Metal flux from hydrothermal vents increased by organic complexation

Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Mounting evidence suggests that organic compounds bind to and stabilize metals in hydrothermal fluids, thereby increasing metal flux to the open ocean. Hydrothermal vents in the sea floor release...

Full description

Saved in:
Bibliographic Details
Published inNature geoscience Vol. 4; no. 3; pp. 145 - 150
Main Authors Sander, Sylvia G., Koschinsky, Andrea
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2011
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Mounting evidence suggests that organic compounds bind to and stabilize metals in hydrothermal fluids, thereby increasing metal flux to the open ocean. Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Until recently, it was assumed that most of the metal released was incorporated into sulphide or oxide minerals, and that the net flux of most hydrothermally derived metals to the open ocean was negligible. However, mounting evidence suggests that organic compounds bind to and stabilize metals in hydrothermal fluids, increasing trace-metal flux to the global ocean. In situ measurements reveal that hydrothermally derived chromium, copper and iron bind to organic molecules on mixing with sea water. Geochemical model simulations based on data from two hydrothermal vent sites suggest that complexation significantly increases metal flux from hydrothermal systems. According to these simulations, hydrothermal fluids could account for 9% and 14% of the deep-ocean dissolved iron and copper budgets respectively. A similar role for organic complexation can be inferred for the hydrothermal fluxes of other metals, such as manganese and zinc.
AbstractList Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Until recently, it was assumed that most of the metal released was incorporated into sulphide or oxide minerals, and that the net flux of most hydrothermally derived metals to the open ocean was negligible. However, mounting evidence suggests that organic compounds bind to and stabilize metals in hydrothermal fluids, increasing trace-metal flux to the global ocean. In situ measurements reveal that hydrothermally derived chromium, copper and iron bind to organic molecules on mixing with sea water. Geochemical model simulations based on data from two hydrothermal vent sites suggest that complexation significantly increases metal flux from hydrothermal systems. According to these simulations, hydrothermal fluids could account for 9% and 14% of the deep-ocean dissolved iron and copper budgets respectively. A similar role for organic complexation can be inferred for the hydrothermal fluxes of other metals, such as manganese and zinc.
Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Mounting evidence suggests that organic compounds bind to and stabilize metals in hydrothermal fluids, thereby increasing metal flux to the open ocean. Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Until recently, it was assumed that most of the metal released was incorporated into sulphide or oxide minerals, and that the net flux of most hydrothermally derived metals to the open ocean was negligible. However, mounting evidence suggests that organic compounds bind to and stabilize metals in hydrothermal fluids, increasing trace-metal flux to the global ocean. In situ measurements reveal that hydrothermally derived chromium, copper and iron bind to organic molecules on mixing with sea water. Geochemical model simulations based on data from two hydrothermal vent sites suggest that complexation significantly increases metal flux from hydrothermal systems. According to these simulations, hydrothermal fluids could account for 9% and 14% of the deep-ocean dissolved iron and copper budgets respectively. A similar role for organic complexation can be inferred for the hydrothermal fluxes of other metals, such as manganese and zinc.
Author Sander, Sylvia G.
Koschinsky, Andrea
Author_xml – sequence: 1
  givenname: Sylvia G.
  surname: Sander
  fullname: Sander, Sylvia G.
  email: sylvias@chemistry.otago.ac.nz
  organization: Department of Chemistry, Marine and Freshwater Chemistry, University of Otago
– sequence: 2
  givenname: Andrea
  surname: Koschinsky
  fullname: Koschinsky, Andrea
  organization: School of Engineering and Science, Earth and Space Sciences Program, Jacobs University Bremen
BookMark eNptkE9LAzEQxYNUsK2CHyHgRQ9bk012N3uUWv9AxYuelyQ7227ZTWqSSvvtjdaCFE8zPH5v5s2M0MBYAwhdUjKhhIlbswBLiRAnaEiLLE1IScTg0IuSn6GR9ytCcsKLbIjuXyDIDjfdZosbZ3u83NXOhiW4PsqfYILHrdEOpIcaqx22biFNq7G2_bqDrQytNefotJGdh4vfOkbvD7O36VMyf318nt7NE8kKERKAmgnguaxTymslKRREKlVyUZfQZHlTqkyVSihRpkCU5jTNdVGAYJIJzjM2Rlf7uWtnPzbgQ7WyG2fiyireTojgjPJITfaUdtZ7B02l2_CTMzjZdhH9pkV1-FQ0XB8Z1q7tpdv9h97sUR-RqLq_CY7YL3FTekI
CitedBy_id crossref_primary_10_1038_s41598_018_27407_z
crossref_primary_10_1071_MF19167
crossref_primary_10_1155_2020_4260806
crossref_primary_10_1016_j_chemgeo_2016_08_027
crossref_primary_10_1111_gbi_12025
crossref_primary_10_1016_j_jmarsys_2022_103800
crossref_primary_10_1071_MF16335
crossref_primary_10_1016_j_chemgeo_2020_119982
crossref_primary_10_1016_j_marchem_2019_103672
crossref_primary_10_1038_s41467_019_09580_5
crossref_primary_10_1016_j_marchem_2014_10_001
crossref_primary_10_3354_meps10082
crossref_primary_10_1016_j_epsl_2011_12_031
crossref_primary_10_1016_j_lithos_2018_07_022
crossref_primary_10_3389_fmars_2016_00075
crossref_primary_10_1016_j_gca_2016_06_027
crossref_primary_10_1016_j_palaeo_2020_109598
crossref_primary_10_1016_j_epsl_2015_04_030
crossref_primary_10_1016_j_precamres_2017_05_006
crossref_primary_10_1016_j_chemgeo_2018_12_021
crossref_primary_10_1016_j_marchem_2014_10_012
crossref_primary_10_1016_j_gca_2019_04_026
crossref_primary_10_1016_j_marchem_2014_09_001
crossref_primary_10_1016_j_marchem_2015_04_007
crossref_primary_10_18654_1000_0569_2020_06_17
crossref_primary_10_1016_j_watres_2020_115923
crossref_primary_10_3389_feart_2015_00060
crossref_primary_10_1038_ismej_2012_63
crossref_primary_10_1109_JOE_2016_2552779
crossref_primary_10_1016_j_gca_2021_10_032
crossref_primary_10_1016_j_chemgeo_2018_08_006
crossref_primary_10_1016_j_palaeo_2018_01_047
crossref_primary_10_1029_2011GC003704
crossref_primary_10_1016_j_chemosphere_2015_01_006
crossref_primary_10_1002_elan_201500140
crossref_primary_10_3389_fmars_2024_1304118
crossref_primary_10_1016_j_marchem_2024_104401
crossref_primary_10_1080_02757540_2012_666531
crossref_primary_10_1073_pnas_1400643111
crossref_primary_10_2343_geochemj_2_0374
crossref_primary_10_1016_j_rgg_2015_09_003
crossref_primary_10_1016_j_chemgeo_2017_02_021
crossref_primary_10_1029_2012RG000393
crossref_primary_10_1016_j_chemgeo_2022_120756
crossref_primary_10_1371_journal_pone_0292593
crossref_primary_10_3847_PSJ_abfb7a
crossref_primary_10_1371_journal_pone_0207774
crossref_primary_10_3389_fmicb_2024_1390451
crossref_primary_10_1016_j_marchem_2017_12_004
crossref_primary_10_1029_2018JC014713
crossref_primary_10_1038_nature14577
crossref_primary_10_3389_fmars_2019_00329
crossref_primary_10_1016_j_marchem_2017_08_003
crossref_primary_10_1071_EN17150
crossref_primary_10_1029_2021JB023597
crossref_primary_10_3389_fmars_2021_782734
crossref_primary_10_1016_j_epsl_2013_06_004
crossref_primary_10_1002_lno_12634
crossref_primary_10_1002_2015GC005831
crossref_primary_10_3354_meps13558
crossref_primary_10_1029_2023GL103738
crossref_primary_10_1016_j_epsl_2014_08_014
crossref_primary_10_1016_j_gca_2017_09_050
crossref_primary_10_52396_JUSTC_2022_0085
crossref_primary_10_1016_j_quascirev_2013_11_018
crossref_primary_10_1016_j_epsl_2022_117943
crossref_primary_10_1016_j_chemgeo_2019_01_001
crossref_primary_10_1016_j_epsl_2024_118916
crossref_primary_10_1002_jobm_201700580
crossref_primary_10_3389_fmars_2020_00568
crossref_primary_10_1038_s41467_017_01694_y
crossref_primary_10_1016_j_margeo_2017_12_005
crossref_primary_10_1016_j_chemgeo_2016_05_001
crossref_primary_10_1038_ngeo2900
crossref_primary_10_1016_j_gca_2017_05_020
crossref_primary_10_1007_s12601_019_0032_8
crossref_primary_10_1016_j_epsl_2012_11_040
crossref_primary_10_3389_fmicb_2015_00994
crossref_primary_10_1016_j_gca_2014_05_038
crossref_primary_10_1016_j_epsl_2016_10_054
crossref_primary_10_1029_2018GC008082
crossref_primary_10_1016_j_gca_2020_01_031
crossref_primary_10_1007_s12517_023_11210_w
crossref_primary_10_3389_fmars_2024_1426906
crossref_primary_10_1016_j_jmarsys_2022_103826
crossref_primary_10_1016_j_chemgeo_2020_119760
crossref_primary_10_1016_j_gca_2014_04_003
crossref_primary_10_22201_igl_05437652e_2018_7_1_217
crossref_primary_10_1016_j_epsl_2018_06_030
crossref_primary_10_1016_j_gca_2023_05_024
crossref_primary_10_1016_j_marchem_2012_07_001
crossref_primary_10_1016_j_scitotenv_2023_166714
crossref_primary_10_1038_s41598_022_25320_0
crossref_primary_10_1038_s43247_024_01689_w
crossref_primary_10_1016_j_gca_2024_07_033
crossref_primary_10_1038_s41561_020_0579_0
crossref_primary_10_5194_bg_20_2613_2023
crossref_primary_10_1111_1462_2920_16285
crossref_primary_10_1016_j_marchem_2014_06_003
crossref_primary_10_1002_2017GL074384
crossref_primary_10_1016_j_orggeochem_2020_104141
crossref_primary_10_1016_j_gca_2019_08_018
crossref_primary_10_1016_j_marpolbul_2017_10_079
crossref_primary_10_3390_atmos10070414
crossref_primary_10_1016_j_gca_2020_09_016
crossref_primary_10_1016_j_marpol_2022_105006
crossref_primary_10_3389_fmars_2018_00531
crossref_primary_10_3389_fmicb_2017_01042
crossref_primary_10_1016_j_marchem_2012_03_002
crossref_primary_10_1016_j_dsr2_2015_06_004
crossref_primary_10_1038_s43247_022_00597_1
crossref_primary_10_1016_j_marchem_2025_104513
crossref_primary_10_3390_jmse12010046
crossref_primary_10_1029_2022GB007363
crossref_primary_10_1016_j_gca_2022_09_026
crossref_primary_10_1021_acsearthspacechem_0c00067
crossref_primary_10_1016_j_dsr_2021_103630
crossref_primary_10_1016_j_marchem_2011_10_003
crossref_primary_10_1016_j_marchem_2020_103841
crossref_primary_10_1038_s41598_021_97813_3
crossref_primary_10_1016_j_marchem_2015_10_003
crossref_primary_10_1016_j_gca_2022_05_002
crossref_primary_10_1016_j_gca_2019_06_045
crossref_primary_10_1016_j_marpolbul_2012_06_015
crossref_primary_10_5194_bg_21_5233_2024
crossref_primary_10_1016_j_marchem_2017_02_001
crossref_primary_10_1016_j_dsr2_2014_11_016
crossref_primary_10_1073_pnas_1418778111
crossref_primary_10_1016_j_chemgeo_2013_12_013
crossref_primary_10_1016_j_gca_2016_04_039
crossref_primary_10_1016_j_chemgeo_2020_119570
crossref_primary_10_1071_MF19213
crossref_primary_10_3389_fmars_2022_796376
crossref_primary_10_1016_j_dsr2_2014_11_013
crossref_primary_10_1016_j_margeo_2019_105975
crossref_primary_10_1089_ast_2021_0203
crossref_primary_10_1146_annurev_marine_032822_103431
crossref_primary_10_1016_j_dsr_2021_103529
crossref_primary_10_1098_rsta_2016_0035
crossref_primary_10_1073_pnas_1420188112
crossref_primary_10_1016_j_gca_2012_04_003
crossref_primary_10_1016_j_gca_2017_06_019
crossref_primary_10_1016_j_precamres_2016_10_007
crossref_primary_10_2343_geochemj_2_0408
crossref_primary_10_1016_j_epsl_2017_09_006
crossref_primary_10_1080_01490451_2018_1440035
crossref_primary_10_1007_s10498_021_09393_3
crossref_primary_10_1029_2017GB005839
crossref_primary_10_1126_sciadv_adh0474
crossref_primary_10_1134_S0016702915030040
crossref_primary_10_3389_fmicb_2022_845562
crossref_primary_10_1016_j_biteb_2022_101040
crossref_primary_10_1016_j_chemgeo_2024_121994
crossref_primary_10_1111_gbi_12336
crossref_primary_10_1111_gbi_12457
crossref_primary_10_1016_j_sesci_2020_06_001
crossref_primary_10_1016_j_precamres_2018_05_009
crossref_primary_10_1016_j_marpolbul_2020_111513
crossref_primary_10_1038_s41396_022_01195_x
crossref_primary_10_1016_j_chemgeo_2020_119679
crossref_primary_10_1016_j_marchem_2017_06_011
crossref_primary_10_2343_geochemj_2_0545
crossref_primary_10_2343_geochemj_2_0300
crossref_primary_10_1016_j_epsl_2013_05_019
crossref_primary_10_1016_j_watres_2017_01_001
crossref_primary_10_1029_2011JG001679
crossref_primary_10_3389_fmars_2023_1219594
crossref_primary_10_1134_S1819714023020045
crossref_primary_10_3389_frmbi_2024_1401831
crossref_primary_10_1021_acsearthspacechem_1c00113
crossref_primary_10_1098_rsta_2015_0292
crossref_primary_10_1016_j_jaap_2015_04_005
crossref_primary_10_1016_j_envpol_2014_07_012
crossref_primary_10_1016_j_chemgeo_2017_11_005
crossref_primary_10_1038_s43247_024_01564_8
crossref_primary_10_3390_min11111233
crossref_primary_10_1016_j_marchem_2018_01_011
crossref_primary_10_1038_s41561_017_0044_x
crossref_primary_10_3389_fmicb_2021_631885
crossref_primary_10_1002_2017GL073315
crossref_primary_10_1016_j_gca_2017_03_016
crossref_primary_10_1016_j_gca_2021_05_049
crossref_primary_10_1016_j_epsl_2013_05_047
crossref_primary_10_5194_bg_14_1123_2017
crossref_primary_10_1016_j_chemgeo_2020_120018
crossref_primary_10_1016_j_orggeochem_2017_05_003
crossref_primary_10_1038_s41396_021_01065_y
crossref_primary_10_1126_science_adc8751
crossref_primary_10_1021_acsearthspacechem_0c00150
crossref_primary_10_1016_j_gca_2022_12_010
crossref_primary_10_1029_2019GB006326
crossref_primary_10_3389_fmars_2016_00139
crossref_primary_10_1016_j_chemgeo_2019_119379
crossref_primary_10_1016_j_gca_2019_06_004
crossref_primary_10_1007_s11001_016_9275_2
crossref_primary_10_1016_j_scitotenv_2021_145367
crossref_primary_10_3390_min10110969
crossref_primary_10_3847_PSJ_ad2462
crossref_primary_10_1016_j_epsl_2020_116297
crossref_primary_10_1038_ngeo1893
crossref_primary_10_1016_j_gca_2016_01_018
crossref_primary_10_1016_j_rsma_2021_102112
crossref_primary_10_3389_fmars_2017_00019
crossref_primary_10_1016_j_epsl_2015_03_012
crossref_primary_10_1021_acsearthspacechem_1c00377
crossref_primary_10_1038_ncomms4192
crossref_primary_10_1038_s43247_022_00518_2
crossref_primary_10_1134_S1028334X22040134
crossref_primary_10_1016_j_precamres_2018_02_009
crossref_primary_10_1016_j_gca_2022_06_038
crossref_primary_10_1016_j_dsr_2015_09_005
crossref_primary_10_1016_j_dsr2_2015_04_013
crossref_primary_10_1155_2018_7692839
crossref_primary_10_1016_j_gca_2015_08_012
crossref_primary_10_1016_j_epsl_2014_01_001
crossref_primary_10_1016_j_gsf_2018_12_005
crossref_primary_10_1002_2015GB005357
crossref_primary_10_1016_j_marchem_2017_05_012
crossref_primary_10_1016_j_marchem_2017_11_007
crossref_primary_10_1017_S1473550421000331
crossref_primary_10_1080_27669645_2021_2003009
crossref_primary_10_3390_min12101219
crossref_primary_10_1016_j_chemgeo_2015_07_021
crossref_primary_10_1002_2017JG004067
crossref_primary_10_1073_pnas_2300491120
crossref_primary_10_1016_j_chemgeo_2022_120942
crossref_primary_10_1016_j_chemgeo_2017_01_013
crossref_primary_10_1016_j_chemgeo_2021_120404
Cites_doi 10.1038/ngeo818
10.2343/geochemj.1.0081
10.1186/1467-4866-9-6
10.1023/A:1004175211848
10.1126/science.1102556
10.1038/321033a0
10.1016/S0009-2541(01)00351-5
10.1016/S0144-8617(97)00109-4
10.1071/EN06086
10.1016/j.scitotenv.2008.09.056
10.1016/j.epsl.2006.02.043
10.1016/0304-4203(95)00031-L
10.1016/j.epsl.2004.06.001
10.1130/G24726A.1
10.1016/j.margeo.2009.07.012
10.1029/2005GB002505
10.1038/35071069
10.1073/pnas.1010963108
10.1016/j.dsr.2006.12.013
10.1029/144GM16
10.1186/1467-4866-2-65
10.1016/j.dsr.2006.09.003
10.4319/lo.2010.55.3.1271
10.1126/science.1132876
10.1016/j.epsl.2005.03.008
10.1016/j.gca.2009.10.045
10.1016/0016-7037(93)90343-U
10.1016/j.gca.2006.04.031
10.1016/j.epsl.2008.01.048
10.1016/S0012-821X(01)00397-1
10.1186/1467-4866-3-11
10.1029/2006GC001509
10.1071/EN04053
10.1038/ngeo433
10.1021/es801884r
10.1038/ngeo440
10.4319/lo.1989.34.2.0269
10.1126/science.1083545
10.1016/j.gca.2003.06.001
10.1016/0012-821X(79)90061-X
10.1146/annurev.earth.24.1.191
10.4319/lo.1988.33.5.1084
10.1016/j.chemgeo.2008.10.034
10.1016/S0304-4203(01)00074-3
10.1016/S0304-4203(00)00042-6
ContentType Journal Article
Copyright Springer Nature Limited 2011
Copyright Nature Publishing Group Mar 2011
Copyright_xml – notice: Springer Nature Limited 2011
– notice: Copyright Nature Publishing Group Mar 2011
DBID AAYXX
CITATION
7SN
7TG
7TN
7UA
8FE
8FH
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
LK8
M7P
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1038/ngeo1088
DatabaseName CrossRef
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biological Sciences
Biological Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1752-0908
EndPage 150
ExternalDocumentID 2721408411
10_1038_ngeo1088
GroupedDBID 0R~
123
29M
39C
5BI
5S5
70F
8FE
8FH
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ACBWK
ACGFS
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BKSAR
CCPQU
CS3
DB5
EBS
EE.
EJD
EXGXG
F5P
FEDTE
FQGFK
FSGXE
HCIFZ
HVGLF
HZ~
LK5
M7P
M7R
N9A
NNMJJ
O9-
ODYON
P2P
PCBAR
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
Y6R
~02
AAYXX
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7SN
7TG
7TN
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
KL.
L.G
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-a378t-eed38e46ad214dba1e70abb948d9ef56f9b5b9b8b892e0bc4126c77e83a384453
IEDL.DBID BENPR
ISSN 1752-0894
IngestDate Wed Jul 16 16:02:01 EDT 2025
Tue Jul 01 01:09:59 EDT 2025
Thu Apr 24 23:06:26 EDT 2025
Fri Feb 21 02:39:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a378t-eed38e46ad214dba1e70abb948d9ef56f9b5b9b8b892e0bc4126c77e83a384453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
PQID 1030084314
PQPubID 546301
PageCount 6
ParticipantIDs proquest_journals_1030084314
crossref_citationtrail_10_1038_ngeo1088
crossref_primary_10_1038_ngeo1088
springer_journals_10_1038_ngeo1088
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature geoscience
PublicationTitleAbbrev Nature Geosci
PublicationYear 2011
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References DittmarTPaengJA heat-induced molecular signature in marine dissolved organic matterNature Geosci.2009217517910.1038/ngeo440
KoschinskyAHydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5 degrees S on the Mid-Atlantic RidgeGeology20083661561810.1130/G24726A.1
SanderSGKoschinskyAMassothGJStottMHunterKAOrganic complexation of copper in deep-sea hydrothermal vent systemsEnviron. Chem.20074818910.1071/EN06086
BennettSAThe distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumesEarth Planet. Sci. Lett.200827015716710.1016/j.epsl.2008.01.048
SchmidtKFluid elemental and stable isotope composition of the Nibelungen hydrothermal field (8°18′S, Mid-Atlantic Ridge): Constraints on fluid origin in a heterogeneous lithosphere settingChem. Geol.20102801218
LilleyMDFeelyRATrefryJHSeafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions1995369391
SevermannSThe effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36 degrees 14′ NEarth Planet. Sci. Lett.2004225637610.1016/j.epsl.2004.06.001
SanderSKoschinskyAOnboard-ship redox speciation of chromium in diffuse hydrothermal fluids from the North Fiji BasinMar. Chem.2000718310210.1016/S0304-4203(00)00042-6
Von Damm, K. L. in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions (eds Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S. & Thomson, R. E.) 222–247 (Geophysical Monograph 91, American Geophysical Union, 1995).
CoaleKHBrulandKWCopper complexation in the northeast PacificLimnol. Oceanogr.1988331084110110.4319/lo.1988.33.5.1084
MawjiEHydroxamate siderophores: Occurrence and importance in the Atlantic OceanEnviron. Sci. Technol.2008428675868010.1021/es801884r
LutherGWIIIChemical speciation drives hydrothermal vent ecologyNature200141081381610.1038/35071069
DesbruyèresDA review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controlsHydrobiologia200044020121610.1023/A:1004175211848
BergquistBABoyleEADissolved iron in the tropical and subtropical Atlantic OceanGlob. Biogeochem. Cycles200620GB101510.1029/2005GB002505
UssherSJAchterbergEPWorsfoldPJMarine biogeochemistry of ironEnviron. Chem.20041678010.1071/EN04053
BoydPWIbisanmiESanderSGHunterKAJacksonGARemineralization of upper ocean particles: Implications for iron biogeochemistryLimnol. Oceanogr.2010551271128810.4319/lo.2010.55.3.1271
KelleyDSA serpentinite-hosted ecosystem: The Lost City hydrothermal fieldScience20053071428143410.1126/science.1102556
DupontCLMoffettJWBidigareRRAhnerBADistributions of dissolved and particulate biogenic thiols in the subartic Pacific OceanDeep-Sea Res. I2006531961197410.1016/j.dsr.2006.09.003
ChuN-CEvidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through timeEarth Planet. Sci. Lett.200624520221710.1016/j.epsl.2006.02.043
KonnCHydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted ventsChem. Geol.200925829931410.1016/j.chemgeo.2008.10.034
SchulteMDRogersKLThiols in hydrothermal solutions: standard partial molal properties and their role in the organic geochemistry of hydrothermal environmentsGeochim. Cosmochim. Acta2004681087109710.1016/j.gca.2003.06.001
EdmondJMRidge crest hydrothermal activity and the balances of the major and minor elements in the ocean - Galapagos DataEarth Planet. Sci. Lett.19794611810.1016/0012-821X(79)90061-X
BrulandKWComplexation of zinc by natural organic ligands in the central north PacificLimnol. Oceanogr.19893226928510.4319/lo.1989.34.2.0269
SarradinPMSpeciation of dissolved copper within an active hydrothermal edifice on the Lucky Strike vent field (MAR, 37 degrees N)Sci. Total Environ.200940786987810.1016/j.scitotenv.2008.09.056
StathamPJGermanCRConnellyDPIron (II) distribution and oxidation kinetics in hydrothermal plumes at the Kairei and Edmond vent sites Indian OceanEarth Planet. Sci. Lett200526358859610.1016/j.epsl.2005.03.008
HanningtonMDde RondeCEJPetersenSEconomic Geology: One Hundredth Anniversary Volume: 1905–20052005111141
HaaseKMDiking, young volcanism and diffuse hydrothermal activity on the southern Mid-Atlantic Ridge: The Lilliput field at 9°33′SMar. Geol.2009266526410.1016/j.margeo.2009.07.012
HasslerCSSchoemannVNicholsCMButlerECVBoydPWSaccharides enhance iron bioavailability to Southern Ocean phytoplanktonP. Natl Acad. Sci. USA20111081076108110.1073/pnas.1010963108
RonaPAKlinkhammerGNelsonTATrefryJHElderfieldHBlack smokers, massive sulphides and vent biota at the Mid-Atlantic RidgeNature1986321333710.1038/321033a0
Von DammKLLilleyMDSubseafloor Biosphere at Mid-Ocean Ranges200424526810.1029/144GM16
MorelFMMPriceIGThe biogeochemical cycles of trace metals in the oceansScience200330094494710.1126/science.1083545
RueELBrulandKWComplexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new ligand equilibration/adsorptive cathodic stripping voltammetric methodMar. Chem.19955011713810.1016/0304-4203(95)00031-L
DouvilleEThe Rainbow vent fluids (36°14′N, MAR): The influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluidsChem. Geol.2002184374810.1016/S0009-2541(01)00351-5
LangSQButterfieldDASchulteMKelleyDSLilleyMDElevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal fieldGeochim. Cosmochim. Acta20107494195210.1016/j.gca.2009.10.045
Hsu-KimHMullaughKMTsangJTYucelMLutherGWIIIFormation of Zn- and Fe-sulfides near hydrothermal vents at the Eastern Lau Spreading Center: implications for sulfide bioavailability to chemoautotrophsGeochem. Trans.20089610.1186/1467-4866-9-6
LangSQButterfieldDALilleyMDJohnsonHlPHedgesJIDissolved organic carbon in ridge-axes and ridge-flank hydrothermal systemsGeochim. Cosmochim. Acta2006703830384210.1016/j.gca.2006.04.031
LiuXMilleroFJThe solubility of iron in seawaterMar. Chem.200277435410.1016/S0304-4203(01)00074-3
MandernackKWTeboBMManganese scavanging and oxidation at hydrothermal vents and in vent plumesGeochim. Cosmochim. Acta1993573907392310.1016/0016-7037(93)90343-U
HaaseKMYoung volcanism and related hydrothermal activity at 5°S on the slow-spreading southern Mid-Atlantic RidgeGeochem. Geophys. Geosyst.20078Q1100210.1029/2006GC001509
LutherGWIIIRozanTFWitterALewisBMetal-organic complexation in the marine environmentGeochem. Trans.200126510.1186/1467-4866-2-65
ByrneRHInorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratiosGeochem. Trans.20023111610.1186/1467-4866-3-11
TagliabueAHydrothermal contribution to the oceanic dissolved iron inventoryNature Geosci.2010325225610.1038/ngeo818
KlevenzVSumoondurAOstertag-HenningCKoschinskyAConcentrations and distributions of dissolved amino acids in fluids from Mid-Atlantic Ridge hydrothermal ventsGeochem. J.20104438739710.2343/geochemj.1.0081
LoaëcMOlierRGuezennecJChelating properties of bacterial exopolysaccharides from deep-sea hydrothermal ventsCarbohyd. Polym.199835657010.1016/S0144-8617(97)00109-4
HolmNGCharlouJLInitial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic RidgeEarth Planet. Sci. Lett.20011911810.1016/S0012-821X(01)00397-1
MoffettJWDupontCCu complexation by organic ligands in the sub-arctic NW Pacific and Bering SeaDeep-Sea Res. I20075458659510.1016/j.dsr.2006.12.013
TonerBMPreservation of iron(II) by carbon-rich matrices in a hydrothermal plumeNature Geosci.2009219720110.1038/ngeo433
ElderfieldHSchulzAMid-ocean ridge hydrothermal fluxes and the chemical composition of the oceanAnnu. Rev. Earth Planet. Sci.19962419122410.1146/annurev.earth.24.1.191
TrouwborstREClementBGTeboBMGlazerBTLutherGWIIISoluble Mn(III) in suboxic zonesScience20063131955195710.1126/science.1132876
C Konn (BFngeo1088_CR38) 2009; 258
E Mawji (BFngeo1088_CR43) 2008; 42
BFngeo1088_CR18
V Klevenz (BFngeo1088_CR40) 2010; 44
X Liu (BFngeo1088_CR21) 2002; 77
N-C Chu (BFngeo1088_CR29) 2006; 245
CL Dupont (BFngeo1088_CR41) 2006; 53
SG Sander (BFngeo1088_CR14) 2007; 4
BA Bergquist (BFngeo1088_CR24) 2006; 20
S Sander (BFngeo1088_CR13) 2000; 71
K Schmidt (BFngeo1088_CR5) 2010; 280
CS Hassler (BFngeo1088_CR44) 2011; 108
SJ Ussher (BFngeo1088_CR19) 2004; 1
RE Trouwborst (BFngeo1088_CR34) 2006; 313
H Elderfield (BFngeo1088_CR7) 1996; 24
M Loaëc (BFngeo1088_CR12) 1998; 35
S Severmann (BFngeo1088_CR28) 2004; 225
GW Luther III (BFngeo1088_CR31) 2001; 410
KH Coale (BFngeo1088_CR25) 1988; 33
JM Edmond (BFngeo1088_CR6) 1979; 46
H Hsu-Kim (BFngeo1088_CR32) 2008; 9
GW Luther III (BFngeo1088_CR10) 2001; 2
RH Byrne (BFngeo1088_CR9) 2002; 3
PM Sarradin (BFngeo1088_CR16) 2009; 407
KW Bruland (BFngeo1088_CR35) 1989; 32
MD Hannington (BFngeo1088_CR1) 2005
KL Von Damm (BFngeo1088_CR4) 2004
KM Haase (BFngeo1088_CR47) 2007; 8
MD Lilley (BFngeo1088_CR8) 1995
MD Schulte (BFngeo1088_CR42) 2004; 68
BM Toner (BFngeo1088_CR17) 2009; 2
KM Haase (BFngeo1088_CR3) 2009; 266
EL Rue (BFngeo1088_CR23) 1995; 50
D Desbruyères (BFngeo1088_CR49) 2000; 440
E Douville (BFngeo1088_CR26) 2002; 184
NG Holm (BFngeo1088_CR37) 2001; 191
FMM Morel (BFngeo1088_CR11) 2003; 300
PW Boyd (BFngeo1088_CR22) 2010; 55
A Tagliabue (BFngeo1088_CR27) 2010; 3
SA Bennett (BFngeo1088_CR15) 2008; 270
KW Mandernack (BFngeo1088_CR33) 1993; 57
SQ Lang (BFngeo1088_CR39) 2010; 74
PA Rona (BFngeo1088_CR46) 1986; 321
T Dittmar (BFngeo1088_CR45) 2009; 2
A Koschinsky (BFngeo1088_CR2) 2008; 36
DS Kelley (BFngeo1088_CR48) 2005; 307
JW Moffett (BFngeo1088_CR20) 2007; 54
SQ Lang (BFngeo1088_CR36) 2006; 70
PJ Statham (BFngeo1088_CR30) 2005; 263
References_xml – reference: BennettSAThe distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumesEarth Planet. Sci. Lett.200827015716710.1016/j.epsl.2008.01.048
– reference: LutherGWIIIRozanTFWitterALewisBMetal-organic complexation in the marine environmentGeochem. Trans.200126510.1186/1467-4866-2-65
– reference: KlevenzVSumoondurAOstertag-HenningCKoschinskyAConcentrations and distributions of dissolved amino acids in fluids from Mid-Atlantic Ridge hydrothermal ventsGeochem. J.20104438739710.2343/geochemj.1.0081
– reference: SevermannSThe effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36 degrees 14′ NEarth Planet. Sci. Lett.2004225637610.1016/j.epsl.2004.06.001
– reference: DouvilleEThe Rainbow vent fluids (36°14′N, MAR): The influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluidsChem. Geol.2002184374810.1016/S0009-2541(01)00351-5
– reference: LoaëcMOlierRGuezennecJChelating properties of bacterial exopolysaccharides from deep-sea hydrothermal ventsCarbohyd. Polym.199835657010.1016/S0144-8617(97)00109-4
– reference: SarradinPMSpeciation of dissolved copper within an active hydrothermal edifice on the Lucky Strike vent field (MAR, 37 degrees N)Sci. Total Environ.200940786987810.1016/j.scitotenv.2008.09.056
– reference: LutherGWIIIChemical speciation drives hydrothermal vent ecologyNature200141081381610.1038/35071069
– reference: HaaseKMDiking, young volcanism and diffuse hydrothermal activity on the southern Mid-Atlantic Ridge: The Lilliput field at 9°33′SMar. Geol.2009266526410.1016/j.margeo.2009.07.012
– reference: Von DammKLLilleyMDSubseafloor Biosphere at Mid-Ocean Ranges200424526810.1029/144GM16
– reference: MoffettJWDupontCCu complexation by organic ligands in the sub-arctic NW Pacific and Bering SeaDeep-Sea Res. I20075458659510.1016/j.dsr.2006.12.013
– reference: CoaleKHBrulandKWCopper complexation in the northeast PacificLimnol. Oceanogr.1988331084110110.4319/lo.1988.33.5.1084
– reference: DupontCLMoffettJWBidigareRRAhnerBADistributions of dissolved and particulate biogenic thiols in the subartic Pacific OceanDeep-Sea Res. I2006531961197410.1016/j.dsr.2006.09.003
– reference: SchmidtKFluid elemental and stable isotope composition of the Nibelungen hydrothermal field (8°18′S, Mid-Atlantic Ridge): Constraints on fluid origin in a heterogeneous lithosphere settingChem. Geol.20102801218
– reference: BrulandKWComplexation of zinc by natural organic ligands in the central north PacificLimnol. Oceanogr.19893226928510.4319/lo.1989.34.2.0269
– reference: Hsu-KimHMullaughKMTsangJTYucelMLutherGWIIIFormation of Zn- and Fe-sulfides near hydrothermal vents at the Eastern Lau Spreading Center: implications for sulfide bioavailability to chemoautotrophsGeochem. Trans.20089610.1186/1467-4866-9-6
– reference: BergquistBABoyleEADissolved iron in the tropical and subtropical Atlantic OceanGlob. Biogeochem. Cycles200620GB101510.1029/2005GB002505
– reference: StathamPJGermanCRConnellyDPIron (II) distribution and oxidation kinetics in hydrothermal plumes at the Kairei and Edmond vent sites Indian OceanEarth Planet. Sci. Lett200526358859610.1016/j.epsl.2005.03.008
– reference: MorelFMMPriceIGThe biogeochemical cycles of trace metals in the oceansScience200330094494710.1126/science.1083545
– reference: HolmNGCharlouJLInitial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic RidgeEarth Planet. Sci. Lett.20011911810.1016/S0012-821X(01)00397-1
– reference: SanderSKoschinskyAOnboard-ship redox speciation of chromium in diffuse hydrothermal fluids from the North Fiji BasinMar. Chem.2000718310210.1016/S0304-4203(00)00042-6
– reference: RonaPAKlinkhammerGNelsonTATrefryJHElderfieldHBlack smokers, massive sulphides and vent biota at the Mid-Atlantic RidgeNature1986321333710.1038/321033a0
– reference: KoschinskyAHydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5 degrees S on the Mid-Atlantic RidgeGeology20083661561810.1130/G24726A.1
– reference: TonerBMPreservation of iron(II) by carbon-rich matrices in a hydrothermal plumeNature Geosci.2009219720110.1038/ngeo433
– reference: RueELBrulandKWComplexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new ligand equilibration/adsorptive cathodic stripping voltammetric methodMar. Chem.19955011713810.1016/0304-4203(95)00031-L
– reference: HasslerCSSchoemannVNicholsCMButlerECVBoydPWSaccharides enhance iron bioavailability to Southern Ocean phytoplanktonP. Natl Acad. Sci. USA20111081076108110.1073/pnas.1010963108
– reference: HanningtonMDde RondeCEJPetersenSEconomic Geology: One Hundredth Anniversary Volume: 1905–20052005111141
– reference: BoydPWIbisanmiESanderSGHunterKAJacksonGARemineralization of upper ocean particles: Implications for iron biogeochemistryLimnol. Oceanogr.2010551271128810.4319/lo.2010.55.3.1271
– reference: DesbruyèresDA review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controlsHydrobiologia200044020121610.1023/A:1004175211848
– reference: ChuN-CEvidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through timeEarth Planet. Sci. Lett.200624520221710.1016/j.epsl.2006.02.043
– reference: DittmarTPaengJA heat-induced molecular signature in marine dissolved organic matterNature Geosci.2009217517910.1038/ngeo440
– reference: EdmondJMRidge crest hydrothermal activity and the balances of the major and minor elements in the ocean - Galapagos DataEarth Planet. Sci. Lett.19794611810.1016/0012-821X(79)90061-X
– reference: KelleyDSA serpentinite-hosted ecosystem: The Lost City hydrothermal fieldScience20053071428143410.1126/science.1102556
– reference: KonnCHydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted ventsChem. Geol.200925829931410.1016/j.chemgeo.2008.10.034
– reference: Von Damm, K. L. in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions (eds Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S. & Thomson, R. E.) 222–247 (Geophysical Monograph 91, American Geophysical Union, 1995).
– reference: LiuXMilleroFJThe solubility of iron in seawaterMar. Chem.200277435410.1016/S0304-4203(01)00074-3
– reference: MawjiEHydroxamate siderophores: Occurrence and importance in the Atlantic OceanEnviron. Sci. Technol.2008428675868010.1021/es801884r
– reference: ElderfieldHSchulzAMid-ocean ridge hydrothermal fluxes and the chemical composition of the oceanAnnu. Rev. Earth Planet. Sci.19962419122410.1146/annurev.earth.24.1.191
– reference: UssherSJAchterbergEPWorsfoldPJMarine biogeochemistry of ironEnviron. Chem.20041678010.1071/EN04053
– reference: TagliabueAHydrothermal contribution to the oceanic dissolved iron inventoryNature Geosci.2010325225610.1038/ngeo818
– reference: HaaseKMYoung volcanism and related hydrothermal activity at 5°S on the slow-spreading southern Mid-Atlantic RidgeGeochem. Geophys. Geosyst.20078Q1100210.1029/2006GC001509
– reference: MandernackKWTeboBMManganese scavanging and oxidation at hydrothermal vents and in vent plumesGeochim. Cosmochim. Acta1993573907392310.1016/0016-7037(93)90343-U
– reference: LangSQButterfieldDASchulteMKelleyDSLilleyMDElevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal fieldGeochim. Cosmochim. Acta20107494195210.1016/j.gca.2009.10.045
– reference: SchulteMDRogersKLThiols in hydrothermal solutions: standard partial molal properties and their role in the organic geochemistry of hydrothermal environmentsGeochim. Cosmochim. Acta2004681087109710.1016/j.gca.2003.06.001
– reference: ByrneRHInorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratiosGeochem. Trans.20023111610.1186/1467-4866-3-11
– reference: SanderSGKoschinskyAMassothGJStottMHunterKAOrganic complexation of copper in deep-sea hydrothermal vent systemsEnviron. Chem.20074818910.1071/EN06086
– reference: LangSQButterfieldDALilleyMDJohnsonHlPHedgesJIDissolved organic carbon in ridge-axes and ridge-flank hydrothermal systemsGeochim. Cosmochim. Acta2006703830384210.1016/j.gca.2006.04.031
– reference: TrouwborstREClementBGTeboBMGlazerBTLutherGWIIISoluble Mn(III) in suboxic zonesScience20063131955195710.1126/science.1132876
– reference: LilleyMDFeelyRATrefryJHSeafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions1995369391
– volume: 3
  start-page: 252
  year: 2010
  ident: BFngeo1088_CR27
  publication-title: Nature Geosci.
  doi: 10.1038/ngeo818
– volume: 44
  start-page: 387
  year: 2010
  ident: BFngeo1088_CR40
  publication-title: Geochem. J.
  doi: 10.2343/geochemj.1.0081
– start-page: 111
  volume-title: Economic Geology: One Hundredth Anniversary Volume: 1905–2005
  year: 2005
  ident: BFngeo1088_CR1
– volume: 9
  start-page: 6
  year: 2008
  ident: BFngeo1088_CR32
  publication-title: Geochem. Trans.
  doi: 10.1186/1467-4866-9-6
– volume: 440
  start-page: 201
  year: 2000
  ident: BFngeo1088_CR49
  publication-title: Hydrobiologia
  doi: 10.1023/A:1004175211848
– volume: 307
  start-page: 1428
  year: 2005
  ident: BFngeo1088_CR48
  publication-title: Science
  doi: 10.1126/science.1102556
– volume: 321
  start-page: 33
  year: 1986
  ident: BFngeo1088_CR46
  publication-title: Nature
  doi: 10.1038/321033a0
– volume: 184
  start-page: 37
  year: 2002
  ident: BFngeo1088_CR26
  publication-title: Chem. Geol.
  doi: 10.1016/S0009-2541(01)00351-5
– volume: 35
  start-page: 65
  year: 1998
  ident: BFngeo1088_CR12
  publication-title: Carbohyd. Polym.
  doi: 10.1016/S0144-8617(97)00109-4
– volume: 4
  start-page: 81
  year: 2007
  ident: BFngeo1088_CR14
  publication-title: Environ. Chem.
  doi: 10.1071/EN06086
– volume: 407
  start-page: 869
  year: 2009
  ident: BFngeo1088_CR16
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2008.09.056
– volume: 245
  start-page: 202
  year: 2006
  ident: BFngeo1088_CR29
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2006.02.043
– volume: 50
  start-page: 117
  year: 1995
  ident: BFngeo1088_CR23
  publication-title: Mar. Chem.
  doi: 10.1016/0304-4203(95)00031-L
– volume: 225
  start-page: 63
  year: 2004
  ident: BFngeo1088_CR28
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2004.06.001
– volume: 36
  start-page: 615
  year: 2008
  ident: BFngeo1088_CR2
  publication-title: Geology
  doi: 10.1130/G24726A.1
– volume: 266
  start-page: 52
  year: 2009
  ident: BFngeo1088_CR3
  publication-title: Mar. Geol.
  doi: 10.1016/j.margeo.2009.07.012
– volume: 20
  start-page: GB1015
  year: 2006
  ident: BFngeo1088_CR24
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2005GB002505
– volume: 410
  start-page: 813
  year: 2001
  ident: BFngeo1088_CR31
  publication-title: Nature
  doi: 10.1038/35071069
– volume: 108
  start-page: 1076
  year: 2011
  ident: BFngeo1088_CR44
  publication-title: P. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1010963108
– volume: 54
  start-page: 586
  year: 2007
  ident: BFngeo1088_CR20
  publication-title: Deep-Sea Res. I
  doi: 10.1016/j.dsr.2006.12.013
– start-page: 245
  volume-title: Subseafloor Biosphere at Mid-Ocean Ranges
  year: 2004
  ident: BFngeo1088_CR4
  doi: 10.1029/144GM16
– volume: 2
  start-page: 65
  year: 2001
  ident: BFngeo1088_CR10
  publication-title: Geochem. Trans.
  doi: 10.1186/1467-4866-2-65
– volume: 53
  start-page: 1961
  year: 2006
  ident: BFngeo1088_CR41
  publication-title: Deep-Sea Res. I
  doi: 10.1016/j.dsr.2006.09.003
– volume: 55
  start-page: 1271
  year: 2010
  ident: BFngeo1088_CR22
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2010.55.3.1271
– volume: 313
  start-page: 1955
  year: 2006
  ident: BFngeo1088_CR34
  publication-title: Science
  doi: 10.1126/science.1132876
– start-page: 369
  volume-title: Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions
  year: 1995
  ident: BFngeo1088_CR8
– volume: 263
  start-page: 588
  year: 2005
  ident: BFngeo1088_CR30
  publication-title: Earth Planet. Sci. Lett
  doi: 10.1016/j.epsl.2005.03.008
– volume: 74
  start-page: 941
  year: 2010
  ident: BFngeo1088_CR39
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2009.10.045
– ident: BFngeo1088_CR18
– volume: 57
  start-page: 3907
  year: 1993
  ident: BFngeo1088_CR33
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(93)90343-U
– volume: 70
  start-page: 3830
  year: 2006
  ident: BFngeo1088_CR36
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2006.04.031
– volume: 270
  start-page: 157
  year: 2008
  ident: BFngeo1088_CR15
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2008.01.048
– volume: 191
  start-page: 1
  year: 2001
  ident: BFngeo1088_CR37
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/S0012-821X(01)00397-1
– volume: 3
  start-page: 11
  year: 2002
  ident: BFngeo1088_CR9
  publication-title: Geochem. Trans.
  doi: 10.1186/1467-4866-3-11
– volume: 8
  start-page: Q11002
  year: 2007
  ident: BFngeo1088_CR47
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1029/2006GC001509
– volume: 1
  start-page: 67
  year: 2004
  ident: BFngeo1088_CR19
  publication-title: Environ. Chem.
  doi: 10.1071/EN04053
– volume: 2
  start-page: 197
  year: 2009
  ident: BFngeo1088_CR17
  publication-title: Nature Geosci.
  doi: 10.1038/ngeo433
– volume: 42
  start-page: 8675
  year: 2008
  ident: BFngeo1088_CR43
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es801884r
– volume: 2
  start-page: 175
  year: 2009
  ident: BFngeo1088_CR45
  publication-title: Nature Geosci.
  doi: 10.1038/ngeo440
– volume: 32
  start-page: 269
  year: 1989
  ident: BFngeo1088_CR35
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1989.34.2.0269
– volume: 300
  start-page: 944
  year: 2003
  ident: BFngeo1088_CR11
  publication-title: Science
  doi: 10.1126/science.1083545
– volume: 68
  start-page: 1087
  year: 2004
  ident: BFngeo1088_CR42
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2003.06.001
– volume: 46
  start-page: 1
  year: 1979
  ident: BFngeo1088_CR6
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/0012-821X(79)90061-X
– volume: 24
  start-page: 191
  year: 1996
  ident: BFngeo1088_CR7
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev.earth.24.1.191
– volume: 33
  start-page: 1084
  year: 1988
  ident: BFngeo1088_CR25
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1988.33.5.1084
– volume: 258
  start-page: 299
  year: 2009
  ident: BFngeo1088_CR38
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2008.10.034
– volume: 77
  start-page: 43
  year: 2002
  ident: BFngeo1088_CR21
  publication-title: Mar. Chem.
  doi: 10.1016/S0304-4203(01)00074-3
– volume: 280
  start-page: 12
  year: 2010
  ident: BFngeo1088_CR5
  publication-title: Chem. Geol.
– volume: 71
  start-page: 83
  year: 2000
  ident: BFngeo1088_CR13
  publication-title: Mar. Chem.
  doi: 10.1016/S0304-4203(00)00042-6
SSID ssj0060475
Score 2.47775
SecondaryResourceType review_article
Snippet Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Mounting evidence suggests that organic compounds bind...
Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Until recently, it was assumed that most of the metal...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 145
SubjectTerms 704/106/47
704/106/829/2737
Chromium
Copper
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Fluctuations
Geochemistry
Geology
Geophysics/Geodesy
In situ measurement
Manganese
Metals
Ocean floor
Organic compounds
progress-article
Seawater
Sulfides
Title Metal flux from hydrothermal vents increased by organic complexation
URI https://link.springer.com/article/10.1038/ngeo1088
https://www.proquest.com/docview/1030084314
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA66IfgiXnE6JYrgU1ibpG36JF6mQ9gQcbC3kttUmN3cBbZ_b5Kmbor42obzcE5zvq_JOecD4EIYlhxhFiIe6wBRIlMkEqUQFoQkTBgADW2jcLsTt7r0sRf1_IHbxJdVljnRJWo1lPaMvGHlsAJm4I5ejT6RVY2yt6teQmMdVE0KZubnq3rT7Dw9l7k4DqgbtWswEqOApbQcP0tYI3_VwzBwiisrgLRkmb8uRh3e3G-DLU8U4XUR2R2wpvNdsPHghHgXe-CurQ1thv3BbA5tiwh8W6ix66b6MI9tEeMEvueWEk60gmIBC_kmCV0NuZ67gOyD7n3z5baFvCIC4sZzU2QAjTBNY65wSJXgoU4CLkRKmUp1P4r7qYhEKphgKdaBkDTEsUwSzQgnjNKIHIBKPsz1IYAMc2xsGnhXgkY44YkhdpJrHEoaCcZr4LJ0Syb9uHCrWjHI3LU1YVnpwBo4-145KkZk_LGmXno285tkki1DWgPnpbdXX_-0cfS_jWOwWZz32vqwOqhMxzN9YgjDVJz6r-ILJpjAxA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFD5CRRO8ILaBKJdhJhBPFontJM4DmrYVVi6tEAKJt2DHLkzq0tKLaP_UfuNsJ6YMId54TawT6eT4nM8-lw9gVxqUHBEeYhHrADOap1gmSmEiKU24NAE0tI3CrXbcvGanN9HNHPz1vTC2rNL7ROeoVS-3d-QHlg4r4CbcsW_9B2xZo2x21VNolGZxpqeP5sg2PDxpmP-7R8jx0dXPJq5YBbAwXx9hExQo1ywWioRMSRHqJBBSpoyrVHeiuJPKSKaSS54SHcichSTOk0RzKihnzLJEGJc_z6g5ytRg_sdR--LS-_44YG60r4nJBAc8ZX7cLeUHxZ3uhYFjeHkWAGeo9kUi1sW342VYqoAp-l5a0keY08Un-PDLEf9OP0OjpQ1MR53ueIJsSwq6n6qB6976Yx7boskh-l1YCDrUCskpKumicuRq1vXEGcAKXL-LrlahVvQKvQaIE0GMTAMnlGQRSURigGQuNAlzFkku6rDv1ZLl1Xhyy5LRzVyanPLMK7AOO08r--VIjlfWbHrNZtWmHGYzE6rDV6_t56__l7H-toxtWGhetc6z85P22QYslnfNtjZtE2qjwVhvGbAykl8qC0Fw-95G-Q8bKf6x
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1dT9swFL1CrUC8oI2B6IBh0BBPVhPHSZyHCW2UAmNUCIHEW7BjlyFBymir0b-2X7drJ-ZLiDdek8iKbk58ju177wH4qlAlx0yEVCYmoDwqMqpSrSlTUZQKhQQa2kLho16yf8Z_nsfnU_DP18LYtEo_J7qJWg8Ku0fetnZYgUC64-1-nRZx3Olu3_6h1kHKnrR6O40KIodm8heXb8NvBx381puMdXdPd_Zp7TBAJb7JiCJBRMLwRGoWcq1kaNJAKpVxoTPTj5N-pmKVKaFExkygCh6ypEhTIyIZCc6tYwRO_80UV0VBA5o_dnvHJ54HkoC7Nr_Iz4wGIuO-9W0k2uWlGYSBc3t5QoaPCvfFoazjuu4HmKtFKvleoeojTJlyHqb3nAnw5BN0jgxKdtK_Ht8TW55Cfk_0navkusHLNoFySK5KK0eHRhM1IZV1VEFc_rq5d2BYgLN3idUiNMpBaZaACCYZjonSQises1SmKCoLaVhY8FgJ2YItH5a8qFuVW8eM69wdmUci9wFswfrDk7dVe45Xnlnxkc3rH3SYP8KpBRs-2k9vPx_j89tjrMEMgjH_ddA7XIbZatvZpqmtQGN0NzarqFtG6ksNEAIX743J_5EpAvU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+flux+from+hydrothermal+vents+increased+by+organic+complexation&rft.jtitle=Nature+geoscience&rft.au=Sander%2C+Sylvia+G&rft.au=Koschinsky%2C+Andrea&rft.date=2011-03-01&rft.pub=Nature+Publishing+Group&rft.issn=1752-0894&rft.eissn=1752-0908&rft.volume=4&rft.issue=3&rft.spage=145&rft_id=info:doi/10.1038%2Fngeo1088&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2721408411
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-0894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-0894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-0894&client=summon