Spin-Enabled Plasmonic Metasurfaces for Manipulating Orbital Angular Momentum of Light

Here, we investigate the spin-induced manipulation of orbitals using metasurfaces constructed from geometric phase elements. By carrying the spin effects to the orbital angular momentum, we show experimentally the transverse angular splitting between the two spins in the reciprocal space with metasu...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 13; no. 9; pp. 4148 - 4151
Main Authors Li, Guixin, Kang, Ming, Chen, Shumei, Zhang, Shuang, Pun, Edwin Yue-Bun, Cheah, K. W, Li, Jensen
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 11.09.2013
Subjects
Online AccessGet full text
ISSN1530-6984
1530-6992
1530-6992
DOI10.1021/nl401734r

Cover

Loading…
Abstract Here, we investigate the spin-induced manipulation of orbitals using metasurfaces constructed from geometric phase elements. By carrying the spin effects to the orbital angular momentum, we show experimentally the transverse angular splitting between the two spins in the reciprocal space with metasurface, as a direct observation of the optical spin Hall effect, and an associated global orbital rotation through the effective orientations of the geometric phase elements. Such spin–orbit interaction from a metasurface with a definite topological charge can be geometrically interpreted using the recently developed high order Poincaré sphere picture. These investigations may give rise to an extra degree of freedom in manipulating optical vortex beams and orbitals using “spin-enabled” metasurfaces.
AbstractList Here, we investigate the spin-induced manipulation of orbitals using metasurfaces constructed from geometric phase elements. By carrying the spin effects to the orbital angular momentum, we show experimentally the transverse angular splitting between the two spins in the reciprocal space with metasurface, as a direct observation of the optical spin Hall effect, and an associated global orbital rotation through the effective orientations of the geometric phase elements. Such spin–orbit interaction from a metasurface with a definite topological charge can be geometrically interpreted using the recently developed high order Poincaré sphere picture. These investigations may give rise to an extra degree of freedom in manipulating optical vortex beams and orbitals using “spin-enabled” metasurfaces.
Here, we investigate the spin-induced manipulation of orbitals using metasurfaces constructed from geometric phase elements. By carrying the spin effects to the orbital angular momentum, we show experimentally the transverse angular splitting between the two spins in the reciprocal space with metasurface, as a direct observation of the optical spin Hall effect, and an associated global orbital rotation through the effective orientations of the geometric phase elements. Such spin-orbit interaction from a metasurface with a definite topological charge can be geometrically interpreted using the recently developed high order Poincaré sphere picture. These investigations may give rise to an extra degree of freedom in manipulating optical vortex beams and orbitals using "spin-enabled" metasurfaces.Here, we investigate the spin-induced manipulation of orbitals using metasurfaces constructed from geometric phase elements. By carrying the spin effects to the orbital angular momentum, we show experimentally the transverse angular splitting between the two spins in the reciprocal space with metasurface, as a direct observation of the optical spin Hall effect, and an associated global orbital rotation through the effective orientations of the geometric phase elements. Such spin-orbit interaction from a metasurface with a definite topological charge can be geometrically interpreted using the recently developed high order Poincaré sphere picture. These investigations may give rise to an extra degree of freedom in manipulating optical vortex beams and orbitals using "spin-enabled" metasurfaces.
Here, we investigate the spin-induced manipulation of orbitals using metasurfaces constructed from geometric phase elements. By carrying the spin effects to the orbital angular momentum, we show experimentally the transverse angular splitting between the two spins in the reciprocal space with metasurface, as a direct observation of the optical spin Hall effect, and an associated global orbital rotation through the effective orientations of the geometric phase elements. Such spin-orbit interaction from a metasurface with a definite topological charge can be geometrically interpreted using the recently developed high order Poincaré sphere picture. These investigations may give rise to an extra degree of freedom in manipulating optical vortex beams and orbitals using "spin-enabled" metasurfaces.
Here, we investigate the spin-induced manipulation of orbitals using metasurfaces constructed from geometric phase elements. By carrying the spin effects to the orbital angular momentum, we show experimentally the transverse angular splitting between the two spins in the reciprocal space with metasurface, as a direct observation of the optical spin Hall effect, and an associated global orbital rotation through the effective orientations of the geometric phase elements. Such spin-orbit interaction from a metasurface with a definite topological charge can be geometrically interpreted using the recently developed high order Poincare sphere picture. These investigations may give rise to an extra degree of freedom in manipulating optical vortex beams and orbitals using "spin-enabled" metasurfaces.
Author Cheah, K. W
Zhang, Shuang
Chen, Shumei
Li, Guixin
Li, Jensen
Kang, Ming
Pun, Edwin Yue-Bun
AuthorAffiliation University of Birmingham
School of Physics and Astronomy
Department of Physics and Materials Science
Department of Electronic Engineering
Hong Kong Baptist University
City University of Hong Kong
Department of Physics
AuthorAffiliation_xml – name: Department of Physics and Materials Science
– name: Department of Electronic Engineering
– name: School of Physics and Astronomy
– name: City University of Hong Kong
– name: Hong Kong Baptist University
– name: Department of Physics
– name: University of Birmingham
Author_xml – sequence: 1
  givenname: Guixin
  surname: Li
  fullname: Li, Guixin
– sequence: 2
  givenname: Ming
  surname: Kang
  fullname: Kang, Ming
– sequence: 3
  givenname: Shumei
  surname: Chen
  fullname: Chen, Shumei
– sequence: 4
  givenname: Shuang
  surname: Zhang
  fullname: Zhang, Shuang
– sequence: 5
  givenname: Edwin Yue-Bun
  surname: Pun
  fullname: Pun, Edwin Yue-Bun
– sequence: 6
  givenname: K. W
  surname: Cheah
  fullname: Cheah, K. W
– sequence: 7
  givenname: Jensen
  surname: Li
  fullname: Li, Jensen
  email: j.li@bham.ac.uk
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27762687$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23965168$$D View this record in MEDLINE/PubMed
BookMark eNqF0c9LHDEUB_AgStdde_AfkLkI9jBufswkk6OItoVdFLS9Dm9mkjWSSdYkc_C_b4rrForgKSH55PHyfXN06LxTCJ0SfEkwJUtnK0wEq8IBOiY1wyWXkh7u9001Q_MYnzHGktX4C5pRJnlNeHOMfj9sjStvHHRWDcW9hTh6Z_pirRLEKWjoVSy0D8UanNlOFpJxm-IudCaBLa7cJh_lSz8ql6ax8LpYmc1TOkFHGmxUX3frAv26vXm8_lGu7r7_vL5alcBEk0o6ME2HgZGq4QMB1jWUC2gEa7jCmmGsORlqWYMQAELTmnW1JAPoDkvCiGYLdPFWdxv8y6RiakcTe2UtOOWn2BJRs6phksrPacUoFjzXzfRsR6duVEO7DWaE8Nq-x5bB-Q5A7MHqAK438Z8TglOev7FA395cH3yMQek9Ibj9O7p2P7psl__ZPmecjHcpgLEfvth1AX1sn_0UXI76A_cHPvqlEw
CitedBy_id crossref_primary_10_1002_adma_201903983
crossref_primary_10_1038_srep05557
crossref_primary_10_1515_nanoph_2023_0544
crossref_primary_10_1364_OE_504437
crossref_primary_10_1021_acs_nanolett_4c01665
crossref_primary_10_1002_adom_201800415
crossref_primary_10_1002_adom_201800657
crossref_primary_10_1002_adom_202000004
crossref_primary_10_1021_acsphotonics_5b00660
crossref_primary_10_1515_nanoph_2017_0118
crossref_primary_10_1002_lpor_202300740
crossref_primary_10_1103_PhysRevLett_120_243901
crossref_primary_10_1063_1_4961694
crossref_primary_10_1063_1_4895620
crossref_primary_10_1088_1361_6528_ab1e8a
crossref_primary_10_1364_OE_22_021051
crossref_primary_10_1016_j_crhy_2018_03_002
crossref_primary_10_1364_OE_24_021177
crossref_primary_10_1038_srep35657
crossref_primary_10_1002_adom_201801510
crossref_primary_10_1021_acs_nanolett_0c03100
crossref_primary_10_1515_nanoph_2017_0129
crossref_primary_10_1088_2040_8986_aa7b46
crossref_primary_10_1088_2040_8986_ac5cd8
crossref_primary_10_1002_adom_201900151
crossref_primary_10_1002_lpor_201500314
crossref_primary_10_1364_OL_409690
crossref_primary_10_1364_OPTICA_4_001000
crossref_primary_10_1186_s40580_017_0133_y
crossref_primary_10_1002_mmce_22069
crossref_primary_10_1364_JOSAB_36_001397
crossref_primary_10_1002_adom_202202663
crossref_primary_10_1038_nnano_2015_2
crossref_primary_10_1038_s42005_023_01262_5
crossref_primary_10_1002_adom_202000820
crossref_primary_10_1038_s41566_020_0691_0
crossref_primary_10_1021_nl4044482
crossref_primary_10_1002_lpor_202000460
crossref_primary_10_3390_nano13182500
crossref_primary_10_1038_s41598_019_47154_z
crossref_primary_10_1038_lsa_2015_63
crossref_primary_10_7498_aps_69_20200246
crossref_primary_10_1016_j_ijleo_2022_170424
crossref_primary_10_1021_acs_nanolett_6b00360
crossref_primary_10_1038_natrevmats_2017_10
crossref_primary_10_1038_s41598_017_12143_7
crossref_primary_10_1364_OE_395364
crossref_primary_10_1364_PRJ_462153
crossref_primary_10_1039_C5NR00578G
crossref_primary_10_1088_1361_6463_abc7da
crossref_primary_10_1016_j_apsusc_2018_12_249
crossref_primary_10_1002_lpor_201800148
crossref_primary_10_1364_OE_25_030820
crossref_primary_10_1038_srep38156
crossref_primary_10_29026_oea_2021_210030
crossref_primary_10_1364_OL_42_000419
crossref_primary_10_1016_j_ijleo_2021_167099
crossref_primary_10_1002_adom_202401227
crossref_primary_10_1002_adfm_201902286
crossref_primary_10_1364_OE_24_006945
crossref_primary_10_1515_nanoph_2016_0032
crossref_primary_10_1364_OE_23_026434
crossref_primary_10_1002_lpor_202100011
crossref_primary_10_1088_1361_6633_ac2aaf
crossref_primary_10_1088_2040_8986_ac38c4
crossref_primary_10_1063_1_4978520
crossref_primary_10_1051_epjam_2014006
crossref_primary_10_1109_JPHOT_2017_2651981
crossref_primary_10_1364_AOP_489300
crossref_primary_10_1063_1_4990527
crossref_primary_10_1109_ACCESS_2019_2912017
crossref_primary_10_1038_s41467_020_17773_6
crossref_primary_10_1364_OE_24_007120
crossref_primary_10_1364_OE_26_030383
crossref_primary_10_1021_acsphotonics_6b00700
crossref_primary_10_1088_1361_6633_aa8732
crossref_primary_10_1039_C7NR00124J
crossref_primary_10_1021_acs_nanolett_5b00601
crossref_primary_10_1038_lsa_2016_254
crossref_primary_10_1021_acsphotonics_5b00596
crossref_primary_10_3390_s21154988
crossref_primary_10_1002_lpor_201300201
crossref_primary_10_1364_OL_40_003229
crossref_primary_10_1038_nmat4267
crossref_primary_10_1002_advs_202201397
crossref_primary_10_1016_j_aop_2015_06_016
crossref_primary_10_1038_s42005_023_01380_0
crossref_primary_10_1016_j_optcom_2019_03_043
crossref_primary_10_1063_1_5013327
crossref_primary_10_1063_1_4990996
crossref_primary_10_1063_1_5109291
crossref_primary_10_1515_nanoph_2021_0342
crossref_primary_10_1364_AO_58_001460
crossref_primary_10_1103_PhysRevLett_125_093904
crossref_primary_10_1063_1_4974849
crossref_primary_10_1364_JOSAB_33_001411
crossref_primary_10_1016_j_optcom_2024_130480
crossref_primary_10_1038_ncomms9360
crossref_primary_10_1103_PhysRevB_93_041415
crossref_primary_10_1364_OE_480961
crossref_primary_10_1103_PhysRevLett_115_207403
crossref_primary_10_1364_OL_44_003653
crossref_primary_10_3390_ma14092147
crossref_primary_10_1021_acs_nanolett_1c04556
crossref_primary_10_1039_C7TC00548B
crossref_primary_10_1364_OE_26_025693
crossref_primary_10_1364_PRJ_6_000743
crossref_primary_10_1007_s00340_017_6816_6
crossref_primary_10_1515_nanoph_2021_0558
crossref_primary_10_1063_5_0138224
crossref_primary_10_1021_acs_nanolett_5b02926
crossref_primary_10_1515_nanoph_2016_0121
crossref_primary_10_1063_1_5043065
crossref_primary_10_1098_rsta_2014_0351
crossref_primary_10_1038_s41566_021_00806_x
crossref_primary_10_1063_1_5127007
crossref_primary_10_1126_sciadv_aaq1475
crossref_primary_10_1002_adom_201701047
crossref_primary_10_7498_aps_66_147803
crossref_primary_10_1021_nl500658n
crossref_primary_10_1002_adom_201300496
crossref_primary_10_1002_lpor_202200206
crossref_primary_10_1002_adom_201901342
crossref_primary_10_1109_TMTT_2023_3328480
crossref_primary_10_1002_smtd_201600064
crossref_primary_10_1103_PhysRevB_94_214303
crossref_primary_10_1515_nanoph_2015_0155
crossref_primary_10_1021_acsphotonics_9b01719
crossref_primary_10_1038_nphoton_2013_302
crossref_primary_10_1038_s42254_021_00394_3
crossref_primary_10_1002_adma_201604252
crossref_primary_10_1364_OE_25_032631
crossref_primary_10_3390_app8030362
crossref_primary_10_1088_1361_6463_aa9947
crossref_primary_10_1088_1674_1056_23_6_064215
crossref_primary_10_1364_OE_26_027694
crossref_primary_10_1364_OE_25_000377
crossref_primary_10_1021_acs_nanolett_5b01738
crossref_primary_10_1063_5_0252617
crossref_primary_10_1039_C8NR02088D
crossref_primary_10_1002_lpor_202400644
crossref_primary_10_1103_PhysRevApplied_13_014014
crossref_primary_10_1016_j_optlaseng_2021_106923
crossref_primary_10_1016_j_optcom_2016_09_043
crossref_primary_10_1364_OE_24_030068
crossref_primary_10_1002_adom_202202270
crossref_primary_10_1515_nanoph_2021_0823
crossref_primary_10_1103_PhysRevA_93_013839
crossref_primary_10_1364_OE_26_006067
crossref_primary_10_1364_OE_27_034258
crossref_primary_10_1117_1_APN_2_2_026009
crossref_primary_10_1016_j_optcom_2018_06_056
crossref_primary_10_1088_1361_6501_ab0e62
crossref_primary_10_1155_2021_9951644
crossref_primary_10_1007_s11468_018_0858_4
crossref_primary_10_1002_adma_201504532
crossref_primary_10_1002_adom_202201975
crossref_primary_10_1364_OPTICA_5_000825
crossref_primary_10_1364_OE_28_000503
crossref_primary_10_1038_s41377_019_0127_0
crossref_primary_10_1364_OE_25_005917
crossref_primary_10_1002_adom_201801328
crossref_primary_10_1063_1_4898190
crossref_primary_10_1063_5_0043216
crossref_primary_10_1364_PRJ_5_000064
crossref_primary_10_1186_s43074_021_00035_z
crossref_primary_10_1002_adma_202417183
crossref_primary_10_1038_srep40174
crossref_primary_10_1002_adom_201400557
crossref_primary_10_1038_srep09966
crossref_primary_10_37188_lam_2023_040
crossref_primary_10_1021_acsphotonics_1c00077
crossref_primary_10_1039_C9NR09889E
crossref_primary_10_1038_lsa_2015_103
crossref_primary_10_1038_lsa_2017_71
crossref_primary_10_1016_j_optcom_2023_130014
crossref_primary_10_1515_nanoph_2022_0066
crossref_primary_10_1002_lpor_201500259
crossref_primary_10_1007_s11433_021_1743_1
crossref_primary_10_1364_JOSAB_33_000501
crossref_primary_10_1088_1361_6633_aa5397
crossref_primary_10_1038_s41378_023_00622_z
crossref_primary_10_1038_s41598_022_27109_7
crossref_primary_10_1007_s12200_019_0910_9
crossref_primary_10_1364_OL_40_004285
crossref_primary_10_3390_app11010141
crossref_primary_10_1038_nphoton_2017_121
crossref_primary_10_1063_5_0135224
crossref_primary_10_1088_1674_1056_acdc13
crossref_primary_10_1088_0034_4885_79_7_076401
crossref_primary_10_1007_s11433_018_9260_8
crossref_primary_10_1002_adom_201500705
crossref_primary_10_1002_adpr_202100186
crossref_primary_10_1103_PhysRevLett_118_104301
crossref_primary_10_1002_adma_201802721
crossref_primary_10_1007_s12200_021_1201_9
crossref_primary_10_1103_PhysRevApplied_9_064009
crossref_primary_10_1038_s41535_017_0011_1
crossref_primary_10_1021_acs_nanolett_7b04451
crossref_primary_10_3390_nano14010066
crossref_primary_10_1007_s40766_021_00015_w
crossref_primary_10_1103_PhysRevA_95_023823
crossref_primary_10_1364_OE_403650
crossref_primary_10_1038_srep41858
crossref_primary_10_1021_acs_nanolett_0c02699
crossref_primary_10_1117_1_JNP_14_016005
crossref_primary_10_1364_AO_532623
crossref_primary_10_1063_1_4981898
crossref_primary_10_1063_5_0105386
crossref_primary_10_1002_adpr_202000154
crossref_primary_10_1002_adom_202300182
crossref_primary_10_1016_j_optcom_2019_124744
crossref_primary_10_1002_adma_201901188
crossref_primary_10_1364_OE_25_002569
crossref_primary_10_35848_1882_0786_adb478
crossref_primary_10_3390_s20051401
crossref_primary_10_1016_j_ijleo_2019_162991
crossref_primary_10_1364_OME_8_002330
crossref_primary_10_29026_oea_2025_240250
crossref_primary_10_1063_1_4997456
crossref_primary_10_1038_nphoton_2015_201
crossref_primary_10_1103_PhysRevA_107_063501
crossref_primary_10_1002_advs_202205499
crossref_primary_10_1109_JLT_2020_3029701
crossref_primary_10_1038_s41598_018_30948_y
crossref_primary_10_1364_OE_27_028194
crossref_primary_10_1103_PhysRevB_92_205401
crossref_primary_10_1021_acs_nanolett_7b00676
crossref_primary_10_1002_adom_201600933
crossref_primary_10_1364_OL_39_005074
crossref_primary_10_3390_nano10091864
crossref_primary_10_1103_PhysRevLett_121_103901
crossref_primary_10_1021_acsphotonics_6b00515
Cites_doi 10.1364/OE.20.015882
10.1364/OL.27.001141
10.1038/nmat3292
10.1103/PhysRevLett.93.083901
10.1103/PhysRevLett.88.013601
10.1021/nl2004835
10.1080/09500340600832709
10.1038/nphys676
10.1126/science.1210713
10.1364/OE.19.012978
10.1103/PhysRevLett.107.053601
10.1038/nphoton.2008.229
10.1126/science.1152697
10.1126/science.1087128
10.1126/science.1226204
10.1103/PhysRevLett.109.113602
10.1038/nphoton.2012.138
10.1103/PhysRevLett.99.073901
10.1103/PhysRevLett.92.126603
10.1126/science.1231758
10.1038/ncomms2207
10.1103/PhysRevLett.96.073903
10.1103/PhysRevLett.96.163905
10.1103/PhysRevLett.95.136601
10.1126/science.1214686
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
2014 INIST-CNRS
Copyright_xml – notice: Copyright © 2013 American Chemical Society
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nl401734r
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1530-6992
EndPage 4151
ExternalDocumentID 23965168
27762687
10_1021_nl401734r
c895716701
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
AAYOK
AFFNX
IQODW
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a378t-2d3f2dd31486d1a3b8267a87386e0f300f61d595a77aa7f253b591dafb09131f3
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Thu Jul 10 21:10:36 EDT 2025
Fri Jul 11 07:03:05 EDT 2025
Thu Jan 02 22:11:58 EST 2025
Wed Apr 02 07:25:23 EDT 2025
Tue Jul 01 00:42:54 EDT 2025
Thu Apr 24 23:07:29 EDT 2025
Thu Aug 27 13:42:05 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Metasurface
optical spin Hall effect
orbital rotation
spin−orbit interaction
Degrees of freedom
Reciprocal space
Electrical properties
Reciprocal lattice
Spin-orbit interactions
Plasmons
Momentum
Hall effect
Crystal structure
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a378t-2d3f2dd31486d1a3b8267a87386e0f300f61d595a77aa7f253b591dafb09131f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23965168
PQID 1432076913
PQPubID 23479
PageCount 4
ParticipantIDs proquest_miscellaneous_1753483929
proquest_miscellaneous_1432076913
pubmed_primary_23965168
pascalfrancis_primary_27762687
crossref_primary_10_1021_nl401734r
crossref_citationtrail_10_1021_nl401734r
acs_journals_10_1021_nl401734r
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-11
PublicationDateYYYYMMDD 2013-09-11
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-11
  day: 11
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Onoda M. (ref4/cit4) 2004; 93
Bomzon Z. (ref11/cit11) 2002; 27
Ni X. (ref19/cit19) 2012; 335
Chen X. (ref21/cit21) 2012; 3
Bliokh K. Y. (ref6/cit6) 2006; 96
Zhao Y. Q. (ref13/cit13) 2007; 99
Kavokin A. (ref5/cit5) 2005; 95
Litchinitser N. M. (ref22/cit22) 2012; 337
Yu N. (ref17/cit17) 2011; 334
Wang J. (ref16/cit16) 2012; 6
Sinova J. (ref3/cit3) 2004; 92
Allen L. (ref24/cit24) 2007; 54
Kang M. (ref20/cit20) 2012; 20
Löffler W. (ref14/cit14) 2012; 109
Marrucci L. (ref12/cit12) 2006; 96
Leyder C. (ref7/cit7) 2007; 3
Bliokh K. Y. (ref8/cit8) 2008; 2
Yin X. B. (ref23/cit23) 2013; 339
Milione G. (ref26/cit26) 2011; 107
Hosten O. (ref9/cit9) 2008; 319
Shitrit N. (ref10/cit10) 2011; 11
Sun S. (ref18/cit18) 2012; 11
Loffler W. (ref25/cit25) 2011; 19
ref1/cit1
Murakami S. (ref2/cit2) 2003; 311
Molina-Terriza G. (ref15/cit15) 2001; 88
References_xml – volume: 20
  start-page: 15882
  year: 2012
  ident: ref20/cit20
  publication-title: Opt. Express
  doi: 10.1364/OE.20.015882
– volume: 27
  start-page: 1141
  year: 2002
  ident: ref11/cit11
  publication-title: Opt. Lett.
  doi: 10.1364/OL.27.001141
– volume: 11
  start-page: 426
  year: 2012
  ident: ref18/cit18
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3292
– volume: 93
  start-page: 083901
  year: 2004
  ident: ref4/cit4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.083901
– volume: 88
  start-page: 013601
  year: 2001
  ident: ref15/cit15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.013601
– volume: 11
  start-page: 2038
  year: 2011
  ident: ref10/cit10
  publication-title: Nano Lett.
  doi: 10.1021/nl2004835
– volume: 54
  start-page: 487
  year: 2007
  ident: ref24/cit24
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500340600832709
– volume: 3
  start-page: 628
  year: 2007
  ident: ref7/cit7
  publication-title: Nat. Phys.
  doi: 10.1038/nphys676
– volume: 334
  start-page: 333
  year: 2011
  ident: ref17/cit17
  publication-title: Science
  doi: 10.1126/science.1210713
– volume: 19
  start-page: 12978
  year: 2011
  ident: ref25/cit25
  publication-title: Opt. Exp.
  doi: 10.1364/OE.19.012978
– volume: 107
  start-page: 053601
  year: 2011
  ident: ref26/cit26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.053601
– volume: 2
  start-page: 748
  year: 2008
  ident: ref8/cit8
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2008.229
– volume: 319
  start-page: 787
  year: 2008
  ident: ref9/cit9
  publication-title: Science
  doi: 10.1126/science.1152697
– volume: 311
  start-page: 1348
  year: 2003
  ident: ref2/cit2
  publication-title: Science
  doi: 10.1126/science.1087128
– volume: 337
  start-page: 1054
  year: 2012
  ident: ref22/cit22
  publication-title: Science
  doi: 10.1126/science.1226204
– ident: ref1/cit1
– volume: 109
  start-page: 113602
  year: 2012
  ident: ref14/cit14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.113602
– volume: 6
  start-page: 488
  year: 2012
  ident: ref16/cit16
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.138
– volume: 99
  start-page: 073901
  year: 2007
  ident: ref13/cit13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.073901
– volume: 92
  start-page: 126603
  year: 2004
  ident: ref3/cit3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.126603
– volume: 339
  start-page: 1405
  year: 2013
  ident: ref23/cit23
  publication-title: Science
  doi: 10.1126/science.1231758
– volume: 3
  start-page: 1198
  year: 2012
  ident: ref21/cit21
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2207
– volume: 96
  start-page: 073903
  year: 2006
  ident: ref6/cit6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.073903
– volume: 96
  start-page: 163905
  year: 2006
  ident: ref12/cit12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.163905
– volume: 95
  start-page: 136601
  year: 2005
  ident: ref5/cit5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.136601
– volume: 335
  start-page: 427
  year: 2012
  ident: ref19/cit19
  publication-title: Science
  doi: 10.1126/science.1214686
SSID ssj0009350
Score 2.5491946
Snippet Here, we investigate the spin-induced manipulation of orbitals using metasurfaces constructed from geometric phase elements. By carrying the spin effects to...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4148
SubjectTerms Angular momentum
Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Degrees of freedom
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Exact sciences and technology
Mathematical analysis
Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals
Nanostructure
Orbitals
Physics
Plasmonics
Reciprocal space
Splitting
Structure of solids and liquids; crystallography
Surface and interface electron states
Title Spin-Enabled Plasmonic Metasurfaces for Manipulating Orbital Angular Momentum of Light
URI http://dx.doi.org/10.1021/nl401734r
https://www.ncbi.nlm.nih.gov/pubmed/23965168
https://www.proquest.com/docview/1432076913
https://www.proquest.com/docview/1753483929
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2xXECIfSlLZZYDl5R4iZMcEbRCiAISi7hFTmOjiuJWbXrh6xknbQGxKcdMlNgzk3kTx-8BHPkpHiZTHk8RvgnBtaeMirw01kzoWGmt3ebk5rW8eBCXT8HTFBz-soLP6IntYAsQctGfhlkmMXkd_jm7-2DW5YUMK2Yu9kFxJMb0QZ8vdaWnNfhSehZ6aoCzYEr5it_xZVFnGktwPt6tU_5e8lIb5mmt9fadvPGvISzD4ghnktMyMFZgSttVmP_EPrgGj3e9tvXqxeapjNwijH51PLmkqXP33dC4n7UIYlrSVLZdynzZZ3LTT53OCDm1TsQeTzoKh3z4SrqGXLlOfx0eGvX7swtvJLPgKR5GuccybliWcWyMZEaVc5oMVeTUQLVvuO8bSbMgDlQYKhUaFvA0iGmmTOo4RanhGzBju1ZvAaGB0lGEGNGX2NaF2HlHIpbU4AtVYi_cqkAV_ZCM0mSQFCvgjCaTCarA8dhFSWtEUu60Mjo_mR5MTHslM8dPRtUvfp5YshCrAEZTBfbHjk8wsdxqibK6O8RnE5z5OATK_7DBZk8UELMCm2XUfNyBxzKgMtr-b8w7MMcKjY3Yo3QXZvL-UO8h0snTahHp76ZO9is
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOUBV8S4sj8UgDlxS4kds57iqWi2wW5Daot4iZ2NXVVvvapO99NczdrK7LSoP5ZhJYnvGmW_i-PsAPqYlHq4yCS8RvgnBbWKc0UmZWyZsbqy1YXPy-EAOj8XXk-yko8kJe2GwETXeqY6L-Gt2AfrZX2AloLiY34V7CEJYiObB7uGaYJdHNVacwFgO5VosWYSuXxoy0KS-kYG2ZqbGwXCtisWfYWZMN_uPWt2i2ND4l8n5zqIpdyZXv3E4_l9PHsPDDnWSQRsmT-CO9U9h8xoX4TP4eTg788le3EpVkR8Iqi8Day4Z2yZ8RXTh1y2CCJeMjT9rRb_8Kfk-L4PqCBn4IGmPJwOhQ7O4JFNHRqHufw7H-3tHu8OkE11IDFe6SVjFHasqjmWSrKgJLpTK6KANalPH09RJWmV5ZpQyRjmW8TLLaWVcGRhGqePbsOGn3r4EQjNjtUZnpRKLPIV1uBa5pA5frxIr40kP-jg-RTdp6iKuhzNarAaoB5-WniomHWV5UM64uM30w8p01vJ03GbUv-HulSVTmBOkVj14v_R_gdMsrJ0Yb6cLbJvgLMUuUP4XGyz9RAScPXjRBs_6CTyXGZX61b_6_A7uD4_Go2L05eDba3jAovpGnlD6Bjaa-cK-RQzUlP0Y_L8AwgH-jA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkRAI8X4sj8UgDlxS4tixneOqdFWg21YqRb1FztpGFW12tcle-PXMONlti8pDOWaS-DGTmS-Ovw_gXVrhEZxNRIXlm5TCJzZYk1SFz6QvrPeeNidP9tTOkfx8nB_3QJH2wmAjGrxTExfxKarnLvQMA_xDfYpoQAu5uA43aLmOPHq0dXhOsiuiIisGMUKiwsgVk9DFSykLTZtLWejO3DY4IKFTsvhzqRlTzvge7K8bG_80-bG5bKvN6c_feBz_vzf34W5ffbJR5y4P4JqvH8LtC5yEj-Db4fykTrbjlirHDrC4PiP2XDbxLX1NDPQLF8NKl01sfdKJf9Xf2f6iIvURNqpJ2h5PErFDuzxjs8B2Cf8_hqPx9tetnaQXX0is0KZNMidC5pxAuKQctzSVSltDGqE-DSJNg-IuL3KrtbU6ZLmo8oI7GypiGuVBPIGNelb7Z8B4br0xOGGpQrCnEY8bWSge8DWrECFPBzDEMSr74GnKuC6e8XI9QAN4v5qtctpTl5OCxulVpm_XpvOOr-Mqo-GlKV9bZhpzgzJ6AG9WPlBiuNEaiq39bIltkyJLsQtc_MUGIaCMhecAnnYOdP4EUaicK_P8X31-DTcPPo7L3U97X17ArSyKcBQJ5y9ho10s_SsshdpqGP3_FyKzAR4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin-Enabled+Plasmonic+Metasurfaces+for+Manipulating+Orbital+Angular+Momentum+of+Light&rft.jtitle=Nano+letters&rft.au=GUIXIN+LI&rft.au=MING+KANG&rft.au=SHUMEI+CHEN&rft.au=SHUANG+ZHANG&rft.date=2013-09-11&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.volume=13&rft.issue=9&rft.spage=4148&rft.epage=4151&rft_id=info:doi/10.1021%2Fnl401734r&rft.externalDBID=n%2Fa&rft.externalDocID=27762687
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon