Hydration Interaction between Phospholipid Membranes: Insight into Different Measurement Ensembles from Atomistic Molecular Dynamics Simulations

Using the novel thermodynamic extrapolation technique in molecular dynamics simulations, we investigate the interaction between phospholipid bilayers subject to various boundary conditions that correspond to established experimental methods for the determination of pressure–distance curves: the osmo...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 29; no. 29; pp. 9126 - 9137
Main Authors Kanduč, Matej, Schneck, Emanuel, Netz, Roland R
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 23.07.2013
Subjects
Online AccessGet full text
ISSN0743-7463
1520-5827
1520-5827
DOI10.1021/la401147b

Cover

Abstract Using the novel thermodynamic extrapolation technique in molecular dynamics simulations, we investigate the interaction between phospholipid bilayers subject to various boundary conditions that correspond to established experimental methods for the determination of pressure–distance curves: the osmotic stress method, the hydrostatic method, and the surface force apparatus method. We discuss the roles of van der Waals and Helfrich undulation pressures in the force balance and find that they do not play a major role in the distance range below 28 water molecules per lipid as considered by us. We address the influence of experimental boundary conditions on bilayer structural changes as well as the consequences on interaction pressures. Significant discrepancies are observed between pressures obtained in osmotic stress and hydration methods on one hand and the surface force apparatus method on the other hand. We quantify the contribution of lipid volume compressibility to the total work of dehydration and find it to be substantial for high pressures. In a wide hydration range, the interaction pressure is mostly determined by the area per lipid molecule. This means that the influence of fatty acid chemistry on experimental pressure–distance curves is indirect and mediated by the area per lipid.
AbstractList Using the novel thermodynamic extrapolation technique in molecular dynamics simulations, we investigate the interaction between phospholipid bilayers subject to various boundary conditions that correspond to established experimental methods for the determination of pressure-distance curves: the osmotic stress method, the hydrostatic method, and the surface force apparatus method. We discuss the roles of van der Waals and Helfrich undulation pressures in the force balance and find that they do not play a major role in the distance range below 28 water molecules per lipid as considered by us. We address the influence of experimental boundary conditions on bilayer structural changes as well as the consequences on interaction pressures. Significant discrepancies are observed between pressures obtained in osmotic stress and hydration methods on one hand and the surface force apparatus method on the other hand. We quantify the contribution of lipid volume compressibility to the total work of dehydration and find it to be substantial for high pressures. In a wide hydration range, the interaction pressure is mostly determined by the area per lipid molecule. This means that the influence of fatty acid chemistry on experimental pressure-distance curves is indirect and mediated by the area per lipid.Using the novel thermodynamic extrapolation technique in molecular dynamics simulations, we investigate the interaction between phospholipid bilayers subject to various boundary conditions that correspond to established experimental methods for the determination of pressure-distance curves: the osmotic stress method, the hydrostatic method, and the surface force apparatus method. We discuss the roles of van der Waals and Helfrich undulation pressures in the force balance and find that they do not play a major role in the distance range below 28 water molecules per lipid as considered by us. We address the influence of experimental boundary conditions on bilayer structural changes as well as the consequences on interaction pressures. Significant discrepancies are observed between pressures obtained in osmotic stress and hydration methods on one hand and the surface force apparatus method on the other hand. We quantify the contribution of lipid volume compressibility to the total work of dehydration and find it to be substantial for high pressures. In a wide hydration range, the interaction pressure is mostly determined by the area per lipid molecule. This means that the influence of fatty acid chemistry on experimental pressure-distance curves is indirect and mediated by the area per lipid.
Using the novel thermodynamic extrapolation technique in molecular dynamics simulations, we investigate the interaction between phospholipid bilayers subject to various boundary conditions that correspond to established experimental methods for the determination of pressure–distance curves: the osmotic stress method, the hydrostatic method, and the surface force apparatus method. We discuss the roles of van der Waals and Helfrich undulation pressures in the force balance and find that they do not play a major role in the distance range below 28 water molecules per lipid as considered by us. We address the influence of experimental boundary conditions on bilayer structural changes as well as the consequences on interaction pressures. Significant discrepancies are observed between pressures obtained in osmotic stress and hydration methods on one hand and the surface force apparatus method on the other hand. We quantify the contribution of lipid volume compressibility to the total work of dehydration and find it to be substantial for high pressures. In a wide hydration range, the interaction pressure is mostly determined by the area per lipid molecule. This means that the influence of fatty acid chemistry on experimental pressure–distance curves is indirect and mediated by the area per lipid.
Author Kanduč, Matej
Schneck, Emanuel
Netz, Roland R
AuthorAffiliation J. Stefan Institute
Free University Berlin
Institut Laue-Langevin
AuthorAffiliation_xml – name: Institut Laue-Langevin
– name: Free University Berlin
– name: J. Stefan Institute
Author_xml – sequence: 1
  givenname: Matej
  surname: Kanduč
  fullname: Kanduč, Matej
  email: matej.kanduc@ijs.si
– sequence: 2
  givenname: Emanuel
  surname: Schneck
  fullname: Schneck, Emanuel
– sequence: 3
  givenname: Roland R
  surname: Netz
  fullname: Netz, Roland R
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27609508$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23848998$$D View this record in MEDLINE/PubMed
BookMark eNqF0c1qFTEUB_AgFXtbXfgCko2gi7EnX5MZd6WtttCioK6HTJLxpmSSa5JB7lv4yOa2twpScJVD-OXk5J8jdBBisAi9JPCOACUnXnEghMvxCVoRQaERHZUHaAWSs0bylh2io5xvAaBnvH-GDinreNf33Qr9utyapIqLAV-FYpPSd_Voy09rA_68jnmzjt5tnME3dh6TCja_rza77-uCXSgRn7tpssmGUoXKS7Lzrr4IuXpvM55SnPFpibPLxWl8E73Vi1cJn2-Dmp3O-Iub68bu5vwcPZ2Uz_bFfj1G3z5cfD27bK4_fbw6O71uFJNdaYisD1B8sgRAMKqA0mkEojuhBGN9b6gxo4ZRd8qMPcAIzAgFVlrSCmNadoze3PfdpPhjsbkMdTxtva8PjEseaE1LCCnb_1PCCSUt4byv9NWeLuNszbBJblZpOzwEXsHrPVBZKz_VPLXLf51soRewcyf3TqeYc7LToF25S6gk5fxAYNh9_fDn6-uJt_-ceGj6mN1PoXQebuOSQo36Efcbo-W8Ag
CODEN LANGD5
CitedBy_id crossref_primary_10_1103_PhysRevLett_126_216001
crossref_primary_10_1002_smll_202100788
crossref_primary_10_1021_acs_jpcb_4c04719
crossref_primary_10_1021_acsnano_1c08512
crossref_primary_10_1016_j_physa_2014_06_088
crossref_primary_10_1103_PhysRevE_102_012806
crossref_primary_10_1002_admi_201600349
crossref_primary_10_1002_anie_201400546
crossref_primary_10_1021_acs_langmuir_3c03656
crossref_primary_10_1039_D2TB02783F
crossref_primary_10_1007_s11433_018_9264_x
crossref_primary_10_7498_aps_65_186101
crossref_primary_10_1038_s41467_021_23722_8
crossref_primary_10_1021_acs_jpcb_5b04878
crossref_primary_10_1103_PhysRevE_93_022609
crossref_primary_10_1021_acs_langmuir_5b02786
crossref_primary_10_1063_5_0053758
crossref_primary_10_3390_computation6010003
crossref_primary_10_1021_acs_jpcb_5b05501
crossref_primary_10_3389_fphy_2021_703472
crossref_primary_10_1002_ange_201400546
crossref_primary_10_1016_j_cis_2014_02_001
crossref_primary_10_1016_j_cocis_2016_04_002
crossref_primary_10_1021_acs_langmuir_2c00636
crossref_primary_10_1111_tpj_15125
crossref_primary_10_1021_acs_jcim_0c01299
crossref_primary_10_1021_acs_jpclett_7b00977
crossref_primary_10_1016_j_colsurfb_2020_110908
crossref_primary_10_1002_cphc_201402893
crossref_primary_10_1021_acs_langmuir_6b01727
crossref_primary_10_1016_j_bpj_2015_05_003
crossref_primary_10_1038_ncomms14899
crossref_primary_10_1021_acs_jpcb_0c01967
crossref_primary_10_1016_j_colsurfa_2014_11_029
crossref_primary_10_1007_s11426_014_5308_3
Cites_doi 10.1016/0304-4157(89)90010-5
10.1039/dc9868100239
10.1007/s101890070026
10.1021/jp001020q
10.1021/jp901747s
10.1103/PhysRevA.44.8356
10.1016/S0304-4157(97)00008-7
10.1063/1.1504436
10.1063/1.464397
10.1088/0034-4885/73/3/036601
10.1021/jp104529m
10.1039/f19787400975
10.1002/jcc.20291
10.1103/PhysRevE.57.7014
10.1021/j100099a005
10.1063/1.464521
10.1063/1.448118
10.1103/PhysRevE.51.2286
10.1039/b926184b
10.1209/0295-5075/29/4/013
10.1016/j.cocis.2011.06.010
10.1063/1.3615937
10.1063/1.470117
10.1016/0166-6622(89)80138-6
10.1021/ar00143a005
10.1007/BF01868048
10.1021/j100308a038
10.1016/0009-2614(76)80567-2
10.1016/S0006-3495(21)00385-4
10.1021/la901314b
10.1073/pnas.76.6.2750
10.1515/zna-1978-0308
10.1016/S0304-4157(00)00016-2
10.1073/pnas.1205811109
10.1021/bi00083a042
10.1016/S0006-3495(97)78845-3
10.1038/259601a0
10.1021/la00059a049
10.1016/j.cocis.2011.04.007
10.1021/la00036a044
10.1063/1.1734110
10.1021/bi00397a020
10.1038/379219a0
10.1016/S0006-3495(89)82906-6
10.1021/bi00338a020
10.1021/la960672w
10.1021/la00025a045
10.1021/la0622929
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
2014 INIST-CNRS
Copyright_xml – notice: Copyright © 2013 American Chemical Society
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/la401147b
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 9137
ExternalDocumentID 23848998
27609508
10_1021_la401147b
a111498815
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
YQT
~02
.HR
186
1WB
6TJ
ABHMW
ACRPL
ADNMO
AEYZD
AFFNX
ANPPW
ANTXH
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a378t-17489a4fe100532a022fb01c85a53399d2ddbc0bc8adb900b03d5a0e7e165dd63
IEDL.DBID ACS
ISSN 0743-7463
1520-5827
IngestDate Fri Jul 11 15:32:06 EDT 2025
Thu Jul 10 18:24:30 EDT 2025
Mon Jul 21 06:04:53 EDT 2025
Wed Apr 02 07:49:45 EDT 2025
Tue Jul 01 02:30:18 EDT 2025
Thu Apr 24 22:56:26 EDT 2025
Thu Aug 27 13:50:42 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords Molecular dynamics
Phospholipid
Membrane
Hydration
Simulation
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a378t-17489a4fe100532a022fb01c85a53399d2ddbc0bc8adb900b03d5a0e7e165dd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23848998
PQID 1412161449
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2000557766
proquest_miscellaneous_1412161449
pubmed_primary_23848998
pascalfrancis_primary_27609508
crossref_citationtrail_10_1021_la401147b
crossref_primary_10_1021_la401147b
acs_journals_10_1021_la401147b
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-23
PublicationDateYYYYMMDD 2013-07-23
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-23
  day: 23
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Essmann U. (ref50/cit50) 1995; 103
Widom B. (ref52/cit52) 1963; 39
McIntosh T. J. (ref11/cit11) 1987; 26
Kummrow M. (ref44/cit44) 1991; 44
Berendsen H. J. C. (ref51/cit51) 1987; 91
Parsegian V. A. (ref2/cit2) 2011; 16
Neuman R. D. (ref35/cit35) 1994; 98
Lis L. J. (ref9/cit9) 1982; 37
Israelachvili J. N. (ref17/cit17) 1991
Petrache H. I. (ref12/cit12) 1998; 57
Frenkel D. (ref53/cit53) 2002
Tieleman D. P. (ref24/cit24) 1997; 1331
Afshar-Rad T. (ref8/cit8) 1986; 81
LeNeveu D. M. (ref19/cit19) 1976; 259
Netz R. R. (ref37/cit37) 2000; 3
Tsao Y. (ref39/cit39) 1993; 9
Parsegian V. A. (ref1/cit1) 1979; 76
Schneck E. (ref25/cit25) 2011; 16
Lu D. R. (ref7/cit7) 1991; 3
Israelachvili J. N. (ref15/cit15) 1987; 20
Norde W. (ref6/cit6) 1989; 38
McIntosh T. J. (ref32/cit32) 1993; 32
Mahanty J. (ref55/cit55) 1976
Parsegian V. A. (ref41/cit41) 2006
Marsh D. (ref4/cit4) 1989; 55
Israelachvili J. N. (ref14/cit14) 1978; 74
ref36/cit36
van der Spoel D. (ref47/cit47) 2005; 26
Hayashi T. (ref27/cit27) 2002; 117
Parsegian V. A. (ref38/cit38) 1993; 9
Besseling N. A. M. (ref5/cit5) 1997; 13
Hammer M. (ref22/cit22) 2010; 146
Israelachvili J. (ref21/cit21) 1996; 379
Markova N. (ref29/cit29) 2000; 104
Marčelja S. (ref20/cit20) 1976; 42
Patrick S. Coppock P. S (ref31/cit31) 2010; 114
Schneider M. J. T. (ref18/cit18) 1972; 9
Rand R. P. (ref3/cit3) 1989; 988
Netz R. R. (ref45/cit45) 1995; 51
Israelachvili J. (ref16/cit16) 2010; 73
Pertsin A. (ref28/cit28) 2007; 23
Chen Y. L. E. (ref34/cit34) 1991; 7
Sendner C. (ref46/cit46) 2009; 25
Helfrich W. (ref42/cit42) 1978; 33
Marra J. (ref10/cit10) 1985; 24
Allen M. P. (ref54/cit54) 1991
Schubert T. (ref30/cit30) 2011; 135
Berger O. (ref40/cit40) 1997; 72
Berendsen H. J. C. (ref48/cit48) 1984; 81
Nagle J. F. (ref13/cit13) 2000; 1469
Lipowsky R. (ref43/cit43) 1995; 29
Luzar A. (ref56/cit56) 1993; 98
Eun C. (ref26/cit26) 2009; 113
Schneck E. (ref23/cit23) 2012; 36
Darden T. (ref49/cit49) 1993; 98
Chen Y. L. E. (ref33/cit33) 1989; 93
References_xml – volume: 988
  start-page: 351
  year: 1989
  ident: ref3/cit3
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4157(89)90010-5
– volume: 81
  start-page: 239
  year: 1986
  ident: ref8/cit8
  publication-title: Faraday Discuss. Chem. Soc.
  doi: 10.1039/dc9868100239
– volume: 3
  start-page: 131
  year: 2000
  ident: ref37/cit37
  publication-title: Eur. Phys. J. E
  doi: 10.1007/s101890070026
– volume: 104
  start-page: 8053
  year: 2000
  ident: ref29/cit29
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp001020q
– volume: 113
  start-page: 13222
  year: 2009
  ident: ref26/cit26
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp901747s
– volume: 44
  start-page: 8356
  year: 1991
  ident: ref44/cit44
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.44.8356
– volume: 1331
  start-page: 235
  year: 1997
  ident: ref24/cit24
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0304-4157(97)00008-7
– ident: ref36/cit36
– volume: 117
  start-page: 6271
  year: 2002
  ident: ref27/cit27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1504436
– volume: 3
  start-page: 127
  year: 1991
  ident: ref7/cit7
  publication-title: J. Biomater. Sci., Polym. Ed.
– volume: 98
  start-page: 10089
  year: 1993
  ident: ref49/cit49
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464397
– volume: 73
  start-page: 036601
  year: 2010
  ident: ref16/cit16
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/73/3/036601
– volume: 114
  start-page: 11468
  year: 2010
  ident: ref31/cit31
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp104529m
– volume: 74
  start-page: 975
  year: 1978
  ident: ref14/cit14
  publication-title: J. Chem. Soc., Faraday Trans. I
  doi: 10.1039/f19787400975
– volume: 26
  start-page: 1701
  year: 2005
  ident: ref47/cit47
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20291
– volume: 57
  start-page: 7014
  year: 1998
  ident: ref12/cit12
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.57.7014
– volume: 98
  start-page: 12474
  year: 1994
  ident: ref35/cit35
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100099a005
– volume: 98
  start-page: 8160
  year: 1993
  ident: ref56/cit56
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464521
– volume-title: Intermolecular and Surface Forces
  year: 1991
  ident: ref17/cit17
– volume: 81
  start-page: 3684
  year: 1984
  ident: ref48/cit48
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– volume: 51
  start-page: 2286
  year: 1995
  ident: ref45/cit45
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.51.2286
– volume: 146
  start-page: 299
  year: 2010
  ident: ref22/cit22
  publication-title: Faraday Discuss.
  doi: 10.1039/b926184b
– volume: 29
  start-page: 345
  year: 1995
  ident: ref43/cit43
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/29/4/013
– volume: 16
  start-page: 618
  year: 2011
  ident: ref2/cit2
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2011.06.010
– volume: 135
  start-page: 055105-1
  year: 2011
  ident: ref30/cit30
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3615937
– volume: 103
  start-page: 8577
  year: 1995
  ident: ref50/cit50
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470117
– volume-title: Computer Simulation of Liquids
  year: 1991
  ident: ref54/cit54
– volume: 38
  start-page: 1
  year: 1989
  ident: ref6/cit6
  publication-title: Colloids Surf.
  doi: 10.1016/0166-6622(89)80138-6
– volume: 20
  start-page: 415
  year: 1987
  ident: ref15/cit15
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00143a005
– volume: 9
  start-page: 127
  year: 1972
  ident: ref18/cit18
  publication-title: J. Membr. Biol.
  doi: 10.1007/BF01868048
– volume: 91
  start-page: 6269
  year: 1987
  ident: ref51/cit51
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100308a038
– volume: 42
  start-page: 129
  year: 1976
  ident: ref20/cit20
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(76)80567-2
– volume: 93
  start-page: 1051
  year: 1989
  ident: ref33/cit33
  publication-title: J. Phys. Chem.
– volume: 37
  start-page: 657
  year: 1982
  ident: ref9/cit9
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(21)00385-4
– volume: 25
  start-page: 10768
  year: 2009
  ident: ref46/cit46
  publication-title: Langmuir
  doi: 10.1021/la901314b
– volume: 76
  start-page: 2750
  year: 1979
  ident: ref1/cit1
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.76.6.2750
– volume: 33
  start-page: 305
  year: 1978
  ident: ref42/cit42
  publication-title: Z. Naturforsch.
  doi: 10.1515/zna-1978-0308
– volume-title: Understanding Molecular Simulation: From Algorithms to Applications
  year: 2002
  ident: ref53/cit53
– volume: 1469
  start-page: 159
  year: 2000
  ident: ref13/cit13
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0304-4157(00)00016-2
– volume-title: Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists
  year: 2006
  ident: ref41/cit41
– volume: 36
  start-page: 14405
  year: 2012
  ident: ref23/cit23
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1205811109
– volume: 32
  start-page: 8374
  year: 1993
  ident: ref32/cit32
  publication-title: Biochemistry
  doi: 10.1021/bi00083a042
– volume: 72
  start-page: 2002
  year: 1997
  ident: ref40/cit40
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(97)78845-3
– volume: 259
  start-page: 601
  year: 1976
  ident: ref19/cit19
  publication-title: Nature
  doi: 10.1038/259601a0
– volume: 7
  start-page: 2694
  year: 1991
  ident: ref34/cit34
  publication-title: Langmuir
  doi: 10.1021/la00059a049
– volume: 16
  start-page: 607
  year: 2011
  ident: ref25/cit25
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2011.04.007
– volume: 9
  start-page: 3625
  year: 1993
  ident: ref38/cit38
  publication-title: Langmuir
  doi: 10.1021/la00036a044
– volume: 39
  start-page: 2808
  year: 1963
  ident: ref52/cit52
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1734110
– volume: 26
  start-page: 7325
  year: 1987
  ident: ref11/cit11
  publication-title: Biochemistry
  doi: 10.1021/bi00397a020
– volume: 379
  start-page: 219
  year: 1996
  ident: ref21/cit21
  publication-title: Nature
  doi: 10.1038/379219a0
– volume: 55
  start-page: 1093
  year: 1989
  ident: ref4/cit4
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(89)82906-6
– volume: 24
  start-page: 4608
  year: 1985
  ident: ref10/cit10
  publication-title: Biochemistry
  doi: 10.1021/bi00338a020
– volume: 13
  start-page: 2113
  year: 1997
  ident: ref5/cit5
  publication-title: Langmuir
  doi: 10.1021/la960672w
– volume: 9
  start-page: 233
  year: 1993
  ident: ref39/cit39
  publication-title: Langmuir
  doi: 10.1021/la00025a045
– volume-title: Dispersion Forces
  year: 1976
  ident: ref55/cit55
– volume: 23
  start-page: 1388
  year: 2007
  ident: ref28/cit28
  publication-title: Langmuir
  doi: 10.1021/la0622929
SSID ssj0009349
Score 2.2820685
Snippet Using the novel thermodynamic extrapolation technique in molecular dynamics simulations, we investigate the interaction between phospholipid bilayers subject...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9126
SubjectTerms Cell Membrane - chemistry
Chemistry
Colloidal state and disperse state
compressibility
Exact sciences and technology
fatty acids
General and physical chemistry
Lipid Bilayers - chemistry
Membranes
Molecular Conformation
molecular dynamics
Molecular Dynamics Simulation
osmotic stress
Phosphatidylcholines - chemistry
phospholipids
Pressure
Thermodynamics
van der Waals forces
Water - chemistry
Title Hydration Interaction between Phospholipid Membranes: Insight into Different Measurement Ensembles from Atomistic Molecular Dynamics Simulations
URI http://dx.doi.org/10.1021/la401147b
https://www.ncbi.nlm.nih.gov/pubmed/23848998
https://www.proquest.com/docview/1412161449
https://www.proquest.com/docview/2000557766
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZKOYBUUZ5loazM48AlxbHjOOmt2m21QlqEVCr1FvkpInaTFc4eyq_gJ-PJY9uKLtzHSuwZe2Y8nu9D6ENwyVbHlkc2E0BhRm2UKaAEZIIpJ0WeOqjozr-ks4vk8yW_3EHvt1TwafxpIRMI2oW6h-7TNJgXxD-T82tkXdbFuIC1KZKUDfBBN4eC69H-luvZW0kfVsF19BXb48vWz5zto-nQrdM9L_lxtG7Ukf71N3jjv6bwGD3q40x80hnGE7Rjq6fowWSgd3uGfs-uTKd93N4Kdg0OuH-3hb9-r_0qnIzlqjR4bpchqQ6H4nGQ9ZDO47Jqajzt2VWaILG5asSnlQ_yC-sx9K7gk6ZetmjQeD5Q8eLpVSWXpfb4vFz2_GH-Obo4O_02mUU9PUMkmciaKAbgGpk4G8NOpjJEA06RWGdchhgyzw01RmmidCaNyglRhBkuiRU2TrkxKXuBdqu6si8RdlJK6zh1WrEEcjCVCxfGKU6c1AkZoXHQX9FvL1-0lXMaF5uFHaGPg2oL3YObA8fG4i7RdxvRVYfocZfQ-JZ9bCSpAIQ-ko3Q28FgirCIUGUJaqjX4d-SmMaQZufbZaA_inMh0nSEDjpru_4CyxJIgl_9b86v0UPacnOIiLJDtNv8XNs3IUJq1LjdIX8ATqcNJA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHIqEeD-Wx2IQBy4psZ3ECbfVttUC3QqprdRbZDu2iNhNVjh7KL-Cn8xMHrsUtYL7OPFj7JnxeL6PkHdgkq1hNg5sKpHCjNsg1UgJKKTQTskscZjRnR8ns7Po83l83sPkYC0MdMLDl3ybxN-iC7APCxWh7y71TXILnBCONA2T6ckWYFd0ri5CbsooEQOK0J9N0QIZf8kC3VkpD5PhOhaL693M1twc3ut4i9qOtq9Mvu-tG71nfv6F4fh_I7lP7vZeJ510avKA3LDVQ7I7HcjeHpFfs4ui0wXa3hF25Q60f8VFv36r_QrOyXJVFnRulxBiwxH5EWQ9Bve0rJqa7vdcKw1IbC4e6UHlQX5hPcVKFjpp6mWLDU3nAzEv3b-o1LI0np6Uy55NzD8mZ4cHp9NZ0JM1BErItAkYwtioyFmG-5or8A2cDplJYwUeZZYVvCi0CbVJVaGzMNShKGIVWmlZEhdFIp6Qnaqu7DNCnVLKupg7o0WEEZnOpIN2Og6dMlE4ImOY17zfbD5v8-ic5ZuJHZH3wwrnpoc6R8aNxVWibzeiqw7f4yqh8SU12UhyiXh9YToibwa9yWESMecCy1CvoW8R4wyD7ux6GayWimMpk2REnnZKt_2DSCMMiZ__a8yvye7sdH6UH306_vKC3OYta4cMuHhJdpofa_sKfKdGj9tN8xubrhWF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELagSFCp4i5djsUgHnhJSeI4Tnhb7Xa1HFsqlUp9i3yqUXeTCGcfyq_gJ-PJVYpawfs48TFjz3g834fQO3ckaxlo6umEAYVZqL1EACUgYUQYztLYQEZ3eRgvTqLPp_S0CxShFsZ1wrov2SaJD1ZdKdMhDAQfVjwC_52J2-gOpOuAqmEyPb4E2SWtuwuwmyyKSY8k9GdTOIWkvXIK7VTcugkxLZPFza5mc-TMH6BvQ2eblybn-5ta7Muff-E4_v9oHqL7nfeJJ626PEK3dPEY3Zv2pG9P0K_FhWp1Ajd3hW3ZA-5ec-Gjs9JWbr_Mq1zhpV67UNttlR-drIUgH-dFXeJZx7lSO4nhAhIfFNbJr7TFUNGCJ3W5bjCi8bIn6MWzi4Kvc2nxcb7uWMXsU3QyP_g-XXgdaYPHCUtqLwA4Gx4ZHYB9h9z5CEb4gUwod55lmqpQKSF9IROuROr7wieKcl8zHcRUqZjsoq2iLPQewoZzrg0NjRQkgshMpMy4doL6hsvIH6Gxm9usMzqbNfn0MMiGiR2h9_0qZ7KDPAfmjdV1om8H0arF-bhOaHxFVQbJkAFun5-M0JtedzI3iZB7cctQblzfoiAMIPhOb5aBqilKGYvjEXrWKt7lH0gSQWj8_F9jfo3uHs3m2ddPh19eoO2wIe9gXkheoq36x0a_ci5ULcaN3fwGevcYCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydration+interaction+between+phospholipid+membranes%3A+insight+into+different+measurement+ensembles+from+atomistic+molecular+dynamics+simulations&rft.jtitle=Langmuir&rft.au=Kandu%C4%8D%2C+Matej&rft.au=Schneck%2C+Emanuel&rft.au=Netz%2C+Roland+R&rft.date=2013-07-23&rft.issn=1520-5827&rft.eissn=1520-5827&rft.volume=29&rft.issue=29&rft.spage=9126&rft_id=info:doi/10.1021%2Fla401147b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon