Spin-Enabled Plasmonic Metasurfaces for Manipulating Orbital Angular Momentum of Light
Here, we investigate the spin-induced manipulation of orbitals using metasurfaces constructed from geometric phase elements. By carrying the spin effects to the orbital angular momentum, we show experimentally the transverse angular splitting between the two spins in the reciprocal space with metasu...
Saved in:
Published in | Nano letters Vol. 13; no. 9; pp. 4148 - 4151 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
11.09.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1530-6984 1530-6992 1530-6992 |
DOI | 10.1021/nl401734r |
Cover
Loading…
Abstract | Here, we investigate the spin-induced manipulation of orbitals using metasurfaces constructed from geometric phase elements. By carrying the spin effects to the orbital angular momentum, we show experimentally the transverse angular splitting between the two spins in the reciprocal space with metasurface, as a direct observation of the optical spin Hall effect, and an associated global orbital rotation through the effective orientations of the geometric phase elements. Such spin–orbit interaction from a metasurface with a definite topological charge can be geometrically interpreted using the recently developed high order Poincaré sphere picture. These investigations may give rise to an extra degree of freedom in manipulating optical vortex beams and orbitals using “spin-enabled” metasurfaces. |
---|---|
AbstractList | Here, we investigate the spin-induced manipulation of orbitals using metasurfaces constructed from geometric phase elements. By carrying the spin effects to the orbital angular momentum, we show experimentally the transverse angular splitting between the two spins in the reciprocal space with metasurface, as a direct observation of the optical spin Hall effect, and an associated global orbital rotation through the effective orientations of the geometric phase elements. Such spin–orbit interaction from a metasurface with a definite topological charge can be geometrically interpreted using the recently developed high order Poincaré sphere picture. These investigations may give rise to an extra degree of freedom in manipulating optical vortex beams and orbitals using “spin-enabled” metasurfaces. Here, we investigate the spin-induced manipulation of orbitals using metasurfaces constructed from geometric phase elements. By carrying the spin effects to the orbital angular momentum, we show experimentally the transverse angular splitting between the two spins in the reciprocal space with metasurface, as a direct observation of the optical spin Hall effect, and an associated global orbital rotation through the effective orientations of the geometric phase elements. Such spin-orbit interaction from a metasurface with a definite topological charge can be geometrically interpreted using the recently developed high order Poincaré sphere picture. These investigations may give rise to an extra degree of freedom in manipulating optical vortex beams and orbitals using "spin-enabled" metasurfaces.Here, we investigate the spin-induced manipulation of orbitals using metasurfaces constructed from geometric phase elements. By carrying the spin effects to the orbital angular momentum, we show experimentally the transverse angular splitting between the two spins in the reciprocal space with metasurface, as a direct observation of the optical spin Hall effect, and an associated global orbital rotation through the effective orientations of the geometric phase elements. Such spin-orbit interaction from a metasurface with a definite topological charge can be geometrically interpreted using the recently developed high order Poincaré sphere picture. These investigations may give rise to an extra degree of freedom in manipulating optical vortex beams and orbitals using "spin-enabled" metasurfaces. Here, we investigate the spin-induced manipulation of orbitals using metasurfaces constructed from geometric phase elements. By carrying the spin effects to the orbital angular momentum, we show experimentally the transverse angular splitting between the two spins in the reciprocal space with metasurface, as a direct observation of the optical spin Hall effect, and an associated global orbital rotation through the effective orientations of the geometric phase elements. Such spin-orbit interaction from a metasurface with a definite topological charge can be geometrically interpreted using the recently developed high order Poincaré sphere picture. These investigations may give rise to an extra degree of freedom in manipulating optical vortex beams and orbitals using "spin-enabled" metasurfaces. Here, we investigate the spin-induced manipulation of orbitals using metasurfaces constructed from geometric phase elements. By carrying the spin effects to the orbital angular momentum, we show experimentally the transverse angular splitting between the two spins in the reciprocal space with metasurface, as a direct observation of the optical spin Hall effect, and an associated global orbital rotation through the effective orientations of the geometric phase elements. Such spin-orbit interaction from a metasurface with a definite topological charge can be geometrically interpreted using the recently developed high order Poincare sphere picture. These investigations may give rise to an extra degree of freedom in manipulating optical vortex beams and orbitals using "spin-enabled" metasurfaces. |
Author | Cheah, K. W Zhang, Shuang Chen, Shumei Li, Guixin Li, Jensen Kang, Ming Pun, Edwin Yue-Bun |
AuthorAffiliation | University of Birmingham School of Physics and Astronomy Department of Physics and Materials Science Department of Electronic Engineering Hong Kong Baptist University City University of Hong Kong Department of Physics |
AuthorAffiliation_xml | – name: Department of Physics and Materials Science – name: Department of Electronic Engineering – name: School of Physics and Astronomy – name: City University of Hong Kong – name: Hong Kong Baptist University – name: Department of Physics – name: University of Birmingham |
Author_xml | – sequence: 1 givenname: Guixin surname: Li fullname: Li, Guixin – sequence: 2 givenname: Ming surname: Kang fullname: Kang, Ming – sequence: 3 givenname: Shumei surname: Chen fullname: Chen, Shumei – sequence: 4 givenname: Shuang surname: Zhang fullname: Zhang, Shuang – sequence: 5 givenname: Edwin Yue-Bun surname: Pun fullname: Pun, Edwin Yue-Bun – sequence: 6 givenname: K. W surname: Cheah fullname: Cheah, K. W – sequence: 7 givenname: Jensen surname: Li fullname: Li, Jensen email: j.li@bham.ac.uk |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27762687$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23965168$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c9LHDEUB_AgStdde_AfkLkI9jBufswkk6OItoVdFLS9Dm9mkjWSSdYkc_C_b4rrForgKSH55PHyfXN06LxTCJ0SfEkwJUtnK0wEq8IBOiY1wyWXkh7u9001Q_MYnzHGktX4C5pRJnlNeHOMfj9sjStvHHRWDcW9hTh6Z_pirRLEKWjoVSy0D8UanNlOFpJxm-IudCaBLa7cJh_lSz8ql6ax8LpYmc1TOkFHGmxUX3frAv26vXm8_lGu7r7_vL5alcBEk0o6ME2HgZGq4QMB1jWUC2gEa7jCmmGsORlqWYMQAELTmnW1JAPoDkvCiGYLdPFWdxv8y6RiakcTe2UtOOWn2BJRs6phksrPacUoFjzXzfRsR6duVEO7DWaE8Nq-x5bB-Q5A7MHqAK438Z8TglOev7FA395cH3yMQek9Ibj9O7p2P7psl__ZPmecjHcpgLEfvth1AX1sn_0UXI76A_cHPvqlEw |
CitedBy_id | crossref_primary_10_1002_adma_201903983 crossref_primary_10_1038_srep05557 crossref_primary_10_1515_nanoph_2023_0544 crossref_primary_10_1364_OE_504437 crossref_primary_10_1021_acs_nanolett_4c01665 crossref_primary_10_1002_adom_201800415 crossref_primary_10_1002_adom_201800657 crossref_primary_10_1002_adom_202000004 crossref_primary_10_1021_acsphotonics_5b00660 crossref_primary_10_1515_nanoph_2017_0118 crossref_primary_10_1002_lpor_202300740 crossref_primary_10_1103_PhysRevLett_120_243901 crossref_primary_10_1063_1_4961694 crossref_primary_10_1063_1_4895620 crossref_primary_10_1088_1361_6528_ab1e8a crossref_primary_10_1364_OE_22_021051 crossref_primary_10_1016_j_crhy_2018_03_002 crossref_primary_10_1364_OE_24_021177 crossref_primary_10_1038_srep35657 crossref_primary_10_1002_adom_201801510 crossref_primary_10_1021_acs_nanolett_0c03100 crossref_primary_10_1515_nanoph_2017_0129 crossref_primary_10_1088_2040_8986_aa7b46 crossref_primary_10_1088_2040_8986_ac5cd8 crossref_primary_10_1002_adom_201900151 crossref_primary_10_1002_lpor_201500314 crossref_primary_10_1364_OL_409690 crossref_primary_10_1364_OPTICA_4_001000 crossref_primary_10_1186_s40580_017_0133_y crossref_primary_10_1002_mmce_22069 crossref_primary_10_1364_JOSAB_36_001397 crossref_primary_10_1002_adom_202202663 crossref_primary_10_1038_nnano_2015_2 crossref_primary_10_1038_s42005_023_01262_5 crossref_primary_10_1002_adom_202000820 crossref_primary_10_1038_s41566_020_0691_0 crossref_primary_10_1021_nl4044482 crossref_primary_10_1002_lpor_202000460 crossref_primary_10_3390_nano13182500 crossref_primary_10_1038_s41598_019_47154_z crossref_primary_10_1038_lsa_2015_63 crossref_primary_10_7498_aps_69_20200246 crossref_primary_10_1016_j_ijleo_2022_170424 crossref_primary_10_1021_acs_nanolett_6b00360 crossref_primary_10_1038_natrevmats_2017_10 crossref_primary_10_1038_s41598_017_12143_7 crossref_primary_10_1364_OE_395364 crossref_primary_10_1364_PRJ_462153 crossref_primary_10_1039_C5NR00578G crossref_primary_10_1088_1361_6463_abc7da crossref_primary_10_1016_j_apsusc_2018_12_249 crossref_primary_10_1002_lpor_201800148 crossref_primary_10_1364_OE_25_030820 crossref_primary_10_1038_srep38156 crossref_primary_10_29026_oea_2021_210030 crossref_primary_10_1364_OL_42_000419 crossref_primary_10_1016_j_ijleo_2021_167099 crossref_primary_10_1002_adom_202401227 crossref_primary_10_1002_adfm_201902286 crossref_primary_10_1364_OE_24_006945 crossref_primary_10_1515_nanoph_2016_0032 crossref_primary_10_1364_OE_23_026434 crossref_primary_10_1002_lpor_202100011 crossref_primary_10_1088_1361_6633_ac2aaf crossref_primary_10_1088_2040_8986_ac38c4 crossref_primary_10_1063_1_4978520 crossref_primary_10_1051_epjam_2014006 crossref_primary_10_1109_JPHOT_2017_2651981 crossref_primary_10_1364_AOP_489300 crossref_primary_10_1063_1_4990527 crossref_primary_10_1109_ACCESS_2019_2912017 crossref_primary_10_1038_s41467_020_17773_6 crossref_primary_10_1364_OE_24_007120 crossref_primary_10_1364_OE_26_030383 crossref_primary_10_1021_acsphotonics_6b00700 crossref_primary_10_1088_1361_6633_aa8732 crossref_primary_10_1039_C7NR00124J crossref_primary_10_1021_acs_nanolett_5b00601 crossref_primary_10_1038_lsa_2016_254 crossref_primary_10_1021_acsphotonics_5b00596 crossref_primary_10_3390_s21154988 crossref_primary_10_1002_lpor_201300201 crossref_primary_10_1364_OL_40_003229 crossref_primary_10_1038_nmat4267 crossref_primary_10_1002_advs_202201397 crossref_primary_10_1016_j_aop_2015_06_016 crossref_primary_10_1038_s42005_023_01380_0 crossref_primary_10_1016_j_optcom_2019_03_043 crossref_primary_10_1063_1_5013327 crossref_primary_10_1063_1_4990996 crossref_primary_10_1063_1_5109291 crossref_primary_10_1515_nanoph_2021_0342 crossref_primary_10_1364_AO_58_001460 crossref_primary_10_1103_PhysRevLett_125_093904 crossref_primary_10_1063_1_4974849 crossref_primary_10_1364_JOSAB_33_001411 crossref_primary_10_1016_j_optcom_2024_130480 crossref_primary_10_1038_ncomms9360 crossref_primary_10_1103_PhysRevB_93_041415 crossref_primary_10_1364_OE_480961 crossref_primary_10_1103_PhysRevLett_115_207403 crossref_primary_10_1364_OL_44_003653 crossref_primary_10_3390_ma14092147 crossref_primary_10_1021_acs_nanolett_1c04556 crossref_primary_10_1039_C7TC00548B crossref_primary_10_1364_OE_26_025693 crossref_primary_10_1364_PRJ_6_000743 crossref_primary_10_1007_s00340_017_6816_6 crossref_primary_10_1515_nanoph_2021_0558 crossref_primary_10_1063_5_0138224 crossref_primary_10_1021_acs_nanolett_5b02926 crossref_primary_10_1515_nanoph_2016_0121 crossref_primary_10_1063_1_5043065 crossref_primary_10_1098_rsta_2014_0351 crossref_primary_10_1038_s41566_021_00806_x crossref_primary_10_1063_1_5127007 crossref_primary_10_1126_sciadv_aaq1475 crossref_primary_10_1002_adom_201701047 crossref_primary_10_7498_aps_66_147803 crossref_primary_10_1021_nl500658n crossref_primary_10_1002_adom_201300496 crossref_primary_10_1002_lpor_202200206 crossref_primary_10_1002_adom_201901342 crossref_primary_10_1109_TMTT_2023_3328480 crossref_primary_10_1002_smtd_201600064 crossref_primary_10_1103_PhysRevB_94_214303 crossref_primary_10_1515_nanoph_2015_0155 crossref_primary_10_1021_acsphotonics_9b01719 crossref_primary_10_1038_nphoton_2013_302 crossref_primary_10_1038_s42254_021_00394_3 crossref_primary_10_1002_adma_201604252 crossref_primary_10_1364_OE_25_032631 crossref_primary_10_3390_app8030362 crossref_primary_10_1088_1361_6463_aa9947 crossref_primary_10_1088_1674_1056_23_6_064215 crossref_primary_10_1364_OE_26_027694 crossref_primary_10_1364_OE_25_000377 crossref_primary_10_1021_acs_nanolett_5b01738 crossref_primary_10_1063_5_0252617 crossref_primary_10_1039_C8NR02088D crossref_primary_10_1002_lpor_202400644 crossref_primary_10_1103_PhysRevApplied_13_014014 crossref_primary_10_1016_j_optlaseng_2021_106923 crossref_primary_10_1016_j_optcom_2016_09_043 crossref_primary_10_1364_OE_24_030068 crossref_primary_10_1002_adom_202202270 crossref_primary_10_1515_nanoph_2021_0823 crossref_primary_10_1103_PhysRevA_93_013839 crossref_primary_10_1364_OE_26_006067 crossref_primary_10_1364_OE_27_034258 crossref_primary_10_1117_1_APN_2_2_026009 crossref_primary_10_1016_j_optcom_2018_06_056 crossref_primary_10_1088_1361_6501_ab0e62 crossref_primary_10_1155_2021_9951644 crossref_primary_10_1007_s11468_018_0858_4 crossref_primary_10_1002_adma_201504532 crossref_primary_10_1002_adom_202201975 crossref_primary_10_1364_OPTICA_5_000825 crossref_primary_10_1364_OE_28_000503 crossref_primary_10_1038_s41377_019_0127_0 crossref_primary_10_1364_OE_25_005917 crossref_primary_10_1002_adom_201801328 crossref_primary_10_1063_1_4898190 crossref_primary_10_1063_5_0043216 crossref_primary_10_1364_PRJ_5_000064 crossref_primary_10_1186_s43074_021_00035_z crossref_primary_10_1002_adma_202417183 crossref_primary_10_1038_srep40174 crossref_primary_10_1002_adom_201400557 crossref_primary_10_1038_srep09966 crossref_primary_10_37188_lam_2023_040 crossref_primary_10_1021_acsphotonics_1c00077 crossref_primary_10_1039_C9NR09889E crossref_primary_10_1038_lsa_2015_103 crossref_primary_10_1038_lsa_2017_71 crossref_primary_10_1016_j_optcom_2023_130014 crossref_primary_10_1515_nanoph_2022_0066 crossref_primary_10_1002_lpor_201500259 crossref_primary_10_1007_s11433_021_1743_1 crossref_primary_10_1364_JOSAB_33_000501 crossref_primary_10_1088_1361_6633_aa5397 crossref_primary_10_1038_s41378_023_00622_z crossref_primary_10_1038_s41598_022_27109_7 crossref_primary_10_1007_s12200_019_0910_9 crossref_primary_10_1364_OL_40_004285 crossref_primary_10_3390_app11010141 crossref_primary_10_1038_nphoton_2017_121 crossref_primary_10_1063_5_0135224 crossref_primary_10_1088_1674_1056_acdc13 crossref_primary_10_1088_0034_4885_79_7_076401 crossref_primary_10_1007_s11433_018_9260_8 crossref_primary_10_1002_adom_201500705 crossref_primary_10_1002_adpr_202100186 crossref_primary_10_1103_PhysRevLett_118_104301 crossref_primary_10_1002_adma_201802721 crossref_primary_10_1007_s12200_021_1201_9 crossref_primary_10_1103_PhysRevApplied_9_064009 crossref_primary_10_1038_s41535_017_0011_1 crossref_primary_10_1021_acs_nanolett_7b04451 crossref_primary_10_3390_nano14010066 crossref_primary_10_1007_s40766_021_00015_w crossref_primary_10_1103_PhysRevA_95_023823 crossref_primary_10_1364_OE_403650 crossref_primary_10_1038_srep41858 crossref_primary_10_1021_acs_nanolett_0c02699 crossref_primary_10_1117_1_JNP_14_016005 crossref_primary_10_1364_AO_532623 crossref_primary_10_1063_1_4981898 crossref_primary_10_1063_5_0105386 crossref_primary_10_1002_adpr_202000154 crossref_primary_10_1002_adom_202300182 crossref_primary_10_1016_j_optcom_2019_124744 crossref_primary_10_1002_adma_201901188 crossref_primary_10_1364_OE_25_002569 crossref_primary_10_35848_1882_0786_adb478 crossref_primary_10_3390_s20051401 crossref_primary_10_1016_j_ijleo_2019_162991 crossref_primary_10_1364_OME_8_002330 crossref_primary_10_29026_oea_2025_240250 crossref_primary_10_1063_1_4997456 crossref_primary_10_1038_nphoton_2015_201 crossref_primary_10_1103_PhysRevA_107_063501 crossref_primary_10_1002_advs_202205499 crossref_primary_10_1109_JLT_2020_3029701 crossref_primary_10_1038_s41598_018_30948_y crossref_primary_10_1364_OE_27_028194 crossref_primary_10_1103_PhysRevB_92_205401 crossref_primary_10_1021_acs_nanolett_7b00676 crossref_primary_10_1002_adom_201600933 crossref_primary_10_1364_OL_39_005074 crossref_primary_10_3390_nano10091864 crossref_primary_10_1103_PhysRevLett_121_103901 crossref_primary_10_1021_acsphotonics_6b00515 |
Cites_doi | 10.1364/OE.20.015882 10.1364/OL.27.001141 10.1038/nmat3292 10.1103/PhysRevLett.93.083901 10.1103/PhysRevLett.88.013601 10.1021/nl2004835 10.1080/09500340600832709 10.1038/nphys676 10.1126/science.1210713 10.1364/OE.19.012978 10.1103/PhysRevLett.107.053601 10.1038/nphoton.2008.229 10.1126/science.1152697 10.1126/science.1087128 10.1126/science.1226204 10.1103/PhysRevLett.109.113602 10.1038/nphoton.2012.138 10.1103/PhysRevLett.99.073901 10.1103/PhysRevLett.92.126603 10.1126/science.1231758 10.1038/ncomms2207 10.1103/PhysRevLett.96.073903 10.1103/PhysRevLett.96.163905 10.1103/PhysRevLett.95.136601 10.1126/science.1214686 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical Society 2014 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/nl401734r |
DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1530-6992 |
EndPage | 4151 |
ExternalDocumentID | 23965168 27762687 10_1021_nl401734r c895716701 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G AAYOK AFFNX IQODW NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a378t-2d3f2dd31486d1a3b8267a87386e0f300f61d595a77aa7f253b591dafb09131f3 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Thu Jul 10 21:10:36 EDT 2025 Fri Jul 11 07:03:05 EDT 2025 Thu Jan 02 22:11:58 EST 2025 Wed Apr 02 07:25:23 EDT 2025 Tue Jul 01 00:42:54 EDT 2025 Thu Apr 24 23:07:29 EDT 2025 Thu Aug 27 13:42:05 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Metasurface optical spin Hall effect orbital rotation spin−orbit interaction Degrees of freedom Reciprocal space Electrical properties Reciprocal lattice Spin-orbit interactions Plasmons Momentum Hall effect Crystal structure |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a378t-2d3f2dd31486d1a3b8267a87386e0f300f61d595a77aa7f253b591dafb09131f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23965168 |
PQID | 1432076913 |
PQPubID | 23479 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_1753483929 proquest_miscellaneous_1432076913 pubmed_primary_23965168 pascalfrancis_primary_27762687 crossref_primary_10_1021_nl401734r crossref_citationtrail_10_1021_nl401734r acs_journals_10_1021_nl401734r |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-11 |
PublicationDateYYYYMMDD | 2013-09-11 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Onoda M. (ref4/cit4) 2004; 93 Bomzon Z. (ref11/cit11) 2002; 27 Ni X. (ref19/cit19) 2012; 335 Chen X. (ref21/cit21) 2012; 3 Bliokh K. Y. (ref6/cit6) 2006; 96 Zhao Y. Q. (ref13/cit13) 2007; 99 Kavokin A. (ref5/cit5) 2005; 95 Litchinitser N. M. (ref22/cit22) 2012; 337 Yu N. (ref17/cit17) 2011; 334 Wang J. (ref16/cit16) 2012; 6 Sinova J. (ref3/cit3) 2004; 92 Allen L. (ref24/cit24) 2007; 54 Kang M. (ref20/cit20) 2012; 20 Löffler W. (ref14/cit14) 2012; 109 Marrucci L. (ref12/cit12) 2006; 96 Leyder C. (ref7/cit7) 2007; 3 Bliokh K. Y. (ref8/cit8) 2008; 2 Yin X. B. (ref23/cit23) 2013; 339 Milione G. (ref26/cit26) 2011; 107 Hosten O. (ref9/cit9) 2008; 319 Shitrit N. (ref10/cit10) 2011; 11 Sun S. (ref18/cit18) 2012; 11 Loffler W. (ref25/cit25) 2011; 19 ref1/cit1 Murakami S. (ref2/cit2) 2003; 311 Molina-Terriza G. (ref15/cit15) 2001; 88 |
References_xml | – volume: 20 start-page: 15882 year: 2012 ident: ref20/cit20 publication-title: Opt. Express doi: 10.1364/OE.20.015882 – volume: 27 start-page: 1141 year: 2002 ident: ref11/cit11 publication-title: Opt. Lett. doi: 10.1364/OL.27.001141 – volume: 11 start-page: 426 year: 2012 ident: ref18/cit18 publication-title: Nat. Mater. doi: 10.1038/nmat3292 – volume: 93 start-page: 083901 year: 2004 ident: ref4/cit4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.083901 – volume: 88 start-page: 013601 year: 2001 ident: ref15/cit15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.013601 – volume: 11 start-page: 2038 year: 2011 ident: ref10/cit10 publication-title: Nano Lett. doi: 10.1021/nl2004835 – volume: 54 start-page: 487 year: 2007 ident: ref24/cit24 publication-title: J. Mod. Opt. doi: 10.1080/09500340600832709 – volume: 3 start-page: 628 year: 2007 ident: ref7/cit7 publication-title: Nat. Phys. doi: 10.1038/nphys676 – volume: 334 start-page: 333 year: 2011 ident: ref17/cit17 publication-title: Science doi: 10.1126/science.1210713 – volume: 19 start-page: 12978 year: 2011 ident: ref25/cit25 publication-title: Opt. Exp. doi: 10.1364/OE.19.012978 – volume: 107 start-page: 053601 year: 2011 ident: ref26/cit26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.053601 – volume: 2 start-page: 748 year: 2008 ident: ref8/cit8 publication-title: Nat. Photonics doi: 10.1038/nphoton.2008.229 – volume: 319 start-page: 787 year: 2008 ident: ref9/cit9 publication-title: Science doi: 10.1126/science.1152697 – volume: 311 start-page: 1348 year: 2003 ident: ref2/cit2 publication-title: Science doi: 10.1126/science.1087128 – volume: 337 start-page: 1054 year: 2012 ident: ref22/cit22 publication-title: Science doi: 10.1126/science.1226204 – ident: ref1/cit1 – volume: 109 start-page: 113602 year: 2012 ident: ref14/cit14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.113602 – volume: 6 start-page: 488 year: 2012 ident: ref16/cit16 publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.138 – volume: 99 start-page: 073901 year: 2007 ident: ref13/cit13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.073901 – volume: 92 start-page: 126603 year: 2004 ident: ref3/cit3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.126603 – volume: 339 start-page: 1405 year: 2013 ident: ref23/cit23 publication-title: Science doi: 10.1126/science.1231758 – volume: 3 start-page: 1198 year: 2012 ident: ref21/cit21 publication-title: Nat. Commun. doi: 10.1038/ncomms2207 – volume: 96 start-page: 073903 year: 2006 ident: ref6/cit6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.073903 – volume: 96 start-page: 163905 year: 2006 ident: ref12/cit12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.163905 – volume: 95 start-page: 136601 year: 2005 ident: ref5/cit5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.136601 – volume: 335 start-page: 427 year: 2012 ident: ref19/cit19 publication-title: Science doi: 10.1126/science.1214686 |
SSID | ssj0009350 |
Score | 2.5491946 |
Snippet | Here, we investigate the spin-induced manipulation of orbitals using metasurfaces constructed from geometric phase elements. By carrying the spin effects to... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4148 |
SubjectTerms | Angular momentum Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Degrees of freedom Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Exact sciences and technology Mathematical analysis Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals Nanostructure Orbitals Physics Plasmonics Reciprocal space Splitting Structure of solids and liquids; crystallography Surface and interface electron states |
Title | Spin-Enabled Plasmonic Metasurfaces for Manipulating Orbital Angular Momentum of Light |
URI | http://dx.doi.org/10.1021/nl401734r https://www.ncbi.nlm.nih.gov/pubmed/23965168 https://www.proquest.com/docview/1432076913 https://www.proquest.com/docview/1753483929 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2xXECIfSlLZZYDl5R4iZMcEbRCiAISi7hFTmOjiuJWbXrh6xknbQGxKcdMlNgzk3kTx-8BHPkpHiZTHk8RvgnBtaeMirw01kzoWGmt3ebk5rW8eBCXT8HTFBz-soLP6IntYAsQctGfhlkmMXkd_jm7-2DW5YUMK2Yu9kFxJMb0QZ8vdaWnNfhSehZ6aoCzYEr5it_xZVFnGktwPt6tU_5e8lIb5mmt9fadvPGvISzD4ghnktMyMFZgSttVmP_EPrgGj3e9tvXqxeapjNwijH51PLmkqXP33dC4n7UIYlrSVLZdynzZZ3LTT53OCDm1TsQeTzoKh3z4SrqGXLlOfx0eGvX7swtvJLPgKR5GuccybliWcWyMZEaVc5oMVeTUQLVvuO8bSbMgDlQYKhUaFvA0iGmmTOo4RanhGzBju1ZvAaGB0lGEGNGX2NaF2HlHIpbU4AtVYi_cqkAV_ZCM0mSQFCvgjCaTCarA8dhFSWtEUu60Mjo_mR5MTHslM8dPRtUvfp5YshCrAEZTBfbHjk8wsdxqibK6O8RnE5z5OATK_7DBZk8UELMCm2XUfNyBxzKgMtr-b8w7MMcKjY3Yo3QXZvL-UO8h0snTahHp76ZO9is |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOUBV8S4sj8UgDlxS4kds57iqWi2wW5Daot4iZ2NXVVvvapO99NczdrK7LSoP5ZhJYnvGmW_i-PsAPqYlHq4yCS8RvgnBbWKc0UmZWyZsbqy1YXPy-EAOj8XXk-yko8kJe2GwETXeqY6L-Gt2AfrZX2AloLiY34V7CEJYiObB7uGaYJdHNVacwFgO5VosWYSuXxoy0KS-kYG2ZqbGwXCtisWfYWZMN_uPWt2i2ND4l8n5zqIpdyZXv3E4_l9PHsPDDnWSQRsmT-CO9U9h8xoX4TP4eTg788le3EpVkR8Iqi8Day4Z2yZ8RXTh1y2CCJeMjT9rRb_8Kfk-L4PqCBn4IGmPJwOhQ7O4JFNHRqHufw7H-3tHu8OkE11IDFe6SVjFHasqjmWSrKgJLpTK6KANalPH09RJWmV5ZpQyRjmW8TLLaWVcGRhGqePbsOGn3r4EQjNjtUZnpRKLPIV1uBa5pA5frxIr40kP-jg-RTdp6iKuhzNarAaoB5-WniomHWV5UM64uM30w8p01vJ03GbUv-HulSVTmBOkVj14v_R_gdMsrJ0Yb6cLbJvgLMUuUP4XGyz9RAScPXjRBs_6CTyXGZX61b_6_A7uD4_Go2L05eDba3jAovpGnlD6Bjaa-cK-RQzUlP0Y_L8AwgH-jA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkRAI8X4sj8UgDlxS4tixneOqdFWg21YqRb1FztpGFW12tcle-PXMONlti8pDOWaS-DGTmS-Ovw_gXVrhEZxNRIXlm5TCJzZYk1SFz6QvrPeeNidP9tTOkfx8nB_3QJH2wmAjGrxTExfxKarnLvQMA_xDfYpoQAu5uA43aLmOPHq0dXhOsiuiIisGMUKiwsgVk9DFSykLTZtLWejO3DY4IKFTsvhzqRlTzvge7K8bG_80-bG5bKvN6c_feBz_vzf34W5ffbJR5y4P4JqvH8LtC5yEj-Db4fykTrbjlirHDrC4PiP2XDbxLX1NDPQLF8NKl01sfdKJf9Xf2f6iIvURNqpJ2h5PErFDuzxjs8B2Cf8_hqPx9tetnaQXX0is0KZNMidC5pxAuKQctzSVSltDGqE-DSJNg-IuL3KrtbU6ZLmo8oI7GypiGuVBPIGNelb7Z8B4br0xOGGpQrCnEY8bWSge8DWrECFPBzDEMSr74GnKuC6e8XI9QAN4v5qtctpTl5OCxulVpm_XpvOOr-Mqo-GlKV9bZhpzgzJ6AG9WPlBiuNEaiq39bIltkyJLsQtc_MUGIaCMhecAnnYOdP4EUaicK_P8X31-DTcPPo7L3U97X17ArSyKcBQJ5y9ho10s_SsshdpqGP3_FyKzAR4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin-Enabled+Plasmonic+Metasurfaces+for+Manipulating+Orbital+Angular+Momentum+of+Light&rft.jtitle=Nano+letters&rft.au=GUIXIN+LI&rft.au=MING+KANG&rft.au=SHUMEI+CHEN&rft.au=SHUANG+ZHANG&rft.date=2013-09-11&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.volume=13&rft.issue=9&rft.spage=4148&rft.epage=4151&rft_id=info:doi/10.1021%2Fnl401734r&rft.externalDBID=n%2Fa&rft.externalDocID=27762687 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |