 ident: BFngeo1088_CR8 – volume: 263 start-page: 588 year: 2005 ident: BFngeo1088_CR30 publication-title: Earth Planet. Sci. Lett doi: 10.1016/j.epsl.2005.03.008 – volume: 74 start-page: 941 year: 2010 ident: BFngeo1088_CR39 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.10.045 – ident: BFngeo1088_CR18 – volume: 57 start-page: 3907 year: 1993 ident: BFngeo1088_CR33 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(93)90343-U – volume: 70 start-page: 3830 year: 2006 ident: BFngeo1088_CR36 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2006.04.031 – volume: 270 start-page: 157 year: 2008 ident: BFngeo1088_CR15 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2008.01.048 – volume: 191 start-page: 1 year: 2001 ident: BFngeo1088_CR37 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/S0012-821X(01)00397-1 – volume: 3 start-page: 11 year: 2002 ident: BFngeo1088_CR9 publication-title: Geochem. Trans. doi: 10.1186/1467-4866-3-11 – volume: 8 start-page: Q11002 year: 2007 ident: BFngeo1088_CR47 publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2006GC001509 – volume: 1 start-page: 67 year: 2004 ident: BFngeo1088_CR19 publication-title: Environ. Chem. doi: 10.1071/EN04053 – volume: 2 start-page: 197 year: 2009 ident: BFngeo1088_CR17 publication-title: Nature Geosci. doi: 10.1038/ngeo433 – volume: 42 start-page: 8675 year: 2008 ident: BFngeo1088_CR43 publication-title: Environ. Sci. Technol. doi: 10.1021/es801884r – volume: 2 start-page: 175 year: 2009 ident: BFngeo1088_CR45 publication-title: Nature Geosci. doi: 10.1038/ngeo440 – volume: 32 start-page: 269 year: 1989 ident: BFngeo1088_CR35 publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1989.34.2.0269 – volume: 300 start-page: 944 year: 2003 ident: BFngeo1088_CR11 publication-title: Science doi: 10.1126/science.1083545 – volume: 68 start-page: 1087 year: 2004 ident: BFngeo1088_CR42 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2003.06.001 – volume: 46 start-page: 1 year: 1979 ident: BFngeo1088_CR6 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/0012-821X(79)90061-X – volume: 24 start-page: 191 year: 1996 ident: BFngeo1088_CR7 publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev.earth.24.1.191 – volume: 33 start-page: 1084 year: 1988 ident: BFngeo1088_CR25 publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1988.33.5.1084 – volume: 258 start-page: 299 year: 2009 ident: BFngeo1088_CR38 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2008.10.034 – volume: 77 start-page: 43 year: 2002 ident: BFngeo1088_CR21 publication-title: Mar. Chem. doi: 10.1016/S0304-4203(01)00074-3 – volume: 280 start-page: 12 year: 2010 ident: BFngeo1088_CR5 publication-title: Chem. Geol. – volume: 71 start-page: 83 year: 2000 ident: BFngeo1088_CR13 publication-title: Mar. Chem. doi: 10.1016/S0304-4203(00)00042-6 |
SSID | ssj0060475 |
Score | 2.47775 |
SecondaryResourceType | review_article |
Snippet | Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Mounting evidence suggests that organic compounds bind... Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Until recently, it was assumed that most of the metal... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 145 |
SubjectTerms | 704/106/47 704/106/829/2737 Chromium Copper Earth and Environmental Science Earth Sciences Earth System Sciences Fluctuations Geochemistry Geology Geophysics/Geodesy In situ measurement Manganese Metals Ocean floor Organic compounds progress-article Seawater Sulfides |
Title | Metal flux from hydrothermal vents increased by organic complexation |
URI | https://link.springer.com/article/10.1038/ngeo1088 https://www.proquest.com/docview/1030084314 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA66IfgiXnE6JYrgU1ibpG36JF6mQ9gQcbC3kttUmN3cBbZ_b5Kmbor42obzcE5zvq_JOecD4EIYlhxhFiIe6wBRIlMkEqUQFoQkTBgADW2jcLsTt7r0sRf1_IHbxJdVljnRJWo1lPaMvGHlsAJm4I5ejT6RVY2yt6teQmMdVE0KZubnq3rT7Dw9l7k4DqgbtWswEqOApbQcP0tYI3_VwzBwiisrgLRkmb8uRh3e3G-DLU8U4XUR2R2wpvNdsPHghHgXe-CurQ1thv3BbA5tiwh8W6ix66b6MI9tEeMEvueWEk60gmIBC_kmCV0NuZ67gOyD7n3z5baFvCIC4sZzU2QAjTBNY65wSJXgoU4CLkRKmUp1P4r7qYhEKphgKdaBkDTEsUwSzQgnjNKIHIBKPsz1IYAMc2xsGnhXgkY44YkhdpJrHEoaCcZr4LJ0Syb9uHCrWjHI3LU1YVnpwBo4-145KkZk_LGmXno285tkki1DWgPnpbdXX_-0cfS_jWOwWZz32vqwOqhMxzN9YgjDVJz6r-ILJpjAxA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFD5CRRO8ILaBKJdhJhBPFontJM4DmrYVVi6tEAKJt2DHLkzq0tKLaP_UfuNsJ6YMId54TawT6eT4nM8-lw9gVxqUHBEeYhHrADOap1gmSmEiKU24NAE0tI3CrXbcvGanN9HNHPz1vTC2rNL7ROeoVS-3d-QHlg4r4CbcsW_9B2xZo2x21VNolGZxpqeP5sg2PDxpmP-7R8jx0dXPJq5YBbAwXx9hExQo1ywWioRMSRHqJBBSpoyrVHeiuJPKSKaSS54SHcichSTOk0RzKihnzLJEGJc_z6g5ytRg_sdR--LS-_44YG60r4nJBAc8ZX7cLeUHxZ3uhYFjeHkWAGeo9kUi1sW342VYqoAp-l5a0keY08Un-PDLEf9OP0OjpQ1MR53ueIJsSwq6n6qB6976Yx7boskh-l1YCDrUCskpKumicuRq1vXEGcAKXL-LrlahVvQKvQaIE0GMTAMnlGQRSURigGQuNAlzFkku6rDv1ZLl1Xhyy5LRzVyanPLMK7AOO08r--VIjlfWbHrNZtWmHGYzE6rDV6_t56__l7H-toxtWGhetc6z85P22QYslnfNtjZtE2qjwVhvGbAykl8qC0Fw-95G-Q8bKf6x |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1dT9swFL1CrUC8oI2B6IBh0BBPVhPHSZyHCW2UAmNUCIHEW7BjlyFBymir0b-2X7drJ-ZLiDdek8iKbk58ju177wH4qlAlx0yEVCYmoDwqMqpSrSlTUZQKhQQa2kLho16yf8Z_nsfnU_DP18LYtEo_J7qJWg8Ku0fetnZYgUC64-1-nRZx3Olu3_6h1kHKnrR6O40KIodm8heXb8NvBx381puMdXdPd_Zp7TBAJb7JiCJBRMLwRGoWcq1kaNJAKpVxoTPTj5N-pmKVKaFExkygCh6ypEhTIyIZCc6tYwRO_80UV0VBA5o_dnvHJ54HkoC7Nr_Iz4wGIuO-9W0k2uWlGYSBc3t5QoaPCvfFoazjuu4HmKtFKvleoeojTJlyHqb3nAnw5BN0jgxKdtK_Ht8TW55Cfk_0navkusHLNoFySK5KK0eHRhM1IZV1VEFc_rq5d2BYgLN3idUiNMpBaZaACCYZjonSQises1SmKCoLaVhY8FgJ2YItH5a8qFuVW8eM69wdmUci9wFswfrDk7dVe45Xnlnxkc3rH3SYP8KpBRs-2k9vPx_j89tjrMEMgjH_ddA7XIbZatvZpqmtQGN0NzarqFtG6ksNEAIX743J_5EpAvU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+flux+from+hydrothermal+vents+increased+by+organic+complexation&rft.jtitle=Nature+geoscience&rft.au=Sander%2C+Sylvia+G&rft.au=Koschinsky%2C+Andrea&rft.date=2011-03-01&rft.pub=Nature+Publishing+Group&rft.issn=1752-0894&rft.eissn=1752-0908&rft.volume=4&rft.issue=3&rft.spage=145&rft_id=info:doi/10.1038%2Fngeo1088&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2721408411 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-0894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-0894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-0894&client=summon |