Two Distinct Assembly States of the Cysteine Regulatory Complex of Salmonella typhimurium Are Regulated by Enzyme–Substrate Cognate Pairs
Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the cysteine regulatory complex (CRC). The current model of Salmonella typhimurium predicts that CRC is composed of one [SAT]hexamer unit and two mole...
Saved in:
Published in | Biochemistry (Easton) Vol. 56; no. 18; pp. 2385 - 2399 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
09.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the cysteine regulatory complex (CRC). The current model of Salmonella typhimurium predicts that CRC is composed of one [SAT]hexamer unit and two molecules of [OASS]dimer. However, it is not clear why [SAT]hexamer cannot engage all of its six high-affinity binding sites. We examined the assembly state(s) of CRC by size exclusion chromatography, analytical ultracentrifugation (AUC), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) approaches. We show that CRC exists in two major assembly states, low-molecular weight (CRC1; 1[SAT]hexamer + 2[OASS]dimer) and high-molecular weight (CRC2; 1[SAT]hexamer + 4[OASS]dimer) states. Along with AUC results, ITC and SPR studies show that [OASS]dimer binds to [SAT]hexamer in a stepwise manner but the formation of fully saturated CRC3 (1[SAT]hexamer + 6[OASS]dimer) is not favorable. The fraction of CRC2 increases as the [OASS]dimer/[SAT]hexamer ratio increases to >4-fold, but CRC2 can be selectively dissociated into either CRC1 or free enzymes, in the presence of OAS and sulfide, in a concentration-dependent manner. Together, we show that CRC is a regulatable multienzyme assembly, sensitive to OASS–substrate(s) levels but subject to negative cooperativity and steric hindrance. Our results constitute the first report of the dual-assembly-state nature of CRC and suggest that physiological conditions, which limit sulfate uptake, would favor CRC1 over CRC2. |
---|---|
AbstractList | Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the cysteine regulatory complex (CRC). The current model of Salmonella typhimurium predicts that CRC is composed of one [SAT]
unit and two molecules of [OASS]
. However, it is not clear why [SAT]
cannot engage all of its six high-affinity binding sites. We examined the assembly state(s) of CRC by size exclusion chromatography, analytical ultracentrifugation (AUC), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) approaches. We show that CRC exists in two major assembly states, low-molecular weight (CRC
; 1[SAT]
+ 2[OASS]
) and high-molecular weight (CRC
; 1[SAT]
+ 4[OASS]
) states. Along with AUC results, ITC and SPR studies show that [OASS]
binds to [SAT]
in a stepwise manner but the formation of fully saturated CRC
(1[SAT]
+ 6[OASS]
) is not favorable. The fraction of CRC
increases as the [OASS]
/[SAT]
ratio increases to >4-fold, but CRC
can be selectively dissociated into either CRC
or free enzymes, in the presence of OAS and sulfide, in a concentration-dependent manner. Together, we show that CRC is a regulatable multienzyme assembly, sensitive to OASS-substrate(s) levels but subject to negative cooperativity and steric hindrance. Our results constitute the first report of the dual-assembly-state nature of CRC and suggest that physiological conditions, which limit sulfate uptake, would favor CRC
over CRC
. Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the cysteine regulatory complex (CRC). The current model of Salmonella typhimurium predicts that CRC is composed of one [SAT]hexamer unit and two molecules of [OASS]dimer. However, it is not clear why [SAT]hexamer cannot engage all of its six high-affinity binding sites. We examined the assembly state(s) of CRC by size exclusion chromatography, analytical ultracentrifugation (AUC), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) approaches. We show that CRC exists in two major assembly states, low-molecular weight (CRC1; 1[SAT]hexamer + 2[OASS]dimer) and high-molecular weight (CRC2; 1[SAT]hexamer + 4[OASS]dimer) states. Along with AUC results, ITC and SPR studies show that [OASS]dimer binds to [SAT]hexamer in a stepwise manner but the formation of fully saturated CRC3 (1[SAT]hexamer + 6[OASS]dimer) is not favorable. The fraction of CRC2 increases as the [OASS]dimer/[SAT]hexamer ratio increases to >4-fold, but CRC2 can be selectively dissociated into either CRC1 or free enzymes, in the presence of OAS and sulfide, in a concentration-dependent manner. Together, we show that CRC is a regulatable multienzyme assembly, sensitive to OASS–substrate(s) levels but subject to negative cooperativity and steric hindrance. Our results constitute the first report of the dual-assembly-state nature of CRC and suggest that physiological conditions, which limit sulfate uptake, would favor CRC1 over CRC2. Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the cysteine regulatory complex (CRC). The current model of Salmonella typhimurium predicts that CRC is composed of one [SAT]ₕₑₓₐₘₑᵣ unit and two molecules of [OASS]dᵢₘₑᵣ. However, it is not clear why [SAT]ₕₑₓₐₘₑᵣ cannot engage all of its six high-affinity binding sites. We examined the assembly state(s) of CRC by size exclusion chromatography, analytical ultracentrifugation (AUC), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) approaches. We show that CRC exists in two major assembly states, low-molecular weight (CRC₁; 1[SAT]ₕₑₓₐₘₑᵣ + 2[OASS]dᵢₘₑᵣ) and high-molecular weight (CRC₂; 1[SAT]ₕₑₓₐₘₑᵣ + 4[OASS]dᵢₘₑᵣ) states. Along with AUC results, ITC and SPR studies show that [OASS]dᵢₘₑᵣ binds to [SAT]ₕₑₓₐₘₑᵣ in a stepwise manner but the formation of fully saturated CRC₃ (1[SAT]ₕₑₓₐₘₑᵣ + 6[OASS]dᵢₘₑᵣ) is not favorable. The fraction of CRC₂ increases as the [OASS]dᵢₘₑᵣ/[SAT]ₕₑₓₐₘₑᵣ ratio increases to >4-fold, but CRC₂ can be selectively dissociated into either CRC₁ or free enzymes, in the presence of OAS and sulfide, in a concentration-dependent manner. Together, we show that CRC is a regulatable multienzyme assembly, sensitive to OASS–substrate(s) levels but subject to negative cooperativity and steric hindrance. Our results constitute the first report of the dual-assembly-state nature of CRC and suggest that physiological conditions, which limit sulfate uptake, would favor CRC₁ over CRC₂. Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the cysteine regulatory complex (CRC). The current model of Salmonella typhimurium predicts that CRC is composed of one [SAT]hexamer unit and two molecules of [OASS]dimer. However, it is not clear why [SAT]hexamer cannot engage all of its six high-affinity binding sites. We examined the assembly state(s) of CRC by size exclusion chromatography, analytical ultracentrifugation (AUC), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) approaches. We show that CRC exists in two major assembly states, low-molecular weight (CRC1; 1[SAT]hexamer + 2[OASS]dimer) and high-molecular weight (CRC2; 1[SAT]hexamer + 4[OASS]dimer) states. Along with AUC results, ITC and SPR studies show that [OASS]dimer binds to [SAT]hexamer in a stepwise manner but the formation of fully saturated CRC3 (1[SAT]hexamer + 6[OASS]dimer) is not favorable. The fraction of CRC2 increases as the [OASS]dimer/[SAT]hexamer ratio increases to >4-fold, but CRC2 can be selectively dissociated into either CRC1 or free enzymes, in the presence of OAS and sulfide, in a concentration-dependent manner. Together, we show that CRC is a regulatable multienzyme assembly, sensitive to OASS-substrate(s) levels but subject to negative cooperativity and steric hindrance. Our results constitute the first report of the dual-assembly-state nature of CRC and suggest that physiological conditions, which limit sulfate uptake, would favor CRC1 over CRC2.Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the cysteine regulatory complex (CRC). The current model of Salmonella typhimurium predicts that CRC is composed of one [SAT]hexamer unit and two molecules of [OASS]dimer. However, it is not clear why [SAT]hexamer cannot engage all of its six high-affinity binding sites. We examined the assembly state(s) of CRC by size exclusion chromatography, analytical ultracentrifugation (AUC), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) approaches. We show that CRC exists in two major assembly states, low-molecular weight (CRC1; 1[SAT]hexamer + 2[OASS]dimer) and high-molecular weight (CRC2; 1[SAT]hexamer + 4[OASS]dimer) states. Along with AUC results, ITC and SPR studies show that [OASS]dimer binds to [SAT]hexamer in a stepwise manner but the formation of fully saturated CRC3 (1[SAT]hexamer + 6[OASS]dimer) is not favorable. The fraction of CRC2 increases as the [OASS]dimer/[SAT]hexamer ratio increases to >4-fold, but CRC2 can be selectively dissociated into either CRC1 or free enzymes, in the presence of OAS and sulfide, in a concentration-dependent manner. Together, we show that CRC is a regulatable multienzyme assembly, sensitive to OASS-substrate(s) levels but subject to negative cooperativity and steric hindrance. Our results constitute the first report of the dual-assembly-state nature of CRC and suggest that physiological conditions, which limit sulfate uptake, would favor CRC1 over CRC2. |
Author | Kaushik, Abhishek Kumaran, Sangaralingam Ekka, Mary Krishna |
AuthorAffiliation | G. N. Ramachandran Protein Center, Council of Scientific and Industrial Research (CSIR) |
AuthorAffiliation_xml | – name: G. N. Ramachandran Protein Center, Council of Scientific and Industrial Research (CSIR) |
Author_xml | – sequence: 1 givenname: Abhishek surname: Kaushik fullname: Kaushik, Abhishek – sequence: 2 givenname: Mary Krishna surname: Ekka fullname: Ekka, Mary Krishna – sequence: 3 givenname: Sangaralingam orcidid: 0000-0002-7972-1032 surname: Kumaran fullname: Kumaran, Sangaralingam email: skumaran@imtech.res.in |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28414426$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFJ0BCXrKZqf8miZejoUClSq2YsrYc56bjKo4H21FJV92z5A15EhzNtAsWZeMrX3_n6vqcE3TU-x4Qek_JghJGz7SJi9p6swW3KGpCGRGv0IwuGZkLKZdHaEYIKeZMFuQYncR4l6-ClOINOmaVoEKwYoZ-3dx7_MnGZHuT8CpGcHU34k3SCSL2LU5bwOsxJrA94G9wO3Q6-TDitXe7Dn5OyEZ3Lq_WdRqncbe1bgh2cHgVngXQ4HrE5_3D6ODP4-_NUMcUcjtPue2neq1tiG_R61Z3Ed4d6in6_vn8Zv11fnn15WK9upxrXlZp-lDZgiAVWUIpaVtQXhhBlwQIaZqCMsmkqLgW3GgiapHPtpSkANbUpWGcn6KP-7m74H8MEJNyNppp_x78EBWbjKpYIel_UVpVkleCC5nRDwd0qB00ahes02FUT15nQO4BE3yMAVplbLbZ-j57YTtFiZpyVTlXdchVHXLNWv6P9mn8y6qzvWp6vPND6LOtLyr-AnRwu9k |
CitedBy_id | crossref_primary_10_1007_s13205_021_02891_9 crossref_primary_10_1016_j_biochi_2024_01_009 crossref_primary_10_1016_j_ejmech_2024_116461 crossref_primary_10_3390_catal11060700 crossref_primary_10_1016_j_jmb_2021_167255 crossref_primary_10_1007_s13205_019_1572_4 crossref_primary_10_1074_jbc_RA120_014490 |
Cites_doi | 10.1146/annurev-arplant-042110-103921 10.1126/science.1152241 10.1016/S0958-1669(00)00193-2 10.1021/jm901325e 10.1016/j.abb.2004.06.006 10.1074/jbc.M703518200 10.1016/j.bbrc.2010.02.118 10.1271/bbb.64.1874 10.1021/bi00076a017 10.1186/1471-2091-12-31 10.1074/jbc.275.1.461 10.1074/jbc.M111632200 10.1016/S0021-9258(19)78241-6 10.1074/jbc.M111.288423 10.1073/pnas.0812771106 10.1002/pro.5560041120 10.1016/S0021-9258(18)99657-2 10.1199/tab.0017 10.1105/tpc.106.047316 10.1016/S0006-3495(00)76713-0 10.1016/S1937-6448(10)81004-4 10.1042/bj1040627 10.1016/S0021-9258(17)40412-1 10.1074/jbc.M113.527143 10.1046/j.1432-1327.2001.01920.x 10.1074/jbc.M403751200 10.1074/jbc.M110.157446 10.1104/pp.120.3.637 10.1046/j.1365-313X.1997.11020251.x 10.1016/j.jmb.2008.08.075 10.1080/10826076.2012.743724 10.1046/j.1432-1327.1998.2550235.x 10.1021/bi7001168 10.2174/1568026615666150825142422 10.1074/jbc.M900154200 10.1074/jbc.M110.197376 10.1016/j.sbi.2013.02.011 10.1128/JB.187.9.3201-3205.2005 10.1016/j.jmb.2004.10.056 10.1110/ps.051492805 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.biochem.6b01204 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1520-4995 |
EndPage | 2399 |
ExternalDocumentID | 28414426 10_1021_acs_biochem_6b01204 e23403649 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 23N 53G 55 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AJYGW ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 KM L7B LG6 P2P ROL TN5 UI2 VF5 VG9 VQA W1F WH7 X X7M YZZ ZA5 --- -DZ -~X .55 4.4 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK XSW ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a378t-2967fe40805e791f6136c4150e00dd612929483a43ca04b4ca0f7906e2db7c233 |
IEDL.DBID | ACS |
ISSN | 0006-2960 1520-4995 |
IngestDate | Fri Jul 11 15:54:53 EDT 2025 Fri Jul 11 02:24:37 EDT 2025 Thu Jan 02 23:08:24 EST 2025 Tue Jul 01 03:33:35 EDT 2025 Thu Apr 24 22:52:50 EDT 2025 Thu Aug 27 13:42:51 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a378t-2967fe40805e791f6136c4150e00dd612929483a43ca04b4ca0f7906e2db7c233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7972-1032 |
PMID | 28414426 |
PQID | 1889384349 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2000482691 proquest_miscellaneous_1889384349 pubmed_primary_28414426 crossref_citationtrail_10_1021_acs_biochem_6b01204 crossref_primary_10_1021_acs_biochem_6b01204 acs_journals_10_1021_acs_biochem_6b01204 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170509 2017-05-09 |
PublicationDateYYYYMMDD | 2017-05-09 |
PublicationDate_xml | – month: 05 year: 2017 text: 20170509 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemistry (Easton) |
PublicationTitleAlternate | Biochemistry |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref25/cit25 ref16/cit16 ref29/cit29 Cook P. F. (ref11/cit11) 1977; 252 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 Awazuhara M. (ref41/cit41) 2000 ref8/cit8 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 Kredich N. M. (ref6/cit6) 1966; 241 ref22/cit22 ref13/cit13 ref33/cit33 Kredich N. M. (ref5/cit5) 1969; 244 ref4/cit4 ref30/cit30 Hong P. (ref38/cit38) 2012; 35 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref4/cit4 doi: 10.1146/annurev-arplant-042110-103921 – ident: ref42/cit42 doi: 10.1126/science.1152241 – ident: ref40/cit40 doi: 10.1016/S0958-1669(00)00193-2 – ident: ref19/cit19 doi: 10.1021/jm901325e – ident: ref34/cit34 doi: 10.1016/j.abb.2004.06.006 – ident: ref9/cit9 doi: 10.1074/jbc.M703518200 – ident: ref20/cit20 doi: 10.1016/j.bbrc.2010.02.118 – ident: ref22/cit22 doi: 10.1271/bbb.64.1874 – ident: ref33/cit33 doi: 10.1021/bi00076a017 – ident: ref13/cit13 doi: 10.1186/1471-2091-12-31 – ident: ref37/cit37 doi: 10.1074/jbc.275.1.461 – ident: ref23/cit23 doi: 10.1074/jbc.M111632200 – volume: 244 start-page: 2428 year: 1969 ident: ref5/cit5 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)78241-6 – ident: ref28/cit28 doi: 10.1074/jbc.M111.288423 – ident: ref43/cit43 doi: 10.1073/pnas.0812771106 – ident: ref35/cit35 – ident: ref30/cit30 doi: 10.1002/pro.5560041120 – volume: 241 start-page: 4955 year: 1966 ident: ref6/cit6 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)99657-2 – ident: ref1/cit1 doi: 10.1199/tab.0017 – ident: ref16/cit16 doi: 10.1105/tpc.106.047316 – ident: ref36/cit36 doi: 10.1016/S0006-3495(00)76713-0 – ident: ref3/cit3 doi: 10.1016/S1937-6448(10)81004-4 – ident: ref31/cit31 doi: 10.1042/bj1040627 – start-page: 331 volume-title: Sulfur Nutrition and Sulfur Assimilation in Higher Plants year: 2000 ident: ref41/cit41 – volume: 252 start-page: 3459 year: 1977 ident: ref11/cit11 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)40412-1 – ident: ref26/cit26 doi: 10.1074/jbc.M113.527143 – ident: ref29/cit29 doi: 10.1046/j.1432-1327.2001.01920.x – ident: ref27/cit27 doi: 10.1074/jbc.M403751200 – ident: ref25/cit25 doi: 10.1074/jbc.M110.157446 – ident: ref2/cit2 doi: 10.1104/pp.120.3.637 – ident: ref10/cit10 doi: 10.1046/j.1365-313X.1997.11020251.x – ident: ref24/cit24 doi: 10.1016/j.jmb.2008.08.075 – ident: ref32/cit32 doi: 10.1186/1471-2091-12-31 – volume: 35 start-page: 2923 year: 2012 ident: ref38/cit38 publication-title: J. Liq. Chromatogr. Relat. Technol. doi: 10.1080/10826076.2012.743724 – ident: ref8/cit8 doi: 10.1046/j.1432-1327.1998.2550235.x – ident: ref17/cit17 doi: 10.1021/bi7001168 – ident: ref18/cit18 doi: 10.2174/1568026615666150825142422 – ident: ref7/cit7 doi: 10.1074/jbc.M900154200 – ident: ref21/cit21 doi: 10.1074/jbc.M110.197376 – ident: ref12/cit12 doi: 10.1016/j.sbi.2013.02.011 – ident: ref14/cit14 doi: 10.1128/JB.187.9.3201-3205.2005 – ident: ref39/cit39 doi: 10.1016/j.jmb.2004.10.056 – ident: ref15/cit15 doi: 10.1110/ps.051492805 |
SSID | ssj0004074 |
Score | 2.2697992 |
Snippet | Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2385 |
SubjectTerms | Binding Sites biosynthesis calorimetry Cloning, Molecular cysteine Cysteine - biosynthesis Cysteine - chemistry cysteine synthase Cysteine Synthase - chemistry Cysteine Synthase - genetics Cysteine Synthase - metabolism enzyme substrates Escherichia coli - genetics Escherichia coli - metabolism gel chromatography Gene Expression Gene Expression Regulation, Bacterial Kinetics Molecular Dynamics Simulation Protein Binding Protein Interaction Domains and Motifs Protein Multimerization Protein Structure, Secondary Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Salmonella Typhimurium Salmonella typhimurium - enzymology Salmonella typhimurium - genetics serine O-acetyltransferase Serine O-Acetyltransferase - chemistry Serine O-Acetyltransferase - genetics Serine O-Acetyltransferase - metabolism Substrate Specificity sulfates sulfides surface plasmon resonance titration ultracentrifugation |
Title | Two Distinct Assembly States of the Cysteine Regulatory Complex of Salmonella typhimurium Are Regulated by Enzyme–Substrate Cognate Pairs |
URI | http://dx.doi.org/10.1021/acs.biochem.6b01204 https://www.ncbi.nlm.nih.gov/pubmed/28414426 https://www.proquest.com/docview/1889384349 https://www.proquest.com/docview/2000482691 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwELYoPbQXoNCWBVq5UlX10Gxjx-skx9UWhCoVVQUkbpHt2HTVTRbtJoJw6r1H3pAnYSY_29IWxCVRItuxPWPPNxnPDCFvma8jX9rA08xoT8SKe7GGR84s5zFzIARRUfxyIPePxeeTwckfzup_WfA5-6jMvK_HmD4q60uNvp7iEXnMZRSirjUcHf52g_TboMugJHNA5l2Qof83guLIzG-LozswZi1r9lbJQeex0xwx-dEvC903l_8GcHzYMNbISos66bBhk2dkyebrZGOYg8adVfQdrc-B1j_Y18mTUZcDboP8Ojqf0k-4DeSmoGggzvSkog1CpVNHAT7SEQaDBrBKvzV57aeziuI2M7EXWORQTYDV8ZAVLaqz7-OsnI3LDPqyqGBTqiu6m19Wmb3-eYV7WR0zF1o5zfH-FY1Oz8nx3u7RaN9r0zd4KgijAkkQOisAkg5siGRngTSAF3zr-2kKyAqQmYgCJQKjfKEFXF0YA-PwVIeGB8ELspxD_zYJHWjnjK84SzFcPHORtMo6xkLjUqm16ZH3ML9Ju_zmSW1Z5yzBl-2kJ-2k9wjvCJ6YNgw6ZuOY3F_pw6LSWRMF5P7ibzpOSoBgaIJRuZ2W0LEI8GEkAhHfXYbXjv5cxqxHXjZsuPgogAnQgLnceviAt8lTjlAED2nGO2S5mJX2FQCpQr-ul88NXsAcDQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOZRLgZbHQgEjIcSBbGPHm8dxtbRaoK0Q3ZV6i2LHhlU32Wo3EaQn7j3yD_tLOpNktwLRCi6JEtnOxJ7Y32Q83wC85q4KXd94juJaOTJKhBMpvBTcCBFxi4sgGYoHh_5wLD8e947boDCKhUEhFtjSonbiX7EL8B26pyaURSrr-opCPuVtuINwRJDJ1R8cXUVDui33MtrKAgH6kmvo743QqqQXv69K10DNesnZuwfjlbD1TpOTblmorj77g8fxf9_mPmy0GJT1G6V5ALdMvglb_Rzt76xib1i9K7T-3b4J64NlRrgtOB99n7H3NCnkumDkLs7UtGINXmUzyxBMsgFRQyN0ZV-aLPezecVo0pmaH1TkKJmi4tOWK1ZUp98mWTmflBnKsqpgUqYqtpufVZm5-PmLZraaQRdb-ZrT-TO5oB7CeG93NBg6bTIHJ_GCsKCRCKyRCFB7JiAl4J6vET24xnXTFHEW4jQZeon0dOJKJfFogwjVSKQq0MLzHsFajvI9AdZT1mo3ETwl8nhuQ98kxnIeaJv6SukOvMX-jduPcRHXfnbBY7rZdnrcdnoHxHLcY92SolNujunNld6tKp02nCA3F3-1VKgYB4wcMkluZiUKFiJaDKUno-vLiDrsX_gR78DjRhtXD0Vogfaw8J_--wu_hPXh6GA_3v9w-OkZ3BUEUmj7ZrQNa8W8NM8RYhXqRf1FXQIyhCRu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXHi2U5WkkhDiQJXa8eRxX267Kq6poK5VTFDt2WbHJrnYTQXrizrH_sL-EmTwWgWiFuCSKZTsTe2x_k7G_AXjOXRW6vvEcxbVyZJQIJ1L4KLgRIuIWF0EyFD_s-btH8u3x4HgNwu4sDAqxxJqWtROfRvU8tS3DAH9N6WpCkaSyvq_o2Ke8AlfJcUdm13B08OtEpNvyL6O9LBCkd3xDf6-EVia9_H1lugBu1svO-BZ8Wglc7zb50i8L1denf3A5_s8X3YabLRZlw0Z57sCayTdgc5ijHZ5V7AWrd4fWv9034Pqoiwy3CT8Ov87YNk0OuS4YuY0zNa1Yg1vZzDIElWxEFNEIYdnHJtr9bFExmnym5htlOUimOABo6xUrqvnnSVYuJmWGsqwKmJSpiu3kp1Vmzr-f0QxXM-liLSc53ffJFXUXjsY7h6Ndpw3q4CReEBbUG4E1EoHqwASkDNzzNaII17humiLeQrwmQy-Rnk5cqSRebRChOolUBVp43j1Yz1G--8AGylrtJoKnRCLPbeibxFjOA21TXyndg5fYvnE7KJdx7W8XPKbEttHjttF7ILq-j3VLjk4xOqaXF3q1KjRvuEEuz_6sU6oYO4wcM0luZiUKFiJqDKUno4vziPr4v_Aj3oOtRiNXL0WIgXax8B_8-wc_hWv72-P4_Zu9dw_hhiCsQrs4o0ewXixK8xiRVqGe1IPqJ3J9JvE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Distinct+Assembly+States+of+the+Cysteine+Regulatory+Complex+of+Salmonella+typhimurium+Are+Regulated+by+Enzyme%E2%80%93Substrate+Cognate+Pairs&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Kaushik%2C+Abhishek&rft.au=Ekka%2C+Mary+Krishna&rft.au=Kumaran%2C+Sangaralingam&rft.date=2017-05-09&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=56&rft.issue=18&rft.spage=2385&rft.epage=2399&rft_id=info:doi/10.1021%2Facs.biochem.6b01204&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_biochem_6b01204 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |