Correlated Ion Transport and the Gel Phase in Room Temperature Ionic Liquids

Here we present a theory of ion aggregation and gelation of room temperature ionic liquids (RTILs). Based on it, we investigate the effect of ion aggregation on correlated ion transportionic conductivity and transference numbersobtaining closed-form expressions for these quantities. The theory dep...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 125; no. 10; pp. 2677 - 2689
Main Authors McEldrew, Michael, Goodwin, Zachary A. H, Zhao, Hongbo, Bazant, Martin Z, Kornyshev, Alexei A
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Here we present a theory of ion aggregation and gelation of room temperature ionic liquids (RTILs). Based on it, we investigate the effect of ion aggregation on correlated ion transportionic conductivity and transference numbersobtaining closed-form expressions for these quantities. The theory depends on the maximum number of associations a cation and anion can form and the strength of their association. To validate the presented theory, we perform molecular dynamics simulations on several RTILs and a range of temperatures for one RTIL. The simulations indicate the formation of large clusters, even percolating through the system under certain circumstances, thus forming a gel, with the theory accurately describing the obtained cluster distributions in all cases. However, based on the strength and lifetime of associations in the simulated RTILs, we expect free ions to dominate ionic conductivity despite the presence of clusters, and we do not expect the percolating cluster to trigger structural arrest in the RTIL.
AbstractList Here we present a theory of ion aggregation and gelation of room temperature ionic liquids (RTILs). Based on it, we investigate the effect of ion aggregation on correlated ion transportionic conductivity and transference numbersobtaining closed-form expressions for these quantities. The theory depends on the maximum number of associations a cation and anion can form and the strength of their association. To validate the presented theory, we perform molecular dynamics simulations on several RTILs and a range of temperatures for one RTIL. The simulations indicate the formation of large clusters, even percolating through the system under certain circumstances, thus forming a gel, with the theory accurately describing the obtained cluster distributions in all cases. However, based on the strength and lifetime of associations in the simulated RTILs, we expect free ions to dominate ionic conductivity despite the presence of clusters, and we do not expect the percolating cluster to trigger structural arrest in the RTIL.
Here we present a theory of ion aggregation and gelation of room temperature ionic liquids (RTILs). Based on it, we investigate the effect of ion aggregation on correlated ion transport-ionic conductivity and transference numbers-obtaining closed-form expressions for these quantities. The theory depends on the maximum number of associations a cation and anion can form and the strength of their association. To validate the presented theory, we perform molecular dynamics simulations on several RTILs and a range of temperatures for one RTIL. The simulations indicate the formation of large clusters, even percolating through the system under certain circumstances, thus forming a gel, with the theory accurately describing the obtained cluster distributions in all cases. However, based on the strength and lifetime of associations in the simulated RTILs, we expect free ions to dominate ionic conductivity despite the presence of clusters, and we do not expect the percolating cluster to trigger structural arrest in the RTIL.
Author McEldrew, Michael
Kornyshev, Alexei A
Zhao, Hongbo
Bazant, Martin Z
Goodwin, Zachary A. H
AuthorAffiliation Department of Chemistry
Thomas Young Centre for Theory and Simulation of Materials
Department of Chemical Engineering
Institute of Molecular Science and Engineering
Department of Mathematics
AuthorAffiliation_xml – name: Department of Chemical Engineering
– name: Institute of Molecular Science and Engineering
– name: Department of Chemistry
– name: Thomas Young Centre for Theory and Simulation of Materials
– name: Department of Mathematics
Author_xml – sequence: 1
  givenname: Michael
  orcidid: 0000-0002-3754-1367
  surname: McEldrew
  fullname: McEldrew, Michael
  organization: Department of Chemical Engineering
– sequence: 2
  givenname: Zachary A. H
  orcidid: 0000-0003-2760-4499
  surname: Goodwin
  fullname: Goodwin, Zachary A. H
  organization: Thomas Young Centre for Theory and Simulation of Materials
– sequence: 3
  givenname: Hongbo
  surname: Zhao
  fullname: Zhao, Hongbo
  organization: Department of Chemical Engineering
– sequence: 4
  givenname: Martin Z
  orcidid: 0000-0002-8200-4501
  surname: Bazant
  fullname: Bazant, Martin Z
  email: bazant@mit.edu
  organization: Department of Mathematics
– sequence: 5
  givenname: Alexei A
  orcidid: 0000-0002-3157-8791
  surname: Kornyshev
  fullname: Kornyshev, Alexei A
  email: a.kornyshev@imperial.ac.uk
  organization: Institute of Molecular Science and Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33689352$$D View this record in MEDLINE/PubMed
BookMark eNp1kD1PwzAQhi1URD9gZ0IeGUg5O7WTjKiCUikSCJU5cuyLmiqJUzsZ-PekNLAxnO6G532le-Zk0tgGCbllsGTA2aPSfnlodb4EDQkIuCAzJjgEw0ST8ZYM5JTMvT8AcMFjeUWmYSjjJBR8RtK1dQ4r1aGhW9vQnVONb63rqGoM7fZIN1jR973ySMuGflhb0x3WLTrV9Q5PmVLTtDz2pfHX5LJQlcebcS_I58vzbv0apG-b7fopDVQYxV2wAol5zo0WnEsYrijMBU9CnsRFxDVPVKRNwVm0ioEluhCFUSBWLIljg9KocEHuz72ts8cefZfVpddYVapB2_uMC4AwFomMBhTOqHbWe4dF1rqyVu4rY5CdHGaDw-zkMBsdDpG7sb3PazR_gV9pA_BwBn6itnfN8Oz_fd_4L33v
CitedBy_id crossref_primary_10_1038_s41560_023_01280_1
crossref_primary_10_1016_j_electacta_2022_141163
crossref_primary_10_1021_acs_jpcb_1c05546
crossref_primary_10_1021_acs_jpcb_2c03341
crossref_primary_10_1039_D4SC01071J
crossref_primary_10_1016_j_jechem_2023_02_046
crossref_primary_10_3389_fchem_2022_1028912
crossref_primary_10_1140_epje_s10189_023_00365_9
crossref_primary_10_1063_5_0097055
crossref_primary_10_1021_acs_jpcb_1c07782
crossref_primary_10_1149_1945_7111_abf975
crossref_primary_10_1021_acsnano_3c01043
crossref_primary_10_1103_PRXEnergy_2_013007
crossref_primary_10_1016_j_jil_2023_100060
crossref_primary_10_1515_nanoph_2023_0053
crossref_primary_10_3389_fceng_2022_852070
crossref_primary_10_1021_acs_nanolett_3c01171
Cites_doi 10.1007/978-94-010-0442-8_14
10.1039/C8EE01040D
10.1021/ar2000937
10.1021/jp3034825
10.1021/ma00218a012
10.1063/1.2041487
10.1088/0953-8984/19/32/323101
10.1021/cr400374x
10.1021/acs.jpclett.6b00867
10.1149/1.2426871
10.1039/C7CP08580J
10.1103/PhysRevLett.94.218301
10.1021/ma960580d
10.1016/j.electacta.2006.03.016
10.1039/b900201d
10.1103/PhysRevE.70.041401
10.1063/5.0006197
10.1063/1.1723621
10.1016/j.jpowsour.2005.03.068
10.1021/acsenergylett.0c00348
10.1021/jp1113202
10.1021/jp056006y
10.1021/jp0364699
10.1080/1539445X.2019.1697706
10.1016/j.physa.2005.07.003
10.1063/1.1744141
10.1021/ja01856a061
10.1021/jp809031d
10.1103/PhysRevX.9.021024
10.1021/ma402263y
10.1021/jp204182c
10.1021/je034261a
10.1016/j.electacta.2011.08.048
10.1103/PhysRevE.69.051103
10.1590/S0103-50532004000300002
10.1002/pol.1952.120090106
10.1021/acs.jpclett.5b00003
10.1039/ft9959102663
10.1039/c2cp40486a
10.1021/cr980032t
10.1016/j.electacta.2016.12.092
10.1016/j.elecom.2017.07.008
10.1021/acs.jpclett.9b00798
10.1016/S0378-4371(98)00143-5
10.1021/acsnano.7b05664
10.1002/adma.201904427
10.1063/1.3643124
10.1063/1.3035978
10.1021/jp1044089
10.1021/jz502250z
10.1002/anie.201602397
10.1021/acs.jpcb.5b06163
10.1021/cr500411q
10.1021/ma00194a077
10.1039/C5CP05753A
10.1039/C5NH00004A
10.1063/1.4982885
10.1039/C4CS00278D
10.1063/1.3153843
10.1073/pnas.0507364103
10.1103/PhysRevE.101.010601
10.1021/acssuschemeng.9b02232
10.1103/PhysRevMaterials.3.055606
10.1021/acs.jpcb.6b05328
10.1103/PhysRevLett.87.188301
10.1351/pac199163101387
10.1021/jp062885s
10.1146/annurev-physchem-050317-020915
10.1021/j150551a038
10.1039/c1sc00227a
10.1073/pnas.1508366112
10.1088/0953-8984/16/42/002
10.1063/1.2950095
10.1063/5.0016163
10.1073/pnas.1307871110
10.1016/j.molliq.2019.01.002
10.1002/aenm.202002913
10.1021/acs.jpcb.0c01089
10.1002/anie.200604951
10.1103/PhysRev.37.405
10.1016/j.jelechem.2017.11.005
10.1021/ja01856a062
10.1016/j.joule.2018.02.011
10.1007/3-540-68449-2_3
10.1016/j.jpowsour.2019.04.085
10.1021/acs.chemrev.9b00531
10.1088/0953-8984/27/46/463002
10.1021/jp209942r
10.1021/cr1003248
10.1038/35070517
10.1021/jp407325b
10.1122/1.549853
10.1103/PhysRevLett.122.136001
10.1021/acsenergylett.8b00919
10.1063/1.1696442
10.1021/acs.jpcb.5b01093
10.1021/acs.jpcc.0c02187
10.1016/j.ensm.2019.03.016
10.1021/ma00092a039
10.1038/nphys2693
10.1039/fd9950100093
10.1039/C4CP01177E
10.1021/ci200217w
10.1063/1.2827462
10.1021/ma981279v
10.1295/polymj.34.479
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acs.jpcb.0c09050
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 2689
ExternalDocumentID 10_1021_acs_jpcb_0c09050
33689352
b846508034
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
123
29L
4.4
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACNCT
ACS
ACSAX
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZGI
ZHY
---
-~X
.DC
53G
AAHBH
ABJNI
ABQRX
ACBEA
ADHLV
AHGAQ
CUPRZ
GGK
NPM
XSW
YQT
~02
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a378t-406ebb2dc52260bb273b5293298f72c29a7cdf21748019cf5fda0541988de6da3
IEDL.DBID ACS
ISSN 1520-6106
IngestDate Fri Aug 16 09:05:43 EDT 2024
Fri Aug 23 02:47:10 EDT 2024
Sat Sep 28 08:34:06 EDT 2024
Sat Mar 20 03:13:13 EDT 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a378t-406ebb2dc52260bb273b5293298f72c29a7cdf21748019cf5fda0541988de6da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3754-1367
0000-0002-8200-4501
0000-0002-3157-8791
0000-0003-2760-4499
OpenAccessLink http://arxiv.org/pdf/2010.02091
PMID 33689352
PQID 2500385967
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2500385967
crossref_primary_10_1021_acs_jpcb_0c09050
pubmed_primary_33689352
acs_journals_10_1021_acs_jpcb_0c09050
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
ACSAX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20210318
2021-03-18
PublicationDateYYYYMMDD 2021-03-18
PublicationDate_xml – month: 03
  year: 2021
  text: 20210318
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref99/cit99
ref81/cit81
ref16/cit16
Flory P. J. (ref45/cit45) 1953
ref52/cit52
ref23/cit23
ref2/cit2
ref77/cit77
ref71/cit71
ref20/cit20
ref48/cit48
ref74/cit74
Wasserscheid P. (ref3/cit3) 2008
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref13/cit13
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
ref106/cit106
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref77/cit77
  doi: 10.1007/978-94-010-0442-8_14
– ident: ref107/cit107
  doi: 10.1039/C8EE01040D
– ident: ref63/cit63
  doi: 10.1021/ar2000937
– ident: ref97/cit97
  doi: 10.1021/jp3034825
– ident: ref29/cit29
  doi: 10.1021/ma00218a012
– ident: ref53/cit53
  doi: 10.1063/1.2041487
– ident: ref89/cit89
  doi: 10.1088/0953-8984/19/32/323101
– ident: ref4/cit4
  doi: 10.1021/cr400374x
– ident: ref21/cit21
  doi: 10.1021/acs.jpclett.6b00867
– ident: ref67/cit67
  doi: 10.1149/1.2426871
– ident: ref68/cit68
  doi: 10.1039/C7CP08580J
– ident: ref88/cit88
  doi: 10.1103/PhysRevLett.94.218301
– ident: ref32/cit32
  doi: 10.1021/ma960580d
– ident: ref57/cit57
  doi: 10.1016/j.electacta.2006.03.016
– ident: ref8/cit8
  doi: 10.1039/b900201d
– ident: ref85/cit85
  doi: 10.1103/PhysRevE.70.041401
– ident: ref26/cit26
  doi: 10.1063/5.0006197
– ident: ref27/cit27
  doi: 10.1063/1.1723621
– ident: ref66/cit66
  doi: 10.1016/j.jpowsour.2005.03.068
– ident: ref103/cit103
  doi: 10.1021/acsenergylett.0c00348
– ident: ref73/cit73
  doi: 10.1021/jp1113202
– ident: ref93/cit93
  doi: 10.1021/jp056006y
– ident: ref12/cit12
  doi: 10.1021/jp0364699
– ident: ref98/cit98
  doi: 10.1080/1539445X.2019.1697706
– ident: ref87/cit87
  doi: 10.1016/j.physa.2005.07.003
– ident: ref80/cit80
  doi: 10.1063/1.1744141
– ident: ref48/cit48
  doi: 10.1021/ja01856a061
– ident: ref91/cit91
  doi: 10.1021/jp809031d
– volume-title: Principles of polymer chemistry
  year: 1953
  ident: ref45/cit45
  contributor:
    fullname: Flory P. J.
– ident: ref11/cit11
  doi: 10.1103/PhysRevX.9.021024
– ident: ref44/cit44
  doi: 10.1021/ma402263y
– ident: ref56/cit56
  doi: 10.1021/jp204182c
– ident: ref78/cit78
  doi: 10.1021/je034261a
– ident: ref100/cit100
  doi: 10.1016/j.electacta.2011.08.048
– ident: ref84/cit84
  doi: 10.1103/PhysRevE.69.051103
– ident: ref72/cit72
  doi: 10.1590/S0103-50532004000300002
– ident: ref47/cit47
  doi: 10.1002/pol.1952.120090106
– ident: ref10/cit10
  doi: 10.1021/acs.jpclett.5b00003
– ident: ref31/cit31
  doi: 10.1039/ft9959102663
– ident: ref46/cit46
  doi: 10.1039/c2cp40486a
– ident: ref2/cit2
  doi: 10.1021/cr980032t
– ident: ref17/cit17
  doi: 10.1016/j.electacta.2016.12.092
– ident: ref16/cit16
  doi: 10.1016/j.elecom.2017.07.008
– ident: ref69/cit69
  doi: 10.1021/acs.jpclett.9b00798
– ident: ref33/cit33
  doi: 10.1016/S0378-4371(98)00143-5
– ident: ref36/cit36
  doi: 10.1021/acsnano.7b05664
– ident: ref104/cit104
  doi: 10.1002/adma.201904427
– ident: ref55/cit55
  doi: 10.1063/1.3643124
– ident: ref58/cit58
  doi: 10.1063/1.3035978
– ident: ref43/cit43
  doi: 10.1021/jp1044089
– ident: ref15/cit15
  doi: 10.1021/jz502250z
– ident: ref102/cit102
  doi: 10.1002/anie.201602397
– ident: ref40/cit40
  doi: 10.1021/acs.jpcb.5b06163
– ident: ref20/cit20
  doi: 10.1021/cr500411q
– ident: ref28/cit28
  doi: 10.1021/ma00194a077
– ident: ref65/cit65
  doi: 10.1039/C5CP05753A
– ident: ref6/cit6
  doi: 10.1039/C5NH00004A
– ident: ref19/cit19
  doi: 10.1063/1.4982885
– ident: ref62/cit62
  doi: 10.1039/C4CS00278D
– ident: ref90/cit90
  doi: 10.1063/1.3153843
– ident: ref14/cit14
  doi: 10.1073/pnas.0507364103
– ident: ref24/cit24
  doi: 10.1103/PhysRevE.101.010601
– ident: ref42/cit42
  doi: 10.1021/acssuschemeng.9b02232
– ident: ref60/cit60
  doi: 10.1103/PhysRevMaterials.3.055606
– ident: ref64/cit64
  doi: 10.1021/acs.jpcb.6b05328
– ident: ref74/cit74
  doi: 10.1103/PhysRevLett.87.188301
– ident: ref82/cit82
  doi: 10.1351/pac199163101387
– ident: ref54/cit54
  doi: 10.1021/jp062885s
– ident: ref37/cit37
  doi: 10.1146/annurev-physchem-050317-020915
– ident: ref59/cit59
  doi: 10.1021/j150551a038
– ident: ref101/cit101
  doi: 10.1039/c1sc00227a
– ident: ref23/cit23
  doi: 10.1073/pnas.1508366112
– ident: ref86/cit86
  doi: 10.1088/0953-8984/16/42/002
– ident: ref39/cit39
  doi: 10.1063/1.2950095
– ident: ref7/cit7
  doi: 10.1063/5.0016163
– ident: ref22/cit22
  doi: 10.1073/pnas.1307871110
– ident: ref41/cit41
  doi: 10.1016/j.molliq.2019.01.002
– ident: ref94/cit94
  doi: 10.1002/aenm.202002913
– ident: ref71/cit71
  doi: 10.1021/acs.jpcb.0c01089
– ident: ref5/cit5
  doi: 10.1002/anie.200604951
– ident: ref50/cit50
  doi: 10.1103/PhysRev.37.405
– ident: ref18/cit18
  doi: 10.1016/j.jelechem.2017.11.005
– ident: ref49/cit49
  doi: 10.1021/ja01856a062
– ident: ref105/cit105
  doi: 10.1016/j.joule.2018.02.011
– ident: ref51/cit51
  doi: 10.1007/3-540-68449-2_3
– ident: ref70/cit70
  doi: 10.1016/j.jpowsour.2019.04.085
– ident: ref99/cit99
  doi: 10.1021/acs.chemrev.9b00531
– ident: ref52/cit52
  doi: 10.1088/0953-8984/27/46/463002
– ident: ref95/cit95
  doi: 10.1021/jp209942r
– ident: ref1/cit1
  doi: 10.1021/cr1003248
– ident: ref83/cit83
  doi: 10.1038/35070517
– ident: ref96/cit96
  doi: 10.1021/jp407325b
– ident: ref75/cit75
  doi: 10.1122/1.549853
– ident: ref25/cit25
  doi: 10.1103/PhysRevLett.122.136001
– ident: ref106/cit106
  doi: 10.1021/acsenergylett.8b00919
– ident: ref81/cit81
  doi: 10.1063/1.1696442
– ident: ref13/cit13
  doi: 10.1021/acs.jpcb.5b01093
– ident: ref38/cit38
  doi: 10.1021/acs.jpcc.0c02187
– ident: ref108/cit108
  doi: 10.1016/j.ensm.2019.03.016
– ident: ref30/cit30
  doi: 10.1021/ma00092a039
– volume-title: Ionic liquids in synthesis
  year: 2008
  ident: ref3/cit3
  contributor:
    fullname: Wasserscheid P.
– ident: ref92/cit92
  doi: 10.1038/nphys2693
– ident: ref76/cit76
  doi: 10.1039/fd9950100093
– ident: ref9/cit9
  doi: 10.1039/C4CP01177E
– ident: ref61/cit61
  doi: 10.1021/ci200217w
– ident: ref79/cit79
  doi: 10.1063/1.2827462
– ident: ref34/cit34
  doi: 10.1021/ma981279v
– ident: ref35/cit35
  doi: 10.1295/polymj.34.479
SSID ssj0025286
Score 2.5246365
Snippet Here we present a theory of ion aggregation and gelation of room temperature ionic liquids (RTILs). Based on it, we investigate the effect of ion aggregation...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 2677
SubjectTerms B: Liquids; Chemical and Dynamical Processes in Solution
Title Correlated Ion Transport and the Gel Phase in Room Temperature Ionic Liquids
URI http://dx.doi.org/10.1021/acs.jpcb.0c09050
https://www.ncbi.nlm.nih.gov/pubmed/33689352
https://search.proquest.com/docview/2500385967
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3bT4MwFMYbMx_0xftl3lITffABhHZQeDTEOc00Rrdkb6S0JaILmwIv_vWecpnxmr0BAQKnbb7fyWm-g9BJxxFMKaIMlwtqaJ9JgxMaGaAMitgKEL707ry9c3vDzs3IGX3a5Hyv4BP7nIvMfJ6KyLSE5Vs6PV8kDNaGxqDgcZZcOaTs6ghypNMhqylJ_vYGLUQi-ypEf9BlqTLd1apdUVaaE-rNJS9mkUemeP9p3TjHD6yhlRo28UU1O9bRgko30FLQ9HjbRP1AN-cYA29KfD1J8czqHPNUYmBDfKXG-P4JpA4nKX4AysYDBaRdOTHrZxKB-8lrkchsCw27l4OgZ9T9FQxOmZdD6uiqKCJSaAaz4IjRyAH5J74XMyKIz5mQsc5ZQMZ8ETux5EB4tu95UrmS023USiep2kWYCyat2Itd6rIOZCA-9-CcCZtozzQq2-gUwhDW6yMLy9I3scPyIsQmrGPTRmfNoITTym7jn3uPm1ELIWy60MFTNSmyELBOFzx9l7XRTjWcs7dR6gKiOWRvzi_aR8tEb2PRW_i8A9TK3wp1CBySR0flBPwAf-nVEg
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT8IwFMdfiB7w4u8f-LMmevAw3Fq2bkdDRFAgBiHhtnRtF1Ey0MHFv97XwTAaNXrblq3pXrt8Py-v-xbgrOJKrjXVlicks4zPpCUoiyxUBk0djQifeXe22l69V7ntu_0COPm_MNiJFFtKsyL-h7uAc2muPY1lVLalHdgmS192OeqloaHqwyLHcmm2uSOqksmK7Lwy-V0LRo9k-lmPfoDMTGxqa9BZdDNbY_Jcnk6isnz74uD4r_dYh9U5epKr2VzZgIJONqFYzXd824Jm1WzVMUT6VKQxSsjC-JyIRBEkRXKjh-T-EYWPDBLSQeYmXY3cPfNlNs8MJGkOXqYDlW5Dr3bdrdat-W4LlmDcn2Ai6ekookoaIrPxiLPIRRiggR9zKmkguFSxyWBQ1AIZu7ESyHtO4PtKe0qwHVhKRoneAyIkV3bsxx7zeAXzkUD4eM6lQ42DGlMlOMcwhPOvJQ2zQjh1wuwixiacx6YEF_nYhOOZ-cYv957mgxdi2EzZQyR6NE1DhDxT_gw8XoLd2aguWmPMQ2Bz6f4fe3QCxXq31QybjfbdAaxQs8DFLO7zD2Fp8jrVR0gok-g4m5Pv69nddw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0hkIAL-1JWI8GBQ0piN3FyrAqFQkGITdwix3ZEoUoLaS98PWM3qQQCBLfESkaTsa33RuO8Adiv-ZJrTbUTCMkcozPpCMoSB5FBU08jhbfanZdXwdl97fzRf5wAv_wXBp3I0VJui_hmV_dVWigMeEdm_Lkvk6or3cg1mfqUzz1bna03bsd5lk9tg0dEJpMZuWV18jsLBpNk_hmTfiCaFnCa8_AwdtWeM3mpDgdJVb5_UXH897cswFxBQUl9tGYWYUJnSzDTKDu_LUO7YVp2dJGFKtLqZWQsgE5EpggyRnKqu-T6CQGQdDJyg9yb3Gnk3yN9ZvNOR5J253XYUfkK3DdP7hpnTtF1wRGMhwNMKAOdJFRJw8xcvOIs8ZEU0ChMOZU0Elyq1GQyCG6RTP1UCeR9XhSGSgdKsFWYzHqZXgciJFduGqYBC3gN85JIhHjPpUeNkhpTFTjAMMTFrsljWxCnXmwHMTZxEZsKHJbzE_dHIhy_PLtXTmCMYTPlD5Hp3jCPkeyZMmgU8AqsjWZ2bI2xAImbTzf-6NEuTF8fN-N26-piE2apOedizviFWzA5eBvqbSQqg2THLssPMAjf8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlated+Ion+Transport+and+the+Gel+Phase+in+Room+Temperature+Ionic+Liquids&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=McEldrew%2C+Michael&rft.au=Goodwin%2C+Zachary+A+H&rft.au=Zhao%2C+Hongbo&rft.au=Bazant%2C+Martin+Z&rft.date=2021-03-18&rft.eissn=1520-5207&rft.volume=125&rft.issue=10&rft.spage=2677&rft_id=info:doi/10.1021%2Facs.jpcb.0c09050&rft_id=info%3Apmid%2F33689352&rft.externalDocID=33689352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon