Spontaneous Periodic Diameter Oscillations in InP Nanowires: The Role of Interface Instabilities

We have observed that thin InP nanowires generated by vapor–liquid–solid growth display spontaneous periodic diameter oscillations when large group III supersaturations are used. Diameter variations are associated with a large number of stacking faults and crystallographic phase changes(wurtzite/zin...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 13; no. 1; pp. 9 - 13
Main Authors Oliveira, D. S, Tizei, L. H. G, Ugarte, D, Cotta, M. A
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 09.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have observed that thin InP nanowires generated by vapor–liquid–solid growth display spontaneous periodic diameter oscillations when large group III supersaturations are used. Diameter variations are associated with a large number of stacking faults and crystallographic phase changes(wurtzite/zinc-blende); also the axial distance between oscillations depends on the indium precursor flow used during the run. We attribute the morphology changes to a substantial deformation of the triple phase line (vapor–liquid–solid) at the catalyst nanoparticle edge originated from multistep nucleation during growth. The deformation alters the mechanical force balance acting on the nanoparticle during growth in such a way that the particle displaces from the nanowire top and wets the nanowire sidewall. Subsequently, as catalytic growth occurs at the sidewall, the associated increase in diameter will eventually push the NP back to its original wire-top position until the onset of a new instability at the triple phase line.
AbstractList We have observed that thin InP nanowires generated by vapor-liquid-solid growth display spontaneous periodic diameter oscillations when large group III supersaturations are used. Diameter variations are associated with a large number of stacking faults and crystallographic phase changes(wurtzite/zinc-blende); also the axial distance between oscillations depends on the indium precursor flow used during the run. We attribute the morphology changes to a substantial deformation of the triple phase line (vapor-liquid-solid) at the catalyst nanoparticle edge originated from multistep nucleation during growth. The deformation alters the mechanical force balance acting on the nanoparticle during growth in such a way that the particle displaces from the nanowire top and wets the nanowire sidewall. Subsequently, as catalytic growth occurs at the sidewall, the associated increase in diameter will eventually push the NP back to its original wire-top position until the onset of a new instability at the triple phase line.
Author Tizei, L. H. G
Oliveira, D. S
Ugarte, D
Cotta, M. A
AuthorAffiliation Universidade Estadual de Campinas
AuthorAffiliation_xml – name: Universidade Estadual de Campinas
Author_xml – sequence: 1
  givenname: D. S
  surname: Oliveira
  fullname: Oliveira, D. S
– sequence: 2
  givenname: L. H. G
  surname: Tizei
  fullname: Tizei, L. H. G
– sequence: 3
  givenname: D
  surname: Ugarte
  fullname: Ugarte, D
– sequence: 4
  givenname: M. A
  surname: Cotta
  fullname: Cotta, M. A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27145438$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23205668$$D View this record in MEDLINE/PubMed
BookMark eNqF0EtLAzEQB_AgFduqB7-A5CLooZrHPrLepL4KxRbtfc1mJ5iyTWqyRfz2RlurB8FTBvLLZObfRx3rLCB0RMk5JYxe2IYTJgpa7aAeTTkZZEXBOttaJF3UD2FOCCl4SvZQl3FG0iwTPfT8tHS2lRbcKuApeONqo_C1kQtoweNJUKZpZGucDdhYPLJT_CCtezMewiWevQB-dA1gp-NVfKClgliFVlamMa2BcIB2tWwCHG7OfTS7vZkN7wfjyd1oeDUeSJ6LdiCoZJwKAF3nitKKKcl5TbKCkFozWrM8STglotIJraXKtNBMZTmHIoMq2n10um679O51BaEtFyYoiLN_rVbSPIsrkyQV_1OWc57wgrNIz9ZUeReCB10uvVlI_15SUn5GX26jj_Z403ZVLaDeyu-sIzjZABmUbLSXVpnw43KapAn_5aQK5dytvI25_fHhBwFGmNI
CitedBy_id crossref_primary_10_1039_c3tc31494d
crossref_primary_10_1063_1_4926401
crossref_primary_10_1039_C3NR06692D
crossref_primary_10_1002_adom_201800576
crossref_primary_10_1063_1_4807389
crossref_primary_10_1039_C5NR06676J
crossref_primary_10_1021_acs_nanolett_6b00629
crossref_primary_10_1021_nl404159x
crossref_primary_10_1088_1361_6528_aa9816
crossref_primary_10_1063_1_4821111
crossref_primary_10_1587_elex_10_20130871
crossref_primary_10_1038_nnano_2015_23
crossref_primary_10_1039_D1NR02320A
crossref_primary_10_1002_aelm_201800747
crossref_primary_10_1016_j_jallcom_2020_158243
crossref_primary_10_1021_acsanm_8b01595
crossref_primary_10_1088_0953_8984_25_50_505303
crossref_primary_10_1088_1361_6528_aaab17
crossref_primary_10_1021_acs_nanolett_7b03486
crossref_primary_10_1038_ncomms7412
crossref_primary_10_1002_adma_201405047
crossref_primary_10_1021_acs_cgd_8b00057
crossref_primary_10_1021_acsanm_1c00057
crossref_primary_10_1063_1_4947290
crossref_primary_10_1364_OL_463087
crossref_primary_10_1021_acs_cgd_7b00197
crossref_primary_10_1021_nl4035994
Cites_doi 10.1134/S1063785011010184
10.1021/nl203213d
10.1016/j.bios.2012.03.038
10.1016/B978-0-08-057135-5.50007-9
10.1038/nphoton.2009.184
10.1063/1.1753975
10.1088/0957-4484/20/22/225606
10.1016/S1369-7021(09)70110-5
10.1038/35051047
10.1021/nl900191w
10.1143/JJAP.31.L71
10.1038/nmat2014
10.1021/nl2008339
10.1021/nl104238d
10.1021/nl101747z
10.1021/nl303323t
10.1103/PhysRevLett.99.146101
10.1126/science.1190596
10.1088/0034-4885/73/11/114501
10.1016/j.physe.2004.04.002
10.1038/nature07570
10.1021/nl203846g
10.1038/nnano.2008.359
10.1023/A:1025588601262
10.1063/1.3131676
10.1063/1.98507
10.1021/nn103596n
10.1021/nl903688v
10.1021/nl200083f
10.1063/1.3523360
10.1021/nl072974w
10.1021/nl2019382
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
2014 INIST-CNRS
Copyright_xml – notice: Copyright © 2012 American Chemical Society
– notice: 2014 INIST-CNRS
DBID IQODW
NPM
AAYXX
CITATION
7X8
7QQ
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nl302891b
DatabaseName Pascal-Francis
PubMed
CrossRef
MEDLINE - Academic
Ceramic Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1530-6992
EndPage 13
ExternalDocumentID 10_1021_nl302891b
23205668
27145438
c210115197
Genre Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
53G
6P2
AAYOK
ABFRP
ABQRX
ADHLV
AFFNX
AHGAQ
GGK
IQODW
AAHBH
ABJNI
ACBEA
CUPRZ
NPM
AAYXX
CITATION
7X8
7QQ
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a378t-81a2318eefd7c11b2ca33d06900df21d27443108bf41dac6f8f2c673e96ebca3
IEDL.DBID ACS
ISSN 1530-6984
IngestDate Sat Aug 17 03:31:53 EDT 2024
Fri Jun 28 01:21:24 EDT 2024
Fri Aug 23 00:53:08 EDT 2024
Tue Aug 27 13:46:00 EDT 2024
Fri Nov 25 01:07:23 EST 2022
Thu Aug 27 13:42:12 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nanowire
vapor−liquid−solid
InP
wetting
kinetic roughness
Stacking faults
Deformation
Nucleation
Catalysts
Phase transformations
Crystal growth from vapors
Ruthenium nitride
Precursor
III-V compound
Indium phosphide
Zinc
Interfaces
Nanoparticles
Vapor phase
Morphology
Growth mechanism
Instability
Nanowires
Nanostructured materials
Nanomaterial synthesis
III-V semiconductors
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a378t-81a2318eefd7c11b2ca33d06900df21d27443108bf41dac6f8f2c673e96ebca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23205668
PQID 1273343932
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_1762050458
proquest_miscellaneous_1273343932
crossref_primary_10_1021_nl302891b
pubmed_primary_23205668
pascalfrancis_primary_27145438
acs_journals_10_1021_nl302891b
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2013-01-09
PublicationDateYYYYMMDD 2013-01-09
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-09
  day: 09
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Paiman S. (ref27/cit27) 2009; 20
Thelander C. (ref11/cit11) 2011; 11
Ross F. M. (ref16/cit16) 2010; 73
Zianni X. (ref13/cit13) 2010; 97
Dayeh S. A. (ref22/cit22) 2009; 9
Mohammad S. N. (ref24/cit24) 2008; 8
Mokkapati S. (ref4/cit4) 2009; 12
Diedenhofen S. L. (ref14/cit14) 2011; 5
ref29/cit29
Moreau A. L. D. (ref3/cit3) 2012; 36
Wallentin J. (ref10/cit10) 2012; 12
Kobayashi Y. (ref25/cit25) 1992; 31
Tizei L. H. G. (ref20/cit20) 2011; 107
Plante M. C. (ref23/cit23) 2009; 105
Yu X. (ref33/cit33) 2012; 12
Chiaramonte T. (ref12/cit12) 2011; 11
Duan X. (ref2/cit2) 2001; 409
Oh S. H. (ref19/cit19) 2010; 330
Joyce H. J. (ref17/cit17) 2010; 10
Dubrovskii V. G. (ref31/cit31) 2011; 37
Rudolph D. (ref32/cit32) 2011; 11
Plissard S. R. (ref15/cit15) 2012; 12
Kobayashi N. (ref26/cit26) 1987; 51
Nebol’sin V. (ref30/cit30) 2003; 39
Caroff P. (ref8/cit8) 2008; 4
Glas F. (ref18/cit18) 2007; 99
Yan R. (ref1/cit1) 2009; 3
Chau R. (ref5/cit5) 2007; 6
Wallentin J. (ref7/cit7) 2010
Wagner R. (ref6/cit6) 1964; 4
Algra R. E. (ref9/cit9) 2008; 456
Dubrovskii V. G. (ref21/cit21) 2011; 11
Watanabe Y. (ref28/cit28) 2004; 24
References_xml – volume: 37
  start-page: 53
  year: 2011
  ident: ref31/cit31
  publication-title: Tech. Phys. Lett.
  doi: 10.1134/S1063785011010184
  contributor:
    fullname: Dubrovskii V. G.
– volume: 12
  start-page: 151
  year: 2012
  ident: ref10/cit10
  publication-title: Nano Lett.
  doi: 10.1021/nl203213d
  contributor:
    fullname: Wallentin J.
– volume: 36
  start-page: 62
  year: 2012
  ident: ref3/cit3
  publication-title: Biosen. Bioelectron.
  doi: 10.1016/j.bios.2012.03.038
  contributor:
    fullname: Moreau A. L. D.
– volume: 107
  start-page: 1
  year: 2011
  ident: ref20/cit20
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Tizei L. H. G.
– ident: ref29/cit29
  doi: 10.1016/B978-0-08-057135-5.50007-9
– volume: 3
  start-page: 569
  year: 2009
  ident: ref1/cit1
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.184
  contributor:
    fullname: Yan R.
– volume: 4
  start-page: 89
  year: 1964
  ident: ref6/cit6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1753975
  contributor:
    fullname: Wagner R.
– volume: 20
  start-page: 225606
  year: 2009
  ident: ref27/cit27
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/22/225606
  contributor:
    fullname: Paiman S.
– volume: 12
  start-page: 22
  year: 2009
  ident: ref4/cit4
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(09)70110-5
  contributor:
    fullname: Mokkapati S.
– volume: 409
  start-page: 66
  year: 2001
  ident: ref2/cit2
  publication-title: Nature
  doi: 10.1038/35051047
  contributor:
    fullname: Duan X.
– volume: 9
  start-page: 1967
  year: 2009
  ident: ref22/cit22
  publication-title: Nano Lett.
  doi: 10.1021/nl900191w
  contributor:
    fullname: Dayeh S. A.
– volume: 31
  start-page: L71
  year: 1992
  ident: ref25/cit25
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.31.L71
  contributor:
    fullname: Kobayashi Y.
– volume: 6
  start-page: 810
  year: 2007
  ident: ref5/cit5
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2014
  contributor:
    fullname: Chau R.
– volume: 11
  start-page: 2424
  year: 2011
  ident: ref11/cit11
  publication-title: Nano Lett.
  doi: 10.1021/nl2008339
  contributor:
    fullname: Thelander C.
– volume: 11
  start-page: 1247
  year: 2011
  ident: ref21/cit21
  publication-title: Nano Lett.
  doi: 10.1021/nl104238d
  contributor:
    fullname: Dubrovskii V. G.
– start-page: 4807
  year: 2010
  ident: ref7/cit7
  publication-title: Nano Lett.
  doi: 10.1021/nl101747z
  contributor:
    fullname: Wallentin J.
– volume: 12
  start-page: 5436
  year: 2012
  ident: ref33/cit33
  publication-title: Nano Lett.
  doi: 10.1021/nl303323t
  contributor:
    fullname: Yu X.
– volume: 99
  start-page: 3
  year: 2007
  ident: ref18/cit18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.146101
  contributor:
    fullname: Glas F.
– volume: 330
  start-page: 489
  year: 2010
  ident: ref19/cit19
  publication-title: Science (New York)
  doi: 10.1126/science.1190596
  contributor:
    fullname: Oh S. H.
– volume: 73
  start-page: 114501
  year: 2010
  ident: ref16/cit16
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/73/11/114501
  contributor:
    fullname: Ross F. M.
– volume: 24
  start-page: 133
  year: 2004
  ident: ref28/cit28
  publication-title: Phys. E
  doi: 10.1016/j.physe.2004.04.002
  contributor:
    fullname: Watanabe Y.
– volume: 456
  start-page: 369
  year: 2008
  ident: ref9/cit9
  publication-title: Nature
  doi: 10.1038/nature07570
  contributor:
    fullname: Algra R. E.
– volume: 12
  start-page: 1794
  year: 2012
  ident: ref15/cit15
  publication-title: Nano Lett.
  doi: 10.1021/nl203846g
  contributor:
    fullname: Plissard S. R.
– volume: 4
  start-page: 50
  year: 2008
  ident: ref8/cit8
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.359
  contributor:
    fullname: Caroff P.
– volume: 39
  start-page: 899
  year: 2003
  ident: ref30/cit30
  publication-title: Inorg. Mater.
  doi: 10.1023/A:1025588601262
  contributor:
    fullname: Nebol’sin V.
– volume: 105
  start-page: 114304
  year: 2009
  ident: ref23/cit23
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3131676
  contributor:
    fullname: Plante M. C.
– volume: 51
  start-page: 1907
  year: 1987
  ident: ref26/cit26
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.98507
  contributor:
    fullname: Kobayashi N.
– volume: 5
  start-page: 2316
  year: 2011
  ident: ref14/cit14
  publication-title: ACS Nano
  doi: 10.1021/nn103596n
  contributor:
    fullname: Diedenhofen S. L.
– volume: 10
  start-page: 908
  year: 2010
  ident: ref17/cit17
  publication-title: Nano Lett.
  doi: 10.1021/nl903688v
  contributor:
    fullname: Joyce H. J.
– volume: 11
  start-page: 1934
  year: 2011
  ident: ref12/cit12
  publication-title: Nano Lett.
  doi: 10.1021/nl200083f
  contributor:
    fullname: Chiaramonte T.
– volume: 97
  start-page: 233106
  year: 2010
  ident: ref13/cit13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3523360
  contributor:
    fullname: Zianni X.
– volume: 8
  start-page: 1532
  year: 2008
  ident: ref24/cit24
  publication-title: Nano Lett.
  doi: 10.1021/nl072974w
  contributor:
    fullname: Mohammad S. N.
– volume: 11
  start-page: 3848
  year: 2011
  ident: ref32/cit32
  publication-title: Nano Lett.
  doi: 10.1021/nl2019382
  contributor:
    fullname: Rudolph D.
SSID ssj0009350
Score 2.246886
Snippet We have observed that thin InP nanowires generated by vapor–liquid–solid growth display spontaneous periodic diameter oscillations when large group III...
We have observed that thin InP nanowires generated by vapor-liquid-solid growth display spontaneous periodic diameter oscillations when large group III...
SourceID proquest
crossref
pubmed
pascalfrancis
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 9
SubjectTerms Catalysts
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science; rheology
Deformation
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Indium phosphides
Instability
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Materials science
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Nanowires
Oscillations
Phase transformations
Physics
Quantum wires
Specific phase transitions
Spontaneous
Structural transitions in nanoscale materials
Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)
Title Spontaneous Periodic Diameter Oscillations in InP Nanowires: The Role of Interface Instabilities
URI http://dx.doi.org/10.1021/nl302891b
https://www.ncbi.nlm.nih.gov/pubmed/23205668
https://search.proquest.com/docview/1273343932
https://search.proquest.com/docview/1762050458
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1XT8MwED4VeAEh9iijMuM1UI8kDm8IqACJIYbEW3A8pIqSVLR94ddzTlqGWK-Jrci-O993ufN3ALtZZB33kWpmRRiImAk8BwUPwkhT4_llkvKG3MVldHovzh_Chxrs_JLBZ3Q_73CfDaPZGEwwXzno8c_R7QezLi_bsKLlYhyUSDGiD_o81bse3fvieqa7qoe74Kr2Fb_jy9LPtGbheHRbpyovedob9LM9_fqdvPGvJczBzBBnksNKMeahZvMFmPrEPrgIj7fdIkdsaDH4J9f4sDBtTY7b6tmXyJArdI6dYaUcaefkLL8meBYXnty4d0BQv8hN0bGkcKT8reiUtsTXHlTM3xiBL8Fd6-Tu6DQYNlwIFI9lP5BUIdyT1joTa0ozphXnxnMZN41j1Hg2QYSDMnOCGqUjJx3TUcxtEvmaKr4M43mR21UgMrSCWp8DFRLdJJq5ykSskjgxhjJr6tBAgaRDe-mlZSqc0fR9p-qwPZJV2q14N34a1PgixfeRqCciFFzWYWsk1hTNxudCql1NKcI2jmCMsz_GoKNohj6TXIeVSic-vsDxVRTJtf8Wsg6TrOygQYNmsgHj_ZeB3UQc088apR6_AeGz6nA
link.rule.ids 315,786,790,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VeihVRR9A2dIuBvWa7fqRxOGGoGgpT5VF4pY6fkirbpMV2b3013fsZFmo6OOaOE48nvF8zoy_AfhYJNZxv1MtrIgjkTKB66DgUZxoajy_TBZOyJ2dJ4Nr8eUmvmlpcvxZGPyIGnuqQxB_wS5AP5Vj7oNitFiCpzF24XV6_-BqQbDLQzVWNGDcDmVSzFmE7j_qPZCuH3igFxNVozBcU8XizzAzuJujl03dovChIcvke282LXr6528cjv83klew2qJOst-oyWt4Yss38PweF-EafLuaVCUiRVvNanKJFysz0uRwpH74hBlyga5y3ObNkVFJjstLgitz5amO6z2C2ka-VmNLKkfCT0antCU-E6HhAcf9-DoMjz4PDwZRW34hUjyV00hSheBPWutMqiktmFacG89s3DeOUeO5BREcysIJapROnHRMJym3WeIzrPgGLJdVaTeByNgKan1EVEh0mmj0qhCpytLMGMqs6UAXBZW31lPnITDOaH4nqQ7szqcsnzQsHI816j6YzLuWLKUiFlx2YGc-uzkakY-MNFLNKYI4jtCMs7-0QbfRj31cuQNvG9VYvIHjrSSR7_41kG14Nhieneanx-cnW7DCQm0NGvWz97A8vZ3ZD4hwpkU3qPYvtpHy2w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB5BkRAIcZUjHGGpeHXJHrbXvKGWqOVoI9pKfXPXe0gRwY5w8sKvZ2btpC0qx6u9tveY2fnGM_sNwJsq80GSp1p5lSYqFwr3QSWTNLPcEb9MEU_IfTnI9k7Ux9P0tHcU6SwMdqLFN7UxiE9aPXehZxjgb-uZpMAYr67DjZQKdxMU2jk6J9mVsSIrKjG6RIVWKyahi4-SFbLtJSt0Z25anJDQVbL4M9SMJmd8Dw7XnY2ZJt-2l4tq2_78jcfx_0dzH-726JO978TlAVzz9UO4fYGTcBPOjuZNjYjRN8uWTfBi46aW7U7Nd0qcYYdoMmd9_hyb1my_njDcoRuiPG7fMZQ69rWZedYEFn82BmM9o4yEjg8c_fJHcDz-cLyzl_RlGBIjc71INDcIArX3weWW80pYI6UjhuORC4I74hhEkKiroLgzNgs6CJvl0hcZZVrJx7BRN7V_CkynXnFPkVGl0Xii8ptK5abIC-e48G4AQ5yssteitowBcsHL9UwNYGu1bOW8Y-O4qtHw0oKuWwoUmVRJPYDXqxUuUZkoQtLNaskRzEmEaFL8pQ2aj1FK8eUBPOnE4_wLEm9lmX72r4G8gpuT3XH5ef_g03O4JWKJDZ6Mihewsfix9C8R6CyqYZTuX5ax9VU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spontaneous+periodic+diameter+oscillations+in+InP+nanowires%3A+the+role+of+interface+instabilities&rft.jtitle=Nano+letters&rft.au=Oliveira%2C+D+S&rft.au=Tizei%2C+L+H+G&rft.au=Ugarte%2C+D&rft.au=Cotta%2C+M+A&rft.date=2013-01-09&rft.eissn=1530-6992&rft.volume=13&rft.issue=1&rft.spage=9&rft_id=info:doi/10.1021%2Fnl302891b&rft_id=info%3Apmid%2F23205668&rft.externalDocID=23205668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon