A Structure–Activity Analysis for Probing the Mechanism of Processive Double-Stranded DNA Digestion by λ Exonuclease Trimers
λ exonuclease (λexo) is an ATP-independent 5′-to-3′ exonuclease that binds to double-stranded DNA (dsDNA) ends and processively digests the 5′-strand into mononucleotides. The crystal structure of λexo revealed that the enzyme forms a ring-shaped homotrimer with a central funnel-shaped channel for t...
Saved in:
Published in | Biochemistry (Easton) Vol. 54; no. 39; pp. 6139 - 6148 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
06.10.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | λ exonuclease (λexo) is an ATP-independent 5′-to-3′ exonuclease that binds to double-stranded DNA (dsDNA) ends and processively digests the 5′-strand into mononucleotides. The crystal structure of λexo revealed that the enzyme forms a ring-shaped homotrimer with a central funnel-shaped channel for tracking along the DNA. On the basis of this structure, it was proposed that dsDNA enters the open end of the channel, the 5′-strand is digested at one of the three active sites, and the 3′-strand passes through the narrow end of the channel to emerge out the back. This model was largely confirmed by the structure of the λexo–DNA complex, which further revealed that the enzyme unwinds the DNA by 2 bp prior to cleavage, to thread the 5′-end of the DNA into the active site. On the basis of this structure, an “electrostatic ratchet” model was proposed, in which the enzyme uses a hydrophobic wedge to insert into the base pairs to unwind the DNA, a two-metal mechanism for nucleotide hydrolysis, a positively charged pocket to bind to the terminal 5′-phosphate generated after each round of cleavage, and an arginine residue (Arg-45) to bind to the minor groove of the downstream end of the DNA. To test this model, in this study we have determined the effects of 11 structure-based mutations in λexo on DNA binding and exonuclease activities in vitro, and on DNA recombination in vivo. The results are largely consistent with the model for the mechanism that was proposed on the basis of the structure and provide new insights into the roles of particular residues of the protein in promoting the reaction. In particular, a key role for Arg-45 in DNA binding is revealed. |
---|---|
AbstractList | lambda exonuclease ( lambda exo) is an ATP-independent 5'-to-3' exonuclease that binds to double-stranded DNA (dsDNA) ends and processively digests the 5'-strand into mononucleotides. The crystal structure of lambda exo revealed that the enzyme forms a ring-shaped homotrimer with a central funnel-shaped channel for tracking along the DNA. On the basis of this structure, it was proposed that dsDNA enters the open end of the channel, the 5'-strand is digested at one of the three active sites, and the 3'-strand passes through the narrow end of the channel to emerge out the back. This model was largely confirmed by the structure of the lambda exo-DNA complex, which further revealed that the enzyme unwinds the DNA by 2 bp prior to cleavage, to thread the 5'-end of the DNA into the active site. On the basis of this structure, an "electrostatic ratchet" model was proposed, in which the enzyme uses a hydrophobic wedge to insert into the base pairs to unwind the DNA, a two-metal mechanism for nucleotide hydrolysis, a positively charged pocket to bind to the terminal 5'-phosphate generated after each round of cleavage, and an arginine residue (Arg-45) to bind to the minor groove of the downstream end of the DNA. To test this model, in this study we have determined the effects of 11 structure-based mutations in lambda exo on DNA binding and exonuclease activities in vitro, and on DNA recombination in vivo. The results are largely consistent with the model for the mechanism that was proposed on the basis of the structure and provide new insights into the roles of particular residues of the protein in promoting the reaction. In particular, a key role for Arg-45 in DNA binding is revealed. λ exonuclease (λexo) is an ATP-independent 5'-to-3' exonuclease that binds to double-stranded DNA (dsDNA) ends and processively digests the 5'-strand into mononucleotides. The crystal structure of λexo revealed that the enzyme forms a ring-shaped homotrimer with a central funnel-shaped channel for tracking along the DNA. On the basis of this structure, it was proposed that dsDNA enters the open end of the channel, the 5'-strand is digested at one of the three active sites, and the 3'-strand passes through the narrow end of the channel to emerge out the back. This model was largely confirmed by the structure of the λexo-DNA complex, which further revealed that the enzyme unwinds the DNA by 2 bp prior to cleavage, to thread the 5'-end of the DNA into the active site. On the basis of this structure, an "electrostatic ratchet" model was proposed, in which the enzyme uses a hydrophobic wedge to insert into the base pairs to unwind the DNA, a two-metal mechanism for nucleotide hydrolysis, a positively charged pocket to bind to the terminal 5'-phosphate generated after each round of cleavage, and an arginine residue (Arg-45) to bind to the minor groove of the downstream end of the DNA. To test this model, in this study we have determined the effects of 11 structure-based mutations in λexo on DNA binding and exonuclease activities in vitro, and on DNA recombination in vivo. The results are largely consistent with the model for the mechanism that was proposed on the basis of the structure and provide new insights into the roles of particular residues of the protein in promoting the reaction. In particular, a key role for Arg-45 in DNA binding is revealed. |
Author | Pan, Xinlei Bell, Charles E McCabe, Kimberly A Fu, Jun Smith, Christopher E Zhang, Jinjin |
AuthorAffiliation | Department of Chemistry and Biochemistry Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science The Ohio State University Department of Biological Chemistry and Pharmacology Shandong University Ohio State Biochemistry Program |
AuthorAffiliation_xml | – name: Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science – name: – name: Shandong University – name: Ohio State Biochemistry Program – name: The Ohio State University – name: Department of Biological Chemistry and Pharmacology – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Xinlei surname: Pan fullname: Pan, Xinlei – sequence: 2 givenname: Christopher E surname: Smith fullname: Smith, Christopher E – sequence: 3 givenname: Jinjin surname: Zhang fullname: Zhang, Jinjin – sequence: 4 givenname: Kimberly A surname: McCabe fullname: McCabe, Kimberly A – sequence: 5 givenname: Jun surname: Fu fullname: Fu, Jun – sequence: 6 givenname: Charles E surname: Bell fullname: Bell, Charles E email: bell.489@osu.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26361255$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFu1DAUhi3Uik4LJ0BCXrLJ1E7sOF5GndIilYJEWUe289xxldjFTqrOit6hx-EOHIKT4NEMLBEbW5a__3-2vmN04IMHhN5QsqSkpKfKpKV2waxhXHJNiCDiBVpQXpKCSckP0IIQUhelrMkROk7pLh8ZEewlOirrqqYl5wv0vcVfpjibaY7w6-m5NZN7cNMGt14Nm-QStiHizzFo52_xtAb8EcxaeZdGHOz2wkBK7gHwKsx6gCKXKd9Dj1fXLV65W0iTCx7rDf75A58_Bj-bAVQCfBPdCDG9QodWDQle7_cT9PX9-c3ZZXH16eLDWXtVqEo0U9FXRopG9IbQpjdaMq2EZTWznLOeSNPzvNaWCAulkaQGUXItmKZMlyCsrk7Qu13vfQzf5vyqbnTJwDAoD2FOHRWsbpqGM_kfKG0krQStMlrtUBNDShFsd5-_peKmo6TbSuqypG4vqdtLyqm3-wGzHqH_m_ljJQOnO2CbvgtzzDLSPyt_A3CspPc |
CitedBy_id | crossref_primary_10_1093_nar_gky1309 crossref_primary_10_1002_iub_2343 crossref_primary_10_1016_j_pbiomolbio_2019_03_005 crossref_primary_10_1093_nar_gky154 crossref_primary_10_1093_nar_gkv1150 crossref_primary_10_1016_j_engmic_2023_100120 crossref_primary_10_1021_acs_analchem_8b03963 crossref_primary_10_1186_s12859_020_03675_3 |
Cites_doi | 10.1038/2417 10.1039/C4CS00083H 10.1073/pnas.1103467108 10.1038/nchembio.561 10.1021/ac5002965 10.1016/j.talanta.2011.07.058 10.1016/S0021-9258(18)42938-9 10.1016/S1367-5931(99)00012-5 10.1016/j.molcel.2005.08.019 10.1038/nature08473 10.1016/j.str.2009.03.008 10.1093/genetics/147.3.961 10.1002/(SICI)1097-0320(19990701)36:3<163::AID-CYTO3>3.0.CO;2-R 10.1093/nar/gkg266 10.1016/S0021-9258(18)96257-5 10.1016/j.cell.2011.11.013 10.1039/c4an00151f 10.1016/j.talanta.2013.01.046 10.1111/1556-4029.12283 10.1016/j.talanta.2013.06.062 10.1016/S0021-9258(17)38416-8 10.1128/JB.185.8.2465-2474.2003 10.1126/science.277.5333.1824 10.1021/am500883q 10.1038/nprot.2008.227 10.1093/nar/27.15.3057 10.1021/bi501431w 10.1038/nbt.2183 10.1021/bi501155q 10.1016/S0021-9258(18)62317-8 10.1038/35093556 10.1073/pnas.0709089105 10.1111/j.1574-6968.2001.tb10725.x 10.1038/nature08187 10.1021/ac501842t 10.1101/gad.14.15.1971 10.1002/chem.201203998 10.1126/science.1088047 10.1385/MB:32:1:043 10.1016/j.molcel.2006.03.013 10.1080/07391102.2010.10508587 10.1039/c0an00145g 10.1126/science.1084387 10.1128/MMBR.63.4.751-813.1999 10.1039/c4nr00944d 10.1016/S0021-9258(18)96258-7 10.1038/nprot.2014.036 10.1016/j.bios.2011.06.047 10.1007/s00018-004-4513-1 10.1021/ac403458b 10.1093/nar/29.16.e79 10.1016/S0021-9258(18)62316-6 |
ContentType | Journal Article |
Copyright | Copyright © 2015 American
Chemical Society |
Copyright_xml | – notice: Copyright © 2015 American Chemical Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7TM |
DOI | 10.1021/acs.biochem.5b00707 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Nucleic Acids Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Nucleic Acids Abstracts |
DatabaseTitleList | Nucleic Acids Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1520-4995 |
EndPage | 6148 |
ExternalDocumentID | 10_1021_acs_biochem_5b00707 26361255 c569368387 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - .K2 02 23N 53G 55 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AJYGW ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 KM L7B LG6 P2P ROL TN5 UI2 VF5 VG9 VQA W1F WH7 X X7M YZZ ZA5 --- -DZ -~X .55 4.4 ABJNI ABQRX ADHLV AGXLV AHGAQ CGR CUPRZ CUY CVF ECM EIF GGK NPM XSW ZCA ~02 ~KM AAYXX CITATION 7X8 7TM |
ID | FETCH-LOGICAL-a378t-d3c9787dc018dcb94ba7f464f554d09cd5d096f07fe2c906e725b74b14b2e7fb3 |
IEDL.DBID | ACS |
ISSN | 0006-2960 |
IngestDate | Fri Aug 16 21:45:31 EDT 2024 Fri Aug 16 10:12:45 EDT 2024 Fri Aug 23 01:45:25 EDT 2024 Sat Sep 28 07:58:49 EDT 2024 Thu Aug 27 13:42:09 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a378t-d3c9787dc018dcb94ba7f464f554d09cd5d096f07fe2c906e725b74b14b2e7fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26361255 |
PQID | 1718913713 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1746888549 proquest_miscellaneous_1718913713 crossref_primary_10_1021_acs_biochem_5b00707 pubmed_primary_26361255 acs_journals_10_1021_acs_biochem_5b00707 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 20151006 2015-Oct-06 2015-10-06 |
PublicationDateYYYYMMDD | 2015-10-06 |
PublicationDate_xml | – month: 10 year: 2015 text: 20151006 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemistry (Easton) |
PublicationTitleAlternate | Biochemistry |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref27/cit27 Carter D. M. (ref2/cit2) 1971; 246 ref16/cit16 ref52/cit52 ref23/cit23 ref31/cit31 ref34/cit34 Muyrers J. P. (ref8/cit8) 2000; 14 ref37/cit37 ref20/cit20 ref48/cit48 Radding C. M. (ref7/cit7) 1971; 246 ref17/cit17 ref10/cit10 ref35/cit35 Little J. W. (ref1/cit1) 1967; 242 ref19/cit19 ref21/cit21 Stahl M. M. (ref4/cit4) 1997; 147 Little J. W. (ref42/cit42) 1967; 242 ref46/cit46 ref49/cit49 ref13/cit13 Muniyappa K. (ref5/cit5) 1986; 261 Kuzminov A. (ref3/cit3) 1999; 63 ref24/cit24 ref38/cit38 ref50/cit50 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 Kmiec E. (ref6/cit6) 1981; 256 ref32/cit32 ref39/cit39 ref14/cit14 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref30/cit30 ref47/cit47 ref44/cit44 |
References_xml | – ident: ref12/cit12 doi: 10.1038/2417 – ident: ref17/cit17 doi: 10.1039/C4CS00083H – ident: ref29/cit29 doi: 10.1073/pnas.1103467108 – ident: ref46/cit46 doi: 10.1038/nchembio.561 – ident: ref48/cit48 doi: 10.1021/ac5002965 – ident: ref50/cit50 doi: 10.1016/j.talanta.2011.07.058 – volume: 256 start-page: 12636 year: 1981 ident: ref6/cit6 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)42938-9 contributor: fullname: Kmiec E. – ident: ref30/cit30 doi: 10.1016/S1367-5931(99)00012-5 – ident: ref32/cit32 doi: 10.1016/j.molcel.2005.08.019 – ident: ref36/cit36 doi: 10.1038/nature08473 – ident: ref39/cit39 doi: 10.1016/j.str.2009.03.008 – volume: 147 start-page: 961 year: 1997 ident: ref4/cit4 publication-title: Genetics doi: 10.1093/genetics/147.3.961 contributor: fullname: Stahl M. M. – ident: ref43/cit43 doi: 10.1002/(SICI)1097-0320(19990701)36:3<163::AID-CYTO3>3.0.CO;2-R – ident: ref34/cit34 doi: 10.1093/nar/gkg266 – volume: 242 start-page: 672 year: 1967 ident: ref42/cit42 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)96257-5 contributor: fullname: Little J. W. – ident: ref16/cit16 doi: 10.1016/j.cell.2011.11.013 – ident: ref19/cit19 doi: 10.1039/c4an00151f – ident: ref51/cit51 doi: 10.1016/j.talanta.2013.01.046 – ident: ref20/cit20 doi: 10.1111/1556-4029.12283 – ident: ref18/cit18 doi: 10.1016/j.talanta.2013.06.062 – volume: 261 start-page: 7472 year: 1986 ident: ref5/cit5 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)38416-8 contributor: fullname: Muniyappa K. – ident: ref10/cit10 doi: 10.1128/JB.185.8.2465-2474.2003 – ident: ref28/cit28 doi: 10.1126/science.277.5333.1824 – ident: ref22/cit22 doi: 10.1021/am500883q – ident: ref14/cit14 doi: 10.1038/nprot.2008.227 – ident: ref37/cit37 doi: 10.1093/nar/27.15.3057 – ident: ref38/cit38 doi: 10.1021/bi501431w – ident: ref41/cit41 doi: 10.1038/nbt.2183 – ident: ref52/cit52 doi: 10.1021/bi501155q – volume: 246 start-page: 2510 year: 1971 ident: ref7/cit7 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)62317-8 contributor: fullname: Radding C. M. – ident: ref13/cit13 doi: 10.1038/35093556 – ident: ref9/cit9 doi: 10.1073/pnas.0709089105 – ident: ref11/cit11 doi: 10.1111/j.1574-6968.2001.tb10725.x – ident: ref15/cit15 doi: 10.1038/nature08187 – ident: ref26/cit26 doi: 10.1021/ac501842t – volume: 14 start-page: 1971 year: 2000 ident: ref8/cit8 publication-title: Genes Dev. doi: 10.1101/gad.14.15.1971 contributor: fullname: Muyrers J. P. – ident: ref27/cit27 doi: 10.1002/chem.201203998 – ident: ref45/cit45 doi: 10.1126/science.1088047 – ident: ref40/cit40 doi: 10.1385/MB:32:1:043 – ident: ref33/cit33 doi: 10.1016/j.molcel.2006.03.013 – ident: ref35/cit35 doi: 10.1080/07391102.2010.10508587 – ident: ref49/cit49 doi: 10.1039/c0an00145g – ident: ref44/cit44 doi: 10.1126/science.1084387 – volume: 63 start-page: 751 year: 1999 ident: ref3/cit3 publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.63.4.751-813.1999 contributor: fullname: Kuzminov A. – ident: ref23/cit23 doi: 10.1039/c4nr00944d – volume: 242 start-page: 679 year: 1967 ident: ref1/cit1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)96258-7 contributor: fullname: Little J. W. – ident: ref21/cit21 doi: 10.1038/nprot.2014.036 – ident: ref25/cit25 doi: 10.1016/j.bios.2011.06.047 – ident: ref31/cit31 doi: 10.1007/s00018-004-4513-1 – ident: ref24/cit24 doi: 10.1021/ac403458b – ident: ref47/cit47 doi: 10.1093/nar/29.16.e79 – volume: 246 start-page: 2502 year: 1971 ident: ref2/cit2 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)62316-6 contributor: fullname: Carter D. M. |
SSID | ssj0004074 |
Score | 2.261612 |
Snippet | λ exonuclease (λexo) is an ATP-independent 5′-to-3′ exonuclease that binds to double-stranded DNA (dsDNA) ends and processively digests the 5′-strand into... λ exonuclease (λexo) is an ATP-independent 5'-to-3' exonuclease that binds to double-stranded DNA (dsDNA) ends and processively digests the 5'-strand into... lambda exonuclease ( lambda exo) is an ATP-independent 5'-to-3' exonuclease that binds to double-stranded DNA (dsDNA) ends and processively digests the... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 6139 |
SubjectTerms | DNA - chemistry Exodeoxyribonucleases - chemistry Models, Chemical Protein Multimerization Protein Structure, Quaternary |
Title | A Structure–Activity Analysis for Probing the Mechanism of Processive Double-Stranded DNA Digestion by λ Exonuclease Trimers |
URI | http://dx.doi.org/10.1021/acs.biochem.5b00707 https://www.ncbi.nlm.nih.gov/pubmed/26361255 https://search.proquest.com/docview/1718913713 https://search.proquest.com/docview/1746888549 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB7RcqAXCi0_W340SAhxIEvi2E58jJZWFVJXSG2l3iLbsVEFm0XNrkS5tO_A4_AOPARPwjg_UChUveQQWXEyM8584_F8A_CcdOyFyxUZr2ARt5WMlE_D-SepGc-1EiYUCu9N5e4hf3skji4Uq_-VwWfJa22bsTkO7aNmY2FaepoVuMkyWh4BCU32f5dBxj3pMgXJjJD5QDL074cEd2SbP93RfzBm62t21mE6VOx0R0w-jJcLM7ZfLhM4Xu8z7sDtHnVi0ZnJXbjh6g3YLGqKuGen-ALbc6DtBvsG3JoMPeA24azA_ZZgdnnifpx_LWzXawIHKhMkyIvvApVT_R4JSuKeC5XEx80M5x77IgT6nyLhdPPRRYELN2y545tpgV1ui-wCzSl-_4bbn-d1YFcmv4oHoevASXMPDne2Dya7Ud-yIdJpli-iKrUUlmaVjZO8skZxozPPJfeEWqpY2UrQVfo4845ZFUuXMWEybhJumMu8Se_Daj2v3UNAXgnhCV4pSzDCGa2VlTJXVnPJdOyqEbwkmZb9kmvKNpvOkjLc7AVd9oIewatByeWnjsTj6uHPBkMoSd4hg6JrN1_SHOTJVZJSYH_VGC7zPKe4ewQPOiv6NSmTaUCUYuv67_4I1gijtWyxsXwMq6R094Rw0MI8ba3_J2MlBig |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagHMqFnxbo8jtICHEgS-LYTnyMllYLdFdI3ZV6i2zHRhXdLGp2JcoF3oHH4R14CJ6EsZO0AkEFlxysyHbG48w3Hs83hDzBNXbc5hKVl9OImUpE0qX-_pNQlOVKcu0ThSdTMZ6z14f8sEsK87kwOIkGe2pCEP-cXSB54dv0ka8itRhyHVhqLpMrPEOT6QHR6OA8GzLuuJfRV6YI0HuuoT934q2SaX61Sn-BmsHk7F0n87PJhpsm74frlR6aT7_xOP7v19wg1zoMCkWrNDfJJVtvke2iRv97cQpPIdwKDcftW2Rz1FeE2yafCzgIdLPrE_vjy9fCtJUnoCc2AQTA8NYTO9XvAIElTKzPKz5qFrB00KUk4N8VELXrYxt5Zlx_AA8vpwW0kS7UEtCn8P0b7H5c1p5rGa0szHwNgpPmFpnv7c5G46gr4BCpNMtXUZUadFKzysRJXhktmVaZY4I5xDBVLE3F8SlcnDlLjYyFzSjXGdMJ09RmTqe3yUa9rO0OAVZx7hBsSYOgwmqlpBEil0YxQVVsqwF5hjItuw3YlCG2TpPSN3aCLjtBD8jzfq3LDy2lx8WvP-71oUR5-3iKqu1yjWOgXZdJim7-Re8wkec5euEDcqdVprNBqUg9vuR3_33uj8jmeDbZL_dfTd_cI1cRvQUe2VjcJxuoAPYBIqSVfhg2xE_ZJw6N |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIgEXfloKy-8gIcSBLPmxnfgYbbsqP11VaiuVUxQ7Nqpgs1WzK1Eu9B36OH2HPgRPwthJikBQIS45WJHtjMeZbzyebwCe0xpbbjJJysvjgOlKBNIm7v6TKGOWlZIrlyi8NRGbe-ztPt9fgqzPhaFJNNRT44P4blcfVrZjGIheu3Z14CpJTYdceaaaK3CVp5EP0OajnZ8ZkWHHv0z-ckwgvecb-nMnzjLp5lfL9Be46c3O-BZ8uJiwv23yabiYq6H--huX4_980W242WFRzFvluQNLpl6B1bwmP3x6jC_Q3w71x-4rcH3UV4ZbhW857nja2cWR-X5ymuu2AgX2BCdIQBi3HcFT_REJYOKWcfnFB80UZxa71AT6yyKhd_XZBI4h1x3E4_okxzbiRdqC6hjPz3Djy6x2nMtkbXHX1SI4au7C3nhjd7QZdIUcgjJJs3lQJZqc1bTSYZRVWkmmytQywSxhmSqUuuL0FDZMrYm1DIVJY65SpiKmYpNalazBcj2rzX1AVnFuCXRJTeDCqLKUWohM6pKJuAxNNYCXJNOi24hN4WPscVS4xk7QRSfoAbzq17s4bKk9Ln_9Wa8TBcnbxVXK2swWNAbZdxkl5O5f9g4TWZaRNz6Ae61CXQwai8ThTP7g3-f-FK5tr4-L928m7x7CDQJxnk42FI9gmdbfPCagNFdP_J74AVgqEQc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Structure-Activity+Analysis+for+Probing+the+Mechanism+of+Processive+Double-Stranded+DNA+Digestion+by+%CE%BB+Exonuclease+Trimers&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Pan%2C+Xinlei&rft.au=Smith%2C+Christopher+E&rft.au=Zhang%2C+Jinjin&rft.au=McCabe%2C+Kimberly+A&rft.date=2015-10-06&rft.eissn=1520-4995&rft.volume=54&rft.issue=39&rft.spage=6139&rft.epage=6148&rft_id=info:doi/10.1021%2Facs.biochem.5b00707&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |