Engineered Absorption Enhancement and Induced Transparency in Coupled Molecular and Plasmonic Resonator Systems

Coupled plasmonic resonators have become the subject of significant research interest in recent years as they provide a route to dramatically enhanced light-matter interactions. Often, the design of these coupled mode systems draws intuition and inspiration from analogies to atomic and molecular phy...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 13; no. 6; pp. 2584 - 2591
Main Authors Adato, Ronen, Artar, Alp, Erramilli, Shyamsunder, Altug, Hatice
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 12.06.2013
Subjects
Online AccessGet full text
ISSN1530-6984
1530-6992
1530-6992
DOI10.1021/nl400689q

Cover

Loading…
Abstract Coupled plasmonic resonators have become the subject of significant research interest in recent years as they provide a route to dramatically enhanced light-matter interactions. Often, the design of these coupled mode systems draws intuition and inspiration from analogies to atomic and molecular physics systems. In particular, they have been shown to mimic quantum interference effects, such as electromagnetically induced transparency (EIT) and Fano resonances. This analogy also been used to describe the surface-enhanced absorption effect where a plasmonic resonance is coupled to a weak molecular resonance. These important phenomena are typically described using simple driven harmonic (or linear) oscillators (i.e., mass-on-a-spring) coupled to each other. In this work, we demonstrate the importance of an essential interdependence between the rate at which the system can be driven by an external field and its damping rate through radiative loss. This link is required in systems exhibiting time-reversal symmetry and energy conservation. Not only does it ensure an accurate and physically consistent description of resonant systems but leads directly to interesting new effects. Significantly, we demonstrate this dependence to predict a transition between EIT and electromagnetically induced absorption that is solely a function of the ratio of the radiative to intrinsic loss rates in coupled resonator systems. Leveraging the temporal coupled mode theory, we introduce a unique and intuitive picture that accurately describes these effects in coupled plasmonic/molecular and fully plasmonic systems. We demonstrate our approach’s key features and advantages analytically as well as experimentally through surface-enhanced absorption spectroscopy and plasmonic metamaterial applications.
AbstractList Coupled plasmonic resonators have become the subject of significant research interest in recent years as they provide a route to dramatically enhanced light-matter interactions. Often, the design of these coupled mode systems draws intuition and inspiration from analogies to atomic and molecular physics systems. In particular, they have been shown to mimic quantum interference effects, such as electromagnetically induced transparency (EIT) and Fano resonances. This analogy also been used to describe the surface-enhanced absorption effect where a plasmonic resonance is coupled to a weak molecular resonance. These important phenomena are typically described using simple driven harmonic (or linear) oscillators (i.e., mass-on-a-spring) coupled to each other. In this work, we demonstrate the importance of an essential interdependence between the rate at which the system can be driven by an external field and its damping rate through radiative loss. This link is required in systems exhibiting time-reversal symmetry and energy conservation. Not only does it ensure an accurate and physically consistent description of resonant systems but leads directly to interesting new effects. Significantly, we demonstrate this dependence to predict a transition between EIT and electromagnetically induced absorption that is solely a function of the ratio of the radiative to intrinsic loss rates in coupled resonator systems. Leveraging the temporal coupled mode theory, we introduce a unique and intuitive picture that accurately describes these effects in coupled plasmonic/molecular and fully plasmonic systems. We demonstrate our approach's key features and advantages analytically as well as experimentally through surface-enhanced absorption spectroscopy and plasmonic metamaterial applications.Coupled plasmonic resonators have become the subject of significant research interest in recent years as they provide a route to dramatically enhanced light-matter interactions. Often, the design of these coupled mode systems draws intuition and inspiration from analogies to atomic and molecular physics systems. In particular, they have been shown to mimic quantum interference effects, such as electromagnetically induced transparency (EIT) and Fano resonances. This analogy also been used to describe the surface-enhanced absorption effect where a plasmonic resonance is coupled to a weak molecular resonance. These important phenomena are typically described using simple driven harmonic (or linear) oscillators (i.e., mass-on-a-spring) coupled to each other. In this work, we demonstrate the importance of an essential interdependence between the rate at which the system can be driven by an external field and its damping rate through radiative loss. This link is required in systems exhibiting time-reversal symmetry and energy conservation. Not only does it ensure an accurate and physically consistent description of resonant systems but leads directly to interesting new effects. Significantly, we demonstrate this dependence to predict a transition between EIT and electromagnetically induced absorption that is solely a function of the ratio of the radiative to intrinsic loss rates in coupled resonator systems. Leveraging the temporal coupled mode theory, we introduce a unique and intuitive picture that accurately describes these effects in coupled plasmonic/molecular and fully plasmonic systems. We demonstrate our approach's key features and advantages analytically as well as experimentally through surface-enhanced absorption spectroscopy and plasmonic metamaterial applications.
Coupled plasmonic resonators have become the subject of significant research interest in recent years as they provide a route to dramatically enhanced light-matter interactions. Often, the design of these coupled mode systems draws intuition and inspiration from analogies to atomic and molecular physics systems. In particular, they have been shown to mimic quantum interference effects, such as electromagnetically induced transparency (EIT) and Fano resonances. This analogy also been used to describe the surface-enhanced absorption effect where a plasmonic resonance is coupled to a weak molecular resonance. These important phenomena are typically described using simple driven harmonic (or linear) oscillators (i.e., mass-on-a-spring) coupled to each other. In this work, we demonstrate the importance of an essential interdependence between the rate at which the system can be driven by an external field and its damping rate through radiative loss. This link is required in systems exhibiting time-reversal symmetry and energy conservation. Not only does it ensure an accurate and physically consistent description of resonant systems but leads directly to interesting new effects. Significantly, we demonstrate this dependence to predict a transition between EIT and electromagnetically induced absorption that is solely a function of the ratio of the radiative to intrinsic loss rates in coupled resonator systems. Leveraging the temporal coupled mode theory, we introduce a unique and intuitive picture that accurately describes these effects in coupled plasmonic/molecular and fully plasmonic systems. We demonstrate our approach’s key features and advantages analytically as well as experimentally through surface-enhanced absorption spectroscopy and plasmonic metamaterial applications.
Author Altug, Hatice
Artar, Alp
Adato, Ronen
Erramilli, Shyamsunder
AuthorAffiliation Department of Electrical and Computer Engineering
Photonics Center
Boston University
Department of Biomedical Engineering
Department of Physics
AuthorAffiliation_xml – name: Department of Electrical and Computer Engineering
– name: Department of Physics
– name: Photonics Center
– name: Department of Biomedical Engineering
– name: Boston University
Author_xml – sequence: 1
  givenname: Ronen
  surname: Adato
  fullname: Adato, Ronen
– sequence: 2
  givenname: Alp
  surname: Artar
  fullname: Artar, Alp
– sequence: 3
  givenname: Shyamsunder
  surname: Erramilli
  fullname: Erramilli, Shyamsunder
– sequence: 4
  givenname: Hatice
  surname: Altug
  fullname: Altug, Hatice
  email: altug@bu.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27517102$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23647070$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1rFTEUBuAgFfuhC_-AzEaoi2uTyfeyXK5aqCha1yGT5GpK5mSazCzuvze1txVKoascDs85hPccowPIEBB6S_BHgntyBolhLJS-eYGOCKd4JbTuDx5qxQ7Rca3XGGNNOX6FDnsqmMQSH6G8gd8RQijBd-dDzWWaY4ZuA38suDAGmDsLvrsAv7hGroqFOtkSwO26CN06L1Nq_a85BbckW_7p78nWMUN03Y9QM9g5l-7nrs5hrK_Ry61NNbzZvyfo16fN1frL6vLb54v1-eXKUqnmlRDCee6FoIIqwbgmWHM6DN4TRTV2gbDWFGGgumeSsF4zghX2ShHprOP0BJ3e7Z1KvllCnc0YqwspWQh5qYZITplkfa-ep1TItpdz1ui7PV2GMXgzlTjasjP3eTbwfg9sdTZtW1wu1v9OciLbyZo7u3Ou5FpL2BoXZ3sb_VxsTIZgc3tZ83DZNvHh0cT90qfs_hfWVXOdlwIt6ifcXxLMraU
CitedBy_id crossref_primary_10_1021_acs_jpcc_7b01798
crossref_primary_10_1109_JPHOT_2018_2877323
crossref_primary_10_1364_OL_390868
crossref_primary_10_1002_lpor_201800176
crossref_primary_10_1039_D4NA00527A
crossref_primary_10_1021_acsphotonics_9b00229
crossref_primary_10_1117_1_OE_58_6_067107
crossref_primary_10_1016_j_automatica_2016_09_035
crossref_primary_10_1002_adom_202301912
crossref_primary_10_1080_15599612_2021_1986612
crossref_primary_10_1038_ncomms8899
crossref_primary_10_1051_epjconf_202328704011
crossref_primary_10_1021_acsnano_2c05680
crossref_primary_10_1002_wcms_1665
crossref_primary_10_1364_PRJ_508136
crossref_primary_10_1021_acs_nanolett_4c01703
crossref_primary_10_1364_OL_39_004994
crossref_primary_10_7498_aps_74_20250078
crossref_primary_10_1364_PRJ_539279
crossref_primary_10_1039_C3NR04726A
crossref_primary_10_1016_j_ijleo_2015_07_074
crossref_primary_10_1016_j_bios_2017_08_044
crossref_primary_10_1021_acs_nanolett_5b03247
crossref_primary_10_1021_acs_jctc_5c00048
crossref_primary_10_1021_acsphotonics_8b00702
crossref_primary_10_1021_acsami_9b18002
crossref_primary_10_1021_acsphotonics_8b00425
crossref_primary_10_1002_adom_201500063
crossref_primary_10_1016_j_optlastec_2024_112139
crossref_primary_10_1038_s41467_018_05224_2
crossref_primary_10_1126_science_aab2051
crossref_primary_10_1088_1361_6463_ab77db
crossref_primary_10_1364_OE_28_002020
crossref_primary_10_1515_nanoph_2017_0005
crossref_primary_10_1038_s41467_023_40511_7
crossref_primary_10_1021_acsphotonics_8b00398
crossref_primary_10_1021_acs_jpcc_5b08344
crossref_primary_10_1515_nanoph_2023_0131
crossref_primary_10_1016_j_bios_2025_117351
crossref_primary_10_1080_05704928_2022_2156527
crossref_primary_10_1021_acsnano_0c05794
crossref_primary_10_3390_nano9101496
crossref_primary_10_3788_LOP232219
crossref_primary_10_1016_j_ijleo_2015_07_132
crossref_primary_10_1002_adfm_202300411
crossref_primary_10_1038_s41565_024_01767_2
crossref_primary_10_1109_TTHZ_2015_2401392
crossref_primary_10_1002_lpor_202300294
crossref_primary_10_1002_adom_202000544
crossref_primary_10_1039_D3NR02830E
crossref_primary_10_1002_adom_202301269
crossref_primary_10_1039_D1CP02459K
crossref_primary_10_1039_C4NR02107J
crossref_primary_10_1038_s44310_024_00045_2
crossref_primary_10_1557_adv_2016_391
crossref_primary_10_1039_D0AN01062F
crossref_primary_10_1109_JSEN_2024_3392304
crossref_primary_10_1021_acs_nanolett_5b00157
crossref_primary_10_1088_1751_8121_ad7ca1
crossref_primary_10_1002_adom_201400319
crossref_primary_10_1002_advs_202001173
crossref_primary_10_1002_adma_202107950
crossref_primary_10_1016_j_cap_2025_02_009
crossref_primary_10_1002_adma_202110163
crossref_primary_10_1016_j_nantod_2015_02_007
crossref_primary_10_1021_acsnano_4c06145
crossref_primary_10_1021_acsnano_7b02687
crossref_primary_10_1007_s11051_023_05776_5
crossref_primary_10_1088_1361_6463_ab2ea1
crossref_primary_10_3390_s22155567
crossref_primary_10_1093_nsr_nwaa054
crossref_primary_10_1364_OME_8_000128
crossref_primary_10_1038_s41598_023_30386_5
crossref_primary_10_1007_s40820_022_00950_1
crossref_primary_10_1021_acsphotonics_4c00276
crossref_primary_10_1021_acs_jpclett_8b01937
crossref_primary_10_1007_s11433_024_2507_4
crossref_primary_10_1021_acssensors_8b00139
crossref_primary_10_1038_s41598_023_38475_1
crossref_primary_10_1063_1_5025600
crossref_primary_10_1364_OE_24_025742
crossref_primary_10_1021_acsnano_5b06956
crossref_primary_10_1021_acsaom_2c00183
crossref_primary_10_1021_acsnano_6b03414
crossref_primary_10_34133_research_0562
crossref_primary_10_1088_1361_6528_aab077
crossref_primary_10_1038_s41467_022_31520_z
crossref_primary_10_1021_acs_jpcc_0c07261
crossref_primary_10_1021_acs_jpcc_3c00106
crossref_primary_10_1364_OE_26_030655
crossref_primary_10_1093_nsr_nwaa240
crossref_primary_10_1063_1_5085207
crossref_primary_10_1021_acs_nanolett_7b00404
crossref_primary_10_1039_C8CP05779F
crossref_primary_10_1016_j_mattod_2015_03_001
crossref_primary_10_1021_acsnano_6b00709
crossref_primary_10_1016_j_optmat_2015_11_024
crossref_primary_10_1021_acsnano_8b00845
crossref_primary_10_1364_OE_21_029938
crossref_primary_10_1038_s41563_023_01580_7
crossref_primary_10_1021_acsnano_1c02701
crossref_primary_10_1021_ph500104k
crossref_primary_10_1126_sciadv_adk2560
crossref_primary_10_1039_C6NR06608A
crossref_primary_10_1364_OE_432392
crossref_primary_10_1002_smtd_202100277
crossref_primary_10_1021_acsaom_2c00195
crossref_primary_10_1002_adpr_202200211
crossref_primary_10_1039_D2NH00276K
crossref_primary_10_1063_5_0059816
crossref_primary_10_1002_adma_202301787
crossref_primary_10_1002_adom_202402407
crossref_primary_10_1364_OE_27_009032
crossref_primary_10_1002_anie_201901443
crossref_primary_10_1126_sciadv_add4816
crossref_primary_10_1021_acs_chemrev_6b00743
crossref_primary_10_1021_acsnano_7b06589
crossref_primary_10_1016_j_rio_2021_100201
crossref_primary_10_1364_OE_22_019457
crossref_primary_10_1063_5_0093981
crossref_primary_10_1109_TTHZ_2019_2937504
crossref_primary_10_1126_sciadv_aaw2871
crossref_primary_10_1021_acs_nanolett_3c00561
crossref_primary_10_1063_5_0033056
crossref_primary_10_1021_acssensors_0c00824
crossref_primary_10_1021_acs_nanolett_9b01764
crossref_primary_10_1021_acsphotonics_0c01432
crossref_primary_10_1021_accountsmr_4c00302
crossref_primary_10_1021_acsphotonics_8b00438
crossref_primary_10_1109_JLT_2023_3262774
crossref_primary_10_1364_OE_488846
crossref_primary_10_1021_acs_jpca_1c08463
crossref_primary_10_1016_j_optmat_2019_109439
crossref_primary_10_1515_nanoph_2020_0103
crossref_primary_10_3390_nano13162377
crossref_primary_10_1002_adem_201900188
crossref_primary_10_3390_cryst12020248
crossref_primary_10_1002_adom_201800436
crossref_primary_10_1016_j_infrared_2024_105132
crossref_primary_10_1002_ange_201901443
crossref_primary_10_1515_nanoph_2019_0077
crossref_primary_10_1002_adom_201600305
crossref_primary_10_3390_molecules27010062
crossref_primary_10_1021_nl500340n
crossref_primary_10_1080_15599612_2021_1953199
crossref_primary_10_1364_OME_8_002190
crossref_primary_10_1002_adfm_202101623
crossref_primary_10_1002_adma_201704896
crossref_primary_10_1016_j_tsf_2015_10_005
crossref_primary_10_1021_acs_jpcc_2c08495
crossref_primary_10_1021_acs_nanolett_5b02361
crossref_primary_10_1364_JOSAB_34_002586
crossref_primary_10_1002_adom_201900653
crossref_primary_10_1021_acs_nanolett_8b01912
crossref_primary_10_1088_1361_6463_ac60cc
crossref_primary_10_1021_acs_jpcc_4c07817
crossref_primary_10_1360_SSPMA_2023_0007
crossref_primary_10_1002_advs_202101879
crossref_primary_10_1007_s40820_024_01520_3
crossref_primary_10_1063_1_5128848
crossref_primary_10_7498_aps_65_114207
crossref_primary_10_1038_s41467_024_50869_x
crossref_primary_10_1117_1_OE_57_11_117115
crossref_primary_10_1021_acs_jpcc_5b08122
crossref_primary_10_1038_ncomms12334
Cites_doi 10.1103/PhysRevLett.100.113901
10.1126/science.1089171
10.1073/pnas.0907459106
10.1002/anie.200906211
10.1021/nl2039748
10.1063/1.2339286
10.1103/PhysRevLett.101.047401
10.1119/1.1412644
10.1364/JOSAB.27.001947
10.1021/nl070284m
10.1103/PhysRevLett.101.143902
10.1366/0003702934067478
10.1021/nn3026468
10.1021/cr200061k
10.1126/science.1210713
10.1063/1.3194154
10.1038/nmeth1133
10.1103/PhysRevLett.101.157403
10.1021/nl201677h
10.1364/JOSAA.20.000569
10.1158/1535-7163.MCT-09-0829
10.1021/nl202528h
10.1103/PhysRevLett.104.207403
10.1038/nmat3161
10.1002/lpor.201100019
10.1103/PhysRevLett.105.013901
10.1103/PhysRevB.84.075102
10.1086/172396
10.1073/pnas.0802289105
10.1021/nl201207n
10.1007/s00216-006-1071-4
10.1021/nl8024278
10.1364/OE.18.004526
10.1021/nl200197j
10.1038/ncomms1528
10.1038/nmat2810
10.1038/nmat2495
10.1119/1.3471177
10.1103/PhysRevLett.108.083902
10.1086/166795
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
2014 INIST-CNRS
Copyright_xml – notice: Copyright © 2013 American Chemical Society
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nl400689q
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE - Academic

PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1530-6992
EndPage 2591
ExternalDocumentID 23647070
27517102
10_1021_nl400689q
g32663549
Genre Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
AAYOK
AFFNX
IQODW
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a378t-666cd5d663638645910953bbdd18390ce144596eb39247142941080d8817cac53
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 10:27:36 EDT 2025
Fri Jul 11 14:06:10 EDT 2025
Thu Jan 02 22:11:00 EST 2025
Wed Apr 02 07:26:17 EDT 2025
Tue Jul 01 00:42:53 EDT 2025
Thu Apr 24 22:56:59 EDT 2025
Thu Aug 27 13:42:18 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords coupling
EIT
Fano resonance
SEIRA
vibrational spectroscopy
Plasmonics
EIA
critical coupling
Damping
External fields
Transparency
Symmetry property
Quantum effect
Quantum interference phenomena
Surface effect
Energy conservation
Experimental design
Plasmons
Resonance
Absorption spectra
Metamaterial
Resonators
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a378t-666cd5d663638645910953bbdd18390ce144596eb39247142941080d8817cac53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23647070
PQID 1367881554
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1753474228
proquest_miscellaneous_1367881554
pubmed_primary_23647070
pascalfrancis_primary_27517102
crossref_citationtrail_10_1021_nl400689q
crossref_primary_10_1021_nl400689q
acs_journals_10_1021_nl400689q
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-12
PublicationDateYYYYMMDD 2013-06-12
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-12
  day: 12
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Garrido Alzar C. L. (ref21/cit21) 2002; 70
Jiang X. (ref25/cit25) 2008; 105
Verslegers L. (ref30/cit30) 2012; 108
Draine B. T. (ref46/cit46) 1993; 405
Cubukcu E. (ref9/cit9) 2009; 95
Auguié B. (ref40/cit40) 2008; 101
Verslegers L. (ref29/cit29) 2010; 27
Artar A. (ref12/cit12) 2011; 11
Liu X. (ref43/cit43) 2010; 104
Luk’yanchuk B. (ref14/cit14) 2010; 9
Haus H. A. (ref27/cit27) 1984
Liu N. (ref15/cit15) 2010; 49
Draine B. T. (ref45/cit45) 1988; 333
Artar A. (ref13/cit13) 2011; 11
Wu C. (ref16/cit16) 2011; 11
Novotny L. (ref20/cit20) 2010; 78
Taubert R. (ref35/cit35) 2012; 12
Giannini V. (ref31/cit31) 2011; 11
Liu N. (ref19/cit19) 2009; 8
Halas N. J. (ref1/cit1) 2011; 111
Yu N. (ref3/cit3) 2011; 334
Aydin K. (ref6/cit6) 2011; 2
Ruan Z. (ref39/cit39) 2010; 105
Prodan E. (ref17/cit17) 2003; 302
Bohren C. F. (ref44/cit44) 1983
Cubukcu E. (ref5/cit5) 2006; 89
Chen K. (ref34/cit34) 2012; 6
Wu C. (ref42/cit42) 2011; 84
Chen W. (ref10/cit10) 2010; 9
Zhang S. (ref18/cit18) 2008; 101
Wurtz G. A. (ref33/cit33) 2007; 7
Neubrech F. (ref8/cit8) 2008; 101
Jackson J. D. (ref22/cit22) 1999
Yu N. (ref4/cit4) 2012; 6
Palik E. D. (ref47/cit47) 1988; 3
Osawa M. (ref23/cit23) 1993; 47
Ataka K. (ref24/cit24) 2007; 388
Fofang N. T. (ref32/cit32) 2008; 8
Alu A. (ref2/cit2) 2008; 100
Fan S. (ref28/cit28) 2003; 20
Adato R. (ref41/cit41) 2010; 18
Adato R. (ref7/cit7) 2009; 106
Adato R. (ref11/cit11) 2011; 11
Liu G. L. (ref26/cit26) 2007; 4
References_xml – volume: 100
  start-page: 113901
  year: 2008
  ident: ref2/cit2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.113901
– volume: 302
  start-page: 419
  year: 2003
  ident: ref17/cit17
  publication-title: Science
  doi: 10.1126/science.1089171
– volume: 106
  start-page: 19227
  year: 2009
  ident: ref7/cit7
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0907459106
– volume: 49
  start-page: 9838
  year: 2010
  ident: ref15/cit15
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200906211
– volume: 12
  start-page: 1367
  year: 2012
  ident: ref35/cit35
  publication-title: Nano Lett.
  doi: 10.1021/nl2039748
– volume: 89
  start-page: 093120
  year: 2006
  ident: ref5/cit5
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2339286
– volume: 101
  start-page: 047401
  year: 2008
  ident: ref18/cit18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.047401
– volume: 70
  start-page: 37
  year: 2002
  ident: ref21/cit21
  publication-title: Am. J. Phys.
  doi: 10.1119/1.1412644
– volume: 27
  start-page: 1947
  year: 2010
  ident: ref29/cit29
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.27.001947
– volume: 7
  start-page: 1297
  year: 2007
  ident: ref33/cit33
  publication-title: Nano Lett.
  doi: 10.1021/nl070284m
– volume: 101
  start-page: 143902
  year: 2008
  ident: ref40/cit40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.143902
– volume: 47
  start-page: 1497
  year: 1993
  ident: ref23/cit23
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702934067478
– volume: 6
  start-page: 7998
  year: 2012
  ident: ref34/cit34
  publication-title: ACS Nano
  doi: 10.1021/nn3026468
– volume: 111
  start-page: 3913
  year: 2011
  ident: ref1/cit1
  publication-title: Chem. Rev.
  doi: 10.1021/cr200061k
– volume: 334
  start-page: 333
  year: 2011
  ident: ref3/cit3
  publication-title: Science
  doi: 10.1126/science.1210713
– volume: 95
  start-page: 43113
  year: 2009
  ident: ref9/cit9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3194154
– volume: 4
  start-page: 1015
  year: 2007
  ident: ref26/cit26
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1133
– volume: 101
  start-page: 157403
  year: 2008
  ident: ref8/cit8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.157403
– volume: 11
  start-page: 3694
  year: 2011
  ident: ref13/cit13
  publication-title: Nano Lett.
  doi: 10.1021/nl201677h
– volume-title: Waves and Fields in Optoelectronics
  year: 1984
  ident: ref27/cit27
– volume: 20
  start-page: 569
  year: 2003
  ident: ref28/cit28
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.20.000569
– volume: 9
  start-page: 1028
  year: 2010
  ident: ref10/cit10
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-09-0829
– volume: 3
  volume-title: Handbook of the Optical Constants of Solids
  year: 1988
  ident: ref47/cit47
– volume: 11
  start-page: 5219
  year: 2011
  ident: ref11/cit11
  publication-title: Nano Lett.
  doi: 10.1021/nl202528h
– volume: 104
  start-page: 207403
  year: 2010
  ident: ref43/cit43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.207403
– volume: 11
  start-page: 69
  year: 2011
  ident: ref16/cit16
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3161
– volume: 6
  start-page: 24
  year: 2012
  ident: ref4/cit4
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201100019
– volume: 105
  start-page: 013901
  year: 2010
  ident: ref39/cit39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.013901
– volume: 84
  start-page: 75102
  year: 2011
  ident: ref42/cit42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.075102
– volume: 405
  start-page: 685
  year: 1993
  ident: ref46/cit46
  publication-title: Astrophys. J.
  doi: 10.1086/172396
– volume-title: Absorption and Scattering of Light by Small Particles
  year: 1983
  ident: ref44/cit44
– volume: 105
  start-page: 12113
  year: 2008
  ident: ref25/cit25
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0802289105
– volume: 11
  start-page: 2835
  year: 2011
  ident: ref31/cit31
  publication-title: Nano Lett.
  doi: 10.1021/nl201207n
– volume: 388
  start-page: 47
  year: 2007
  ident: ref24/cit24
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-006-1071-4
– volume-title: Classical Electrodynamics
  year: 1999
  ident: ref22/cit22
– volume: 8
  start-page: 3481
  year: 2008
  ident: ref32/cit32
  publication-title: Nano Lett.
  doi: 10.1021/nl8024278
– volume: 18
  start-page: 4526
  year: 2010
  ident: ref41/cit41
  publication-title: Opt Express
  doi: 10.1364/OE.18.004526
– volume: 11
  start-page: 1685
  year: 2011
  ident: ref12/cit12
  publication-title: Nano Lett.
  doi: 10.1021/nl200197j
– volume: 2
  start-page: 517
  year: 2011
  ident: ref6/cit6
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1528
– volume: 9
  start-page: 707
  year: 2010
  ident: ref14/cit14
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2810
– volume: 8
  start-page: 758
  year: 2009
  ident: ref19/cit19
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2495
– volume: 78
  start-page: 1199
  year: 2010
  ident: ref20/cit20
  publication-title: Am. J. Phys.
  doi: 10.1119/1.3471177
– volume: 108
  start-page: 083902
  year: 2012
  ident: ref30/cit30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.083902
– volume: 333
  start-page: 848
  year: 1988
  ident: ref45/cit45
  publication-title: Astrophys. J.
  doi: 10.1086/166795
SSID ssj0009350
Score 2.5178308
Snippet Coupled plasmonic resonators have become the subject of significant research interest in recent years as they provide a route to dramatically enhanced...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2584
SubjectTerms Analogies
Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Coupled modes
Coupling (molecular)
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Exact sciences and technology
Fullerenes and related materials
Metamaterials
Molecular physics
Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals
Nanostructure
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Physics
Plasmonics
Resonators
Structure of solids and liquids; crystallography
Surface and interface electron states
Visible and ultraviolet spectra
Title Engineered Absorption Enhancement and Induced Transparency in Coupled Molecular and Plasmonic Resonator Systems
URI http://dx.doi.org/10.1021/nl400689q
https://www.ncbi.nlm.nih.gov/pubmed/23647070
https://www.proquest.com/docview/1367881554
https://www.proquest.com/docview/1753474228
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsNADLVYLiDEvpSlGpYDl5RmmUxyrAoIIYGQAIlblFkiEGVSaHuAr8fOUkBspyiRo2Rm7Pg5Hj8DHFB3bS1F5rSNyRzEt6kT-SZ0RBxxGXJ0MIqqkS8uw7Pb4PyO303A_i8ZfM89sr2A6hji50mY9sJIEEF-p3v9wazrF21Y0XIxDoqjoKYP-nwruR41-OJ65vrpAGchK9tX_I4vCz9zugDHdbVOub3ksTUaypZ6-07e-NcQFmG-wpmsUyrGEkwYuwyzn9gHVyCvz4xmHTnIX4qvBzux96QJ9NeQpVYzau6hUKSkQafaMfXKHizr5qN-D69f1A12C-krRONPRLfLKDFgKaRnFSv6Ktyentx0z5yq_4KT-iIaOhjZKM01YhI0UiKdcYmcTkqtCVa1lcFgjMchhuMYxAkXPVtAOxZ1FLlCpYr7azBlc2s2gMkAZbXn-ngINMewMmgbP84yaQQX2mtAExcoqexnkBSpcc9NxjPXgMN67RJVsZdTE43eT6J7Y9F-Sdnxk1DziwKMJT3BXUJdDditNSJBi6M0SmpNPsJ380Pi4Ecc9ocMRoGBIHq1BqyX6vTxBKLsxy_t5n9j3oIZr2y-4bjeNkwNX0ZmByHQUDYLE3gHL5v-hA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5ROLQIQcujBGi6rXroxTR-rNc-RhEobQmqVJC4Wd6H1arpOuDkAL-embWdAILSk2VrbO-uZzzfeL3fB_CJ1LW1FIXXM6bwEN_mXhKa2BNpwmXMMcEoWo08Oo2H59G3C37R0OTQWhhsRIVXqtwk_oJdwP9ixxEtZ0gvX8AKgpCAePL7g58Lgt3QqbFiAGM5lCZRyyJ091TKQKq6l4HWJnmFg1HUKhZPw0yXbo43at0i11D3l8mfw9lUHqqbBxyO_9eT17DeoE7Wr93kDSwZuwmrd7gIt6Bs94xmfVmVV-5dwo7sL_IL-obIcqsZSX0oNKlJ0Wklmbpmvy0blLPJGI-PWrldZ_0DsflfIt9lNE1gqcBnDUf6NpwfH50Nhl6jxuDloUimHtY5SnONCAVDlihofKKqk1JrAlk9ZbA042mMxTmWdMLHPBfR_4s6SXyhcsXDHVi2pTW7wGSEtjrwQ9xEmmORGfVMmBaFNIILHXSgiwOXNdFUZW6iPPCz-ch14HP7CDPVcJmTpMb4MdOPc9NJTeDxmFH3nh_MLQPBfcJgHfjQOkaG8UeTKrk15QzbFsbEyI-o7B82WBNGgsjWOvC29qrFHYjAH9-7e8_1-T28HJ6NTrKTr6ff9-FVUMtyeH5wAMvTq5l5h-BoKrsuKm4BKAIG9A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT9tAEB5RkFBRVaAcDW3DUvWhL4b4WK_9GKVE3CABEm-W97BaEdYBJw_w65nxEQ5B4cmyNbbXmxnP92W83wD8ou7aWorM6RiTOYhvUyfyTeiIOOIy5JhgFK1GPjwKd86DvQt-URNFWguDgyjwSkVZxKeoHuqsVhhwt-wgoCUN8fUHmKFyHWnld3unDyK7ftmRFYMYKVEcBY2S0ONTKQup4kkW-jRMC5yQrOpk8TrULFNOfx6OJ4MtvzS53ByP5Ka6e6bj-P6nWYDPNfpk3cpdFmHK2C8w90iTcAnyZs9o1pVFflO-U9i2_Uv-Qf8lstRqRi0_FJpU4ui0okzdsn-W9fLxcIDHD5u2u6X1CWL0KxLhZVQusET0Wa2Vvgzn_e2z3o5Td2VwUl9EIwf5jtJcI1LB0CUpGpck66TUmsBWRxmkaDwOkaQjtRMu5ruAvmPUUeQKlSrur8C0za35CkwGaKs918dNoDmSzaBj_DjLpBFcaK8FbZy8pI6qIikL5p6bTGauBb-bnzFRtaY5tdYYvGT6c2I6rIQ8XjJqP_GFiaUnuEtYrAUbjXMkGIdUXEmtycc4Nj8kZX5EZ_-xQW4YCBJda8Fq5VkPdyAhf3z_rr31zOswe_KnnxzsHu1_g49e1Z3Dcb3vMD26GZsfiJFGsl0Gxj2-yQl3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineered+absorption+enhancement+and+induced+transparency+in+coupled+molecular+and+plasmonic+resonator+systems&rft.jtitle=Nano+letters&rft.au=Adato%2C+Ronen&rft.au=Artar%2C+Alp&rft.au=Erramilli%2C+Shyamsunder&rft.au=Altug%2C+Hatice&rft.date=2013-06-12&rft.eissn=1530-6992&rft.volume=13&rft.issue=6&rft.spage=2584&rft_id=info:doi/10.1021%2Fnl400689q&rft_id=info%3Apmid%2F23647070&rft.externalDocID=23647070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon