Impact of 2D–3D Heterointerface on Remote Epitaxial Interaction through Graphene

Remote epitaxy has drawn attention as it offers epitaxy of functional materials that can be released from the substrates with atomic precision, thus enabling production and heterointegration of flexible, transferrable, and stackable freestanding single-crystalline membranes. In addition, the remote...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 15; no. 6; pp. 10587 - 10596
Main Authors Kim, Hyunseok, Lu, Kuangye, Liu, Yunpeng, Kum, Hyun S, Kim, Ki Seok, Qiao, Kuan, Bae, Sang-Hoon, Lee, Sangho, Ji, You Jin, Kim, Ki Hyun, Paik, Hanjong, Xie, Saien, Shin, Heechang, Choi, Chanyeol, Lee, June Hyuk, Dong, Chengye, Robinson, Joshua A, Lee, Jae-Hyun, Ahn, Jong-Hyun, Yeom, Geun Young, Schlom, Darrell G, Kim, Jeehwan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.06.2021
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Remote epitaxy has drawn attention as it offers epitaxy of functional materials that can be released from the substrates with atomic precision, thus enabling production and heterointegration of flexible, transferrable, and stackable freestanding single-crystalline membranes. In addition, the remote interaction of atoms and adatoms through two-dimensional (2D) materials in remote epitaxy allows investigation and utilization of electrical/chemical/physical coupling of bulk (3D) materials via 2D materials (3D–2D–3D coupling). Here, we unveil the respective roles and impacts of the substrate material, graphene, substrate–graphene interface, and epitaxial material for electrostatic coupling of these materials, which governs cohesive ordering and can lead to single-crystal epitaxy in the overlying film. We show that simply coating a graphene layer on wafers does not guarantee successful implementation of remote epitaxy, since atomically precise control of the graphene-coated interface is required, and provides key considerations for maximizing the remote electrostatic interaction between the substrate and adatoms. This was enabled by exploring various material systems and processing conditions, and we demonstrate that the rules of remote epitaxy vary significantly depending on the ionicity of material systems as well as the graphene–substrate interface and the epitaxy environment. The general rule of thumb discovered here enables expanding 3D material libraries that can be stacked in freestanding form.
AbstractList Remote epitaxy has drawn attention as it offers epitaxy of functional materials that can be released from the substrates with atomic precision, thus enabling production and heterointegration of flexible, transferrable, and stackable freestanding single-crystalline membranes. In addition, the remote interaction of atoms and adatoms through two-dimensional (2D) materials in remote epitaxy allows investigating and utilizing electrical/chemical/physical coupling of bulk (3D) materials via 2D materials (3D-2D-3D coupling). Here, we unveil the respective roles and impacts of the substrate material, graphene, substrate-graphene interface, and epitaxial material for electrostatic coupling of these materials, which governs cohesive ordering and can lead to single-crystal epitaxy in the overlying film. Further, we show that simply coating a graphene layer on wafers does not guarantee successful implementation of remote epitaxy, since atomically precise control of the graphene-coated interface is required, and provide key considerations for maximizing the remote electrostatic interaction between the substrate and adatoms. This was enabled by exploring various material systems and processing conditions, and we demonstrate that the rules of remote epitaxy vary significantly depending on the ionicity of material systems as well as the graphene-substrate interface and the epitaxy environment. The general rule of thumb discovered here enables expanding 3D material libraries that can be stacked in freestanding form.
Remote epitaxy has drawn attention as it offers epitaxy of functional materials that can be released from the substrates with atomic precision, thus enabling production and heterointegration of flexible, transferrable, and stackable freestanding single-crystalline membranes. In addition, the remote interaction of atoms and adatoms through two-dimensional (2D) materials in remote epitaxy allows investigation and utilization of electrical/chemical/physical coupling of bulk (3D) materials via 2D materials (3D–2D–3D coupling). Here, we unveil the respective roles and impacts of the substrate material, graphene, substrate–graphene interface, and epitaxial material for electrostatic coupling of these materials, which governs cohesive ordering and can lead to single-crystal epitaxy in the overlying film. We show that simply coating a graphene layer on wafers does not guarantee successful implementation of remote epitaxy, since atomically precise control of the graphene-coated interface is required, and provides key considerations for maximizing the remote electrostatic interaction between the substrate and adatoms. This was enabled by exploring various material systems and processing conditions, and we demonstrate that the rules of remote epitaxy vary significantly depending on the ionicity of material systems as well as the graphene–substrate interface and the epitaxy environment. The general rule of thumb discovered here enables expanding 3D material libraries that can be stacked in freestanding form.
Author Qiao, Kuan
Shin, Heechang
Liu, Yunpeng
Ji, You Jin
Lee, Jae-Hyun
Kim, Hyunseok
Kim, Ki Hyun
Choi, Chanyeol
Bae, Sang-Hoon
Dong, Chengye
Lee, Sangho
Yeom, Geun Young
Ahn, Jong-Hyun
Kim, Jeehwan
Xie, Saien
Robinson, Joshua A
Kum, Hyun S
Schlom, Darrell G
Lu, Kuangye
Kim, Ki Seok
Paik, Hanjong
Lee, June Hyuk
AuthorAffiliation Kavli Institute at Cornell for Nanoscale Science
School of Electrical and Electronic Engineering
The Pennsylvania State University
Neutron Science Division
Microsystems Technology Laboratories
Research Laboratory of Electronics
Department of Materials Science and Engineering
Sungkyunkwan University
Department of Energy Systems Research and Department of Materials Science and Engineering
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
School of Advanced Materials Science and Engineering
SKKU Advanced Institute of Nano Technology (SAINT)
Department of Mechanical Engineering
2D Crystal Consortium
Leibniz-Institut für Kristallzüchtung
AuthorAffiliation_xml – name: School of Advanced Materials Science and Engineering
– name: Research Laboratory of Electronics
– name: Sungkyunkwan University
– name: Leibniz-Institut für Kristallzüchtung
– name: School of Electrical and Electronic Engineering
– name: Department of Electrical Engineering and Computer Science
– name: Department of Energy Systems Research and Department of Materials Science and Engineering
– name: Massachusetts Institute of Technology
– name: Kavli Institute at Cornell for Nanoscale Science
– name: Department of Mechanical Engineering
– name: Neutron Science Division
– name: 2D Crystal Consortium
– name: The Pennsylvania State University
– name: Microsystems Technology Laboratories
– name: Department of Materials Science and Engineering
– name: SKKU Advanced Institute of Nano Technology (SAINT)
Author_xml – sequence: 1
  givenname: Hyunseok
  orcidid: 0000-0003-3091-8413
  surname: Kim
  fullname: Kim, Hyunseok
  organization: Department of Mechanical Engineering
– sequence: 2
  givenname: Kuangye
  surname: Lu
  fullname: Lu, Kuangye
  organization: Department of Mechanical Engineering
– sequence: 3
  givenname: Yunpeng
  surname: Liu
  fullname: Liu, Yunpeng
  organization: Department of Mechanical Engineering
– sequence: 4
  givenname: Hyun S
  surname: Kum
  fullname: Kum, Hyun S
  organization: Department of Mechanical Engineering
– sequence: 5
  givenname: Ki Seok
  surname: Kim
  fullname: Kim, Ki Seok
  organization: Massachusetts Institute of Technology
– sequence: 6
  givenname: Kuan
  surname: Qiao
  fullname: Qiao, Kuan
  organization: Department of Mechanical Engineering
– sequence: 7
  givenname: Sang-Hoon
  surname: Bae
  fullname: Bae, Sang-Hoon
  organization: Department of Mechanical Engineering
– sequence: 8
  givenname: Sangho
  orcidid: 0000-0003-4164-1827
  surname: Lee
  fullname: Lee, Sangho
  organization: Massachusetts Institute of Technology
– sequence: 9
  givenname: You Jin
  surname: Ji
  fullname: Ji, You Jin
  organization: School of Advanced Materials Science and Engineering
– sequence: 10
  givenname: Ki Hyun
  surname: Kim
  fullname: Kim, Ki Hyun
  organization: School of Advanced Materials Science and Engineering
– sequence: 11
  givenname: Hanjong
  surname: Paik
  fullname: Paik, Hanjong
  organization: Department of Materials Science and Engineering
– sequence: 12
  givenname: Saien
  surname: Xie
  fullname: Xie, Saien
  organization: Kavli Institute at Cornell for Nanoscale Science
– sequence: 13
  givenname: Heechang
  surname: Shin
  fullname: Shin, Heechang
  organization: School of Electrical and Electronic Engineering
– sequence: 14
  givenname: Chanyeol
  orcidid: 0000-0003-3304-3253
  surname: Choi
  fullname: Choi, Chanyeol
  organization: Massachusetts Institute of Technology
– sequence: 15
  givenname: June Hyuk
  surname: Lee
  fullname: Lee, June Hyuk
  organization: Neutron Science Division
– sequence: 16
  givenname: Chengye
  surname: Dong
  fullname: Dong, Chengye
  organization: The Pennsylvania State University
– sequence: 17
  givenname: Joshua A
  orcidid: 0000-0002-1513-7187
  surname: Robinson
  fullname: Robinson, Joshua A
  organization: The Pennsylvania State University
– sequence: 18
  givenname: Jae-Hyun
  orcidid: 0000-0001-5117-8923
  surname: Lee
  fullname: Lee, Jae-Hyun
  organization: Department of Energy Systems Research and Department of Materials Science and Engineering
– sequence: 19
  givenname: Jong-Hyun
  orcidid: 0000-0002-8135-7719
  surname: Ahn
  fullname: Ahn, Jong-Hyun
  organization: School of Electrical and Electronic Engineering
– sequence: 20
  givenname: Geun Young
  surname: Yeom
  fullname: Yeom, Geun Young
  organization: Sungkyunkwan University
– sequence: 21
  givenname: Darrell G
  orcidid: 0000-0003-2493-6113
  surname: Schlom
  fullname: Schlom, Darrell G
  organization: Leibniz-Institut für Kristallzüchtung
– sequence: 22
  givenname: Jeehwan
  orcidid: 0000-0002-1547-0967
  surname: Kim
  fullname: Kim, Jeehwan
  email: jeehwan@mit.edu
  organization: Massachusetts Institute of Technology
BackLink https://www.osti.gov/servlets/purl/1811213$$D View this record in Osti.gov
BookMark eNp1UM9LwzAUDjLBOT17LZ4E6Za0a9McZZvbYCAMBW8hTV9tR5vUJAW9-T_4H_qXmNHhzcv7Hnw_eO-7RCOlFSB0Q_CU4IjMhLRKKD0lEscRS8_QmLA4DXGWvo7-9oRcoEtrDxgnNKPpGO23bSekC3QZRMufr-94GWzAgdG18rMUEgKtgj202kGw6monPmrRBNsj6321J11ldP9WBWsjugoUXKHzUjQWrk84QS-Pq-fFJtw9rbeLh10oYpq5kGVJgXOMIU8FSwgt_D2EZnOGAXBSkDKN8oIJyZKSiTyncyZlEROaxnOWUb9O0O2Qq62ruZW1A1lJrRRIx0lGSERiL7obRJ3R7z1Yx9vaSmgaoUD3lkdJ7BMJ9ThBs0EqjbbWQMk7U7fCfHKC-bFifqqYnyr2jvvB4Ql-0L1R_t9_1b8MiYD1
CitedBy_id crossref_primary_10_1021_acsnano_1c08779
crossref_primary_10_1002_adfm_202209880
crossref_primary_10_1063_5_0065306
crossref_primary_10_1039_D3NH00246B
crossref_primary_10_1186_s40580_023_00368_4
crossref_primary_10_1021_acsnano_3c12415
crossref_primary_10_3390_nano12050785
crossref_primary_10_1016_j_apsusc_2022_152709
crossref_primary_10_1002_smll_202301430
crossref_primary_10_1063_5_0078774
crossref_primary_10_1360_nso_20220068
crossref_primary_10_1016_j_jallcom_2022_167129
crossref_primary_10_1016_j_mssp_2024_108605
crossref_primary_10_1021_acsami_4c03818
crossref_primary_10_1021_acsnano_3c00026
crossref_primary_10_1063_5_0101416
crossref_primary_10_1038_s41565_023_01340_3
crossref_primary_10_1002_smll_202306038
crossref_primary_10_1038_s41467_022_31610_y
crossref_primary_10_1063_5_0100493
crossref_primary_10_1364_OME_442232
crossref_primary_10_1088_1402_4896_acccb4
crossref_primary_10_1021_acsami_1c18926
crossref_primary_10_1021_acsmaterialslett_2c01124
crossref_primary_10_1016_j_cej_2023_141720
crossref_primary_10_1002_adfm_202107992
crossref_primary_10_1088_1361_6528_accc39
crossref_primary_10_1021_acsnano_3c02565
crossref_primary_10_1038_s41586_022_05612_1
crossref_primary_10_1016_j_jcrysgro_2024_127593
crossref_primary_10_1021_acsami_3c14076
crossref_primary_10_1021_acsaelm_2c01411
crossref_primary_10_1126_sciadv_adf8484
crossref_primary_10_1016_j_mtelec_2024_100091
crossref_primary_10_1126_sciadv_adj5379
crossref_primary_10_1021_acsaelm_2c00997
crossref_primary_10_1002_admi_202201406
crossref_primary_10_1126_sciadv_add5328
crossref_primary_10_1039_D2TC05041B
crossref_primary_10_1186_s40580_023_00388_0
crossref_primary_10_1021_acsomega_3c07162
crossref_primary_10_1088_1361_6528_ac8a4f
crossref_primary_10_1063_5_0064232
crossref_primary_10_1021_acsnano_4c02981
crossref_primary_10_1063_5_0087890
crossref_primary_10_1021_acsnano_2c12759
crossref_primary_10_1021_acs_nanolett_2c03187
crossref_primary_10_1088_2631_7990_ace501
crossref_primary_10_1063_5_0090373
crossref_primary_10_1021_acs_nanolett_3c03333
crossref_primary_10_1038_s41427_022_00403_6
crossref_primary_10_1038_s41565_022_01200_6
crossref_primary_10_1016_j_jcrysgro_2022_126756
crossref_primary_10_1038_s43586_022_00122_w
crossref_primary_10_1021_acs_nanolett_3c04465
crossref_primary_10_1016_j_apsusc_2024_159902
crossref_primary_10_1016_j_matt_2023_05_034
crossref_primary_10_1063_5_0146553
Cites_doi 10.1002/smll.200901173
10.7567/APEX.7.071001
10.1126/sciadv.aaz5180
10.1038/nnano.2013.46
10.1021/acs.nanolett.9b02696
10.1126/science.1195403
10.1073/pnas.1620176114
10.1063/1.98946
10.1088/0953-8984/10/11/011
10.1021/nl203058s
10.1088/0957-4484/21/43/435603
10.1016/j.carbon.2011.08.002
10.1088/0022-3727/46/15/152002
10.1073/pnas.1102650108
10.1039/C9NR01700C
10.1063/1.5064542
10.1038/s41928-019-0314-2
10.1038/s41467-019-12056-1
10.1126/science.1242988
10.1021/acs.chemmater.7b01276
10.1016/j.carbon.2013.05.052
10.1103/RevModPhys.42.317
10.1038/nmat4742
10.1016/j.jpcs.2018.09.012
10.1007/s12274-013-0317-7
10.1021/nn201207c
10.1002/smll.201802995
10.1038/s41565-019-0555-2
10.1038/nature22053
10.1038/s41563-018-0176-4
10.1038/nnano.2010.132
10.1002/admi.201400230
10.1016/j.jsamd.2017.05.007
10.1126/science.1252268
10.1088/0022-3719/16/22/010
10.1063/1.120816
10.1038/s41565-020-0633-5
10.1088/1361-6528/ab4501
10.1021/nl801457b
10.1039/C7CE01064H
10.1038/s41586-020-1939-z
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
CorporateAuthor Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
CorporateAuthor_xml – name: Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
DBID AAYXX
CITATION
7X8
OIOZB
OTOTI
DOI 10.1021/acsnano.1c03296
DatabaseName CrossRef
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 10596
ExternalDocumentID 1811213
10_1021_acsnano_1c03296
b976409482
GroupedDBID -
.K2
23M
3RI
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GGK
GNL
IH9
IHE
JG
JG~
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
6J9
AAHBH
AAYXX
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
BAANH
CITATION
CUPRZ
7X8
OIOZB
OTOTI
ID FETCH-LOGICAL-a378t-985d0b00eb6a9517d876178490ee05d1f62bd9ac95f9abb749ccd317634987cd3
IEDL.DBID ACS
ISSN 1936-0851
IngestDate Fri May 19 00:38:43 EDT 2023
Sat Aug 17 02:20:04 EDT 2024
Fri Aug 23 02:58:35 EDT 2024
Thu Jun 24 03:11:19 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords single-crystal membrane
remote epitaxy
transfer process
ionicity
graphene
heterointegration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a378t-985d0b00eb6a9517d876178490ee05d1f62bd9ac95f9abb749ccd317634987cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
National Science Foundation (NSF)
EE0008558; 029584-00001; FA9453-18-2-0017; FA9453-21-C-0717; DMR‐1539916; DMR-1539918
Defense Advanced Research Projects Agency (DARPA)
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
US Air Force Office of Scientific Research (AFOSR)
ORCID 0000-0002-1547-0967
0000-0003-4164-1827
0000-0003-3091-8413
0000-0002-1513-7187
0000-0003-2493-6113
0000-0001-5117-8923
0000-0003-3304-3253
0000-0002-8135-7719
0000000151178923
0000000341641827
0000000281357719
0000000215470967
0000000215137187
0000000330918413
0000000333043253
0000000324936113
OpenAccessLink https://www.osti.gov/servlets/purl/1811213
PQID 2537631725
PQPubID 23479
PageCount 10
ParticipantIDs osti_scitechconnect_1811213
proquest_miscellaneous_2537631725
crossref_primary_10_1021_acsnano_1c03296
acs_journals_10_1021_acsnano_1c03296
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
3RI
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2021-06-22
PublicationDateYYYYMMDD 2021-06-22
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2021
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
Stringfellow G. B. (ref43/cit43) 1999
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
Bomben K. D. (ref22/cit22) 1992
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref21/cit21
  doi: 10.1002/smll.200901173
– ident: ref39/cit39
  doi: 10.7567/APEX.7.071001
– ident: ref12/cit12
  doi: 10.1126/sciadv.aaz5180
– ident: ref20/cit20
  doi: 10.1038/nnano.2013.46
– ident: ref8/cit8
  doi: 10.1021/acs.nanolett.9b02696
– ident: ref36/cit36
  doi: 10.1126/science.1195403
– ident: ref19/cit19
  doi: 10.1073/pnas.1620176114
– ident: ref2/cit2
  doi: 10.1063/1.98946
– ident: ref32/cit32
  doi: 10.1088/0953-8984/10/11/011
– ident: ref28/cit28
  doi: 10.1021/nl203058s
– ident: ref40/cit40
  doi: 10.1088/0957-4484/21/43/435603
– ident: ref27/cit27
  doi: 10.1016/j.carbon.2011.08.002
– ident: ref4/cit4
  doi: 10.1088/0022-3727/46/15/152002
– ident: ref5/cit5
  doi: 10.1073/pnas.1102650108
– ident: ref10/cit10
  doi: 10.1039/C9NR01700C
– volume-title: Organometallic Vapor-Phase Epitaxy: Theory and Practice
  year: 1999
  ident: ref43/cit43
  contributor:
    fullname: Stringfellow G. B.
– volume-title: Handbook of X-Ray Photoelectron Spectroscopy
  year: 1992
  ident: ref22/cit22
  contributor:
    fullname: Bomben K. D.
– ident: ref14/cit14
  doi: 10.1063/1.5064542
– ident: ref1/cit1
  doi: 10.1038/s41928-019-0314-2
– ident: ref9/cit9
  doi: 10.1038/s41467-019-12056-1
– ident: ref18/cit18
  doi: 10.1126/science.1242988
– ident: ref29/cit29
  doi: 10.1021/acs.chemmater.7b01276
– ident: ref25/cit25
  doi: 10.1016/j.carbon.2013.05.052
– ident: ref30/cit30
  doi: 10.1103/RevModPhys.42.317
– ident: ref42/cit42
  doi: 10.1038/nmat4742
– ident: ref33/cit33
  doi: 10.1016/j.jpcs.2018.09.012
– ident: ref34/cit34
  doi: 10.1007/s12274-013-0317-7
– ident: ref17/cit17
  doi: 10.1021/nn201207c
– ident: ref41/cit41
  doi: 10.1002/smll.201802995
– ident: ref16/cit16
  doi: 10.1038/s41565-019-0555-2
– ident: ref6/cit6
  doi: 10.1038/nature22053
– ident: ref7/cit7
  doi: 10.1038/s41563-018-0176-4
– ident: ref23/cit23
  doi: 10.1038/nnano.2010.132
– ident: ref37/cit37
  doi: 10.1002/admi.201400230
– ident: ref35/cit35
  doi: 10.1016/j.jsamd.2017.05.007
– ident: ref26/cit26
  doi: 10.1126/science.1252268
– ident: ref31/cit31
  doi: 10.1088/0022-3719/16/22/010
– ident: ref3/cit3
  doi: 10.1063/1.120816
– ident: ref11/cit11
  doi: 10.1038/s41565-020-0633-5
– ident: ref15/cit15
  doi: 10.1088/1361-6528/ab4501
– ident: ref24/cit24
  doi: 10.1021/nl801457b
– ident: ref38/cit38
  doi: 10.1039/C7CE01064H
– ident: ref13/cit13
  doi: 10.1038/s41586-020-1939-z
SSID ssj0057876
Score 2.6273112
Snippet Remote epitaxy has drawn attention as it offers epitaxy of functional materials that can be released from the substrates with atomic precision, thus enabling...
SourceID osti
proquest
crossref
acs
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 10587
SubjectTerms graphene
heterointegration
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
ionicity
remote epitaxy
single-crystal membrane
transfer process
Title Impact of 2D–3D Heterointerface on Remote Epitaxial Interaction through Graphene
URI http://dx.doi.org/10.1021/acsnano.1c03296
https://search.proquest.com/docview/2537631725
https://www.osti.gov/servlets/purl/1811213
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLWgLDDwRpQCMlIHlpTYSZx4rPqgIMFQqNTNsh1nQUpQk0qIiX_gD_kSrpOUV4VgyxBF9n0e516fi1Cb81jKgElHKpU4PmRIR5IgcQizCo9cacrpDTe3bDTxr6fB9JMs-mcFn5ILqfNUplmHaNejnK2iNQpZ0Z6zur27RdC1dseqAjIckAFFfLD4LH3ApiGdf0tDjQzcaSkYlxlmuFX1ZuUlMaFtLHnozAvV0c_LtI1_L34bbdY4E3crw9hBKybdRRtf2Af30PiqvCGJswTT_tvLq9fHI9sck1kKiVkitcFZiscGlGnwwE4XeQJjxeU_xOo6BK6n_OBLS3sNUXMfTYaD-97IqUcsONILo8LhURC74HlGMQlYK4xBjCSMfO4a4wYxSRhVMZeaBwkHbYY-1zoGyME8n0chPB6gRpql5hBhnUQasKCKWEx8ohiECl8BmNRhEsaMRE3UBmmI2kVyUVa_KRG1iEQtoiY6XyhGPFaEG7-_2rKKE4AVLOGttp1BuhCAWSxPXROdLfQpwGVsHUSmJpvngloKG9gEDY7-t6YWWqe2lcVlDqXHqFHM5uYEsEihTksrfAfKXtll
link.rule.ids 230,315,786,790,891,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH7oeFAP7uI4LhE8eOnYZNq0Ocq4jCu4gbeQpOlFaGXaAfHkf_Af-kt86XRcEfRWSgnpW7_2vXwPYFuIRKmQK09pnXoBZkhP0TD1KHcKj31lq-kN5xe8dxuc3IV3Y-CPzsLgJgpcqaiK-B_sAnQX72Uqy9vU-B0m-DhMhBHmOgeGutej2OvMjw_ryPidjGDincznxwIuG5niSzZq5OhVP2JylWgOZ-HyfYtVf8l9e1Dqtnn6xt74n3eYg5kadZK9oZnMw5jNFmD6ExfhIlwdV-clSZ4Stv_6_NLZJz3XKpM7Qol-qowleUauLKrWkgM3a-QRTZdUfxSHhyNIPfOHHDkSbIyhS3B7eHDT7Xn1wAVPdaK49EQcJj76odVcIfKKEpQmjeJA-Nb6YUJTznQilBFhKlC3USCMSRCA8E4g4ggvl6GR5ZldAWLS2CAy1DFPaEA1x8ARaISWJkqjhNO4CdsoDVk7TCGrWjijshaRrEXUhJ2RfuTDkH7j90dbTn8SkYOjvzWuT8iUEhGMY61rwtZIrRIdyFVFVGbzQSGZI7TBl2Dh6t_2tAmTvZvzM3l2fHHaginmmlx87jG2Bo2yP7DriFJKvVEZ5huaJeHQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS9xAFD7YFUp9UHvDVatT8KEv2WZmk0nmUVzXtRcptgu-DXN9KSRisiA-9T_0H_aX9JxsVtpKoX0LIQyTc_2Sc-Y7AEdKeWNyaRJjbUwyzJCJ4XlMuCSFl6kJ3fSGjxdyNs_eXeVX_aEwOguDm2hwpaYr4pNXX_vYMwzwt3i_MlU94i4dCyUfwXpe8Izc8fjk8yr-kgnKZS0Zv5URUNwT-jxYgDKSa37LSIMaPetBXO6SzXQL5vfb7HpMvo4WrR25uz8YHP_3PbZhs0ef7HhpLk9hLVTPYOMXTsLncHnenZtkdWRi8uPb9_GEzahlpiZiiZtoXGB1xS4DqjiwU5o5cosmzLo_i8tDEqyf_cPOiAwbY-kLmE9Pv5zMkn7wQmLGRdkmqsx9iv4YrDSIwAqPEuVFmak0hDT3PEphvTJO5VGhjotMOecRiMhxpsoCL1_CoKqrsAPMxdIhQrSl9KgpKzGAZBYhpiti4SUvh3CE0tC94zS6q4kLrnsR6V5EQ3iz0pG-XtJw_P3RPdKhRgRBNLiO-oVcqxHJEHvdEF6vVKvRkag6YqpQLxotiNgGX0Lku_-2p0N4_Gky1R_OL97vwRNBvS6pTITYh0F7swivEKy09qCzzZ_qiuRK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+2D%E2%80%933D+Heterointerface+on+Remote+Epitaxial+Interaction+through+Graphene&rft.jtitle=ACS+nano&rft.au=Kim%2C+Hyunseok&rft.au=Lu%2C+Kuangye&rft.au=Liu%2C+Yunpeng&rft.au=Kum%2C+Hyun+S&rft.date=2021-06-22&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=15&rft.issue=6&rft.spage=10587&rft.epage=10596&rft_id=info:doi/10.1021%2Facsnano.1c03296&rft.externalDocID=b976409482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon