A Structure–Activity Analysis for Probing the Mechanism of Processive Double-Stranded DNA Digestion by λ Exonuclease Trimers

λ exonuclease (λexo) is an ATP-independent 5′-to-3′ exonuclease that binds to double-stranded DNA (dsDNA) ends and processively digests the 5′-strand into mononucleotides. The crystal structure of λexo revealed that the enzyme forms a ring-shaped homotrimer with a central funnel-shaped channel for t...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 54; no. 39; pp. 6139 - 6148
Main Authors Pan, Xinlei, Smith, Christopher E, Zhang, Jinjin, McCabe, Kimberly A, Fu, Jun, Bell, Charles E
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 06.10.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract λ exonuclease (λexo) is an ATP-independent 5′-to-3′ exonuclease that binds to double-stranded DNA (dsDNA) ends and processively digests the 5′-strand into mononucleotides. The crystal structure of λexo revealed that the enzyme forms a ring-shaped homotrimer with a central funnel-shaped channel for tracking along the DNA. On the basis of this structure, it was proposed that dsDNA enters the open end of the channel, the 5′-strand is digested at one of the three active sites, and the 3′-strand passes through the narrow end of the channel to emerge out the back. This model was largely confirmed by the structure of the λexo–DNA complex, which further revealed that the enzyme unwinds the DNA by 2 bp prior to cleavage, to thread the 5′-end of the DNA into the active site. On the basis of this structure, an “electrostatic ratchet” model was proposed, in which the enzyme uses a hydrophobic wedge to insert into the base pairs to unwind the DNA, a two-metal mechanism for nucleotide hydrolysis, a positively charged pocket to bind to the terminal 5′-phosphate generated after each round of cleavage, and an arginine residue (Arg-45) to bind to the minor groove of the downstream end of the DNA. To test this model, in this study we have determined the effects of 11 structure-based mutations in λexo on DNA binding and exonuclease activities in vitro, and on DNA recombination in vivo. The results are largely consistent with the model for the mechanism that was proposed on the basis of the structure and provide new insights into the roles of particular residues of the protein in promoting the reaction. In particular, a key role for Arg-45 in DNA binding is revealed.
AbstractList lambda exonuclease ( lambda exo) is an ATP-independent 5'-to-3' exonuclease that binds to double-stranded DNA (dsDNA) ends and processively digests the 5'-strand into mononucleotides. The crystal structure of lambda exo revealed that the enzyme forms a ring-shaped homotrimer with a central funnel-shaped channel for tracking along the DNA. On the basis of this structure, it was proposed that dsDNA enters the open end of the channel, the 5'-strand is digested at one of the three active sites, and the 3'-strand passes through the narrow end of the channel to emerge out the back. This model was largely confirmed by the structure of the lambda exo-DNA complex, which further revealed that the enzyme unwinds the DNA by 2 bp prior to cleavage, to thread the 5'-end of the DNA into the active site. On the basis of this structure, an "electrostatic ratchet" model was proposed, in which the enzyme uses a hydrophobic wedge to insert into the base pairs to unwind the DNA, a two-metal mechanism for nucleotide hydrolysis, a positively charged pocket to bind to the terminal 5'-phosphate generated after each round of cleavage, and an arginine residue (Arg-45) to bind to the minor groove of the downstream end of the DNA. To test this model, in this study we have determined the effects of 11 structure-based mutations in lambda exo on DNA binding and exonuclease activities in vitro, and on DNA recombination in vivo. The results are largely consistent with the model for the mechanism that was proposed on the basis of the structure and provide new insights into the roles of particular residues of the protein in promoting the reaction. In particular, a key role for Arg-45 in DNA binding is revealed.
λ exonuclease (λexo) is an ATP-independent 5'-to-3' exonuclease that binds to double-stranded DNA (dsDNA) ends and processively digests the 5'-strand into mononucleotides. The crystal structure of λexo revealed that the enzyme forms a ring-shaped homotrimer with a central funnel-shaped channel for tracking along the DNA. On the basis of this structure, it was proposed that dsDNA enters the open end of the channel, the 5'-strand is digested at one of the three active sites, and the 3'-strand passes through the narrow end of the channel to emerge out the back. This model was largely confirmed by the structure of the λexo-DNA complex, which further revealed that the enzyme unwinds the DNA by 2 bp prior to cleavage, to thread the 5'-end of the DNA into the active site. On the basis of this structure, an "electrostatic ratchet" model was proposed, in which the enzyme uses a hydrophobic wedge to insert into the base pairs to unwind the DNA, a two-metal mechanism for nucleotide hydrolysis, a positively charged pocket to bind to the terminal 5'-phosphate generated after each round of cleavage, and an arginine residue (Arg-45) to bind to the minor groove of the downstream end of the DNA. To test this model, in this study we have determined the effects of 11 structure-based mutations in λexo on DNA binding and exonuclease activities in vitro, and on DNA recombination in vivo. The results are largely consistent with the model for the mechanism that was proposed on the basis of the structure and provide new insights into the roles of particular residues of the protein in promoting the reaction. In particular, a key role for Arg-45 in DNA binding is revealed.
Author Pan, Xinlei
Bell, Charles E
McCabe, Kimberly A
Fu, Jun
Smith, Christopher E
Zhang, Jinjin
AuthorAffiliation Department of Chemistry and Biochemistry
Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science
The Ohio State University
Department of Biological Chemistry and Pharmacology
Shandong University
Ohio State Biochemistry Program
AuthorAffiliation_xml – name: Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science
– name:
– name: Shandong University
– name: Ohio State Biochemistry Program
– name: The Ohio State University
– name: Department of Biological Chemistry and Pharmacology
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Xinlei
  surname: Pan
  fullname: Pan, Xinlei
– sequence: 2
  givenname: Christopher E
  surname: Smith
  fullname: Smith, Christopher E
– sequence: 3
  givenname: Jinjin
  surname: Zhang
  fullname: Zhang, Jinjin
– sequence: 4
  givenname: Kimberly A
  surname: McCabe
  fullname: McCabe, Kimberly A
– sequence: 5
  givenname: Jun
  surname: Fu
  fullname: Fu, Jun
– sequence: 6
  givenname: Charles E
  surname: Bell
  fullname: Bell, Charles E
  email: bell.489@osu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26361255$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFu1DAUhi3Uik4LJ0BCXrLJ1E7sOF5GndIilYJEWUe289xxldjFTqrOit6hx-EOHIKT4NEMLBEbW5a__3-2vmN04IMHhN5QsqSkpKfKpKV2waxhXHJNiCDiBVpQXpKCSckP0IIQUhelrMkROk7pLh8ZEewlOirrqqYl5wv0vcVfpjibaY7w6-m5NZN7cNMGt14Nm-QStiHizzFo52_xtAb8EcxaeZdGHOz2wkBK7gHwKsx6gCKXKd9Dj1fXLV65W0iTCx7rDf75A58_Bj-bAVQCfBPdCDG9QodWDQle7_cT9PX9-c3ZZXH16eLDWXtVqEo0U9FXRopG9IbQpjdaMq2EZTWznLOeSNPzvNaWCAulkaQGUXItmKZMlyCsrk7Qu13vfQzf5vyqbnTJwDAoD2FOHRWsbpqGM_kfKG0krQStMlrtUBNDShFsd5-_peKmo6TbSuqypG4vqdtLyqm3-wGzHqH_m_ljJQOnO2CbvgtzzDLSPyt_A3CspPc
CitedBy_id crossref_primary_10_1093_nar_gky1309
crossref_primary_10_1002_iub_2343
crossref_primary_10_1016_j_pbiomolbio_2019_03_005
crossref_primary_10_1093_nar_gky154
crossref_primary_10_1093_nar_gkv1150
crossref_primary_10_1016_j_engmic_2023_100120
crossref_primary_10_1021_acs_analchem_8b03963
crossref_primary_10_1186_s12859_020_03675_3
Cites_doi 10.1038/2417
10.1039/C4CS00083H
10.1073/pnas.1103467108
10.1038/nchembio.561
10.1021/ac5002965
10.1016/j.talanta.2011.07.058
10.1016/S0021-9258(18)42938-9
10.1016/S1367-5931(99)00012-5
10.1016/j.molcel.2005.08.019
10.1038/nature08473
10.1016/j.str.2009.03.008
10.1093/genetics/147.3.961
10.1002/(SICI)1097-0320(19990701)36:3<163::AID-CYTO3>3.0.CO;2-R
10.1093/nar/gkg266
10.1016/S0021-9258(18)96257-5
10.1016/j.cell.2011.11.013
10.1039/c4an00151f
10.1016/j.talanta.2013.01.046
10.1111/1556-4029.12283
10.1016/j.talanta.2013.06.062
10.1016/S0021-9258(17)38416-8
10.1128/JB.185.8.2465-2474.2003
10.1126/science.277.5333.1824
10.1021/am500883q
10.1038/nprot.2008.227
10.1093/nar/27.15.3057
10.1021/bi501431w
10.1038/nbt.2183
10.1021/bi501155q
10.1016/S0021-9258(18)62317-8
10.1038/35093556
10.1073/pnas.0709089105
10.1111/j.1574-6968.2001.tb10725.x
10.1038/nature08187
10.1021/ac501842t
10.1101/gad.14.15.1971
10.1002/chem.201203998
10.1126/science.1088047
10.1385/MB:32:1:043
10.1016/j.molcel.2006.03.013
10.1080/07391102.2010.10508587
10.1039/c0an00145g
10.1126/science.1084387
10.1128/MMBR.63.4.751-813.1999
10.1039/c4nr00944d
10.1016/S0021-9258(18)96258-7
10.1038/nprot.2014.036
10.1016/j.bios.2011.06.047
10.1007/s00018-004-4513-1
10.1021/ac403458b
10.1093/nar/29.16.e79
10.1016/S0021-9258(18)62316-6
ContentType Journal Article
Copyright Copyright © 2015 American Chemical Society
Copyright_xml – notice: Copyright © 2015 American Chemical Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7TM
DOI 10.1021/acs.biochem.5b00707
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Nucleic Acids Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Nucleic Acids Abstracts
DatabaseTitleList Nucleic Acids Abstracts
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 6148
ExternalDocumentID 10_1021_acs_biochem_5b00707
26361255
c569368387
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
02
23N
53G
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AJYGW
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
KM
L7B
LG6
P2P
ROL
TN5
UI2
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
---
-DZ
-~X
.55
4.4
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
CGR
CUPRZ
CUY
CVF
ECM
EIF
GGK
NPM
XSW
ZCA
~02
~KM
AAYXX
CITATION
7X8
7TM
ID FETCH-LOGICAL-a378t-d3c9787dc018dcb94ba7f464f554d09cd5d096f07fe2c906e725b74b14b2e7fb3
IEDL.DBID ACS
ISSN 0006-2960
IngestDate Fri Aug 16 21:45:31 EDT 2024
Fri Aug 16 10:12:45 EDT 2024
Fri Aug 23 01:45:25 EDT 2024
Sat Sep 28 07:58:49 EDT 2024
Thu Aug 27 13:42:09 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a378t-d3c9787dc018dcb94ba7f464f554d09cd5d096f07fe2c906e725b74b14b2e7fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26361255
PQID 1718913713
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1746888549
proquest_miscellaneous_1718913713
crossref_primary_10_1021_acs_biochem_5b00707
pubmed_primary_26361255
acs_journals_10_1021_acs_biochem_5b00707
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20151006
2015-Oct-06
2015-10-06
PublicationDateYYYYMMDD 2015-10-06
PublicationDate_xml – month: 10
  year: 2015
  text: 20151006
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref27/cit27
Carter D. M. (ref2/cit2) 1971; 246
ref16/cit16
ref52/cit52
ref23/cit23
ref31/cit31
ref34/cit34
Muyrers J. P. (ref8/cit8) 2000; 14
ref37/cit37
ref20/cit20
ref48/cit48
Radding C. M. (ref7/cit7) 1971; 246
ref17/cit17
ref10/cit10
ref35/cit35
Little J. W. (ref1/cit1) 1967; 242
ref19/cit19
ref21/cit21
Stahl M. M. (ref4/cit4) 1997; 147
Little J. W. (ref42/cit42) 1967; 242
ref46/cit46
ref49/cit49
ref13/cit13
Muniyappa K. (ref5/cit5) 1986; 261
Kuzminov A. (ref3/cit3) 1999; 63
ref24/cit24
ref38/cit38
ref50/cit50
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
Kmiec E. (ref6/cit6) 1981; 256
ref32/cit32
ref39/cit39
ref14/cit14
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref30/cit30
ref47/cit47
ref44/cit44
References_xml – ident: ref12/cit12
  doi: 10.1038/2417
– ident: ref17/cit17
  doi: 10.1039/C4CS00083H
– ident: ref29/cit29
  doi: 10.1073/pnas.1103467108
– ident: ref46/cit46
  doi: 10.1038/nchembio.561
– ident: ref48/cit48
  doi: 10.1021/ac5002965
– ident: ref50/cit50
  doi: 10.1016/j.talanta.2011.07.058
– volume: 256
  start-page: 12636
  year: 1981
  ident: ref6/cit6
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)42938-9
  contributor:
    fullname: Kmiec E.
– ident: ref30/cit30
  doi: 10.1016/S1367-5931(99)00012-5
– ident: ref32/cit32
  doi: 10.1016/j.molcel.2005.08.019
– ident: ref36/cit36
  doi: 10.1038/nature08473
– ident: ref39/cit39
  doi: 10.1016/j.str.2009.03.008
– volume: 147
  start-page: 961
  year: 1997
  ident: ref4/cit4
  publication-title: Genetics
  doi: 10.1093/genetics/147.3.961
  contributor:
    fullname: Stahl M. M.
– ident: ref43/cit43
  doi: 10.1002/(SICI)1097-0320(19990701)36:3<163::AID-CYTO3>3.0.CO;2-R
– ident: ref34/cit34
  doi: 10.1093/nar/gkg266
– volume: 242
  start-page: 672
  year: 1967
  ident: ref42/cit42
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)96257-5
  contributor:
    fullname: Little J. W.
– ident: ref16/cit16
  doi: 10.1016/j.cell.2011.11.013
– ident: ref19/cit19
  doi: 10.1039/c4an00151f
– ident: ref51/cit51
  doi: 10.1016/j.talanta.2013.01.046
– ident: ref20/cit20
  doi: 10.1111/1556-4029.12283
– ident: ref18/cit18
  doi: 10.1016/j.talanta.2013.06.062
– volume: 261
  start-page: 7472
  year: 1986
  ident: ref5/cit5
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)38416-8
  contributor:
    fullname: Muniyappa K.
– ident: ref10/cit10
  doi: 10.1128/JB.185.8.2465-2474.2003
– ident: ref28/cit28
  doi: 10.1126/science.277.5333.1824
– ident: ref22/cit22
  doi: 10.1021/am500883q
– ident: ref14/cit14
  doi: 10.1038/nprot.2008.227
– ident: ref37/cit37
  doi: 10.1093/nar/27.15.3057
– ident: ref38/cit38
  doi: 10.1021/bi501431w
– ident: ref41/cit41
  doi: 10.1038/nbt.2183
– ident: ref52/cit52
  doi: 10.1021/bi501155q
– volume: 246
  start-page: 2510
  year: 1971
  ident: ref7/cit7
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)62317-8
  contributor:
    fullname: Radding C. M.
– ident: ref13/cit13
  doi: 10.1038/35093556
– ident: ref9/cit9
  doi: 10.1073/pnas.0709089105
– ident: ref11/cit11
  doi: 10.1111/j.1574-6968.2001.tb10725.x
– ident: ref15/cit15
  doi: 10.1038/nature08187
– ident: ref26/cit26
  doi: 10.1021/ac501842t
– volume: 14
  start-page: 1971
  year: 2000
  ident: ref8/cit8
  publication-title: Genes Dev.
  doi: 10.1101/gad.14.15.1971
  contributor:
    fullname: Muyrers J. P.
– ident: ref27/cit27
  doi: 10.1002/chem.201203998
– ident: ref45/cit45
  doi: 10.1126/science.1088047
– ident: ref40/cit40
  doi: 10.1385/MB:32:1:043
– ident: ref33/cit33
  doi: 10.1016/j.molcel.2006.03.013
– ident: ref35/cit35
  doi: 10.1080/07391102.2010.10508587
– ident: ref49/cit49
  doi: 10.1039/c0an00145g
– ident: ref44/cit44
  doi: 10.1126/science.1084387
– volume: 63
  start-page: 751
  year: 1999
  ident: ref3/cit3
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.63.4.751-813.1999
  contributor:
    fullname: Kuzminov A.
– ident: ref23/cit23
  doi: 10.1039/c4nr00944d
– volume: 242
  start-page: 679
  year: 1967
  ident: ref1/cit1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)96258-7
  contributor:
    fullname: Little J. W.
– ident: ref21/cit21
  doi: 10.1038/nprot.2014.036
– ident: ref25/cit25
  doi: 10.1016/j.bios.2011.06.047
– ident: ref31/cit31
  doi: 10.1007/s00018-004-4513-1
– ident: ref24/cit24
  doi: 10.1021/ac403458b
– ident: ref47/cit47
  doi: 10.1093/nar/29.16.e79
– volume: 246
  start-page: 2502
  year: 1971
  ident: ref2/cit2
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)62316-6
  contributor:
    fullname: Carter D. M.
SSID ssj0004074
Score 2.261612
Snippet λ exonuclease (λexo) is an ATP-independent 5′-to-3′ exonuclease that binds to double-stranded DNA (dsDNA) ends and processively digests the 5′-strand into...
λ exonuclease (λexo) is an ATP-independent 5'-to-3' exonuclease that binds to double-stranded DNA (dsDNA) ends and processively digests the 5'-strand into...
lambda exonuclease ( lambda exo) is an ATP-independent 5'-to-3' exonuclease that binds to double-stranded DNA (dsDNA) ends and processively digests the...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 6139
SubjectTerms DNA - chemistry
Exodeoxyribonucleases - chemistry
Models, Chemical
Protein Multimerization
Protein Structure, Quaternary
Title A Structure–Activity Analysis for Probing the Mechanism of Processive Double-Stranded DNA Digestion by λ Exonuclease Trimers
URI http://dx.doi.org/10.1021/acs.biochem.5b00707
https://www.ncbi.nlm.nih.gov/pubmed/26361255
https://search.proquest.com/docview/1718913713
https://search.proquest.com/docview/1746888549
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB7RcqAXCi0_W340SAhxIEvi2E58jJZWFVJXSG2l3iLbsVEFm0XNrkS5tO_A4_AOPARPwjg_UChUveQQWXEyM8584_F8A_CcdOyFyxUZr2ARt5WMlE_D-SepGc-1EiYUCu9N5e4hf3skji4Uq_-VwWfJa22bsTkO7aNmY2FaepoVuMkyWh4BCU32f5dBxj3pMgXJjJD5QDL074cEd2SbP93RfzBm62t21mE6VOx0R0w-jJcLM7ZfLhM4Xu8z7sDtHnVi0ZnJXbjh6g3YLGqKuGen-ALbc6DtBvsG3JoMPeA24azA_ZZgdnnifpx_LWzXawIHKhMkyIvvApVT_R4JSuKeC5XEx80M5x77IgT6nyLhdPPRRYELN2y545tpgV1ui-wCzSl-_4bbn-d1YFcmv4oHoevASXMPDne2Dya7Ud-yIdJpli-iKrUUlmaVjZO8skZxozPPJfeEWqpY2UrQVfo4845ZFUuXMWEybhJumMu8Se_Daj2v3UNAXgnhCV4pSzDCGa2VlTJXVnPJdOyqEbwkmZb9kmvKNpvOkjLc7AVd9oIewatByeWnjsTj6uHPBkMoSd4hg6JrN1_SHOTJVZJSYH_VGC7zPKe4ewQPOiv6NSmTaUCUYuv67_4I1gijtWyxsXwMq6R094Rw0MI8ba3_J2MlBig
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagHMqFnxbo8jtICHEgS-LYTnyMllYLdFdI3ZV6i2zHRhXdLGp2JcoF3oHH4R14CJ6EsZO0AkEFlxysyHbG48w3Hs83hDzBNXbc5hKVl9OImUpE0qX-_pNQlOVKcu0ThSdTMZ6z14f8sEsK87kwOIkGe2pCEP-cXSB54dv0ka8itRhyHVhqLpMrPEOT6QHR6OA8GzLuuJfRV6YI0HuuoT934q2SaX61Sn-BmsHk7F0n87PJhpsm74frlR6aT7_xOP7v19wg1zoMCkWrNDfJJVtvke2iRv97cQpPIdwKDcftW2Rz1FeE2yafCzgIdLPrE_vjy9fCtJUnoCc2AQTA8NYTO9XvAIElTKzPKz5qFrB00KUk4N8VELXrYxt5Zlx_AA8vpwW0kS7UEtCn8P0b7H5c1p5rGa0szHwNgpPmFpnv7c5G46gr4BCpNMtXUZUadFKzysRJXhktmVaZY4I5xDBVLE3F8SlcnDlLjYyFzSjXGdMJ09RmTqe3yUa9rO0OAVZx7hBsSYOgwmqlpBEil0YxQVVsqwF5hjItuw3YlCG2TpPSN3aCLjtBD8jzfq3LDy2lx8WvP-71oUR5-3iKqu1yjWOgXZdJim7-Re8wkec5euEDcqdVprNBqUg9vuR3_33uj8jmeDbZL_dfTd_cI1cRvQUe2VjcJxuoAPYBIqSVfhg2xE_ZJw6N
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIgEXfloKy-8gIcSBLPmxnfgYbbsqP11VaiuVUxQ7Nqpgs1WzK1Eu9B36OH2HPgRPwthJikBQIS45WJHtjMeZbzyebwCe0xpbbjJJysvjgOlKBNIm7v6TKGOWlZIrlyi8NRGbe-ztPt9fgqzPhaFJNNRT44P4blcfVrZjGIheu3Z14CpJTYdceaaaK3CVp5EP0OajnZ8ZkWHHv0z-ckwgvecb-nMnzjLp5lfL9Be46c3O-BZ8uJiwv23yabiYq6H--huX4_980W242WFRzFvluQNLpl6B1bwmP3x6jC_Q3w71x-4rcH3UV4ZbhW857nja2cWR-X5ymuu2AgX2BCdIQBi3HcFT_REJYOKWcfnFB80UZxa71AT6yyKhd_XZBI4h1x3E4_okxzbiRdqC6hjPz3Djy6x2nMtkbXHX1SI4au7C3nhjd7QZdIUcgjJJs3lQJZqc1bTSYZRVWkmmytQywSxhmSqUuuL0FDZMrYm1DIVJY65SpiKmYpNalazBcj2rzX1AVnFuCXRJTeDCqLKUWohM6pKJuAxNNYCXJNOi24hN4WPscVS4xk7QRSfoAbzq17s4bKk9Ln_9Wa8TBcnbxVXK2swWNAbZdxkl5O5f9g4TWZaRNz6Ae61CXQwai8ThTP7g3-f-FK5tr4-L928m7x7CDQJxnk42FI9gmdbfPCagNFdP_J74AVgqEQc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Structure-Activity+Analysis+for+Probing+the+Mechanism+of+Processive+Double-Stranded+DNA+Digestion+by+%CE%BB+Exonuclease+Trimers&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Pan%2C+Xinlei&rft.au=Smith%2C+Christopher+E&rft.au=Zhang%2C+Jinjin&rft.au=McCabe%2C+Kimberly+A&rft.date=2015-10-06&rft.eissn=1520-4995&rft.volume=54&rft.issue=39&rft.spage=6139&rft.epage=6148&rft_id=info:doi/10.1021%2Facs.biochem.5b00707&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon