Radical-Scavenging Activity and Mechanism of Resveratrol-Oriented Analogues: Influence of the Solvent, Radical, and Substitution
Resveratrol (3,5,4′-trihydroxy-trans-stilbene, 3,5,4′-THS) is a well-known natural antioxidant and cancer chemopreventive agent that has attracted much interest in the past decade. To find a more active antioxidant and investigate the antioxidative mechanism with resveratrol as the lead compound, we...
Saved in:
Published in | Journal of organic chemistry Vol. 74; no. 14; pp. 5025 - 5031 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
17.07.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Resveratrol (3,5,4′-trihydroxy-trans-stilbene, 3,5,4′-THS) is a well-known natural antioxidant and cancer chemopreventive agent that has attracted much interest in the past decade. To find a more active antioxidant and investigate the antioxidative mechanism with resveratrol as the lead compound, we synthesized 3,5-dihydroxy-trans-stilbene (3,5-DHS), 4-hydroxy-trans-stilbene (4-HS) 3,4-dihydroxy-trans-stilbene (3,4-DHS), 4,4′-dihydroxy-trans-stilbene (4,4′-DHS), 4-hydroxy-3-methoxy-trans-stilbene (3-MeO-4-HS), 4-hydroxy-4′-methoxy-trans-stilbene (4′-MeO-4-HS), 4-hydroxy-4′-methyl-trans-stilbene (4′-Me-4-HS), 4-hydroxy-4′-nitro-trans-stilbene (4′-NO2-4-HS), and 4-hydroxy-4′-trifluoromethyl-trans-stilbene (4′-CF3-4-HS). The radical-scavenging activity and detailed mechanism of resveratrol and its analogues (ArOHs) were investigated by the reaction kinetics with galvinoxyl (GO•) and 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radicals in ethanol and ethyl acetate at 25 °C, using UV−vis spectroscopy. It was found that the reaction rates increase with increasing the electron-rich environment in the molecules, and the compound bearing o-dihydroxyl groups (3,4-DHS) is the most reactive one among the examined resveratrol analogues. The effect of added acetic acid on the measured rate constant for GO• -scavenging reaction reveals that in ethanol that supports ionization solvent besides hydrogen atom transfer (HAT), the kinetics of the process is partially governed by sequential proton loss electron transfer (SPLET). In contrast to GO•, DPPH• has a relatively high reduction potential and therefore enhances the proportion of SPLET in ethanol. The relatively low rate constants for the reactions of ArOHs with GO• or DPPH• in ethyl acetate compared with the rate constants in ethanol prove that in ethyl acetate these reactions occur primarily by the HAT mechanism. The contribution of SPLET and HAT mechanism depends on the ability of the solvent to ionize ArOH and the reduction potential of the free radical involved. Furthermore, the fate of the ArOH-derived radicals, i.e., the phenoxyl radicals, was investigated by the oxidative product analysis of ArOHs and GO• in ethanol. The major products were dihydrofuran dimers in the case of resveratrol, 4,4′-DHS, and 4-HS and a dioxane-like dimer in the case of 3,4-DHS. It is suggested from the oxidative products of these ArOHs that the hydroxyl group at the 4-position is much easier to subject to oxidation than other hydroxyl groups, and the dioxane-like dimer is formed via an o-quinone intermediate. |
---|---|
AbstractList | Resveratrol (3,5,4'-trihydroxy-trans-stilbene, 3,5,4'-THS) is a well-known natural antioxidant and cancer chemopreventive agent that has attracted much interest in the past decade. To find a more active antioxidant and investigate the antioxidative mechanism with resveratrol as the lead compound, we synthesized 3,5-dihydroxy-trans-stilbene (3,5-DHS), 4-hydroxy-trans-stilbene (4-HS) 3,4-dihydroxy-trans-stilbene (3,4-DHS), 4,4'-dihydroxy-trans-stilbene (4,4'-DHS), 4-hydroxy-3-methoxy-trans-stilbene (3-MeO-4-HS), 4-hydroxy-4'-methoxy-trans-stilbene (4'-MeO-4-HS), 4-hydroxy-4'-methyl-trans-stilbene (4'-Me-4-HS), 4-hydroxy-4'-nitro-trans-stilbene (4'-NO(2)-4-HS), and 4-hydroxy-4'-trifluoromethyl-trans-stilbene (4'-CF(3)-4-HS). The radical-scavenging activity and detailed mechanism of resveratrol and its analogues (ArOHs) were investigated by the reaction kinetics with galvinoxyl (GO(*)) and 2,2-diphenyl-1-picrylhydrazyl (DPPH(*)) radicals in ethanol and ethyl acetate at 25 degrees C, using UV-vis spectroscopy. It was found that the reaction rates increase with increasing the electron-rich environment in the molecules, and the compound bearing o-dihydroxyl groups (3,4-DHS) is the most reactive one among the examined resveratrol analogues. The effect of added acetic acid on the measured rate constant for GO(*)-scavenging reaction reveals that in ethanol that supports ionization solvent besides hydrogen atom transfer (HAT), the kinetics of the process is partially governed by sequential proton loss electron transfer (SPLET). In contrast to GO(*), DPPH(*) has a relatively high reduction potential and therefore enhances the proportion of SPLET in ethanol. The relatively low rate constants for the reactions of ArOHs with GO(*) or DPPH(*) in ethyl acetate compared with the rate constants in ethanol prove that in ethyl acetate these reactions occur primarily by the HAT mechanism. The contribution of SPLET and HAT mechanism depends on the ability of the solvent to ionize ArOH and the reduction potential of the free radical involved. Furthermore, the fate of the ArOH-derived radicals, i.e., the phenoxyl radicals, was investigated by the oxidative product analysis of ArOHs and GO(*) in ethanol. The major products were dihydrofuran dimers in the case of resveratrol, 4,4'-DHS, and 4-HS and a dioxane-like dimer in the case of 3,4-DHS. It is suggested from the oxidative products of these ArOHs that the hydroxyl group at the 4-position is much easier to subject to oxidation than other hydroxyl groups, and the dioxane-like dimer is formed via an o-quinone intermediate. Resveratrol (3,5,4′-trihydroxy-trans-stilbene, 3,5,4′-THS) is a well-known natural antioxidant and cancer chemopreventive agent that has attracted much interest in the past decade. To find a more active antioxidant and investigate the antioxidative mechanism with resveratrol as the lead compound, we synthesized 3,5-dihydroxy-trans-stilbene (3,5-DHS), 4-hydroxy-trans-stilbene (4-HS) 3,4-dihydroxy-trans-stilbene (3,4-DHS), 4,4′-dihydroxy-trans-stilbene (4,4′-DHS), 4-hydroxy-3-methoxy-trans-stilbene (3-MeO-4-HS), 4-hydroxy-4′-methoxy-trans-stilbene (4′-MeO-4-HS), 4-hydroxy-4′-methyl-trans-stilbene (4′-Me-4-HS), 4-hydroxy-4′-nitro-trans-stilbene (4′-NO2-4-HS), and 4-hydroxy-4′-trifluoromethyl-trans-stilbene (4′-CF3-4-HS). The radical-scavenging activity and detailed mechanism of resveratrol and its analogues (ArOHs) were investigated by the reaction kinetics with galvinoxyl (GO•) and 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radicals in ethanol and ethyl acetate at 25 °C, using UV−vis spectroscopy. It was found that the reaction rates increase with increasing the electron-rich environment in the molecules, and the compound bearing o-dihydroxyl groups (3,4-DHS) is the most reactive one among the examined resveratrol analogues. The effect of added acetic acid on the measured rate constant for GO• -scavenging reaction reveals that in ethanol that supports ionization solvent besides hydrogen atom transfer (HAT), the kinetics of the process is partially governed by sequential proton loss electron transfer (SPLET). In contrast to GO•, DPPH• has a relatively high reduction potential and therefore enhances the proportion of SPLET in ethanol. The relatively low rate constants for the reactions of ArOHs with GO• or DPPH• in ethyl acetate compared with the rate constants in ethanol prove that in ethyl acetate these reactions occur primarily by the HAT mechanism. The contribution of SPLET and HAT mechanism depends on the ability of the solvent to ionize ArOH and the reduction potential of the free radical involved. Furthermore, the fate of the ArOH-derived radicals, i.e., the phenoxyl radicals, was investigated by the oxidative product analysis of ArOHs and GO• in ethanol. The major products were dihydrofuran dimers in the case of resveratrol, 4,4′-DHS, and 4-HS and a dioxane-like dimer in the case of 3,4-DHS. It is suggested from the oxidative products of these ArOHs that the hydroxyl group at the 4-position is much easier to subject to oxidation than other hydroxyl groups, and the dioxane-like dimer is formed via an o-quinone intermediate. Resveratrol (3,5,4'-trihydroxy-trans-stilbene, 3,5,4'-THS) is a well-known natural antioxidant and cancer chemopreventive agent that has attracted much interest in the past decade. To find a more active antioxidant and investigate the antioxidative mechanism with resveratrol as the lead compound, we synthesized 3,5-dihydroxy-trans-stilbene (3,5-DHS), 4-hydroxy-trans-stilbene (4-HS) 3,4-dihydroxy-trans-stilbene (3,4-DHS), 4,4'-dihydroxy-trans-stilbene (4,4'-DHS), 4-hydroxy-3-methoxy-trans-stilbene (3-MeO-4-HS), 4-hydroxy-4'-methoxy-trans-stilbene (4'-MeO-4-HS), 4-hydroxy-4'-methyl-trans-stilbene (4'-Me-4-HS), 4-hydroxy-4'-nitro-trans-stilbene (4'-NO(2)-4-HS), and 4-hydroxy-4'-trifluoromethyl-trans-stilbene (4'-CF(3)-4-HS). The radical-scavenging activity and detailed mechanism of resveratrol and its analogues (ArOHs) were investigated by the reaction kinetics with galvinoxyl (GO(*)) and 2,2-diphenyl-1-picrylhydrazyl (DPPH(*)) radicals in ethanol and ethyl acetate at 25 degrees C, using UV-vis spectroscopy. It was found that the reaction rates increase with increasing the electron-rich environment in the molecules, and the compound bearing o-dihydroxyl groups (3,4-DHS) is the most reactive one among the examined resveratrol analogues. The effect of added acetic acid on the measured rate constant for GO(*)-scavenging reaction reveals that in ethanol that supports ionization solvent besides hydrogen atom transfer (HAT), the kinetics of the process is partially governed by sequential proton loss electron transfer (SPLET). In contrast to GO(*), DPPH(*) has a relatively high reduction potential and therefore enhances the proportion of SPLET in ethanol. The relatively low rate constants for the reactions of ArOHs with GO(*) or DPPH(*) in ethyl acetate compared with the rate constants in ethanol prove that in ethyl acetate these reactions occur primarily by the HAT mechanism. The contribution of SPLET and HAT mechanism depends on the ability of the solvent to ionize ArOH and the reduction potential of the free radical involved. Furthermore, the fate of the ArOH-derived radicals, i.e., the phenoxyl radicals, was investigated by the oxidative product analysis of ArOHs and GO(*) in ethanol. The major products were dihydrofuran dimers in the case of resveratrol, 4,4'-DHS, and 4-HS and a dioxane-like dimer in the case of 3,4-DHS. It is suggested from the oxidative products of these ArOHs that the hydroxyl group at the 4-position is much easier to subject to oxidation than other hydroxyl groups, and the dioxane-like dimer is formed via an o-quinone intermediate.Resveratrol (3,5,4'-trihydroxy-trans-stilbene, 3,5,4'-THS) is a well-known natural antioxidant and cancer chemopreventive agent that has attracted much interest in the past decade. To find a more active antioxidant and investigate the antioxidative mechanism with resveratrol as the lead compound, we synthesized 3,5-dihydroxy-trans-stilbene (3,5-DHS), 4-hydroxy-trans-stilbene (4-HS) 3,4-dihydroxy-trans-stilbene (3,4-DHS), 4,4'-dihydroxy-trans-stilbene (4,4'-DHS), 4-hydroxy-3-methoxy-trans-stilbene (3-MeO-4-HS), 4-hydroxy-4'-methoxy-trans-stilbene (4'-MeO-4-HS), 4-hydroxy-4'-methyl-trans-stilbene (4'-Me-4-HS), 4-hydroxy-4'-nitro-trans-stilbene (4'-NO(2)-4-HS), and 4-hydroxy-4'-trifluoromethyl-trans-stilbene (4'-CF(3)-4-HS). The radical-scavenging activity and detailed mechanism of resveratrol and its analogues (ArOHs) were investigated by the reaction kinetics with galvinoxyl (GO(*)) and 2,2-diphenyl-1-picrylhydrazyl (DPPH(*)) radicals in ethanol and ethyl acetate at 25 degrees C, using UV-vis spectroscopy. It was found that the reaction rates increase with increasing the electron-rich environment in the molecules, and the compound bearing o-dihydroxyl groups (3,4-DHS) is the most reactive one among the examined resveratrol analogues. The effect of added acetic acid on the measured rate constant for GO(*)-scavenging reaction reveals that in ethanol that supports ionization solvent besides hydrogen atom transfer (HAT), the kinetics of the process is partially governed by sequential proton loss electron transfer (SPLET). In contrast to GO(*), DPPH(*) has a relatively high reduction potential and therefore enhances the proportion of SPLET in ethanol. The relatively low rate constants for the reactions of ArOHs with GO(*) or DPPH(*) in ethyl acetate compared with the rate constants in ethanol prove that in ethyl acetate these reactions occur primarily by the HAT mechanism. The contribution of SPLET and HAT mechanism depends on the ability of the solvent to ionize ArOH and the reduction potential of the free radical involved. Furthermore, the fate of the ArOH-derived radicals, i.e., the phenoxyl radicals, was investigated by the oxidative product analysis of ArOHs and GO(*) in ethanol. The major products were dihydrofuran dimers in the case of resveratrol, 4,4'-DHS, and 4-HS and a dioxane-like dimer in the case of 3,4-DHS. It is suggested from the oxidative products of these ArOHs that the hydroxyl group at the 4-position is much easier to subject to oxidation than other hydroxyl groups, and the dioxane-like dimer is formed via an o-quinone intermediate. |
Author | Liu, Xiao-Da Shang, Xian-Ling Jia, Wen-Qiang Dai, Fang Zhou, Bo Fang, Jian-Guo Liu, Qiang Shang, Ya-Jing Qian, Yi-Ping |
Author_xml | – sequence: 1 givenname: Ya-Jing surname: Shang fullname: Shang, Ya-Jing – sequence: 2 givenname: Yi-Ping surname: Qian fullname: Qian, Yi-Ping – sequence: 3 givenname: Xiao-Da surname: Liu fullname: Liu, Xiao-Da – sequence: 4 givenname: Fang surname: Dai fullname: Dai, Fang – sequence: 5 givenname: Xian-Ling surname: Shang fullname: Shang, Xian-Ling – sequence: 6 givenname: Wen-Qiang surname: Jia fullname: Jia, Wen-Qiang – sequence: 7 givenname: Qiang surname: Liu fullname: Liu, Qiang – sequence: 8 givenname: Jian-Guo surname: Fang fullname: Fang, Jian-Guo – sequence: 9 givenname: Bo surname: Zhou fullname: Zhou, Bo |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22087208$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19472994$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0UFrHCEUB3ApKc0m7aFfoHhpIZBpHMcZx96WkLaBlEC2PQ9v9bkxzGqqzkJu_eh1m2kKJYII8vPv03dEDnzwSMjbmn2sGa_P7oJiTDLVviCLuuWs6hQTB2TBGOdVw7vmkByldMfKaNv2FTmslZBcKbEgv27AOA1jtdKwQ79xfkOXOrudyw8UvKHfUN-Cd2lLg6U3mHYYIccwVtfRoc9o6NLDGDYTpk_00ttxQq9xj_Mt0lUYS2o-pfM1p38yV9M6ZZen7IJ_TV5aGBO-mddj8uPzxffzr9XV9ZfL8-VVBY3sc8WNaK3gEkwnOdh1p4RpONSamVrwNahWd9LqHrCxCru-6VEIabSwUjZCQXNMPjzm3sfwsxSbh61LGscRPIYpDZ0UnZJKFfhuhtN6i2a4j24L8WH4-2cFvJ8BpPIkG8Frl54c56yXZRZ38uh0DClFtP-i2LDv2_DUt2LP_rPaZdj_T47gxmdPzFWATmV7iqUL6Rn3G1JYpgg |
CODEN | JOCEAH |
CitedBy_id | crossref_primary_10_1021_acs_orglett_9b03160 crossref_primary_10_1016_j_radphyschem_2011_11_025 crossref_primary_10_1161_CIRCULATIONAHA_118_037398 crossref_primary_10_1039_C6RA06059E crossref_primary_10_1021_acs_jafc_3c04022 crossref_primary_10_3109_10715762_2011_629199 crossref_primary_10_1039_D0RA03249B crossref_primary_10_1002_mnfr_201500297 crossref_primary_10_3390_antiox12101858 crossref_primary_10_3390_molecules26051244 crossref_primary_10_1039_b927075m crossref_primary_10_3390_pr10040647 crossref_primary_10_1016_j_foodchem_2010_11_011 crossref_primary_10_4103_1673_5374_265545 crossref_primary_10_1016_j_microc_2021_106603 crossref_primary_10_1021_cb3006962 crossref_primary_10_1016_j_jphotochem_2014_11_019 crossref_primary_10_1016_j_ifset_2013_03_006 crossref_primary_10_3390_molecules15107035 crossref_primary_10_1002_chem_201303587 crossref_primary_10_1016_j_supflu_2013_04_018 crossref_primary_10_1002_qua_25665 crossref_primary_10_1021_acs_jafc_9b02875 crossref_primary_10_3390_molecules24010003 crossref_primary_10_1016_j_ejmech_2025_117376 crossref_primary_10_3390_brainsci10090651 crossref_primary_10_1007_s11434_010_3064_0 crossref_primary_10_1016_j_neuint_2015_08_009 crossref_primary_10_1021_jf201773q crossref_primary_10_3390_molecules26092535 crossref_primary_10_1134_S1070363215130046 crossref_primary_10_1007_s00894_011_1306_y crossref_primary_10_1002_chem_201002020 crossref_primary_10_1016_j_foodchem_2012_05_074 crossref_primary_10_3390_ijms222413539 crossref_primary_10_17221_611_2014_CJFS crossref_primary_10_1021_acs_jpcb_8b08284 crossref_primary_10_1016_j_foodchem_2022_133359 crossref_primary_10_3390_molecules21111442 crossref_primary_10_1002_ddr_20380 crossref_primary_10_1016_j_jelechem_2019_113677 crossref_primary_10_3390_molecules15117792 crossref_primary_10_1016_j_foodchem_2018_01_069 crossref_primary_10_1002_mnfr_201700969 crossref_primary_10_1111_1541_4337_13182 crossref_primary_10_1016_j_jnutbio_2023_109435 crossref_primary_10_3390_nu12010159 crossref_primary_10_1016_j_biochi_2011_11_005 crossref_primary_10_1016_j_freeradbiomed_2011_02_028 crossref_primary_10_1007_s11011_019_00408_1 crossref_primary_10_1039_D0RA04896H crossref_primary_10_3390_molecules25235770 crossref_primary_10_3390_ma18020457 crossref_primary_10_1016_j_comptc_2011_12_020 crossref_primary_10_3390_molecules29010086 crossref_primary_10_1007_s11095_025_03836_0 crossref_primary_10_1039_C4TA03023K crossref_primary_10_1007_s00044_019_02351_3 crossref_primary_10_1016_j_bmcl_2013_09_073 crossref_primary_10_1016_j_foodchem_2017_06_021 crossref_primary_10_1016_j_comptc_2018_12_011 crossref_primary_10_1186_s13065_020_00696_0 crossref_primary_10_1016_j_bmcl_2012_12_001 crossref_primary_10_1016_j_biotechadv_2018_04_009 crossref_primary_10_1007_s12035_024_04502_z crossref_primary_10_1021_acs_jafc_7b02247 crossref_primary_10_3390_antiox3020212 crossref_primary_10_1016_j_ejmech_2013_06_016 crossref_primary_10_1016_j_theochem_2010_04_005 crossref_primary_10_1002_chem_201103897 crossref_primary_10_1002_2211_5463_13762 crossref_primary_10_1002_biof_1399 crossref_primary_10_1016_j_dscb_2022_100038 crossref_primary_10_1039_C5OB00193E crossref_primary_10_1016_j_pharep_2017_03_018 crossref_primary_10_1007_s11094_023_02960_8 crossref_primary_10_1089_aivt_2023_0008 crossref_primary_10_1063_1_4732583 crossref_primary_10_1016_j_comptc_2013_06_019 crossref_primary_10_1016_j_freeradbiomed_2024_07_032 crossref_primary_10_3390_molecules25081975 crossref_primary_10_1016_j_freeradbiomed_2018_11_018 crossref_primary_10_1016_j_ibiod_2017_05_023 crossref_primary_10_1039_C4RA14737E crossref_primary_10_1002_chem_200901627 crossref_primary_10_1021_acsomega_4c01742 crossref_primary_10_3390_molecules19067850 crossref_primary_10_1021_jacs_0c01714 crossref_primary_10_1021_jp3033337 crossref_primary_10_1021_cr500689b crossref_primary_10_1039_b922673g crossref_primary_10_1039_C9FO00420C crossref_primary_10_1016_j_bmcl_2011_08_090 crossref_primary_10_3390_molecules26030646 crossref_primary_10_3184_174751915X14241928341993 crossref_primary_10_3390_antiox10050811 crossref_primary_10_3390_antiox11040620 crossref_primary_10_3390_pr10071281 crossref_primary_10_1016_j_bmc_2011_11_030 crossref_primary_10_1016_j_foodchem_2012_03_036 crossref_primary_10_1021_jo302483s crossref_primary_10_1002_slct_202101560 crossref_primary_10_1016_j_bmcl_2010_03_039 crossref_primary_10_1021_jo500789v crossref_primary_10_1007_s11095_010_0090_1 crossref_primary_10_1016_j_foodchem_2012_05_043 crossref_primary_10_1021_acschemneuro_8b00577 crossref_primary_10_1016_j_ijms_2012_05_010 crossref_primary_10_1021_acs_jafc_0c04399 crossref_primary_10_3389_fdmed_2024_1464009 crossref_primary_10_1155_2013_354982 crossref_primary_10_1002_cbic_201300080 crossref_primary_10_3390_ijms25010003 crossref_primary_10_1246_bcsj_20120005 crossref_primary_10_1002_chem_201403024 crossref_primary_10_1016_j_foodchem_2014_05_077 crossref_primary_10_1021_acs_jpcb_5b03810 crossref_primary_10_1016_j_cplett_2010_02_050 crossref_primary_10_1016_j_bmcl_2012_06_026 crossref_primary_10_1021_acs_joc_1c01801 |
Cites_doi | 10.1021/jo0497860 10.1074/jbc.M101846200 10.1096/fj.02-0752rev 10.1021/tx7003008 10.1139/v70-253 10.1021/jf048794e 10.1016/j.bmc.2005.09.070 10.1021/jo035758q 10.1016/j.mrrev.2007.08.004 10.1016/j.bioorg.2006.04.001 10.1016/j.exphem.2006.05.018 10.1038/nrc1046 10.1016/j.freeradbiomed.2006.09.007 10.1021/jo026917t 10.1021/ja002455u 10.1016/S0040-4020(03)00405-8 10.1016/j.bcp.2006.05.023 10.1021/ol051962j 10.1016/j.bcp.2004.12.001 10.1021/jf802665s 10.1246/cl.2007.1276 10.1021/ar0682029 10.1038/nrd2060 10.1016/j.aca.2003.08.065 10.1038/sj.bjc.6602300 10.1021/jm060630x 10.1016/S1383-5718(02)00211-5 10.1021/jm00072a015 10.1016/S0891-5849(99)00063-5 10.1021/jm8015415 10.1016/S0925-4439(02)00174-6 10.1021/jo049254j 10.1039/b109063c 10.1021/jf0006527 10.1039/b416572a 10.1016/j.bpc.2008.03.005 10.1016/0140-6736(92)91277-F 10.1016/j.bcp.2004.09.013 10.1039/b205380b 10.1038/sj.bjp.0704637 10.1006/abbi.2000.1973 10.1006/abbi.2001.2388 10.1021/jf990382w 10.1002/1521-3765(20020916)8:18<4191::AID-CHEM4191>3.0.CO;2-S 10.1002/chem.200390052 |
ContentType | Journal Article |
Copyright | Copyright © 2009 American Chemical Society 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2009 American Chemical Society – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/jo9007095 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Mechanism of Resveratrol-Oriented Analogues |
EISSN | 1520-6904 |
EndPage | 5031 |
ExternalDocumentID | 19472994 22087208 10_1021_jo9007095 a322301655 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 29L 4.4 53G 55A 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF AFMIJ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CJ0 CS3 D0L DU5 DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 P2P PZZ ROL RXW TAE TAF TN5 UI2 UKR UPT UQL VF5 VG9 VQA W1F WH7 X XFK YZZ ZCG --- -DZ -~X 6TJ AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA .GJ .HR 123 186 1WB 3EH 41~ ABHMW ACBNA ACRPL ACTDY ADNMO ADXHL AEYZD AGQPQ AI. AIDAL ANPPW ANTXH D0S IQODW MVM NHB OHT RNS T9H UBC UMD VH1 X7L XOL XXG YQJ YR5 YXA YXE YYP ZE2 ZGI CGR CUY CVF ECM EIF NPM VXZ YIN 7X8 |
ID | FETCH-LOGICAL-a378t-2d45f427ad672afb694d32a1c0d142ba95c67fc8ae3f9e6838e447dc4f77349a3 |
IEDL.DBID | ACS |
ISSN | 0022-3263 1520-6904 |
IngestDate | Fri Jul 11 08:37:34 EDT 2025 Wed Feb 19 01:49:56 EST 2025 Mon Jul 21 09:13:25 EDT 2025 Tue Jul 01 01:52:41 EDT 2025 Thu Apr 24 22:50:54 EDT 2025 Thu Aug 27 13:42:21 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Nitro compound Furan derivatives Electron transfer Oxygen heterocycle Phenoxy radical Radical trapping Resveratrol Hydroxyl group Reaction mechanism Oxidation Rate constant Chemical synthesis Solvent Hydrogen transfer Dioxane derivatives Ethanol DPPH Quinone Reduction potential Malignant tumor Antioxidant Acetic acid derivative Reaction rate Chemical reaction kinetics Stilbene derivatives Ionization Phytoalexin Organic free radical Analog Phenols Benzenic compound Dimer Fluorine Organic compounds Acetic acid Cancer Ultraviolet visible spectrometry |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a378t-2d45f427ad672afb694d32a1c0d142ba95c67fc8ae3f9e6838e447dc4f77349a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://202.201.7.4:8080/handle/262010/77026 |
PMID | 19472994 |
PQID | 67469799 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_67469799 pubmed_primary_19472994 pascalfrancis_primary_22087208 crossref_primary_10_1021_jo9007095 crossref_citationtrail_10_1021_jo9007095 acs_journals_10_1021_jo9007095 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-07-17 |
PublicationDateYYYYMMDD | 2009-07-17 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-07-17 day: 17 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Journal of organic chemistry |
PublicationTitleAlternate | J. Org. Chem |
PublicationYear | 2009 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Hung L. M. (ref4/cit4c) 2002; 135 Caruso F. (ref10/cit10) 2004; 52 Litwinienko G. (ref13/cit13a) 2003; 68 Nakanishi I. (ref4/cit4f) 2007; 36 Stojanoviéc S. (ref4/cit4i) 2002; 4 Cai Y.-J. (ref6/cit6b) 2003; 1637 Qian Y.-P. (ref8/cit8) 2009; 52 Burkitt M. J. (ref4/cit4b) 2000; 381 Farines V. (ref12/cit12a) 2004; 513 Fang J. G. (ref6/cit6a) 2002; 8 Fukuhara K. (ref4/cit4h) 2008; 21 Wang M. (ref9/cit9) 1999; 47 Baur J. A. (ref1/cit1a) 2006; 5 Murias M. (ref4/cit4e) 2005; 69 Wang Y. (ref5/cit5a) 2005; 69 Nakanishi I. (ref14/cit14) 2002 Bachelor F. W. (ref17/cit17b) 1970; 48 Stojanoviéc S. (ref4/cit4j) 2001; 391 Thakkar K. (ref17/cit17a) 1993; 36 Foti M. C. (ref13/cit13b) 2004; 69 Fang J.-G. (ref6/cit6d) 2008; 56 Nakanishi I. (ref13/cit13e) 2005; 3 Stivala L.-A. (ref12/cit12c) 2001; 276 Musialik M. (ref13/cit13d) 2005; 7 Ray P. S. (ref4/cit4a) 1999; 27 Hussain S. P. (ref3/cit3a) 2003; 3 Zheng L.-F. (ref7/cit7) 2006; 41 Solladie G. (ref18/cit18) 2003; 59 Cooke M. S. (ref3/cit3b) 2003; 17 Litwinienko G. (ref13/cit13c) 2004; 69 Zhang H. Y. (ref15/cit15b) 2003; 9 Wright J. S. (ref15/cit15a) 2001; 123 Horvath Z. (ref5/cit5d) 2006; 34 Sushma M. (ref15/cit15c) 2008; 626 Saiko P. (ref1/cit1b) 2008; 658 Fabris S. (ref4/cit4g) 2008; 135 Foti M. (ref16/cit16) 2001; 49 Matsuoka A. (ref12/cit12b) 2002; 521 Amorati R. (ref4/cit4d) 2004; 69 Fukuhara K. (ref11/cit11) 2006; 14 Litwinienko G. (ref13/cit13f) 2007; 40 Gosslau A. (ref5/cit5b) 2005; 92 Heynekamp J. J. (ref17/cit17c) 2006; 49 Cheng J.-C. (ref6/cit6c) 2006; 34 Renaud S. (ref2/cit2) 1992; 339 Balan K. V. (ref5/cit5c) 2006; 72 |
References_xml | – volume: 69 start-page: 7101 year: 2004 ident: ref4/cit4d publication-title: J. Org. Chem. doi: 10.1021/jo0497860 – volume: 276 start-page: 22586 year: 2001 ident: ref12/cit12c publication-title: J. Biol. Chem. doi: 10.1074/jbc.M101846200 – volume: 17 start-page: 1195 year: 2003 ident: ref3/cit3b publication-title: FASEB J. doi: 10.1096/fj.02-0752rev – volume: 21 start-page: 282 year: 2008 ident: ref4/cit4h publication-title: Chem. Res. Toxicol. doi: 10.1021/tx7003008 – volume: 48 start-page: 1554 year: 1970 ident: ref17/cit17b publication-title: Can. J. Chem. doi: 10.1139/v70-253 – volume: 52 start-page: 7279 year: 2004 ident: ref10/cit10 publication-title: J. Agric. Food Chem. doi: 10.1021/jf048794e – volume: 14 start-page: 1437 year: 2006 ident: ref11/cit11 publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2005.09.070 – volume: 69 start-page: 2309 year: 2004 ident: ref13/cit13b publication-title: J. Org. Chem. doi: 10.1021/jo035758q – volume: 658 start-page: 68 year: 2008 ident: ref1/cit1b publication-title: Mutat. Res. doi: 10.1016/j.mrrev.2007.08.004 – volume: 34 start-page: 142 year: 2006 ident: ref6/cit6c publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2006.04.001 – volume: 34 start-page: 1377 year: 2006 ident: ref5/cit5d publication-title: Exp. Hematol. doi: 10.1016/j.exphem.2006.05.018 – volume: 3 start-page: 276 year: 2003 ident: ref3/cit3a publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1046 – volume: 41 start-page: 1807 year: 2006 ident: ref7/cit7 publication-title: Free Radical Biol. Med. doi: 10.1016/j.freeradbiomed.2006.09.007 – volume: 68 start-page: 3433 year: 2003 ident: ref13/cit13a publication-title: J. Org. Chem. doi: 10.1021/jo026917t – volume: 123 start-page: 1173 year: 2001 ident: ref15/cit15a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja002455u – volume: 59 start-page: 3315 year: 2003 ident: ref18/cit18 publication-title: Tetrahedron doi: 10.1016/S0040-4020(03)00405-8 – volume: 72 start-page: 573 year: 2006 ident: ref5/cit5c publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2006.05.023 – volume: 7 start-page: 4951 year: 2005 ident: ref13/cit13d publication-title: Org. Lett. doi: 10.1021/ol051962j – volume: 69 start-page: 903 year: 2005 ident: ref4/cit4e publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2004.12.001 – volume: 56 start-page: 11458 year: 2008 ident: ref6/cit6d publication-title: J. Agric. Food Chem. doi: 10.1021/jf802665s – volume: 36 start-page: 1276 year: 2007 ident: ref4/cit4f publication-title: Chem. Lett. doi: 10.1246/cl.2007.1276 – volume: 40 start-page: 222 year: 2007 ident: ref13/cit13f publication-title: Acc. Chem. Res. doi: 10.1021/ar0682029 – volume: 5 start-page: 493 year: 2006 ident: ref1/cit1a publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2060 – volume: 513 start-page: 103 year: 2004 ident: ref12/cit12a publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2003.08.065 – volume: 92 start-page: 513 year: 2005 ident: ref5/cit5b publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6602300 – volume: 49 start-page: 7182 year: 2006 ident: ref17/cit17c publication-title: J. Med. Chem. doi: 10.1021/jm060630x – volume: 521 start-page: 29 year: 2002 ident: ref12/cit12b publication-title: Mutat. Res. doi: 10.1016/S1383-5718(02)00211-5 – volume: 626 start-page: 628 year: 2008 ident: ref15/cit15c publication-title: Chem. Commun. – volume: 36 start-page: 2950 year: 1993 ident: ref17/cit17a publication-title: J. Med. Chem. doi: 10.1021/jm00072a015 – volume: 27 start-page: 160 year: 1999 ident: ref4/cit4a publication-title: Free Radical Biol. Med. doi: 10.1016/S0891-5849(99)00063-5 – volume: 52 start-page: 1963 year: 2009 ident: ref8/cit8 publication-title: J. Med. Chem. doi: 10.1021/jm8015415 – volume: 1637 start-page: 31 year: 2003 ident: ref6/cit6b publication-title: Biochim. Biophys. Acta doi: 10.1016/S0925-4439(02)00174-6 – volume: 69 start-page: 5888 year: 2004 ident: ref13/cit13c publication-title: J. Org. Chem. doi: 10.1021/jo049254j – volume: 4 start-page: 757 year: 2002 ident: ref4/cit4i publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b109063c – volume: 49 start-page: 342 year: 2001 ident: ref16/cit16 publication-title: J. Agric. Food Chem. doi: 10.1021/jf0006527 – volume: 3 start-page: 626 year: 2005 ident: ref13/cit13e publication-title: Org. Biomol. Chem. doi: 10.1039/b416572a – volume: 135 start-page: 76 year: 2008 ident: ref4/cit4g publication-title: Biophys. Chem. doi: 10.1016/j.bpc.2008.03.005 – volume: 339 start-page: 1523 year: 1992 ident: ref2/cit2 publication-title: Lancet doi: 10.1016/0140-6736(92)91277-F – volume: 69 start-page: 249 year: 2005 ident: ref5/cit5a publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2004.09.013 – start-page: 1520 year: 2002 ident: ref14/cit14 publication-title: J. Chem. Soc., Perkin Trans. 2 doi: 10.1039/b205380b – volume: 135 start-page: 1627 year: 2002 ident: ref4/cit4c publication-title: Br. J. Pharmacol. doi: 10.1038/sj.bjp.0704637 – volume: 381 start-page: 253 year: 2000 ident: ref4/cit4b publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.2000.1973 – volume: 391 start-page: 79 year: 2001 ident: ref4/cit4j publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.2001.2388 – volume: 47 start-page: 3974 year: 1999 ident: ref9/cit9 publication-title: J. Agric. Food Chem. doi: 10.1021/jf990382w – volume: 8 start-page: 4191 year: 2002 ident: ref6/cit6a publication-title: Chem.—Eur. J. doi: 10.1002/1521-3765(20020916)8:18<4191::AID-CHEM4191>3.0.CO;2-S – volume: 9 start-page: 502 year: 2003 ident: ref15/cit15b publication-title: Chem.—Eur. J. doi: 10.1002/chem.200390052 |
SSID | ssj0000555 |
Score | 2.3549666 |
Snippet | Resveratrol (3,5,4′-trihydroxy-trans-stilbene, 3,5,4′-THS) is a well-known natural antioxidant and cancer chemopreventive agent that has attracted much... Resveratrol (3,5,4'-trihydroxy-trans-stilbene, 3,5,4'-THS) is a well-known natural antioxidant and cancer chemopreventive agent that has attracted much... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5025 |
SubjectTerms | Acetates - chemistry Antioxidants - chemistry Antioxidants - pharmacology Chemistry Ethanol - chemistry Exact sciences and technology Free Radicals - chemistry Heterocyclic compounds Heterocyclic compounds with o, s, se, te hetero atom and condensed derivatives Kinetics Kinetics and mechanisms Molecular Structure Noncondensed benzenic compounds Organic chemistry Preparations and properties Reactivity and mechanisms Solvents - chemistry Stilbenes - chemistry Stilbenes - pharmacology Structure-Activity Relationship |
Title | Radical-Scavenging Activity and Mechanism of Resveratrol-Oriented Analogues: Influence of the Solvent, Radical, and Substitution |
URI | http://dx.doi.org/10.1021/jo9007095 https://www.ncbi.nlm.nih.gov/pubmed/19472994 https://www.proquest.com/docview/67469799 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcgAJUV6FpbBYwIFDUzb22E64VQtVQSpIXSr1Fjl-SMCSVM0uh5760_HksaWihUNuE1v2jMdjz_j7AF6jDROhXZpILVyCTsjEeOXiitcucJ5aX9J9x8FntX-En47l8Rq8uiaDz9O33-ucMGlyeQNuchUXL8U_09mFu5VSriDBuRIDfNCfv9LWY5tLW8-dE9PEWQgdfcX18WW7z-xtwPvhtU5XXvJjZ7kod-zZ3-CN_xrCPbjbx5lstzOM-7DmqwdwazrQuz2E80PTpmiSmSVGeeIqYru245JgpnLswNOj4G_NT1YHduibXwS_fFrPky8EjRwDVUaAJnTz07xjHweuExKOMSWb1XOqpNxmfTfbbZvkptrahGgNj-Bo78PX6X7S0zEkRuhskXCHMiDXxinNTShVHlXLTWonLkVemlxapYPNjBch9yoTmUfUzmLQWmBuxCasV3XlnwCLjgCNdQKdcehCGT0uCue4SxXnwZsRjKO-in45NUWbKefxpDJM5AjeDKosbA9mTpwa86tEX65ETzoEj6uExpfsYSXJ-STT8RvBi8FAiqgoyqqYytfLplAaFeVGR_C4s5uLXnKMR5ccn_5vNFtwu0tSEV7nM1hfnC798xjrLMpxa-u_AWVB-Io |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKeygSAspzC2wtxIFD0278TLitVq22tFukbiv1Fjl-SMCSVPUuB0789HqcZLdFRXDIbeLHeDwee-zvQ-gD025ApUkTLqlJmKE8UVaYMOOlcYSk2pZw3jE5FeML9vmSX7YwOfAWJjTCh5J8TOKv0AXS_W91DtA0OX-ANkIQQsCah6PpyutyzpfI4ETQDkXo9q-wAml_ZwV6dKV8UIZrWCz-HmbG5ebwScNbFBsab5l831vMyz396w8Mx__ryVP0uI068bAxky20ZqtnaHPUkb09R7_PVEzYJFMN_PLAXISHumGWwKoyeGLhifBX_wPXDp9Z_xPAmK_rWfIFgJJD2IoB3gTOgfwnfNQxn4BwiDDxtJ7Bvcpd3FazG8sEpxVvKgTbeIEuDg_OR-OkJWdIFJXZPCGGcceIVEZIolwp8jDQRKV6YFJGSpVzLaTTmbLU5VZkNLOMSaOZk5KyXNGXaL2qK_sa4eAWmNKGMqMMM64M_pdRY4hJBSHOqh7qBz0W7eTyRcybk7Bv6RTZQx-7ES10C20ODBuz-0TfL0WvGjyP-4T6d8xiKUnIIJPh66Gdzk6KMFCQY1GVrRe-EJIJyJT20KvGfFa15CxsZHK2_a_e7KDN8fnkpDg5Oj1-gx426StA8nyL1ufXC_suREHzsh_N_waXSgD6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagSICEeD_CI7UQBw7dkvVzl1sUiFqgLWqo1NvK67GllrAb1QkHTvx0PPtIKSqCw95m_ZwZjz329xHySlg_4hrSRGoOiQAuE-MURIvX4BlLrSvxvGNvX-0ciQ_H8rjbKOJbmNiIEEsKTRIfrXoBvkMYSN-c1jnC0-TyKrmG6TrU6PFkdu55pZRrdHCmeI8k9PuvuArZcGEVurUwIQ6Ib5ks_h5qNkvO9A45WDe2uWnydXu1LLftjz9wHP-_N3fJ7S76pONWXe6RK666T25MetK3B-TnoWkSN8nMIs88MhjRsW0ZJqipgO45fCp8Er7R2tNDF74jKPNZPU8OEDA5hq8UYU7wPCi8pbs9AwoKx0iTzuo53q_col01W02Z6LyaGwtRRx6So-n7L5OdpCNpSAzX2TJhIKQXTBtQmhlfqjxOODOpHUEqWGlyaZX2NjOO-9ypjGdOCA1WeK25yA1_RDaqunJPCI3uQRgLXIABAb6MflhwAAapYsw7MyDDOJZFZ2ShaPLnLO5f-oEckNf9rBa2gzhHpo35ZaIv16KLFtfjMqHhBdVYSzI2ynT8BmSz15UiThTmWkzl6lUolBYKM6YD8rhVofNachE3NLl4-q_ebJLrn99Ni0-7-x-fkZttFgsBPZ-TjeXZyr2IwdCyHDYW8Avx1QN9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radical-scavenging+activity+and+mechanism+of+resveratrol-oriented+analogues%3A+influence+of+the+solvent%2C+radical%2C+and+substitution&rft.jtitle=Journal+of+organic+chemistry&rft.au=Shang%2C+Ya-Jing&rft.au=Qian%2C+Yi-Ping&rft.au=Liu%2C+Xiao-Da&rft.au=Dai%2C+Fang&rft.date=2009-07-17&rft.eissn=1520-6904&rft.volume=74&rft.issue=14&rft.spage=5025&rft_id=info:doi/10.1021%2Fjo9007095&rft_id=info%3Apmid%2F19472994&rft.externalDocID=19472994 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3263&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3263&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3263&client=summon |