Two Distinct Assembly States of the Cysteine Regulatory Complex of Salmonella typhimurium Are Regulated by Enzyme–Substrate Cognate Pairs

Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the cysteine regulatory complex (CRC). The current model of Salmonella typhimurium predicts that CRC is composed of one [SAT]hexamer unit and two mole...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 56; no. 18; pp. 2385 - 2399
Main Authors Kaushik, Abhishek, Ekka, Mary Krishna, Kumaran, Sangaralingam
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the cysteine regulatory complex (CRC). The current model of Salmonella typhimurium predicts that CRC is composed of one [SAT]hexamer unit and two molecules of [OASS]dimer. However, it is not clear why [SAT]hexamer cannot engage all of its six high-affinity binding sites. We examined the assembly state(s) of CRC by size exclusion chromatography, analytical ultracentrifugation (AUC), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) approaches. We show that CRC exists in two major assembly states, low-molecular weight (CRC1; 1­[SAT]hexamer + 2­[OASS]dimer) and high-molecular weight (CRC2; 1­[SAT]hexamer + 4­[OASS]dimer) states. Along with AUC results, ITC and SPR studies show that [OASS]dimer binds to [SAT]hexamer in a stepwise manner but the formation of fully saturated CRC3 (1­[SAT]hexamer + 6­[OASS]dimer) is not favorable. The fraction of CRC2 increases as the [OASS]dimer/[SAT]hexamer ratio increases to >4-fold, but CRC2 can be selectively dissociated into either CRC1 or free enzymes, in the presence of OAS and sulfide, in a concentration-dependent manner. Together, we show that CRC is a regulatable multienzyme assembly, sensitive to OASS–substrate(s) levels but subject to negative cooperativity and steric hindrance. Our results constitute the first report of the dual-assembly-state nature of CRC and suggest that physiological conditions, which limit sulfate uptake, would favor CRC1 over CRC2.
AbstractList Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the cysteine regulatory complex (CRC). The current model of Salmonella typhimurium predicts that CRC is composed of one [SAT] unit and two molecules of [OASS] . However, it is not clear why [SAT] cannot engage all of its six high-affinity binding sites. We examined the assembly state(s) of CRC by size exclusion chromatography, analytical ultracentrifugation (AUC), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) approaches. We show that CRC exists in two major assembly states, low-molecular weight (CRC ; 1[SAT] + 2[OASS] ) and high-molecular weight (CRC ; 1[SAT] + 4[OASS] ) states. Along with AUC results, ITC and SPR studies show that [OASS] binds to [SAT] in a stepwise manner but the formation of fully saturated CRC (1[SAT] + 6[OASS] ) is not favorable. The fraction of CRC increases as the [OASS] /[SAT] ratio increases to >4-fold, but CRC can be selectively dissociated into either CRC or free enzymes, in the presence of OAS and sulfide, in a concentration-dependent manner. Together, we show that CRC is a regulatable multienzyme assembly, sensitive to OASS-substrate(s) levels but subject to negative cooperativity and steric hindrance. Our results constitute the first report of the dual-assembly-state nature of CRC and suggest that physiological conditions, which limit sulfate uptake, would favor CRC over CRC .
Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the cysteine regulatory complex (CRC). The current model of Salmonella typhimurium predicts that CRC is composed of one [SAT]hexamer unit and two molecules of [OASS]dimer. However, it is not clear why [SAT]hexamer cannot engage all of its six high-affinity binding sites. We examined the assembly state(s) of CRC by size exclusion chromatography, analytical ultracentrifugation (AUC), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) approaches. We show that CRC exists in two major assembly states, low-molecular weight (CRC1; 1­[SAT]hexamer + 2­[OASS]dimer) and high-molecular weight (CRC2; 1­[SAT]hexamer + 4­[OASS]dimer) states. Along with AUC results, ITC and SPR studies show that [OASS]dimer binds to [SAT]hexamer in a stepwise manner but the formation of fully saturated CRC3 (1­[SAT]hexamer + 6­[OASS]dimer) is not favorable. The fraction of CRC2 increases as the [OASS]dimer/[SAT]hexamer ratio increases to >4-fold, but CRC2 can be selectively dissociated into either CRC1 or free enzymes, in the presence of OAS and sulfide, in a concentration-dependent manner. Together, we show that CRC is a regulatable multienzyme assembly, sensitive to OASS–substrate(s) levels but subject to negative cooperativity and steric hindrance. Our results constitute the first report of the dual-assembly-state nature of CRC and suggest that physiological conditions, which limit sulfate uptake, would favor CRC1 over CRC2.
Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the cysteine regulatory complex (CRC). The current model of Salmonella typhimurium predicts that CRC is composed of one [SAT]ₕₑₓₐₘₑᵣ unit and two molecules of [OASS]dᵢₘₑᵣ. However, it is not clear why [SAT]ₕₑₓₐₘₑᵣ cannot engage all of its six high-affinity binding sites. We examined the assembly state(s) of CRC by size exclusion chromatography, analytical ultracentrifugation (AUC), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) approaches. We show that CRC exists in two major assembly states, low-molecular weight (CRC₁; 1[SAT]ₕₑₓₐₘₑᵣ + 2[OASS]dᵢₘₑᵣ) and high-molecular weight (CRC₂; 1[SAT]ₕₑₓₐₘₑᵣ + 4[OASS]dᵢₘₑᵣ) states. Along with AUC results, ITC and SPR studies show that [OASS]dᵢₘₑᵣ binds to [SAT]ₕₑₓₐₘₑᵣ in a stepwise manner but the formation of fully saturated CRC₃ (1[SAT]ₕₑₓₐₘₑᵣ + 6[OASS]dᵢₘₑᵣ) is not favorable. The fraction of CRC₂ increases as the [OASS]dᵢₘₑᵣ/[SAT]ₕₑₓₐₘₑᵣ ratio increases to >4-fold, but CRC₂ can be selectively dissociated into either CRC₁ or free enzymes, in the presence of OAS and sulfide, in a concentration-dependent manner. Together, we show that CRC is a regulatable multienzyme assembly, sensitive to OASS–substrate(s) levels but subject to negative cooperativity and steric hindrance. Our results constitute the first report of the dual-assembly-state nature of CRC and suggest that physiological conditions, which limit sulfate uptake, would favor CRC₁ over CRC₂.
Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the cysteine regulatory complex (CRC). The current model of Salmonella typhimurium predicts that CRC is composed of one [SAT]hexamer unit and two molecules of [OASS]dimer. However, it is not clear why [SAT]hexamer cannot engage all of its six high-affinity binding sites. We examined the assembly state(s) of CRC by size exclusion chromatography, analytical ultracentrifugation (AUC), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) approaches. We show that CRC exists in two major assembly states, low-molecular weight (CRC1; 1[SAT]hexamer + 2[OASS]dimer) and high-molecular weight (CRC2; 1[SAT]hexamer + 4[OASS]dimer) states. Along with AUC results, ITC and SPR studies show that [OASS]dimer binds to [SAT]hexamer in a stepwise manner but the formation of fully saturated CRC3 (1[SAT]hexamer + 6[OASS]dimer) is not favorable. The fraction of CRC2 increases as the [OASS]dimer/[SAT]hexamer ratio increases to >4-fold, but CRC2 can be selectively dissociated into either CRC1 or free enzymes, in the presence of OAS and sulfide, in a concentration-dependent manner. Together, we show that CRC is a regulatable multienzyme assembly, sensitive to OASS-substrate(s) levels but subject to negative cooperativity and steric hindrance. Our results constitute the first report of the dual-assembly-state nature of CRC and suggest that physiological conditions, which limit sulfate uptake, would favor CRC1 over CRC2.Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the cysteine regulatory complex (CRC). The current model of Salmonella typhimurium predicts that CRC is composed of one [SAT]hexamer unit and two molecules of [OASS]dimer. However, it is not clear why [SAT]hexamer cannot engage all of its six high-affinity binding sites. We examined the assembly state(s) of CRC by size exclusion chromatography, analytical ultracentrifugation (AUC), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) approaches. We show that CRC exists in two major assembly states, low-molecular weight (CRC1; 1[SAT]hexamer + 2[OASS]dimer) and high-molecular weight (CRC2; 1[SAT]hexamer + 4[OASS]dimer) states. Along with AUC results, ITC and SPR studies show that [OASS]dimer binds to [SAT]hexamer in a stepwise manner but the formation of fully saturated CRC3 (1[SAT]hexamer + 6[OASS]dimer) is not favorable. The fraction of CRC2 increases as the [OASS]dimer/[SAT]hexamer ratio increases to >4-fold, but CRC2 can be selectively dissociated into either CRC1 or free enzymes, in the presence of OAS and sulfide, in a concentration-dependent manner. Together, we show that CRC is a regulatable multienzyme assembly, sensitive to OASS-substrate(s) levels but subject to negative cooperativity and steric hindrance. Our results constitute the first report of the dual-assembly-state nature of CRC and suggest that physiological conditions, which limit sulfate uptake, would favor CRC1 over CRC2.
Author Kaushik, Abhishek
Kumaran, Sangaralingam
Ekka, Mary Krishna
AuthorAffiliation G. N. Ramachandran Protein Center, Council of Scientific and Industrial Research (CSIR)
AuthorAffiliation_xml – name: G. N. Ramachandran Protein Center, Council of Scientific and Industrial Research (CSIR)
Author_xml – sequence: 1
  givenname: Abhishek
  surname: Kaushik
  fullname: Kaushik, Abhishek
– sequence: 2
  givenname: Mary Krishna
  surname: Ekka
  fullname: Ekka, Mary Krishna
– sequence: 3
  givenname: Sangaralingam
  orcidid: 0000-0002-7972-1032
  surname: Kumaran
  fullname: Kumaran, Sangaralingam
  email: skumaran@imtech.res.in
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28414426$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFJ0BCXrKZqf8miZejoUClSq2YsrYc56bjKo4H21FJV92z5A15EhzNtAsWZeMrX3_n6vqcE3TU-x4Qek_JghJGz7SJi9p6swW3KGpCGRGv0IwuGZkLKZdHaEYIKeZMFuQYncR4l6-ClOINOmaVoEKwYoZ-3dx7_MnGZHuT8CpGcHU34k3SCSL2LU5bwOsxJrA94G9wO3Q6-TDitXe7Dn5OyEZ3Lq_WdRqncbe1bgh2cHgVngXQ4HrE5_3D6ODP4-_NUMcUcjtPue2neq1tiG_R61Z3Ed4d6in6_vn8Zv11fnn15WK9upxrXlZp-lDZgiAVWUIpaVtQXhhBlwQIaZqCMsmkqLgW3GgiapHPtpSkANbUpWGcn6KP-7m74H8MEJNyNppp_x78EBWbjKpYIel_UVpVkleCC5nRDwd0qB00ahes02FUT15nQO4BE3yMAVplbLbZ-j57YTtFiZpyVTlXdchVHXLNWv6P9mn8y6qzvWp6vPND6LOtLyr-AnRwu9k
CitedBy_id crossref_primary_10_1007_s13205_021_02891_9
crossref_primary_10_1016_j_biochi_2024_01_009
crossref_primary_10_1016_j_ejmech_2024_116461
crossref_primary_10_3390_catal11060700
crossref_primary_10_1016_j_jmb_2021_167255
crossref_primary_10_1007_s13205_019_1572_4
crossref_primary_10_1074_jbc_RA120_014490
Cites_doi 10.1146/annurev-arplant-042110-103921
10.1126/science.1152241
10.1016/S0958-1669(00)00193-2
10.1021/jm901325e
10.1016/j.abb.2004.06.006
10.1074/jbc.M703518200
10.1016/j.bbrc.2010.02.118
10.1271/bbb.64.1874
10.1021/bi00076a017
10.1186/1471-2091-12-31
10.1074/jbc.275.1.461
10.1074/jbc.M111632200
10.1016/S0021-9258(19)78241-6
10.1074/jbc.M111.288423
10.1073/pnas.0812771106
10.1002/pro.5560041120
10.1016/S0021-9258(18)99657-2
10.1199/tab.0017
10.1105/tpc.106.047316
10.1016/S0006-3495(00)76713-0
10.1016/S1937-6448(10)81004-4
10.1042/bj1040627
10.1016/S0021-9258(17)40412-1
10.1074/jbc.M113.527143
10.1046/j.1432-1327.2001.01920.x
10.1074/jbc.M403751200
10.1074/jbc.M110.157446
10.1104/pp.120.3.637
10.1046/j.1365-313X.1997.11020251.x
10.1016/j.jmb.2008.08.075
10.1080/10826076.2012.743724
10.1046/j.1432-1327.1998.2550235.x
10.1021/bi7001168
10.2174/1568026615666150825142422
10.1074/jbc.M900154200
10.1074/jbc.M110.197376
10.1016/j.sbi.2013.02.011
10.1128/JB.187.9.3201-3205.2005
10.1016/j.jmb.2004.10.056
10.1110/ps.051492805
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acs.biochem.6b01204
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 2399
ExternalDocumentID 28414426
10_1021_acs_biochem_6b01204
e23403649
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
23N
53G
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AJYGW
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
KM
L7B
LG6
P2P
ROL
TN5
UI2
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
---
-DZ
-~X
.55
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a378t-2967fe40805e791f6136c4150e00dd612929483a43ca04b4ca0f7906e2db7c233
IEDL.DBID ACS
ISSN 0006-2960
1520-4995
IngestDate Fri Jul 11 15:54:53 EDT 2025
Fri Jul 11 02:24:37 EDT 2025
Thu Jan 02 23:08:24 EST 2025
Tue Jul 01 03:33:35 EDT 2025
Thu Apr 24 22:52:50 EDT 2025
Thu Aug 27 13:42:51 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a378t-2967fe40805e791f6136c4150e00dd612929483a43ca04b4ca0f7906e2db7c233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7972-1032
PMID 28414426
PQID 1889384349
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2000482691
proquest_miscellaneous_1889384349
pubmed_primary_28414426
crossref_citationtrail_10_1021_acs_biochem_6b01204
crossref_primary_10_1021_acs_biochem_6b01204
acs_journals_10_1021_acs_biochem_6b01204
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170509
2017-05-09
PublicationDateYYYYMMDD 2017-05-09
PublicationDate_xml – month: 05
  year: 2017
  text: 20170509
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref25/cit25
ref16/cit16
ref29/cit29
Cook P. F. (ref11/cit11) 1977; 252
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
Awazuhara M. (ref41/cit41) 2000
ref8/cit8
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
Kredich N. M. (ref6/cit6) 1966; 241
ref22/cit22
ref13/cit13
ref33/cit33
Kredich N. M. (ref5/cit5) 1969; 244
ref4/cit4
ref30/cit30
Hong P. (ref38/cit38) 2012; 35
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref4/cit4
  doi: 10.1146/annurev-arplant-042110-103921
– ident: ref42/cit42
  doi: 10.1126/science.1152241
– ident: ref40/cit40
  doi: 10.1016/S0958-1669(00)00193-2
– ident: ref19/cit19
  doi: 10.1021/jm901325e
– ident: ref34/cit34
  doi: 10.1016/j.abb.2004.06.006
– ident: ref9/cit9
  doi: 10.1074/jbc.M703518200
– ident: ref20/cit20
  doi: 10.1016/j.bbrc.2010.02.118
– ident: ref22/cit22
  doi: 10.1271/bbb.64.1874
– ident: ref33/cit33
  doi: 10.1021/bi00076a017
– ident: ref13/cit13
  doi: 10.1186/1471-2091-12-31
– ident: ref37/cit37
  doi: 10.1074/jbc.275.1.461
– ident: ref23/cit23
  doi: 10.1074/jbc.M111632200
– volume: 244
  start-page: 2428
  year: 1969
  ident: ref5/cit5
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)78241-6
– ident: ref28/cit28
  doi: 10.1074/jbc.M111.288423
– ident: ref43/cit43
  doi: 10.1073/pnas.0812771106
– ident: ref35/cit35
– ident: ref30/cit30
  doi: 10.1002/pro.5560041120
– volume: 241
  start-page: 4955
  year: 1966
  ident: ref6/cit6
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)99657-2
– ident: ref1/cit1
  doi: 10.1199/tab.0017
– ident: ref16/cit16
  doi: 10.1105/tpc.106.047316
– ident: ref36/cit36
  doi: 10.1016/S0006-3495(00)76713-0
– ident: ref3/cit3
  doi: 10.1016/S1937-6448(10)81004-4
– ident: ref31/cit31
  doi: 10.1042/bj1040627
– start-page: 331
  volume-title: Sulfur Nutrition and Sulfur Assimilation in Higher Plants
  year: 2000
  ident: ref41/cit41
– volume: 252
  start-page: 3459
  year: 1977
  ident: ref11/cit11
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)40412-1
– ident: ref26/cit26
  doi: 10.1074/jbc.M113.527143
– ident: ref29/cit29
  doi: 10.1046/j.1432-1327.2001.01920.x
– ident: ref27/cit27
  doi: 10.1074/jbc.M403751200
– ident: ref25/cit25
  doi: 10.1074/jbc.M110.157446
– ident: ref2/cit2
  doi: 10.1104/pp.120.3.637
– ident: ref10/cit10
  doi: 10.1046/j.1365-313X.1997.11020251.x
– ident: ref24/cit24
  doi: 10.1016/j.jmb.2008.08.075
– ident: ref32/cit32
  doi: 10.1186/1471-2091-12-31
– volume: 35
  start-page: 2923
  year: 2012
  ident: ref38/cit38
  publication-title: J. Liq. Chromatogr. Relat. Technol.
  doi: 10.1080/10826076.2012.743724
– ident: ref8/cit8
  doi: 10.1046/j.1432-1327.1998.2550235.x
– ident: ref17/cit17
  doi: 10.1021/bi7001168
– ident: ref18/cit18
  doi: 10.2174/1568026615666150825142422
– ident: ref7/cit7
  doi: 10.1074/jbc.M900154200
– ident: ref21/cit21
  doi: 10.1074/jbc.M110.197376
– ident: ref12/cit12
  doi: 10.1016/j.sbi.2013.02.011
– ident: ref14/cit14
  doi: 10.1128/JB.187.9.3201-3205.2005
– ident: ref39/cit39
  doi: 10.1016/j.jmb.2004.10.056
– ident: ref15/cit15
  doi: 10.1110/ps.051492805
SSID ssj0004074
Score 2.2697992
Snippet Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2385
SubjectTerms Binding Sites
biosynthesis
calorimetry
Cloning, Molecular
cysteine
Cysteine - biosynthesis
Cysteine - chemistry
cysteine synthase
Cysteine Synthase - chemistry
Cysteine Synthase - genetics
Cysteine Synthase - metabolism
enzyme substrates
Escherichia coli - genetics
Escherichia coli - metabolism
gel chromatography
Gene Expression
Gene Expression Regulation, Bacterial
Kinetics
Molecular Dynamics Simulation
Protein Binding
Protein Interaction Domains and Motifs
Protein Multimerization
Protein Structure, Secondary
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Salmonella Typhimurium
Salmonella typhimurium - enzymology
Salmonella typhimurium - genetics
serine O-acetyltransferase
Serine O-Acetyltransferase - chemistry
Serine O-Acetyltransferase - genetics
Serine O-Acetyltransferase - metabolism
Substrate Specificity
sulfates
sulfides
surface plasmon resonance
titration
ultracentrifugation
Title Two Distinct Assembly States of the Cysteine Regulatory Complex of Salmonella typhimurium Are Regulated by Enzyme–Substrate Cognate Pairs
URI http://dx.doi.org/10.1021/acs.biochem.6b01204
https://www.ncbi.nlm.nih.gov/pubmed/28414426
https://www.proquest.com/docview/1889384349
https://www.proquest.com/docview/2000482691
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwELYoPbQXoNCWBVq5UlX10Gxjx-skx9UWhCoVVQUkbpHt2HTVTRbtJoJw6r1H3pAnYSY_29IWxCVRItuxPWPPNxnPDCFvma8jX9rA08xoT8SKe7GGR84s5zFzIARRUfxyIPePxeeTwckfzup_WfA5-6jMvK_HmD4q60uNvp7iEXnMZRSirjUcHf52g_TboMugJHNA5l2Qof83guLIzG-LozswZi1r9lbJQeex0xwx-dEvC903l_8GcHzYMNbISos66bBhk2dkyebrZGOYg8adVfQdrc-B1j_Y18mTUZcDboP8Ojqf0k-4DeSmoGggzvSkog1CpVNHAT7SEQaDBrBKvzV57aeziuI2M7EXWORQTYDV8ZAVLaqz7-OsnI3LDPqyqGBTqiu6m19Wmb3-eYV7WR0zF1o5zfH-FY1Oz8nx3u7RaN9r0zd4KgijAkkQOisAkg5siGRngTSAF3zr-2kKyAqQmYgCJQKjfKEFXF0YA-PwVIeGB8ELspxD_zYJHWjnjK84SzFcPHORtMo6xkLjUqm16ZH3ML9Ju_zmSW1Z5yzBl-2kJ-2k9wjvCJ6YNgw6ZuOY3F_pw6LSWRMF5P7ibzpOSoBgaIJRuZ2W0LEI8GEkAhHfXYbXjv5cxqxHXjZsuPgogAnQgLnceviAt8lTjlAED2nGO2S5mJX2FQCpQr-ul88NXsAcDQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOZRLgZbHQgEjIcSBbGPHm8dxtbRaoK0Q3ZV6i2LHhlU32Wo3EaQn7j3yD_tLOpNktwLRCi6JEtnOxJ7Y32Q83wC85q4KXd94juJaOTJKhBMpvBTcCBFxi4sgGYoHh_5wLD8e947boDCKhUEhFtjSonbiX7EL8B26pyaURSrr-opCPuVtuINwRJDJ1R8cXUVDui33MtrKAgH6kmvo743QqqQXv69K10DNesnZuwfjlbD1TpOTblmorj77g8fxf9_mPmy0GJT1G6V5ALdMvglb_Rzt76xib1i9K7T-3b4J64NlRrgtOB99n7H3NCnkumDkLs7UtGINXmUzyxBMsgFRQyN0ZV-aLPezecVo0pmaH1TkKJmi4tOWK1ZUp98mWTmflBnKsqpgUqYqtpufVZm5-PmLZraaQRdb-ZrT-TO5oB7CeG93NBg6bTIHJ_GCsKCRCKyRCFB7JiAl4J6vET24xnXTFHEW4jQZeon0dOJKJfFogwjVSKQq0MLzHsFajvI9AdZT1mo3ETwl8nhuQ98kxnIeaJv6SukOvMX-jduPcRHXfnbBY7rZdnrcdnoHxHLcY92SolNujunNld6tKp02nCA3F3-1VKgYB4wcMkluZiUKFiJaDKUno-vLiDrsX_gR78DjRhtXD0Vogfaw8J_--wu_hPXh6GA_3v9w-OkZ3BUEUmj7ZrQNa8W8NM8RYhXqRf1FXQIyhCRu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXHi2U5WkkhDiQJXa8eRxX267Kq6poK5VTFDt2WbHJrnYTQXrizrH_sL-EmTwWgWiFuCSKZTsTe2x_k7G_AXjOXRW6vvEcxbVyZJQIJ1L4KLgRIuIWF0EyFD_s-btH8u3x4HgNwu4sDAqxxJqWtROfRvU8tS3DAH9N6WpCkaSyvq_o2Ke8AlfJcUdm13B08OtEpNvyL6O9LBCkd3xDf6-EVia9_H1lugBu1svO-BZ8Wglc7zb50i8L1denf3A5_s8X3YabLRZlw0Z57sCayTdgc5ijHZ5V7AWrd4fWv9034Pqoiwy3CT8Ov87YNk0OuS4YuY0zNa1Yg1vZzDIElWxEFNEIYdnHJtr9bFExmnym5htlOUimOABo6xUrqvnnSVYuJmWGsqwKmJSpiu3kp1Vmzr-f0QxXM-liLSc53ffJFXUXjsY7h6Ndpw3q4CReEBbUG4E1EoHqwASkDNzzNaII17humiLeQrwmQy-Rnk5cqSRebRChOolUBVp43j1Yz1G--8AGylrtJoKnRCLPbeibxFjOA21TXyndg5fYvnE7KJdx7W8XPKbEttHjttF7ILq-j3VLjk4xOqaXF3q1KjRvuEEuz_6sU6oYO4wcM0luZiUKFiJqDKUno4vziPr4v_Aj3oOtRiNXL0WIgXax8B_8-wc_hWv72-P4_Zu9dw_hhiCsQrs4o0ewXixK8xiRVqGe1IPqJ3J9JvE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Distinct+Assembly+States+of+the+Cysteine+Regulatory+Complex+of+Salmonella+typhimurium+Are+Regulated+by+Enzyme%E2%80%93Substrate+Cognate+Pairs&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Kaushik%2C+Abhishek&rft.au=Ekka%2C+Mary+Krishna&rft.au=Kumaran%2C+Sangaralingam&rft.date=2017-05-09&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=56&rft.issue=18&rft.spage=2385&rft.epage=2399&rft_id=info:doi/10.1021%2Facs.biochem.6b01204&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_biochem_6b01204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon