Representing Clusters Using a Maximum Common Edge Substructure Algorithm Applied to Reduced Graphs and Molecular Graphs

Chemical databases are routinely clustered, with the aim of grouping molecules which share similar structural features. Ideally, medicinal chemists are then able to browse a few representatives of the cluster in order to interpret the shared activity of the cluster members. However, when molecules a...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical information and modeling Vol. 47; no. 2; pp. 354 - 366
Main Authors Gardiner, Eleanor J, Gillet, Valerie J, Willett, Peter, Cosgrove, David A
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.03.2007
Subjects
Online AccessGet full text
ISSN1549-9596
1549-960X
DOI10.1021/ci600444g

Cover

Abstract Chemical databases are routinely clustered, with the aim of grouping molecules which share similar structural features. Ideally, medicinal chemists are then able to browse a few representatives of the cluster in order to interpret the shared activity of the cluster members. However, when molecules are clustered using fingerprints, it may be difficult to decipher the structural commonalities which are present. Here, we seek to represent a cluster by means of a maximum common substructure based on the shared functionality of the cluster members. Previously, we have used reduced graphs, where each node corresponds to a generalized functional group, as topological molecular descriptors for virtual screening. In this work, we precluster a database using any clustering method. We then represent the molecules in a cluster as reduced graphs. By repeated application of a maximum common edge substructure (MCES) algorithm, we obtain one or more reduced graph cluster representatives. The sparsity of the reduced graphs means that the MCES calculations can be performed in real time. The reduced graph cluster representatives are readily interpretable in terms of functional activity and can be mapped directly back to the molecules to which they correspond, giving the chemist a rapid means of assessing potential activities contained within the cluster. Clusters of interest are then subject to a detailed R-group analysis using the same iterated MCES algorithm applied to the molecular graphs.
AbstractList Chemical databases are routinely clustered, with the aim of grouping molecules which share similar structural features. Ideally, medicinal chemists are then able to browse a few representatives of the cluster in order to interpret the shared activity of the cluster members. However, when molecules are clustered using fingerprints, it may be difficult to decipher the structural commonalities which are present. Here, we seek to represent a cluster by means of a maximum common substructure based on the shared functionality of the cluster members. Previously, we have used reduced graphs, where each node corresponds to a generalized functional group, as topological molecular descriptors for virtual screening. In this work, we precluster a database using any clustering method. We then represent the molecules in a cluster as reduced graphs. By repeated application of a maximum common edge substructure (MCES) algorithm, we obtain one or more reduced graph cluster representatives. The sparsity of the reduced graphs means that the MCES calculations can be performed in real time. The reduced graph cluster representatives are readily interpretable in terms of functional activity and can be mapped directly back to the molecules to which they correspond, giving the chemist a rapid means of assessing potential activities contained within the cluster. Clusters of interest are then subject to a detailed R-group analysis using the same iterated MCES algorithm applied to the molecular graphs.Chemical databases are routinely clustered, with the aim of grouping molecules which share similar structural features. Ideally, medicinal chemists are then able to browse a few representatives of the cluster in order to interpret the shared activity of the cluster members. However, when molecules are clustered using fingerprints, it may be difficult to decipher the structural commonalities which are present. Here, we seek to represent a cluster by means of a maximum common substructure based on the shared functionality of the cluster members. Previously, we have used reduced graphs, where each node corresponds to a generalized functional group, as topological molecular descriptors for virtual screening. In this work, we precluster a database using any clustering method. We then represent the molecules in a cluster as reduced graphs. By repeated application of a maximum common edge substructure (MCES) algorithm, we obtain one or more reduced graph cluster representatives. The sparsity of the reduced graphs means that the MCES calculations can be performed in real time. The reduced graph cluster representatives are readily interpretable in terms of functional activity and can be mapped directly back to the molecules to which they correspond, giving the chemist a rapid means of assessing potential activities contained within the cluster. Clusters of interest are then subject to a detailed R-group analysis using the same iterated MCES algorithm applied to the molecular graphs.
Chemical databases are routinely clustered, with the aim of grouping molecules which share similar structural features. Ideally, medicinal chemists are then able to browse a few representatives of the cluster in order to interpret the shared activity of the cluster members. However, when molecules are clustered using fingerprints, it may be difficult to decipher the structural commonalities which are present. Here, we seek to represent a cluster by means of a maximum common substructure based on the shared functionality of the cluster members. Previously, we have used reduced graphs, where each node corresponds to a generalized functional group, as topological molecular descriptors for virtual screening. In this work, we precluster a database using any clustering method. We then represent the molecules in a cluster as reduced graphs. By repeated application of a maximum common edge substructure (MCES) algorithm, we obtain one or more reduced graph cluster representatives. The sparsity of the reduced graphs means that the MCES calculations can be performed in real time. The reduced graph cluster representatives are readily interpretable in terms of functional activity and can be mapped directly back to the molecules to which they correspond, giving the chemist a rapid means of assessing potential activities contained within the cluster. Clusters of interest are then subject to a detailed R-group analysis using the same iterated MCES algorithm applied to the molecular graphs.
Chemical databases are routinely clustered, with the aim of grouping molecules which share similar structural features. Ideally, medicinal chemists are then able to browse a few representatives of the cluster in order to interpret the shared activity of the cluster members. However, when molecules are clustered using fingerprints, it may be difficult to decipher the structural commonalities which are present. Here, we seek to represent a cluster by means of a maximum common substructure based on the shared functionality of the cluster members. Previously, we have used reduced graphs, where each node corresponds to a generalized functional group, as topological molecular descriptors for virtual screening. In this work, we precluster a database using any clustering method. We then represent the molecules in a cluster as reduced graphs. By repeated application of a maximum common edge substructure (MCES) algorithm, we obtain one or more reduced graph cluster representatives. The sparsity of the reduced graphs means that the MCES calculations can be performed in real time. The reduced graph cluster representatives are readily interpretable in terms of functional activity and can be mapped directly back to the molecules to which they correspond, giving the chemist a rapid means of assessing potential activities contained within the cluster. Clusters of interest are then subject to a detailed R-group analysis using the same iterated MCES algorithm applied to the molecular graphs. [PUBLICATION ABSTRACT]
Author Gardiner, Eleanor J
Gillet, Valerie J
Cosgrove, David A
Willett, Peter
Author_xml – sequence: 1
  givenname: Eleanor J
  surname: Gardiner
  fullname: Gardiner, Eleanor J
– sequence: 2
  givenname: Valerie J
  surname: Gillet
  fullname: Gillet, Valerie J
– sequence: 3
  givenname: Peter
  surname: Willett
  fullname: Willett, Peter
– sequence: 4
  givenname: David A
  surname: Cosgrove
  fullname: Cosgrove, David A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17309248$$D View this record in MEDLINE/PubMed
BookMark eNptkcluFDEQhi0URBY48ALIQgKJwxC3tx4fJ0MyIBKWLBI3y-2umTjpbjdelPD2OJpJIgVOtX31q-x_F20NfgCEXlfkY0VotW-dJIRzvnqGdirB1URJ8mvrPhdKbqPdGK8IYUxJ-gJtVzUjivLpDro5hTFAhCG5YYXnXY4JQsQX8a40-MTcuj73eO773g_4sF0BPstNTCHblAPgWbfywaXLHs_GsXPQ4uTxKbTZlnQRzHgZsRlafOI7sLkzYdN8iZ4vTRfh1SbuoYujw_P558nx98WX-ex4Ylg9TRNbNSCpVKYWrZpOORekAUtlzRsFktW0VkJAI0VjSm1la7kitC3z2sCSN2wPvV_rjsH_zhCT7l200HVmAJ-jrgkjQjFawLdPwCufw1Bu07SSVMiaqQK92UC56aHVY3C9CX_0_X8W4MMasMHHGGD5iBB955V-8Kqw-09Y65JJzg8pGNf9d2Oy3nDFpdsHaROudTmvFvr8x5n-yRYH3z59Vfqg8O_WvLHx8Tn_6v4FQ3mxAg
CitedBy_id crossref_primary_10_1177_1535370218755659
crossref_primary_10_1093_bioinformatics_btw523
crossref_primary_10_1002_chin_200724188
crossref_primary_10_1016_j_scib_2020_04_006
crossref_primary_10_1093_database_bat044
crossref_primary_10_1134_S1070363210120248
crossref_primary_10_1021_acs_jmedchem_7b01890
crossref_primary_10_1021_acs_jcim_5b00036
crossref_primary_10_1186_1758_2946_1_12
crossref_primary_10_1021_ci900078h
crossref_primary_10_1021_ci4004464
crossref_primary_10_1186_1758_2946_5_S1_P17
crossref_primary_10_1186_1758_2946_6_S1_O18
crossref_primary_10_1186_s13321_016_0127_5
crossref_primary_10_1002_minf_201500004
crossref_primary_10_1021_jm801098a
crossref_primary_10_1021_ci400442f
crossref_primary_10_1021_ci8000502
crossref_primary_10_1021_ci8000887
crossref_primary_10_1016_j_wpi_2019_03_006
crossref_primary_10_1021_ci100484z
crossref_primary_10_1093_nar_gkx384
crossref_primary_10_1186_1758_2946_4_S1_P44
crossref_primary_10_1021_acs_jcim_6b00174
crossref_primary_10_1186_s13321_024_00875_4
crossref_primary_10_1021_ci4007547
crossref_primary_10_1021_ci800250r
Cites_doi 10.1021/ci049860f
10.1021/ci050011h
10.1021/ci025592e
10.1021/ci0496954
10.1021/ci9803381
10.1021/ci050347r
10.1021/jm049740z
10.1023/A:1008068904628
10.2174/1568026053828411
10.1021/ci0502247
10.1021/ci0255937
10.1021/ci050465e
10.1021/ci010381f
10.1093/comjnl/45.6.631
10.1021/ci00010a009
10.1021/jm049032d
10.1021/jm040213p
ContentType Journal Article
Copyright Copyright © 2007 American Chemical Society
Copyright American Chemical Society Mar 2007
Copyright_xml – notice: Copyright © 2007 American Chemical Society
– notice: Copyright American Chemical Society Mar 2007
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
DOI 10.1021/ci600444g
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-960X
EndPage 366
ExternalDocumentID 1245507051
17309248
10_1021_ci600444g
ark_67375_TPS_Q3GBNDK9_B
h84800874
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACIWK
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
OHM
P2P
PQEST
PQQKQ
RNS
ROL
UI2
UQL
VF5
VG9
W1F
X
---
-~X
ABJNI
ABQRX
ADHLV
AHGAQ
BSCLL
CUPRZ
GGK
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
AEYZD
AGQPQ
ANPPW
CITATION
1WB
53G
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-a378t-c1be6269a75d9884450bec2674b9e63727955eb65ba9e6c6dc4902d6747aef4b3
IEDL.DBID ACS
ISSN 1549-9596
IngestDate Fri Jul 11 14:11:08 EDT 2025
Mon Jun 30 11:01:46 EDT 2025
Wed Feb 19 01:44:08 EST 2025
Tue Jul 01 03:25:23 EDT 2025
Thu Apr 24 22:54:33 EDT 2025
Wed Oct 30 09:28:04 EDT 2024
Thu Aug 27 13:42:21 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a378t-c1be6269a75d9884450bec2674b9e63727955eb65ba9e6c6dc4902d6747aef4b3
Notes istex:215268F05471EECFFCF9B62A5C227795F5897B22
ark:/67375/TPS-Q3GBNDK9-B
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 17309248
PQID 216256739
PQPubID 28739
PageCount 13
ParticipantIDs proquest_miscellaneous_70305932
proquest_journals_216256739
pubmed_primary_17309248
crossref_primary_10_1021_ci600444g
crossref_citationtrail_10_1021_ci600444g
istex_primary_ark_67375_TPS_Q3GBNDK9_B
acs_journals_10_1021_ci600444g
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-03-01
PublicationDateYYYYMMDD 2007-03-01
PublicationDate_xml – month: 03
  year: 2007
  text: 2007-03-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical information and modeling
PublicationTitleAlternate J. Chem. Inf. Model
PublicationYear 2007
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Echem (ci600444gb00019/ci600444gb00019_1) 2006
Stahl M. (ci600444gb00003/ci600444gb00003_1) 2005; 48
ci600444gb00021/ci600444gb00021_1
Butina D (ci600444gb00007/ci600444gb00007_1) 1999; 39
Barker E. J. (ci600444gb00013/ci600444gb00013_1) 2006; 46
Lajiness M. S. (ci600444gb00001/ci600444gb00001_1) 2004; 47
Wolohan P. R. N. (ci600444gb00005/ci600444gb00005_1) 2006; 46
ci600444gb00009/ci600444gb00009_1
Raymond J. W. (ci600444gb00002/ci600444gb00002_1) 2002; 42
Rarey M. (ci600444gb00014/ci600444gb00014_1) 1998; 12
Davis A. M. (ci600444gb00020/ci600444gb00020_1) 2005; 5
Wilkens S. J. (ci600444gb00004/ci600444gb00004_1) 2005; 48
Barker E. J. (ci600444gb00010/ci600444gb00010_1) 2003; 43
Birchall K. (ci600444gb00012/ci600444gb00012_1) 2006; 46
Raymond J. W. (ci600444gb00024/ci600444gb00024_1) 2002; 16
Takahashi Y. (ci600444gb00016/ci600444gb00016_1) 1992; 32
Harper G. (ci600444gb00015/ci600444gb00015_1) 2004; 44
Figueras J (ci600444gb00018/ci600444gb00018_1) 1996; 36
Kibbey C. (ci600444gb00027/ci600444gb00027_1) 2005; 45
Qt (ci600444gb00026/ci600444gb00026_1) 2006
Stahl M. (ci600444gb00006/ci600444gb00006_1) 2005; 45
Raymond J. W. (ci600444gb00008/ci600444gb00008_1) 2005; 45
Gillet V. J. (ci600444gb00011/ci600444gb00011_1) 2003; 43
ci600444gb00017/ci600444gb00017_1
Matlab (ci600444gb00022/ci600444gb00022_1) 2006
Raymond J. W. (ci600444gb00023/ci600444gb00023_1) 2002; 45
References_xml – volume: 44
  start-page: 2156
  year: 2004
  ident: ci600444gb00015/ci600444gb00015_1
  publication-title: J. Chem. Inf. Comput. Sci
  doi: 10.1021/ci049860f
– volume: 45
  start-page: 548
  year: 2005
  ident: ci600444gb00006/ci600444gb00006_1
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci050011h
– volume: 43
  start-page: 345
  year: 2003
  ident: ci600444gb00011/ci600444gb00011_1
  publication-title: J. Chem. Inf. Comput. Sci
  doi: 10.1021/ci025592e
– volume: 45
  start-page: 532
  year: 2005
  ident: ci600444gb00027/ci600444gb00027_1
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci0496954
– volume: 39
  start-page: 750
  year: 1999
  ident: ci600444gb00007/ci600444gb00007_1
  publication-title: J. Chem. Inf. Comput. Sci
  doi: 10.1021/ci9803381
– volume: 46
  start-page: 511
  year: 2006
  ident: ci600444gb00013/ci600444gb00013_1
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci050347r
– volume: 47
  start-page: 4896
  year: 2004
  ident: ci600444gb00001/ci600444gb00001_1
  publication-title: J. Med. Chem
  doi: 10.1021/jm049740z
– ident: ci600444gb00009/ci600444gb00009_1
– volume: 12
  start-page: 490
  issue: 5
  year: 1998
  ident: ci600444gb00014/ci600444gb00014_1
  publication-title: J. Comput.-Aided Mol. Des
  doi: 10.1023/A:1008068904628
– volume: 5
  start-page: 439
  year: 2005
  ident: ci600444gb00020/ci600444gb00020_1
  publication-title: Curr. Top. Med. Chem
  doi: 10.2174/1568026053828411
– ident: ci600444gb00017/ci600444gb00017_1
– volume-title: version 4.1
  year: 2006
  ident: ci600444gb00026/ci600444gb00026_1
– volume: 45
  start-page: 1204
  year: 2005
  ident: ci600444gb00008/ci600444gb00008_1
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci0502247
– volume-title: http://www.eyesopen.com (accessed
  year: 2006
  ident: ci600444gb00019/ci600444gb00019_1
– ident: ci600444gb00021/ci600444gb00021_1
– volume: 43
  start-page: 356
  year: 2003
  ident: ci600444gb00010/ci600444gb00010_1
  publication-title: J. Chem. Inf. Comput. Sci
  doi: 10.1021/ci0255937
– volume: 46
  start-page: 1193
  year: 2006
  ident: ci600444gb00005/ci600444gb00005_1
  publication-title: J. Chem. Inf. Model
– volume: 36
  start-page: 991
  year: 1996
  ident: ci600444gb00018/ci600444gb00018_1
  publication-title: J. Chem. Inf. Comput. Sci
– volume: 46
  start-page: 586
  year: 2006
  ident: ci600444gb00012/ci600444gb00012_1
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci050465e
– volume: 42
  start-page: 316
  year: 2002
  ident: ci600444gb00002/ci600444gb00002_1
  publication-title: J. Chem. Inf. Comput. Sci
  doi: 10.1021/ci010381f
– volume: 45
  start-page: 644
  year: 2002
  ident: ci600444gb00023/ci600444gb00023_1
  publication-title: Comput. J
  doi: 10.1093/comjnl/45.6.631
– volume: 32
  start-page: 643
  year: 1992
  ident: ci600444gb00016/ci600444gb00016_1
  publication-title: J. Chem. Inf. Comput. Sci
  doi: 10.1021/ci00010a009
– volume: 48
  start-page: 3193
  year: 2005
  ident: ci600444gb00004/ci600444gb00004_1
  publication-title: J. Med. Chem
  doi: 10.1021/jm049032d
– volume: 16
  start-page: 533
  year: 2002
  ident: ci600444gb00024/ci600444gb00024_1
  publication-title: J. Comput.-Aided Mol. Des
– volume-title: version 7.1
  year: 2006
  ident: ci600444gb00022/ci600444gb00022_1
– volume: 48
  start-page: 4366
  year: 2005
  ident: ci600444gb00003/ci600444gb00003_1
  publication-title: J. Med. Chem
  doi: 10.1021/jm040213p
SSID ssj0033962
Score 1.987345
Snippet Chemical databases are routinely clustered, with the aim of grouping molecules which share similar structural features. Ideally, medicinal chemists are then...
SourceID proquest
pubmed
crossref
istex
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 354
SubjectTerms Algorithms
Analytical chemistry
Cluster Analysis
Computational Biology
Graphs
Molecular Structure
Title Representing Clusters Using a Maximum Common Edge Substructure Algorithm Applied to Reduced Graphs and Molecular Graphs
URI http://dx.doi.org/10.1021/ci600444g
https://api.istex.fr/ark:/67375/TPS-Q3GBNDK9-B/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/17309248
https://www.proquest.com/docview/216256739
https://www.proquest.com/docview/70305932
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V9gAXaHmmLcUChLik3Ti2Ex_b7UugraAPqbfITpxl1d2k2iSi4tczdpItqC3ckngiOf7G43E88w3Axzzn6JezwBc0YD5jXPtS0NjnqciEUWEYMZuNPDoRxxfsyyW_XIIPD5zg02AnnQhHajZ-BCtUoHpZ_2d41pvbMJSuaqilGvMll6KnD_rzVbv0pNVfS8-KHcWbh_1Kt74cPoP9PkunDSu52m5qvZ3-ukva-K-ur8LTzr8ku61CrMGSKZ7D42Ff1u0F_Dx1sa_GVYggw2ljmRIq4kIHiCIjdTOZNTNiE0fKghxkY0OscXE0s83ckN3puJxP6h8z0jmwpC7JqSWAxcsjS39dEVVkZNTX3e0evoSLw4Pz4bHfVV_wVRjFtZ8G2uBuR6qIZzKOEcYB4k0FgieNCNHvkZwbLbhWeI_QpkwOaIbtkTI50-ErWC7KwrwBogZG0jjP84EWTEVCc200C_PU2LxaHniwhfAk3eypEncwToNkMX4efO6Rw4dtjIItoTG9T_T9QvS6Jey4T-iTg38hoeZXNsIt4sn5t7Pke3i0d7L_VSZ7Hmz0-nHbPRrgphGlpQfvFq2Ioj1qUYUpmypxdhRdYw9et0p12xc0qbjnjdf_980b8KT9j2zj3TZhGXE2b9EBqvWWmwC_AenZ_cE
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db5swED9t7UP3su8P2q21pmnaC20A2-DHNGubrU20tanUN2SDyaImUAXQqv31OxtItqnT9gb4QGff-XzGd78DeJdlDP1y6rnc96hLKVOu4H7ksoSnXMsgCKnJRh6N-fCSfr5iVy1MjsmFQSZK_FJpD_HX6ALeQTLjFttseh820QnxTZmG_uCis7pBIGzxUIM45gomeIci9OurZgVKyt9WoE0zmLd_dy_tMnP8qKlXZBm00SXX-3Wl9pMff2A3_l8PHsPD1tsk_UY9nsA9nT-FrUFX5O0ZfD-3kbDa1osgg3ltcBNKYgMJiCQjeTtb1Ati0kiKnBylU02MqbGgs_VSk_58Wixn1bcFad1ZUhXk3MDB4uWJAcMuicxTMuqq8LYPn8Pl8dFkMHTbWgyuDMKochNPadz7CBmyVEQRCrWH0vc5ilJoHqAXJBjTijMl8R4FnVDR81NsD6XOqApewEZe5PoVENnTwo-yLOspTmXIFVNa0SBLtMmyZZ4Duzh8cTuXytgek_tevBo_Bz50AsSHTcSCKagxv4v07Yr0poHvuIvovdWCFYVcXpt4t5DFky8X8dfg5HD88VTEhw7sdGqyZs_3cAuJ1MKBvVUrStEcvMhcF3UZW6uKjrIDLxvdWvOCBhZ3wNH2v_q8B1vDyegsPvs0Pt2BB80fZhMJ9xo2UOb6DbpGldq1c-Inw4kGMQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BKwEX3o9QaC2EEJeUTWI78XG77bZQdil9SL1FduIsq-4m1SYRFb-esfMooCK4JfEkGnvG45l4_A3A2yxj6JdTz-W-R11KmXIF9yOXJTzlWgZBSM1p5MmUH5zRT-fsvA0UzVkYZKLEL5V2E9_M6ss0axEGvA_JnFt8s9ltWDfbdaZUw3B00lneIBC2gKhBHXMFE7xDEvr1VbMKJeVvq9C6GdCrv7uYdqkZP4AvPZM2w-Riu67UdvLjD_zG_-_FQ7jfep1k2KjJI7il88dwd9QVe3sC349tRqy2dSPIaFEb_ISS2IQCIslEXs2X9ZKY4yRFTvbSmSbG5Fjw2XqlyXAxK1bz6tuStG4tqQpybGBh8XLfgGKXROYpmXTVeNuHT-FsvHc6OnDbmgyuDMKochNPaYyBhAxZKqIIhTtALfA5ilRoHqA3JBjTijMl8R4FnlAx8FNsD6XOqAqewVpe5PoFEDnQwo-yLBsoTmXIFVNa0SBLtDltyzwHNnEI43ZOlbHdLve9uB8_B953QsSHTeaCKayxuIn0TU962cB43ET0zmpCTyFXFybvLWTx6dFJ_DXY35nuHop4x4GNTlWu2fM9DCWRWjiw1beiFM0GjMx1UZexta7oMDvwvNGva17Q0GIkHL38V5-34M7R7jj-_HF6uAH3mh_NJiHuFayhyPVr9JAqtWmnxU9OHgi0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representing+clusters+using+a+maximum+common+edge+substructure+algorithm+applied+to+reduced+graphs+and+molecular+graphs&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Gardiner%2C+Eleanor+J&rft.au=Gillet%2C+Valerie+J&rft.au=Willett%2C+Peter&rft.au=Cosgrove%2C+David+A&rft.date=2007-03-01&rft.issn=1549-9596&rft.volume=47&rft.issue=2&rft.spage=354&rft_id=info:doi/10.1021%2Fci600444g&rft_id=info%3Apmid%2F17309248&rft.externalDocID=17309248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon