Engineered Absorption Enhancement and Induced Transparency in Coupled Molecular and Plasmonic Resonator Systems
Coupled plasmonic resonators have become the subject of significant research interest in recent years as they provide a route to dramatically enhanced light-matter interactions. Often, the design of these coupled mode systems draws intuition and inspiration from analogies to atomic and molecular phy...
Saved in:
Published in | Nano letters Vol. 13; no. 6; pp. 2584 - 2591 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
12.06.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1530-6984 1530-6992 1530-6992 |
DOI | 10.1021/nl400689q |
Cover
Loading…
Abstract | Coupled plasmonic resonators have become the subject of significant research interest in recent years as they provide a route to dramatically enhanced light-matter interactions. Often, the design of these coupled mode systems draws intuition and inspiration from analogies to atomic and molecular physics systems. In particular, they have been shown to mimic quantum interference effects, such as electromagnetically induced transparency (EIT) and Fano resonances. This analogy also been used to describe the surface-enhanced absorption effect where a plasmonic resonance is coupled to a weak molecular resonance. These important phenomena are typically described using simple driven harmonic (or linear) oscillators (i.e., mass-on-a-spring) coupled to each other. In this work, we demonstrate the importance of an essential interdependence between the rate at which the system can be driven by an external field and its damping rate through radiative loss. This link is required in systems exhibiting time-reversal symmetry and energy conservation. Not only does it ensure an accurate and physically consistent description of resonant systems but leads directly to interesting new effects. Significantly, we demonstrate this dependence to predict a transition between EIT and electromagnetically induced absorption that is solely a function of the ratio of the radiative to intrinsic loss rates in coupled resonator systems. Leveraging the temporal coupled mode theory, we introduce a unique and intuitive picture that accurately describes these effects in coupled plasmonic/molecular and fully plasmonic systems. We demonstrate our approach’s key features and advantages analytically as well as experimentally through surface-enhanced absorption spectroscopy and plasmonic metamaterial applications. |
---|---|
AbstractList | Coupled plasmonic resonators have become the subject of significant research interest in recent years as they provide a route to dramatically enhanced light-matter interactions. Often, the design of these coupled mode systems draws intuition and inspiration from analogies to atomic and molecular physics systems. In particular, they have been shown to mimic quantum interference effects, such as electromagnetically induced transparency (EIT) and Fano resonances. This analogy also been used to describe the surface-enhanced absorption effect where a plasmonic resonance is coupled to a weak molecular resonance. These important phenomena are typically described using simple driven harmonic (or linear) oscillators (i.e., mass-on-a-spring) coupled to each other. In this work, we demonstrate the importance of an essential interdependence between the rate at which the system can be driven by an external field and its damping rate through radiative loss. This link is required in systems exhibiting time-reversal symmetry and energy conservation. Not only does it ensure an accurate and physically consistent description of resonant systems but leads directly to interesting new effects. Significantly, we demonstrate this dependence to predict a transition between EIT and electromagnetically induced absorption that is solely a function of the ratio of the radiative to intrinsic loss rates in coupled resonator systems. Leveraging the temporal coupled mode theory, we introduce a unique and intuitive picture that accurately describes these effects in coupled plasmonic/molecular and fully plasmonic systems. We demonstrate our approach's key features and advantages analytically as well as experimentally through surface-enhanced absorption spectroscopy and plasmonic metamaterial applications.Coupled plasmonic resonators have become the subject of significant research interest in recent years as they provide a route to dramatically enhanced light-matter interactions. Often, the design of these coupled mode systems draws intuition and inspiration from analogies to atomic and molecular physics systems. In particular, they have been shown to mimic quantum interference effects, such as electromagnetically induced transparency (EIT) and Fano resonances. This analogy also been used to describe the surface-enhanced absorption effect where a plasmonic resonance is coupled to a weak molecular resonance. These important phenomena are typically described using simple driven harmonic (or linear) oscillators (i.e., mass-on-a-spring) coupled to each other. In this work, we demonstrate the importance of an essential interdependence between the rate at which the system can be driven by an external field and its damping rate through radiative loss. This link is required in systems exhibiting time-reversal symmetry and energy conservation. Not only does it ensure an accurate and physically consistent description of resonant systems but leads directly to interesting new effects. Significantly, we demonstrate this dependence to predict a transition between EIT and electromagnetically induced absorption that is solely a function of the ratio of the radiative to intrinsic loss rates in coupled resonator systems. Leveraging the temporal coupled mode theory, we introduce a unique and intuitive picture that accurately describes these effects in coupled plasmonic/molecular and fully plasmonic systems. We demonstrate our approach's key features and advantages analytically as well as experimentally through surface-enhanced absorption spectroscopy and plasmonic metamaterial applications. Coupled plasmonic resonators have become the subject of significant research interest in recent years as they provide a route to dramatically enhanced light-matter interactions. Often, the design of these coupled mode systems draws intuition and inspiration from analogies to atomic and molecular physics systems. In particular, they have been shown to mimic quantum interference effects, such as electromagnetically induced transparency (EIT) and Fano resonances. This analogy also been used to describe the surface-enhanced absorption effect where a plasmonic resonance is coupled to a weak molecular resonance. These important phenomena are typically described using simple driven harmonic (or linear) oscillators (i.e., mass-on-a-spring) coupled to each other. In this work, we demonstrate the importance of an essential interdependence between the rate at which the system can be driven by an external field and its damping rate through radiative loss. This link is required in systems exhibiting time-reversal symmetry and energy conservation. Not only does it ensure an accurate and physically consistent description of resonant systems but leads directly to interesting new effects. Significantly, we demonstrate this dependence to predict a transition between EIT and electromagnetically induced absorption that is solely a function of the ratio of the radiative to intrinsic loss rates in coupled resonator systems. Leveraging the temporal coupled mode theory, we introduce a unique and intuitive picture that accurately describes these effects in coupled plasmonic/molecular and fully plasmonic systems. We demonstrate our approach’s key features and advantages analytically as well as experimentally through surface-enhanced absorption spectroscopy and plasmonic metamaterial applications. |
Author | Altug, Hatice Artar, Alp Adato, Ronen Erramilli, Shyamsunder |
AuthorAffiliation | Department of Electrical and Computer Engineering Photonics Center Boston University Department of Biomedical Engineering Department of Physics |
AuthorAffiliation_xml | – name: Department of Electrical and Computer Engineering – name: Department of Physics – name: Photonics Center – name: Department of Biomedical Engineering – name: Boston University |
Author_xml | – sequence: 1 givenname: Ronen surname: Adato fullname: Adato, Ronen – sequence: 2 givenname: Alp surname: Artar fullname: Artar, Alp – sequence: 3 givenname: Shyamsunder surname: Erramilli fullname: Erramilli, Shyamsunder – sequence: 4 givenname: Hatice surname: Altug fullname: Altug, Hatice email: altug@bu.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27517102$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23647070$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1rFTEUBuAgFfuhC_-AzEaoi2uTyfeyXK5aqCha1yGT5GpK5mSazCzuvze1txVKoascDs85hPccowPIEBB6S_BHgntyBolhLJS-eYGOCKd4JbTuDx5qxQ7Rca3XGGNNOX6FDnsqmMQSH6G8gd8RQijBd-dDzWWaY4ZuA38suDAGmDsLvrsAv7hGroqFOtkSwO26CN06L1Nq_a85BbckW_7p78nWMUN03Y9QM9g5l-7nrs5hrK_Ry61NNbzZvyfo16fN1frL6vLb54v1-eXKUqnmlRDCee6FoIIqwbgmWHM6DN4TRTV2gbDWFGGgumeSsF4zghX2ShHprOP0BJ3e7Z1KvllCnc0YqwspWQh5qYZITplkfa-ep1TItpdz1ui7PV2GMXgzlTjasjP3eTbwfg9sdTZtW1wu1v9OciLbyZo7u3Ou5FpL2BoXZ3sb_VxsTIZgc3tZ83DZNvHh0cT90qfs_hfWVXOdlwIt6ifcXxLMraU |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_7b01798 crossref_primary_10_1109_JPHOT_2018_2877323 crossref_primary_10_1364_OL_390868 crossref_primary_10_1002_lpor_201800176 crossref_primary_10_1039_D4NA00527A crossref_primary_10_1021_acsphotonics_9b00229 crossref_primary_10_1117_1_OE_58_6_067107 crossref_primary_10_1016_j_automatica_2016_09_035 crossref_primary_10_1002_adom_202301912 crossref_primary_10_1080_15599612_2021_1986612 crossref_primary_10_1038_ncomms8899 crossref_primary_10_1051_epjconf_202328704011 crossref_primary_10_1021_acsnano_2c05680 crossref_primary_10_1002_wcms_1665 crossref_primary_10_1364_PRJ_508136 crossref_primary_10_1021_acs_nanolett_4c01703 crossref_primary_10_1364_OL_39_004994 crossref_primary_10_7498_aps_74_20250078 crossref_primary_10_1364_PRJ_539279 crossref_primary_10_1039_C3NR04726A crossref_primary_10_1016_j_ijleo_2015_07_074 crossref_primary_10_1016_j_bios_2017_08_044 crossref_primary_10_1021_acs_nanolett_5b03247 crossref_primary_10_1021_acs_jctc_5c00048 crossref_primary_10_1021_acsphotonics_8b00702 crossref_primary_10_1021_acsami_9b18002 crossref_primary_10_1021_acsphotonics_8b00425 crossref_primary_10_1002_adom_201500063 crossref_primary_10_1016_j_optlastec_2024_112139 crossref_primary_10_1038_s41467_018_05224_2 crossref_primary_10_1126_science_aab2051 crossref_primary_10_1088_1361_6463_ab77db crossref_primary_10_1364_OE_28_002020 crossref_primary_10_1515_nanoph_2017_0005 crossref_primary_10_1038_s41467_023_40511_7 crossref_primary_10_1021_acsphotonics_8b00398 crossref_primary_10_1021_acs_jpcc_5b08344 crossref_primary_10_1515_nanoph_2023_0131 crossref_primary_10_1016_j_bios_2025_117351 crossref_primary_10_1080_05704928_2022_2156527 crossref_primary_10_1021_acsnano_0c05794 crossref_primary_10_3390_nano9101496 crossref_primary_10_3788_LOP232219 crossref_primary_10_1016_j_ijleo_2015_07_132 crossref_primary_10_1002_adfm_202300411 crossref_primary_10_1038_s41565_024_01767_2 crossref_primary_10_1109_TTHZ_2015_2401392 crossref_primary_10_1002_lpor_202300294 crossref_primary_10_1002_adom_202000544 crossref_primary_10_1039_D3NR02830E crossref_primary_10_1002_adom_202301269 crossref_primary_10_1039_D1CP02459K crossref_primary_10_1039_C4NR02107J crossref_primary_10_1038_s44310_024_00045_2 crossref_primary_10_1557_adv_2016_391 crossref_primary_10_1039_D0AN01062F crossref_primary_10_1109_JSEN_2024_3392304 crossref_primary_10_1021_acs_nanolett_5b00157 crossref_primary_10_1088_1751_8121_ad7ca1 crossref_primary_10_1002_adom_201400319 crossref_primary_10_1002_advs_202001173 crossref_primary_10_1002_adma_202107950 crossref_primary_10_1016_j_cap_2025_02_009 crossref_primary_10_1002_adma_202110163 crossref_primary_10_1016_j_nantod_2015_02_007 crossref_primary_10_1021_acsnano_4c06145 crossref_primary_10_1021_acsnano_7b02687 crossref_primary_10_1007_s11051_023_05776_5 crossref_primary_10_1088_1361_6463_ab2ea1 crossref_primary_10_3390_s22155567 crossref_primary_10_1093_nsr_nwaa054 crossref_primary_10_1364_OME_8_000128 crossref_primary_10_1038_s41598_023_30386_5 crossref_primary_10_1007_s40820_022_00950_1 crossref_primary_10_1021_acsphotonics_4c00276 crossref_primary_10_1021_acs_jpclett_8b01937 crossref_primary_10_1007_s11433_024_2507_4 crossref_primary_10_1021_acssensors_8b00139 crossref_primary_10_1038_s41598_023_38475_1 crossref_primary_10_1063_1_5025600 crossref_primary_10_1364_OE_24_025742 crossref_primary_10_1021_acsnano_5b06956 crossref_primary_10_1021_acsaom_2c00183 crossref_primary_10_1021_acsnano_6b03414 crossref_primary_10_34133_research_0562 crossref_primary_10_1088_1361_6528_aab077 crossref_primary_10_1038_s41467_022_31520_z crossref_primary_10_1021_acs_jpcc_0c07261 crossref_primary_10_1021_acs_jpcc_3c00106 crossref_primary_10_1364_OE_26_030655 crossref_primary_10_1093_nsr_nwaa240 crossref_primary_10_1063_1_5085207 crossref_primary_10_1021_acs_nanolett_7b00404 crossref_primary_10_1039_C8CP05779F crossref_primary_10_1016_j_mattod_2015_03_001 crossref_primary_10_1021_acsnano_6b00709 crossref_primary_10_1016_j_optmat_2015_11_024 crossref_primary_10_1021_acsnano_8b00845 crossref_primary_10_1364_OE_21_029938 crossref_primary_10_1038_s41563_023_01580_7 crossref_primary_10_1021_acsnano_1c02701 crossref_primary_10_1021_ph500104k crossref_primary_10_1126_sciadv_adk2560 crossref_primary_10_1039_C6NR06608A crossref_primary_10_1364_OE_432392 crossref_primary_10_1002_smtd_202100277 crossref_primary_10_1021_acsaom_2c00195 crossref_primary_10_1002_adpr_202200211 crossref_primary_10_1039_D2NH00276K crossref_primary_10_1063_5_0059816 crossref_primary_10_1002_adma_202301787 crossref_primary_10_1002_adom_202402407 crossref_primary_10_1364_OE_27_009032 crossref_primary_10_1002_anie_201901443 crossref_primary_10_1126_sciadv_add4816 crossref_primary_10_1021_acs_chemrev_6b00743 crossref_primary_10_1021_acsnano_7b06589 crossref_primary_10_1016_j_rio_2021_100201 crossref_primary_10_1364_OE_22_019457 crossref_primary_10_1063_5_0093981 crossref_primary_10_1109_TTHZ_2019_2937504 crossref_primary_10_1126_sciadv_aaw2871 crossref_primary_10_1021_acs_nanolett_3c00561 crossref_primary_10_1063_5_0033056 crossref_primary_10_1021_acssensors_0c00824 crossref_primary_10_1021_acs_nanolett_9b01764 crossref_primary_10_1021_acsphotonics_0c01432 crossref_primary_10_1021_accountsmr_4c00302 crossref_primary_10_1021_acsphotonics_8b00438 crossref_primary_10_1109_JLT_2023_3262774 crossref_primary_10_1364_OE_488846 crossref_primary_10_1021_acs_jpca_1c08463 crossref_primary_10_1016_j_optmat_2019_109439 crossref_primary_10_1515_nanoph_2020_0103 crossref_primary_10_3390_nano13162377 crossref_primary_10_1002_adem_201900188 crossref_primary_10_3390_cryst12020248 crossref_primary_10_1002_adom_201800436 crossref_primary_10_1016_j_infrared_2024_105132 crossref_primary_10_1002_ange_201901443 crossref_primary_10_1515_nanoph_2019_0077 crossref_primary_10_1002_adom_201600305 crossref_primary_10_3390_molecules27010062 crossref_primary_10_1021_nl500340n crossref_primary_10_1080_15599612_2021_1953199 crossref_primary_10_1364_OME_8_002190 crossref_primary_10_1002_adfm_202101623 crossref_primary_10_1002_adma_201704896 crossref_primary_10_1016_j_tsf_2015_10_005 crossref_primary_10_1021_acs_jpcc_2c08495 crossref_primary_10_1021_acs_nanolett_5b02361 crossref_primary_10_1364_JOSAB_34_002586 crossref_primary_10_1002_adom_201900653 crossref_primary_10_1021_acs_nanolett_8b01912 crossref_primary_10_1088_1361_6463_ac60cc crossref_primary_10_1021_acs_jpcc_4c07817 crossref_primary_10_1360_SSPMA_2023_0007 crossref_primary_10_1002_advs_202101879 crossref_primary_10_1007_s40820_024_01520_3 crossref_primary_10_1063_1_5128848 crossref_primary_10_7498_aps_65_114207 crossref_primary_10_1038_s41467_024_50869_x crossref_primary_10_1117_1_OE_57_11_117115 crossref_primary_10_1021_acs_jpcc_5b08122 crossref_primary_10_1038_ncomms12334 |
Cites_doi | 10.1103/PhysRevLett.100.113901 10.1126/science.1089171 10.1073/pnas.0907459106 10.1002/anie.200906211 10.1021/nl2039748 10.1063/1.2339286 10.1103/PhysRevLett.101.047401 10.1119/1.1412644 10.1364/JOSAB.27.001947 10.1021/nl070284m 10.1103/PhysRevLett.101.143902 10.1366/0003702934067478 10.1021/nn3026468 10.1021/cr200061k 10.1126/science.1210713 10.1063/1.3194154 10.1038/nmeth1133 10.1103/PhysRevLett.101.157403 10.1021/nl201677h 10.1364/JOSAA.20.000569 10.1158/1535-7163.MCT-09-0829 10.1021/nl202528h 10.1103/PhysRevLett.104.207403 10.1038/nmat3161 10.1002/lpor.201100019 10.1103/PhysRevLett.105.013901 10.1103/PhysRevB.84.075102 10.1086/172396 10.1073/pnas.0802289105 10.1021/nl201207n 10.1007/s00216-006-1071-4 10.1021/nl8024278 10.1364/OE.18.004526 10.1021/nl200197j 10.1038/ncomms1528 10.1038/nmat2810 10.1038/nmat2495 10.1119/1.3471177 10.1103/PhysRevLett.108.083902 10.1086/166795 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American
Chemical Society 2014 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/nl400689q |
DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1530-6992 |
EndPage | 2591 |
ExternalDocumentID | 23647070 27517102 10_1021_nl400689q g32663549 |
Genre | Journal Article |
GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G AAYOK AFFNX IQODW NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a378t-666cd5d663638645910953bbdd18390ce144596eb39247142941080d8817cac53 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 10:27:36 EDT 2025 Fri Jul 11 14:06:10 EDT 2025 Thu Jan 02 22:11:00 EST 2025 Wed Apr 02 07:26:17 EDT 2025 Tue Jul 01 00:42:53 EDT 2025 Thu Apr 24 22:56:59 EDT 2025 Thu Aug 27 13:42:18 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | coupling EIT Fano resonance SEIRA vibrational spectroscopy Plasmonics EIA critical coupling Damping External fields Transparency Symmetry property Quantum effect Quantum interference phenomena Surface effect Energy conservation Experimental design Plasmons Resonance Absorption spectra Metamaterial Resonators |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a378t-666cd5d663638645910953bbdd18390ce144596eb39247142941080d8817cac53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23647070 |
PQID | 1367881554 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1753474228 proquest_miscellaneous_1367881554 pubmed_primary_23647070 pascalfrancis_primary_27517102 crossref_citationtrail_10_1021_nl400689q crossref_primary_10_1021_nl400689q acs_journals_10_1021_nl400689q |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-12 |
PublicationDateYYYYMMDD | 2013-06-12 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Garrido Alzar C. L. (ref21/cit21) 2002; 70 Jiang X. (ref25/cit25) 2008; 105 Verslegers L. (ref30/cit30) 2012; 108 Draine B. T. (ref46/cit46) 1993; 405 Cubukcu E. (ref9/cit9) 2009; 95 Auguié B. (ref40/cit40) 2008; 101 Verslegers L. (ref29/cit29) 2010; 27 Artar A. (ref12/cit12) 2011; 11 Liu X. (ref43/cit43) 2010; 104 Luk’yanchuk B. (ref14/cit14) 2010; 9 Haus H. A. (ref27/cit27) 1984 Liu N. (ref15/cit15) 2010; 49 Draine B. T. (ref45/cit45) 1988; 333 Artar A. (ref13/cit13) 2011; 11 Wu C. (ref16/cit16) 2011; 11 Novotny L. (ref20/cit20) 2010; 78 Taubert R. (ref35/cit35) 2012; 12 Giannini V. (ref31/cit31) 2011; 11 Liu N. (ref19/cit19) 2009; 8 Halas N. J. (ref1/cit1) 2011; 111 Yu N. (ref3/cit3) 2011; 334 Aydin K. (ref6/cit6) 2011; 2 Ruan Z. (ref39/cit39) 2010; 105 Prodan E. (ref17/cit17) 2003; 302 Bohren C. F. (ref44/cit44) 1983 Cubukcu E. (ref5/cit5) 2006; 89 Chen K. (ref34/cit34) 2012; 6 Wu C. (ref42/cit42) 2011; 84 Chen W. (ref10/cit10) 2010; 9 Zhang S. (ref18/cit18) 2008; 101 Wurtz G. A. (ref33/cit33) 2007; 7 Neubrech F. (ref8/cit8) 2008; 101 Jackson J. D. (ref22/cit22) 1999 Yu N. (ref4/cit4) 2012; 6 Palik E. D. (ref47/cit47) 1988; 3 Osawa M. (ref23/cit23) 1993; 47 Ataka K. (ref24/cit24) 2007; 388 Fofang N. T. (ref32/cit32) 2008; 8 Alu A. (ref2/cit2) 2008; 100 Fan S. (ref28/cit28) 2003; 20 Adato R. (ref41/cit41) 2010; 18 Adato R. (ref7/cit7) 2009; 106 Adato R. (ref11/cit11) 2011; 11 Liu G. L. (ref26/cit26) 2007; 4 |
References_xml | – volume: 100 start-page: 113901 year: 2008 ident: ref2/cit2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.113901 – volume: 302 start-page: 419 year: 2003 ident: ref17/cit17 publication-title: Science doi: 10.1126/science.1089171 – volume: 106 start-page: 19227 year: 2009 ident: ref7/cit7 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0907459106 – volume: 49 start-page: 9838 year: 2010 ident: ref15/cit15 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200906211 – volume: 12 start-page: 1367 year: 2012 ident: ref35/cit35 publication-title: Nano Lett. doi: 10.1021/nl2039748 – volume: 89 start-page: 093120 year: 2006 ident: ref5/cit5 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2339286 – volume: 101 start-page: 047401 year: 2008 ident: ref18/cit18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.047401 – volume: 70 start-page: 37 year: 2002 ident: ref21/cit21 publication-title: Am. J. Phys. doi: 10.1119/1.1412644 – volume: 27 start-page: 1947 year: 2010 ident: ref29/cit29 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.27.001947 – volume: 7 start-page: 1297 year: 2007 ident: ref33/cit33 publication-title: Nano Lett. doi: 10.1021/nl070284m – volume: 101 start-page: 143902 year: 2008 ident: ref40/cit40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.143902 – volume: 47 start-page: 1497 year: 1993 ident: ref23/cit23 publication-title: Appl. Spectrosc. doi: 10.1366/0003702934067478 – volume: 6 start-page: 7998 year: 2012 ident: ref34/cit34 publication-title: ACS Nano doi: 10.1021/nn3026468 – volume: 111 start-page: 3913 year: 2011 ident: ref1/cit1 publication-title: Chem. Rev. doi: 10.1021/cr200061k – volume: 334 start-page: 333 year: 2011 ident: ref3/cit3 publication-title: Science doi: 10.1126/science.1210713 – volume: 95 start-page: 43113 year: 2009 ident: ref9/cit9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3194154 – volume: 4 start-page: 1015 year: 2007 ident: ref26/cit26 publication-title: Nat. Methods doi: 10.1038/nmeth1133 – volume: 101 start-page: 157403 year: 2008 ident: ref8/cit8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.157403 – volume: 11 start-page: 3694 year: 2011 ident: ref13/cit13 publication-title: Nano Lett. doi: 10.1021/nl201677h – volume-title: Waves and Fields in Optoelectronics year: 1984 ident: ref27/cit27 – volume: 20 start-page: 569 year: 2003 ident: ref28/cit28 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.20.000569 – volume: 9 start-page: 1028 year: 2010 ident: ref10/cit10 publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-09-0829 – volume: 3 volume-title: Handbook of the Optical Constants of Solids year: 1988 ident: ref47/cit47 – volume: 11 start-page: 5219 year: 2011 ident: ref11/cit11 publication-title: Nano Lett. doi: 10.1021/nl202528h – volume: 104 start-page: 207403 year: 2010 ident: ref43/cit43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.207403 – volume: 11 start-page: 69 year: 2011 ident: ref16/cit16 publication-title: Nat. Mater. doi: 10.1038/nmat3161 – volume: 6 start-page: 24 year: 2012 ident: ref4/cit4 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201100019 – volume: 105 start-page: 013901 year: 2010 ident: ref39/cit39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.013901 – volume: 84 start-page: 75102 year: 2011 ident: ref42/cit42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.075102 – volume: 405 start-page: 685 year: 1993 ident: ref46/cit46 publication-title: Astrophys. J. doi: 10.1086/172396 – volume-title: Absorption and Scattering of Light by Small Particles year: 1983 ident: ref44/cit44 – volume: 105 start-page: 12113 year: 2008 ident: ref25/cit25 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0802289105 – volume: 11 start-page: 2835 year: 2011 ident: ref31/cit31 publication-title: Nano Lett. doi: 10.1021/nl201207n – volume: 388 start-page: 47 year: 2007 ident: ref24/cit24 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-006-1071-4 – volume-title: Classical Electrodynamics year: 1999 ident: ref22/cit22 – volume: 8 start-page: 3481 year: 2008 ident: ref32/cit32 publication-title: Nano Lett. doi: 10.1021/nl8024278 – volume: 18 start-page: 4526 year: 2010 ident: ref41/cit41 publication-title: Opt Express doi: 10.1364/OE.18.004526 – volume: 11 start-page: 1685 year: 2011 ident: ref12/cit12 publication-title: Nano Lett. doi: 10.1021/nl200197j – volume: 2 start-page: 517 year: 2011 ident: ref6/cit6 publication-title: Nat. Commun. doi: 10.1038/ncomms1528 – volume: 9 start-page: 707 year: 2010 ident: ref14/cit14 publication-title: Nat. Mater. doi: 10.1038/nmat2810 – volume: 8 start-page: 758 year: 2009 ident: ref19/cit19 publication-title: Nat. Mater. doi: 10.1038/nmat2495 – volume: 78 start-page: 1199 year: 2010 ident: ref20/cit20 publication-title: Am. J. Phys. doi: 10.1119/1.3471177 – volume: 108 start-page: 083902 year: 2012 ident: ref30/cit30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.083902 – volume: 333 start-page: 848 year: 1988 ident: ref45/cit45 publication-title: Astrophys. J. doi: 10.1086/166795 |
SSID | ssj0009350 |
Score | 2.5178308 |
Snippet | Coupled plasmonic resonators have become the subject of significant research interest in recent years as they provide a route to dramatically enhanced... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2584 |
SubjectTerms | Analogies Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Coupled modes Coupling (molecular) Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Exact sciences and technology Fullerenes and related materials Metamaterials Molecular physics Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals Nanostructure Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Physics Plasmonics Resonators Structure of solids and liquids; crystallography Surface and interface electron states Visible and ultraviolet spectra |
Title | Engineered Absorption Enhancement and Induced Transparency in Coupled Molecular and Plasmonic Resonator Systems |
URI | http://dx.doi.org/10.1021/nl400689q https://www.ncbi.nlm.nih.gov/pubmed/23647070 https://www.proquest.com/docview/1367881554 https://www.proquest.com/docview/1753474228 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsNADLVYLiDEvpSlGpYDl5RmmUxyrAoIIYGQAIlblFkiEGVSaHuAr8fOUkBspyiRo2Rm7Pg5Hj8DHFB3bS1F5rSNyRzEt6kT-SZ0RBxxGXJ0MIqqkS8uw7Pb4PyO303A_i8ZfM89sr2A6hji50mY9sJIEEF-p3v9wazrF21Y0XIxDoqjoKYP-nwruR41-OJ65vrpAGchK9tX_I4vCz9zugDHdbVOub3ksTUaypZ6-07e-NcQFmG-wpmsUyrGEkwYuwyzn9gHVyCvz4xmHTnIX4qvBzux96QJ9NeQpVYzau6hUKSkQafaMfXKHizr5qN-D69f1A12C-krRONPRLfLKDFgKaRnFSv6Ktyentx0z5yq_4KT-iIaOhjZKM01YhI0UiKdcYmcTkqtCVa1lcFgjMchhuMYxAkXPVtAOxZ1FLlCpYr7azBlc2s2gMkAZbXn-ngINMewMmgbP84yaQQX2mtAExcoqexnkBSpcc9NxjPXgMN67RJVsZdTE43eT6J7Y9F-Sdnxk1DziwKMJT3BXUJdDditNSJBi6M0SmpNPsJ380Pi4Ecc9ocMRoGBIHq1BqyX6vTxBKLsxy_t5n9j3oIZr2y-4bjeNkwNX0ZmByHQUDYLE3gHL5v-hA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5ROLQIQcujBGi6rXroxTR-rNc-RhEobQmqVJC4Wd6H1arpOuDkAL-embWdAILSk2VrbO-uZzzfeL3fB_CJ1LW1FIXXM6bwEN_mXhKa2BNpwmXMMcEoWo08Oo2H59G3C37R0OTQWhhsRIVXqtwk_oJdwP9ixxEtZ0gvX8AKgpCAePL7g58Lgt3QqbFiAGM5lCZRyyJ091TKQKq6l4HWJnmFg1HUKhZPw0yXbo43at0i11D3l8mfw9lUHqqbBxyO_9eT17DeoE7Wr93kDSwZuwmrd7gIt6Bs94xmfVmVV-5dwo7sL_IL-obIcqsZSX0oNKlJ0Wklmbpmvy0blLPJGI-PWrldZ_0DsflfIt9lNE1gqcBnDUf6NpwfH50Nhl6jxuDloUimHtY5SnONCAVDlihofKKqk1JrAlk9ZbA042mMxTmWdMLHPBfR_4s6SXyhcsXDHVi2pTW7wGSEtjrwQ9xEmmORGfVMmBaFNIILHXSgiwOXNdFUZW6iPPCz-ch14HP7CDPVcJmTpMb4MdOPc9NJTeDxmFH3nh_MLQPBfcJgHfjQOkaG8UeTKrk15QzbFsbEyI-o7B82WBNGgsjWOvC29qrFHYjAH9-7e8_1-T28HJ6NTrKTr6ff9-FVUMtyeH5wAMvTq5l5h-BoKrsuKm4BKAIG9A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT9tAEB5RkFBRVaAcDW3DUvWhL4b4WK_9GKVE3CABEm-W97BaEdYBJw_w65nxEQ5B4cmyNbbXmxnP92W83wD8ou7aWorM6RiTOYhvUyfyTeiIOOIy5JhgFK1GPjwKd86DvQt-URNFWguDgyjwSkVZxKeoHuqsVhhwt-wgoCUN8fUHmKFyHWnld3unDyK7ftmRFYMYKVEcBY2S0ONTKQup4kkW-jRMC5yQrOpk8TrULFNOfx6OJ4MtvzS53ByP5Ka6e6bj-P6nWYDPNfpk3cpdFmHK2C8w90iTcAnyZs9o1pVFflO-U9i2_Uv-Qf8lstRqRi0_FJpU4ui0okzdsn-W9fLxcIDHD5u2u6X1CWL0KxLhZVQusET0Wa2Vvgzn_e2z3o5Td2VwUl9EIwf5jtJcI1LB0CUpGpck66TUmsBWRxmkaDwOkaQjtRMu5ruAvmPUUeQKlSrur8C0za35CkwGaKs918dNoDmSzaBj_DjLpBFcaK8FbZy8pI6qIikL5p6bTGauBb-bnzFRtaY5tdYYvGT6c2I6rIQ8XjJqP_GFiaUnuEtYrAUbjXMkGIdUXEmtycc4Nj8kZX5EZ_-xQW4YCBJda8Fq5VkPdyAhf3z_rr31zOswe_KnnxzsHu1_g49e1Z3Dcb3vMD26GZsfiJFGsl0Gxj2-yQl3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineered+absorption+enhancement+and+induced+transparency+in+coupled+molecular+and+plasmonic+resonator+systems&rft.jtitle=Nano+letters&rft.au=Adato%2C+Ronen&rft.au=Artar%2C+Alp&rft.au=Erramilli%2C+Shyamsunder&rft.au=Altug%2C+Hatice&rft.date=2013-06-12&rft.eissn=1530-6992&rft.volume=13&rft.issue=6&rft.spage=2584&rft_id=info:doi/10.1021%2Fnl400689q&rft_id=info%3Apmid%2F23647070&rft.externalDocID=23647070 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |