Radical-Scavenging Activity and Mechanism of Resveratrol-Oriented Analogues: Influence of the Solvent, Radical, and Substitution

Resveratrol (3,5,4′-trihydroxy-trans-stilbene, 3,5,4′-THS) is a well-known natural antioxidant and cancer chemopreventive agent that has attracted much interest in the past decade. To find a more active antioxidant and investigate the antioxidative mechanism with resveratrol as the lead compound, we...

Full description

Saved in:
Bibliographic Details
Published inJournal of organic chemistry Vol. 74; no. 14; pp. 5025 - 5031
Main Authors Shang, Ya-Jing, Qian, Yi-Ping, Liu, Xiao-Da, Dai, Fang, Shang, Xian-Ling, Jia, Wen-Qiang, Liu, Qiang, Fang, Jian-Guo, Zhou, Bo
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 17.07.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Resveratrol (3,5,4′-trihydroxy-trans-stilbene, 3,5,4′-THS) is a well-known natural antioxidant and cancer chemopreventive agent that has attracted much interest in the past decade. To find a more active antioxidant and investigate the antioxidative mechanism with resveratrol as the lead compound, we synthesized 3,5-dihydroxy-trans-stilbene (3,5-DHS), 4-hydroxy-trans-stilbene (4-HS) 3,4-dihydroxy-trans-stilbene (3,4-DHS), 4,4′-dihydroxy-trans-stilbene (4,4′-DHS), 4-hydroxy-3-methoxy-trans-stilbene (3-MeO-4-HS), 4-hydroxy-4′-methoxy-trans-stilbene (4′-MeO-4-HS), 4-hydroxy-4′-methyl-trans-stilbene (4′-Me-4-HS), 4-hydroxy-4′-nitro-trans-stilbene (4′-NO2-4-HS), and 4-hydroxy-4′-trifluoromethyl-trans-stilbene (4′-CF3-4-HS). The radical-scavenging activity and detailed mechanism of resveratrol and its analogues (ArOHs) were investigated by the reaction kinetics with galvinoxyl (GO•) and 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radicals in ethanol and ethyl acetate at 25 °C, using UV−vis spectroscopy. It was found that the reaction rates increase with increasing the electron-rich environment in the molecules, and the compound bearing o-dihydroxyl groups (3,4-DHS) is the most reactive one among the examined resveratrol analogues. The effect of added acetic acid on the measured rate constant for GO• -scavenging reaction reveals that in ethanol that supports ionization solvent besides hydrogen atom transfer (HAT), the kinetics of the process is partially governed by sequential proton loss electron transfer (SPLET). In contrast to GO•, DPPH• has a relatively high reduction potential and therefore enhances the proportion of SPLET in ethanol. The relatively low rate constants for the reactions of ArOHs with GO• or DPPH• in ethyl acetate compared with the rate constants in ethanol prove that in ethyl acetate these reactions occur primarily by the HAT mechanism. The contribution of SPLET and HAT mechanism depends on the ability of the solvent to ionize ArOH and the reduction potential of the free radical involved. Furthermore, the fate of the ArOH-derived radicals, i.e., the phenoxyl radicals, was investigated by the oxidative product analysis of ArOHs and GO• in ethanol. The major products were dihydrofuran dimers in the case of resveratrol, 4,4′-DHS, and 4-HS and a dioxane-like dimer in the case of 3,4-DHS. It is suggested from the oxidative products of these ArOHs that the hydroxyl group at the 4-position is much easier to subject to oxidation than other hydroxyl groups, and the dioxane-like dimer is formed via an o-quinone intermediate.
AbstractList Resveratrol (3,5,4'-trihydroxy-trans-stilbene, 3,5,4'-THS) is a well-known natural antioxidant and cancer chemopreventive agent that has attracted much interest in the past decade. To find a more active antioxidant and investigate the antioxidative mechanism with resveratrol as the lead compound, we synthesized 3,5-dihydroxy-trans-stilbene (3,5-DHS), 4-hydroxy-trans-stilbene (4-HS) 3,4-dihydroxy-trans-stilbene (3,4-DHS), 4,4'-dihydroxy-trans-stilbene (4,4'-DHS), 4-hydroxy-3-methoxy-trans-stilbene (3-MeO-4-HS), 4-hydroxy-4'-methoxy-trans-stilbene (4'-MeO-4-HS), 4-hydroxy-4'-methyl-trans-stilbene (4'-Me-4-HS), 4-hydroxy-4'-nitro-trans-stilbene (4'-NO(2)-4-HS), and 4-hydroxy-4'-trifluoromethyl-trans-stilbene (4'-CF(3)-4-HS). The radical-scavenging activity and detailed mechanism of resveratrol and its analogues (ArOHs) were investigated by the reaction kinetics with galvinoxyl (GO(*)) and 2,2-diphenyl-1-picrylhydrazyl (DPPH(*)) radicals in ethanol and ethyl acetate at 25 degrees C, using UV-vis spectroscopy. It was found that the reaction rates increase with increasing the electron-rich environment in the molecules, and the compound bearing o-dihydroxyl groups (3,4-DHS) is the most reactive one among the examined resveratrol analogues. The effect of added acetic acid on the measured rate constant for GO(*)-scavenging reaction reveals that in ethanol that supports ionization solvent besides hydrogen atom transfer (HAT), the kinetics of the process is partially governed by sequential proton loss electron transfer (SPLET). In contrast to GO(*), DPPH(*) has a relatively high reduction potential and therefore enhances the proportion of SPLET in ethanol. The relatively low rate constants for the reactions of ArOHs with GO(*) or DPPH(*) in ethyl acetate compared with the rate constants in ethanol prove that in ethyl acetate these reactions occur primarily by the HAT mechanism. The contribution of SPLET and HAT mechanism depends on the ability of the solvent to ionize ArOH and the reduction potential of the free radical involved. Furthermore, the fate of the ArOH-derived radicals, i.e., the phenoxyl radicals, was investigated by the oxidative product analysis of ArOHs and GO(*) in ethanol. The major products were dihydrofuran dimers in the case of resveratrol, 4,4'-DHS, and 4-HS and a dioxane-like dimer in the case of 3,4-DHS. It is suggested from the oxidative products of these ArOHs that the hydroxyl group at the 4-position is much easier to subject to oxidation than other hydroxyl groups, and the dioxane-like dimer is formed via an o-quinone intermediate.
Resveratrol (3,5,4′-trihydroxy-trans-stilbene, 3,5,4′-THS) is a well-known natural antioxidant and cancer chemopreventive agent that has attracted much interest in the past decade. To find a more active antioxidant and investigate the antioxidative mechanism with resveratrol as the lead compound, we synthesized 3,5-dihydroxy-trans-stilbene (3,5-DHS), 4-hydroxy-trans-stilbene (4-HS) 3,4-dihydroxy-trans-stilbene (3,4-DHS), 4,4′-dihydroxy-trans-stilbene (4,4′-DHS), 4-hydroxy-3-methoxy-trans-stilbene (3-MeO-4-HS), 4-hydroxy-4′-methoxy-trans-stilbene (4′-MeO-4-HS), 4-hydroxy-4′-methyl-trans-stilbene (4′-Me-4-HS), 4-hydroxy-4′-nitro-trans-stilbene (4′-NO2-4-HS), and 4-hydroxy-4′-trifluoromethyl-trans-stilbene (4′-CF3-4-HS). The radical-scavenging activity and detailed mechanism of resveratrol and its analogues (ArOHs) were investigated by the reaction kinetics with galvinoxyl (GO•) and 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radicals in ethanol and ethyl acetate at 25 °C, using UV−vis spectroscopy. It was found that the reaction rates increase with increasing the electron-rich environment in the molecules, and the compound bearing o-dihydroxyl groups (3,4-DHS) is the most reactive one among the examined resveratrol analogues. The effect of added acetic acid on the measured rate constant for GO• -scavenging reaction reveals that in ethanol that supports ionization solvent besides hydrogen atom transfer (HAT), the kinetics of the process is partially governed by sequential proton loss electron transfer (SPLET). In contrast to GO•, DPPH• has a relatively high reduction potential and therefore enhances the proportion of SPLET in ethanol. The relatively low rate constants for the reactions of ArOHs with GO• or DPPH• in ethyl acetate compared with the rate constants in ethanol prove that in ethyl acetate these reactions occur primarily by the HAT mechanism. The contribution of SPLET and HAT mechanism depends on the ability of the solvent to ionize ArOH and the reduction potential of the free radical involved. Furthermore, the fate of the ArOH-derived radicals, i.e., the phenoxyl radicals, was investigated by the oxidative product analysis of ArOHs and GO• in ethanol. The major products were dihydrofuran dimers in the case of resveratrol, 4,4′-DHS, and 4-HS and a dioxane-like dimer in the case of 3,4-DHS. It is suggested from the oxidative products of these ArOHs that the hydroxyl group at the 4-position is much easier to subject to oxidation than other hydroxyl groups, and the dioxane-like dimer is formed via an o-quinone intermediate.
Resveratrol (3,5,4'-trihydroxy-trans-stilbene, 3,5,4'-THS) is a well-known natural antioxidant and cancer chemopreventive agent that has attracted much interest in the past decade. To find a more active antioxidant and investigate the antioxidative mechanism with resveratrol as the lead compound, we synthesized 3,5-dihydroxy-trans-stilbene (3,5-DHS), 4-hydroxy-trans-stilbene (4-HS) 3,4-dihydroxy-trans-stilbene (3,4-DHS), 4,4'-dihydroxy-trans-stilbene (4,4'-DHS), 4-hydroxy-3-methoxy-trans-stilbene (3-MeO-4-HS), 4-hydroxy-4'-methoxy-trans-stilbene (4'-MeO-4-HS), 4-hydroxy-4'-methyl-trans-stilbene (4'-Me-4-HS), 4-hydroxy-4'-nitro-trans-stilbene (4'-NO(2)-4-HS), and 4-hydroxy-4'-trifluoromethyl-trans-stilbene (4'-CF(3)-4-HS). The radical-scavenging activity and detailed mechanism of resveratrol and its analogues (ArOHs) were investigated by the reaction kinetics with galvinoxyl (GO(*)) and 2,2-diphenyl-1-picrylhydrazyl (DPPH(*)) radicals in ethanol and ethyl acetate at 25 degrees C, using UV-vis spectroscopy. It was found that the reaction rates increase with increasing the electron-rich environment in the molecules, and the compound bearing o-dihydroxyl groups (3,4-DHS) is the most reactive one among the examined resveratrol analogues. The effect of added acetic acid on the measured rate constant for GO(*)-scavenging reaction reveals that in ethanol that supports ionization solvent besides hydrogen atom transfer (HAT), the kinetics of the process is partially governed by sequential proton loss electron transfer (SPLET). In contrast to GO(*), DPPH(*) has a relatively high reduction potential and therefore enhances the proportion of SPLET in ethanol. The relatively low rate constants for the reactions of ArOHs with GO(*) or DPPH(*) in ethyl acetate compared with the rate constants in ethanol prove that in ethyl acetate these reactions occur primarily by the HAT mechanism. The contribution of SPLET and HAT mechanism depends on the ability of the solvent to ionize ArOH and the reduction potential of the free radical involved. Furthermore, the fate of the ArOH-derived radicals, i.e., the phenoxyl radicals, was investigated by the oxidative product analysis of ArOHs and GO(*) in ethanol. The major products were dihydrofuran dimers in the case of resveratrol, 4,4'-DHS, and 4-HS and a dioxane-like dimer in the case of 3,4-DHS. It is suggested from the oxidative products of these ArOHs that the hydroxyl group at the 4-position is much easier to subject to oxidation than other hydroxyl groups, and the dioxane-like dimer is formed via an o-quinone intermediate.Resveratrol (3,5,4'-trihydroxy-trans-stilbene, 3,5,4'-THS) is a well-known natural antioxidant and cancer chemopreventive agent that has attracted much interest in the past decade. To find a more active antioxidant and investigate the antioxidative mechanism with resveratrol as the lead compound, we synthesized 3,5-dihydroxy-trans-stilbene (3,5-DHS), 4-hydroxy-trans-stilbene (4-HS) 3,4-dihydroxy-trans-stilbene (3,4-DHS), 4,4'-dihydroxy-trans-stilbene (4,4'-DHS), 4-hydroxy-3-methoxy-trans-stilbene (3-MeO-4-HS), 4-hydroxy-4'-methoxy-trans-stilbene (4'-MeO-4-HS), 4-hydroxy-4'-methyl-trans-stilbene (4'-Me-4-HS), 4-hydroxy-4'-nitro-trans-stilbene (4'-NO(2)-4-HS), and 4-hydroxy-4'-trifluoromethyl-trans-stilbene (4'-CF(3)-4-HS). The radical-scavenging activity and detailed mechanism of resveratrol and its analogues (ArOHs) were investigated by the reaction kinetics with galvinoxyl (GO(*)) and 2,2-diphenyl-1-picrylhydrazyl (DPPH(*)) radicals in ethanol and ethyl acetate at 25 degrees C, using UV-vis spectroscopy. It was found that the reaction rates increase with increasing the electron-rich environment in the molecules, and the compound bearing o-dihydroxyl groups (3,4-DHS) is the most reactive one among the examined resveratrol analogues. The effect of added acetic acid on the measured rate constant for GO(*)-scavenging reaction reveals that in ethanol that supports ionization solvent besides hydrogen atom transfer (HAT), the kinetics of the process is partially governed by sequential proton loss electron transfer (SPLET). In contrast to GO(*), DPPH(*) has a relatively high reduction potential and therefore enhances the proportion of SPLET in ethanol. The relatively low rate constants for the reactions of ArOHs with GO(*) or DPPH(*) in ethyl acetate compared with the rate constants in ethanol prove that in ethyl acetate these reactions occur primarily by the HAT mechanism. The contribution of SPLET and HAT mechanism depends on the ability of the solvent to ionize ArOH and the reduction potential of the free radical involved. Furthermore, the fate of the ArOH-derived radicals, i.e., the phenoxyl radicals, was investigated by the oxidative product analysis of ArOHs and GO(*) in ethanol. The major products were dihydrofuran dimers in the case of resveratrol, 4,4'-DHS, and 4-HS and a dioxane-like dimer in the case of 3,4-DHS. It is suggested from the oxidative products of these ArOHs that the hydroxyl group at the 4-position is much easier to subject to oxidation than other hydroxyl groups, and the dioxane-like dimer is formed via an o-quinone intermediate.
Author Liu, Xiao-Da
Shang, Xian-Ling
Jia, Wen-Qiang
Dai, Fang
Zhou, Bo
Fang, Jian-Guo
Liu, Qiang
Shang, Ya-Jing
Qian, Yi-Ping
Author_xml – sequence: 1
  givenname: Ya-Jing
  surname: Shang
  fullname: Shang, Ya-Jing
– sequence: 2
  givenname: Yi-Ping
  surname: Qian
  fullname: Qian, Yi-Ping
– sequence: 3
  givenname: Xiao-Da
  surname: Liu
  fullname: Liu, Xiao-Da
– sequence: 4
  givenname: Fang
  surname: Dai
  fullname: Dai, Fang
– sequence: 5
  givenname: Xian-Ling
  surname: Shang
  fullname: Shang, Xian-Ling
– sequence: 6
  givenname: Wen-Qiang
  surname: Jia
  fullname: Jia, Wen-Qiang
– sequence: 7
  givenname: Qiang
  surname: Liu
  fullname: Liu, Qiang
– sequence: 8
  givenname: Jian-Guo
  surname: Fang
  fullname: Fang, Jian-Guo
– sequence: 9
  givenname: Bo
  surname: Zhou
  fullname: Zhou, Bo
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22087208$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19472994$$D View this record in MEDLINE/PubMed
BookMark eNpt0UFrHCEUB3ApKc0m7aFfoHhpIZBpHMcZx96WkLaBlEC2PQ9v9bkxzGqqzkJu_eh1m2kKJYII8vPv03dEDnzwSMjbmn2sGa_P7oJiTDLVviCLuuWs6hQTB2TBGOdVw7vmkByldMfKaNv2FTmslZBcKbEgv27AOA1jtdKwQ79xfkOXOrudyw8UvKHfUN-Cd2lLg6U3mHYYIccwVtfRoc9o6NLDGDYTpk_00ttxQq9xj_Mt0lUYS2o-pfM1p38yV9M6ZZen7IJ_TV5aGBO-mddj8uPzxffzr9XV9ZfL8-VVBY3sc8WNaK3gEkwnOdh1p4RpONSamVrwNahWd9LqHrCxCru-6VEIabSwUjZCQXNMPjzm3sfwsxSbh61LGscRPIYpDZ0UnZJKFfhuhtN6i2a4j24L8WH4-2cFvJ8BpPIkG8Frl54c56yXZRZ38uh0DClFtP-i2LDv2_DUt2LP_rPaZdj_T47gxmdPzFWATmV7iqUL6Rn3G1JYpgg
CODEN JOCEAH
CitedBy_id crossref_primary_10_1021_acs_orglett_9b03160
crossref_primary_10_1016_j_radphyschem_2011_11_025
crossref_primary_10_1161_CIRCULATIONAHA_118_037398
crossref_primary_10_1039_C6RA06059E
crossref_primary_10_1021_acs_jafc_3c04022
crossref_primary_10_3109_10715762_2011_629199
crossref_primary_10_1039_D0RA03249B
crossref_primary_10_1002_mnfr_201500297
crossref_primary_10_3390_antiox12101858
crossref_primary_10_3390_molecules26051244
crossref_primary_10_1039_b927075m
crossref_primary_10_3390_pr10040647
crossref_primary_10_1016_j_foodchem_2010_11_011
crossref_primary_10_4103_1673_5374_265545
crossref_primary_10_1016_j_microc_2021_106603
crossref_primary_10_1021_cb3006962
crossref_primary_10_1016_j_jphotochem_2014_11_019
crossref_primary_10_1016_j_ifset_2013_03_006
crossref_primary_10_3390_molecules15107035
crossref_primary_10_1002_chem_201303587
crossref_primary_10_1016_j_supflu_2013_04_018
crossref_primary_10_1002_qua_25665
crossref_primary_10_1021_acs_jafc_9b02875
crossref_primary_10_3390_molecules24010003
crossref_primary_10_1016_j_ejmech_2025_117376
crossref_primary_10_3390_brainsci10090651
crossref_primary_10_1007_s11434_010_3064_0
crossref_primary_10_1016_j_neuint_2015_08_009
crossref_primary_10_1021_jf201773q
crossref_primary_10_3390_molecules26092535
crossref_primary_10_1134_S1070363215130046
crossref_primary_10_1007_s00894_011_1306_y
crossref_primary_10_1002_chem_201002020
crossref_primary_10_1016_j_foodchem_2012_05_074
crossref_primary_10_3390_ijms222413539
crossref_primary_10_17221_611_2014_CJFS
crossref_primary_10_1021_acs_jpcb_8b08284
crossref_primary_10_1016_j_foodchem_2022_133359
crossref_primary_10_3390_molecules21111442
crossref_primary_10_1002_ddr_20380
crossref_primary_10_1016_j_jelechem_2019_113677
crossref_primary_10_3390_molecules15117792
crossref_primary_10_1016_j_foodchem_2018_01_069
crossref_primary_10_1002_mnfr_201700969
crossref_primary_10_1111_1541_4337_13182
crossref_primary_10_1016_j_jnutbio_2023_109435
crossref_primary_10_3390_nu12010159
crossref_primary_10_1016_j_biochi_2011_11_005
crossref_primary_10_1016_j_freeradbiomed_2011_02_028
crossref_primary_10_1007_s11011_019_00408_1
crossref_primary_10_1039_D0RA04896H
crossref_primary_10_3390_molecules25235770
crossref_primary_10_3390_ma18020457
crossref_primary_10_1016_j_comptc_2011_12_020
crossref_primary_10_3390_molecules29010086
crossref_primary_10_1007_s11095_025_03836_0
crossref_primary_10_1039_C4TA03023K
crossref_primary_10_1007_s00044_019_02351_3
crossref_primary_10_1016_j_bmcl_2013_09_073
crossref_primary_10_1016_j_foodchem_2017_06_021
crossref_primary_10_1016_j_comptc_2018_12_011
crossref_primary_10_1186_s13065_020_00696_0
crossref_primary_10_1016_j_bmcl_2012_12_001
crossref_primary_10_1016_j_biotechadv_2018_04_009
crossref_primary_10_1007_s12035_024_04502_z
crossref_primary_10_1021_acs_jafc_7b02247
crossref_primary_10_3390_antiox3020212
crossref_primary_10_1016_j_ejmech_2013_06_016
crossref_primary_10_1016_j_theochem_2010_04_005
crossref_primary_10_1002_chem_201103897
crossref_primary_10_1002_2211_5463_13762
crossref_primary_10_1002_biof_1399
crossref_primary_10_1016_j_dscb_2022_100038
crossref_primary_10_1039_C5OB00193E
crossref_primary_10_1016_j_pharep_2017_03_018
crossref_primary_10_1007_s11094_023_02960_8
crossref_primary_10_1089_aivt_2023_0008
crossref_primary_10_1063_1_4732583
crossref_primary_10_1016_j_comptc_2013_06_019
crossref_primary_10_1016_j_freeradbiomed_2024_07_032
crossref_primary_10_3390_molecules25081975
crossref_primary_10_1016_j_freeradbiomed_2018_11_018
crossref_primary_10_1016_j_ibiod_2017_05_023
crossref_primary_10_1039_C4RA14737E
crossref_primary_10_1002_chem_200901627
crossref_primary_10_1021_acsomega_4c01742
crossref_primary_10_3390_molecules19067850
crossref_primary_10_1021_jacs_0c01714
crossref_primary_10_1021_jp3033337
crossref_primary_10_1021_cr500689b
crossref_primary_10_1039_b922673g
crossref_primary_10_1039_C9FO00420C
crossref_primary_10_1016_j_bmcl_2011_08_090
crossref_primary_10_3390_molecules26030646
crossref_primary_10_3184_174751915X14241928341993
crossref_primary_10_3390_antiox10050811
crossref_primary_10_3390_antiox11040620
crossref_primary_10_3390_pr10071281
crossref_primary_10_1016_j_bmc_2011_11_030
crossref_primary_10_1016_j_foodchem_2012_03_036
crossref_primary_10_1021_jo302483s
crossref_primary_10_1002_slct_202101560
crossref_primary_10_1016_j_bmcl_2010_03_039
crossref_primary_10_1021_jo500789v
crossref_primary_10_1007_s11095_010_0090_1
crossref_primary_10_1016_j_foodchem_2012_05_043
crossref_primary_10_1021_acschemneuro_8b00577
crossref_primary_10_1016_j_ijms_2012_05_010
crossref_primary_10_1021_acs_jafc_0c04399
crossref_primary_10_3389_fdmed_2024_1464009
crossref_primary_10_1155_2013_354982
crossref_primary_10_1002_cbic_201300080
crossref_primary_10_3390_ijms25010003
crossref_primary_10_1246_bcsj_20120005
crossref_primary_10_1002_chem_201403024
crossref_primary_10_1016_j_foodchem_2014_05_077
crossref_primary_10_1021_acs_jpcb_5b03810
crossref_primary_10_1016_j_cplett_2010_02_050
crossref_primary_10_1016_j_bmcl_2012_06_026
crossref_primary_10_1021_acs_joc_1c01801
Cites_doi 10.1021/jo0497860
10.1074/jbc.M101846200
10.1096/fj.02-0752rev
10.1021/tx7003008
10.1139/v70-253
10.1021/jf048794e
10.1016/j.bmc.2005.09.070
10.1021/jo035758q
10.1016/j.mrrev.2007.08.004
10.1016/j.bioorg.2006.04.001
10.1016/j.exphem.2006.05.018
10.1038/nrc1046
10.1016/j.freeradbiomed.2006.09.007
10.1021/jo026917t
10.1021/ja002455u
10.1016/S0040-4020(03)00405-8
10.1016/j.bcp.2006.05.023
10.1021/ol051962j
10.1016/j.bcp.2004.12.001
10.1021/jf802665s
10.1246/cl.2007.1276
10.1021/ar0682029
10.1038/nrd2060
10.1016/j.aca.2003.08.065
10.1038/sj.bjc.6602300
10.1021/jm060630x
10.1016/S1383-5718(02)00211-5
10.1021/jm00072a015
10.1016/S0891-5849(99)00063-5
10.1021/jm8015415
10.1016/S0925-4439(02)00174-6
10.1021/jo049254j
10.1039/b109063c
10.1021/jf0006527
10.1039/b416572a
10.1016/j.bpc.2008.03.005
10.1016/0140-6736(92)91277-F
10.1016/j.bcp.2004.09.013
10.1039/b205380b
10.1038/sj.bjp.0704637
10.1006/abbi.2000.1973
10.1006/abbi.2001.2388
10.1021/jf990382w
10.1002/1521-3765(20020916)8:18<4191::AID-CHEM4191>3.0.CO;2-S
10.1002/chem.200390052
ContentType Journal Article
Copyright Copyright © 2009 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2009 American Chemical Society
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/jo9007095
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Mechanism of Resveratrol-Oriented Analogues
EISSN 1520-6904
EndPage 5031
ExternalDocumentID 19472994
22087208
10_1021_jo9007095
a322301655
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
29L
4.4
53G
55A
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AFMIJ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CJ0
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
PZZ
ROL
RXW
TAE
TAF
TN5
UI2
UKR
UPT
UQL
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZCG
---
-DZ
-~X
6TJ
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
.GJ
.HR
123
186
1WB
3EH
41~
ABHMW
ACBNA
ACRPL
ACTDY
ADNMO
ADXHL
AEYZD
AGQPQ
AI.
AIDAL
ANPPW
ANTXH
D0S
IQODW
MVM
NHB
OHT
RNS
T9H
UBC
UMD
VH1
X7L
XOL
XXG
YQJ
YR5
YXA
YXE
YYP
ZE2
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIN
7X8
ID FETCH-LOGICAL-a378t-2d45f427ad672afb694d32a1c0d142ba95c67fc8ae3f9e6838e447dc4f77349a3
IEDL.DBID ACS
ISSN 0022-3263
1520-6904
IngestDate Fri Jul 11 08:37:34 EDT 2025
Wed Feb 19 01:49:56 EST 2025
Mon Jul 21 09:13:25 EDT 2025
Tue Jul 01 01:52:41 EDT 2025
Thu Apr 24 22:50:54 EDT 2025
Thu Aug 27 13:42:21 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Nitro compound
Furan derivatives
Electron transfer
Oxygen heterocycle
Phenoxy radical
Radical trapping
Resveratrol
Hydroxyl group
Reaction mechanism
Oxidation
Rate constant
Chemical synthesis
Solvent
Hydrogen transfer
Dioxane derivatives
Ethanol
DPPH
Quinone
Reduction potential
Malignant tumor
Antioxidant
Acetic acid derivative
Reaction rate
Chemical reaction kinetics
Stilbene derivatives
Ionization
Phytoalexin
Organic free radical
Analog
Phenols
Benzenic compound
Dimer
Fluorine Organic compounds
Acetic acid
Cancer
Ultraviolet visible spectrometry
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a378t-2d45f427ad672afb694d32a1c0d142ba95c67fc8ae3f9e6838e447dc4f77349a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://202.201.7.4:8080/handle/262010/77026
PMID 19472994
PQID 67469799
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_67469799
pubmed_primary_19472994
pascalfrancis_primary_22087208
crossref_primary_10_1021_jo9007095
crossref_citationtrail_10_1021_jo9007095
acs_journals_10_1021_jo9007095
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-07-17
PublicationDateYYYYMMDD 2009-07-17
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-17
  day: 17
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Journal of organic chemistry
PublicationTitleAlternate J. Org. Chem
PublicationYear 2009
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Hung L. M. (ref4/cit4c) 2002; 135
Caruso F. (ref10/cit10) 2004; 52
Litwinienko G. (ref13/cit13a) 2003; 68
Nakanishi I. (ref4/cit4f) 2007; 36
Stojanoviéc S. (ref4/cit4i) 2002; 4
Cai Y.-J. (ref6/cit6b) 2003; 1637
Qian Y.-P. (ref8/cit8) 2009; 52
Burkitt M. J. (ref4/cit4b) 2000; 381
Farines V. (ref12/cit12a) 2004; 513
Fang J. G. (ref6/cit6a) 2002; 8
Fukuhara K. (ref4/cit4h) 2008; 21
Wang M. (ref9/cit9) 1999; 47
Baur J. A. (ref1/cit1a) 2006; 5
Murias M. (ref4/cit4e) 2005; 69
Wang Y. (ref5/cit5a) 2005; 69
Nakanishi I. (ref14/cit14) 2002
Bachelor F. W. (ref17/cit17b) 1970; 48
Stojanoviéc S. (ref4/cit4j) 2001; 391
Thakkar K. (ref17/cit17a) 1993; 36
Foti M. C. (ref13/cit13b) 2004; 69
Fang J.-G. (ref6/cit6d) 2008; 56
Nakanishi I. (ref13/cit13e) 2005; 3
Stivala L.-A. (ref12/cit12c) 2001; 276
Musialik M. (ref13/cit13d) 2005; 7
Ray P. S. (ref4/cit4a) 1999; 27
Hussain S. P. (ref3/cit3a) 2003; 3
Zheng L.-F. (ref7/cit7) 2006; 41
Solladie G. (ref18/cit18) 2003; 59
Cooke M. S. (ref3/cit3b) 2003; 17
Litwinienko G. (ref13/cit13c) 2004; 69
Zhang H. Y. (ref15/cit15b) 2003; 9
Wright J. S. (ref15/cit15a) 2001; 123
Horvath Z. (ref5/cit5d) 2006; 34
Sushma M. (ref15/cit15c) 2008; 626
Saiko P. (ref1/cit1b) 2008; 658
Fabris S. (ref4/cit4g) 2008; 135
Foti M. (ref16/cit16) 2001; 49
Matsuoka A. (ref12/cit12b) 2002; 521
Amorati R. (ref4/cit4d) 2004; 69
Fukuhara K. (ref11/cit11) 2006; 14
Litwinienko G. (ref13/cit13f) 2007; 40
Gosslau A. (ref5/cit5b) 2005; 92
Heynekamp J. J. (ref17/cit17c) 2006; 49
Cheng J.-C. (ref6/cit6c) 2006; 34
Renaud S. (ref2/cit2) 1992; 339
Balan K. V. (ref5/cit5c) 2006; 72
References_xml – volume: 69
  start-page: 7101
  year: 2004
  ident: ref4/cit4d
  publication-title: J. Org. Chem.
  doi: 10.1021/jo0497860
– volume: 276
  start-page: 22586
  year: 2001
  ident: ref12/cit12c
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M101846200
– volume: 17
  start-page: 1195
  year: 2003
  ident: ref3/cit3b
  publication-title: FASEB J.
  doi: 10.1096/fj.02-0752rev
– volume: 21
  start-page: 282
  year: 2008
  ident: ref4/cit4h
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx7003008
– volume: 48
  start-page: 1554
  year: 1970
  ident: ref17/cit17b
  publication-title: Can. J. Chem.
  doi: 10.1139/v70-253
– volume: 52
  start-page: 7279
  year: 2004
  ident: ref10/cit10
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf048794e
– volume: 14
  start-page: 1437
  year: 2006
  ident: ref11/cit11
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2005.09.070
– volume: 69
  start-page: 2309
  year: 2004
  ident: ref13/cit13b
  publication-title: J. Org. Chem.
  doi: 10.1021/jo035758q
– volume: 658
  start-page: 68
  year: 2008
  ident: ref1/cit1b
  publication-title: Mutat. Res.
  doi: 10.1016/j.mrrev.2007.08.004
– volume: 34
  start-page: 142
  year: 2006
  ident: ref6/cit6c
  publication-title: Bioorg. Chem.
  doi: 10.1016/j.bioorg.2006.04.001
– volume: 34
  start-page: 1377
  year: 2006
  ident: ref5/cit5d
  publication-title: Exp. Hematol.
  doi: 10.1016/j.exphem.2006.05.018
– volume: 3
  start-page: 276
  year: 2003
  ident: ref3/cit3a
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1046
– volume: 41
  start-page: 1807
  year: 2006
  ident: ref7/cit7
  publication-title: Free Radical Biol. Med.
  doi: 10.1016/j.freeradbiomed.2006.09.007
– volume: 68
  start-page: 3433
  year: 2003
  ident: ref13/cit13a
  publication-title: J. Org. Chem.
  doi: 10.1021/jo026917t
– volume: 123
  start-page: 1173
  year: 2001
  ident: ref15/cit15a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja002455u
– volume: 59
  start-page: 3315
  year: 2003
  ident: ref18/cit18
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(03)00405-8
– volume: 72
  start-page: 573
  year: 2006
  ident: ref5/cit5c
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2006.05.023
– volume: 7
  start-page: 4951
  year: 2005
  ident: ref13/cit13d
  publication-title: Org. Lett.
  doi: 10.1021/ol051962j
– volume: 69
  start-page: 903
  year: 2005
  ident: ref4/cit4e
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2004.12.001
– volume: 56
  start-page: 11458
  year: 2008
  ident: ref6/cit6d
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf802665s
– volume: 36
  start-page: 1276
  year: 2007
  ident: ref4/cit4f
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2007.1276
– volume: 40
  start-page: 222
  year: 2007
  ident: ref13/cit13f
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar0682029
– volume: 5
  start-page: 493
  year: 2006
  ident: ref1/cit1a
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2060
– volume: 513
  start-page: 103
  year: 2004
  ident: ref12/cit12a
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2003.08.065
– volume: 92
  start-page: 513
  year: 2005
  ident: ref5/cit5b
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6602300
– volume: 49
  start-page: 7182
  year: 2006
  ident: ref17/cit17c
  publication-title: J. Med. Chem.
  doi: 10.1021/jm060630x
– volume: 521
  start-page: 29
  year: 2002
  ident: ref12/cit12b
  publication-title: Mutat. Res.
  doi: 10.1016/S1383-5718(02)00211-5
– volume: 626
  start-page: 628
  year: 2008
  ident: ref15/cit15c
  publication-title: Chem. Commun.
– volume: 36
  start-page: 2950
  year: 1993
  ident: ref17/cit17a
  publication-title: J. Med. Chem.
  doi: 10.1021/jm00072a015
– volume: 27
  start-page: 160
  year: 1999
  ident: ref4/cit4a
  publication-title: Free Radical Biol. Med.
  doi: 10.1016/S0891-5849(99)00063-5
– volume: 52
  start-page: 1963
  year: 2009
  ident: ref8/cit8
  publication-title: J. Med. Chem.
  doi: 10.1021/jm8015415
– volume: 1637
  start-page: 31
  year: 2003
  ident: ref6/cit6b
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0925-4439(02)00174-6
– volume: 69
  start-page: 5888
  year: 2004
  ident: ref13/cit13c
  publication-title: J. Org. Chem.
  doi: 10.1021/jo049254j
– volume: 4
  start-page: 757
  year: 2002
  ident: ref4/cit4i
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b109063c
– volume: 49
  start-page: 342
  year: 2001
  ident: ref16/cit16
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf0006527
– volume: 3
  start-page: 626
  year: 2005
  ident: ref13/cit13e
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/b416572a
– volume: 135
  start-page: 76
  year: 2008
  ident: ref4/cit4g
  publication-title: Biophys. Chem.
  doi: 10.1016/j.bpc.2008.03.005
– volume: 339
  start-page: 1523
  year: 1992
  ident: ref2/cit2
  publication-title: Lancet
  doi: 10.1016/0140-6736(92)91277-F
– volume: 69
  start-page: 249
  year: 2005
  ident: ref5/cit5a
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2004.09.013
– start-page: 1520
  year: 2002
  ident: ref14/cit14
  publication-title: J. Chem. Soc., Perkin Trans. 2
  doi: 10.1039/b205380b
– volume: 135
  start-page: 1627
  year: 2002
  ident: ref4/cit4c
  publication-title: Br. J. Pharmacol.
  doi: 10.1038/sj.bjp.0704637
– volume: 381
  start-page: 253
  year: 2000
  ident: ref4/cit4b
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.2000.1973
– volume: 391
  start-page: 79
  year: 2001
  ident: ref4/cit4j
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.2001.2388
– volume: 47
  start-page: 3974
  year: 1999
  ident: ref9/cit9
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf990382w
– volume: 8
  start-page: 4191
  year: 2002
  ident: ref6/cit6a
  publication-title: Chem.—Eur. J.
  doi: 10.1002/1521-3765(20020916)8:18<4191::AID-CHEM4191>3.0.CO;2-S
– volume: 9
  start-page: 502
  year: 2003
  ident: ref15/cit15b
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.200390052
SSID ssj0000555
Score 2.3549666
Snippet Resveratrol (3,5,4′-trihydroxy-trans-stilbene, 3,5,4′-THS) is a well-known natural antioxidant and cancer chemopreventive agent that has attracted much...
Resveratrol (3,5,4'-trihydroxy-trans-stilbene, 3,5,4'-THS) is a well-known natural antioxidant and cancer chemopreventive agent that has attracted much...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5025
SubjectTerms Acetates - chemistry
Antioxidants - chemistry
Antioxidants - pharmacology
Chemistry
Ethanol - chemistry
Exact sciences and technology
Free Radicals - chemistry
Heterocyclic compounds
Heterocyclic compounds with o, s, se, te hetero atom and condensed derivatives
Kinetics
Kinetics and mechanisms
Molecular Structure
Noncondensed benzenic compounds
Organic chemistry
Preparations and properties
Reactivity and mechanisms
Solvents - chemistry
Stilbenes - chemistry
Stilbenes - pharmacology
Structure-Activity Relationship
Title Radical-Scavenging Activity and Mechanism of Resveratrol-Oriented Analogues: Influence of the Solvent, Radical, and Substitution
URI http://dx.doi.org/10.1021/jo9007095
https://www.ncbi.nlm.nih.gov/pubmed/19472994
https://www.proquest.com/docview/67469799
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcgAJUV6FpbBYwIFDUzb22E64VQtVQSpIXSr1Fjl-SMCSVM0uh5760_HksaWihUNuE1v2jMdjz_j7AF6jDROhXZpILVyCTsjEeOXiitcucJ5aX9J9x8FntX-En47l8Rq8uiaDz9O33-ucMGlyeQNuchUXL8U_09mFu5VSriDBuRIDfNCfv9LWY5tLW8-dE9PEWQgdfcX18WW7z-xtwPvhtU5XXvJjZ7kod-zZ3-CN_xrCPbjbx5lstzOM-7DmqwdwazrQuz2E80PTpmiSmSVGeeIqYru245JgpnLswNOj4G_NT1YHduibXwS_fFrPky8EjRwDVUaAJnTz07xjHweuExKOMSWb1XOqpNxmfTfbbZvkptrahGgNj-Bo78PX6X7S0zEkRuhskXCHMiDXxinNTShVHlXLTWonLkVemlxapYPNjBch9yoTmUfUzmLQWmBuxCasV3XlnwCLjgCNdQKdcehCGT0uCue4SxXnwZsRjKO-in45NUWbKefxpDJM5AjeDKosbA9mTpwa86tEX65ETzoEj6uExpfsYSXJ-STT8RvBi8FAiqgoyqqYytfLplAaFeVGR_C4s5uLXnKMR5ccn_5vNFtwu0tSEV7nM1hfnC798xjrLMpxa-u_AWVB-Io
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKeygSAspzC2wtxIFD0278TLitVq22tFukbiv1Fjl-SMCSVPUuB0789HqcZLdFRXDIbeLHeDwee-zvQ-gD025ApUkTLqlJmKE8UVaYMOOlcYSk2pZw3jE5FeML9vmSX7YwOfAWJjTCh5J8TOKv0AXS_W91DtA0OX-ANkIQQsCah6PpyutyzpfI4ETQDkXo9q-wAml_ZwV6dKV8UIZrWCz-HmbG5ebwScNbFBsab5l831vMyz396w8Mx__ryVP0uI068bAxky20ZqtnaHPUkb09R7_PVEzYJFMN_PLAXISHumGWwKoyeGLhifBX_wPXDp9Z_xPAmK_rWfIFgJJD2IoB3gTOgfwnfNQxn4BwiDDxtJ7Bvcpd3FazG8sEpxVvKgTbeIEuDg_OR-OkJWdIFJXZPCGGcceIVEZIolwp8jDQRKV6YFJGSpVzLaTTmbLU5VZkNLOMSaOZk5KyXNGXaL2qK_sa4eAWmNKGMqMMM64M_pdRY4hJBSHOqh7qBz0W7eTyRcybk7Bv6RTZQx-7ES10C20ODBuz-0TfL0WvGjyP-4T6d8xiKUnIIJPh66Gdzk6KMFCQY1GVrRe-EJIJyJT20KvGfFa15CxsZHK2_a_e7KDN8fnkpDg5Oj1-gx426StA8nyL1ufXC_suREHzsh_N_waXSgD6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagSICEeD_CI7UQBw7dkvVzl1sUiFqgLWqo1NvK67GllrAb1QkHTvx0PPtIKSqCw95m_ZwZjz329xHySlg_4hrSRGoOiQAuE-MURIvX4BlLrSvxvGNvX-0ciQ_H8rjbKOJbmNiIEEsKTRIfrXoBvkMYSN-c1jnC0-TyKrmG6TrU6PFkdu55pZRrdHCmeI8k9PuvuArZcGEVurUwIQ6Ib5ks_h5qNkvO9A45WDe2uWnydXu1LLftjz9wHP-_N3fJ7S76pONWXe6RK666T25MetK3B-TnoWkSN8nMIs88MhjRsW0ZJqipgO45fCp8Er7R2tNDF74jKPNZPU8OEDA5hq8UYU7wPCi8pbs9AwoKx0iTzuo53q_col01W02Z6LyaGwtRRx6So-n7L5OdpCNpSAzX2TJhIKQXTBtQmhlfqjxOODOpHUEqWGlyaZX2NjOO-9ypjGdOCA1WeK25yA1_RDaqunJPCI3uQRgLXIABAb6MflhwAAapYsw7MyDDOJZFZ2ShaPLnLO5f-oEckNf9rBa2gzhHpo35ZaIv16KLFtfjMqHhBdVYSzI2ynT8BmSz15UiThTmWkzl6lUolBYKM6YD8rhVofNachE3NLl4-q_ebJLrn99Ni0-7-x-fkZttFgsBPZ-TjeXZyr2IwdCyHDYW8Avx1QN9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radical-scavenging+activity+and+mechanism+of+resveratrol-oriented+analogues%3A+influence+of+the+solvent%2C+radical%2C+and+substitution&rft.jtitle=Journal+of+organic+chemistry&rft.au=Shang%2C+Ya-Jing&rft.au=Qian%2C+Yi-Ping&rft.au=Liu%2C+Xiao-Da&rft.au=Dai%2C+Fang&rft.date=2009-07-17&rft.eissn=1520-6904&rft.volume=74&rft.issue=14&rft.spage=5025&rft_id=info:doi/10.1021%2Fjo9007095&rft_id=info%3Apmid%2F19472994&rft.externalDocID=19472994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3263&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3263&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3263&client=summon