Hydration Interaction between Phospholipid Membranes: Insight into Different Measurement Ensembles from Atomistic Molecular Dynamics Simulations
Using the novel thermodynamic extrapolation technique in molecular dynamics simulations, we investigate the interaction between phospholipid bilayers subject to various boundary conditions that correspond to established experimental methods for the determination of pressure–distance curves: the osmo...
Saved in:
Published in | Langmuir Vol. 29; no. 29; pp. 9126 - 9137 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
23.07.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0743-7463 1520-5827 1520-5827 |
DOI | 10.1021/la401147b |
Cover
Abstract | Using the novel thermodynamic extrapolation technique in molecular dynamics simulations, we investigate the interaction between phospholipid bilayers subject to various boundary conditions that correspond to established experimental methods for the determination of pressure–distance curves: the osmotic stress method, the hydrostatic method, and the surface force apparatus method. We discuss the roles of van der Waals and Helfrich undulation pressures in the force balance and find that they do not play a major role in the distance range below 28 water molecules per lipid as considered by us. We address the influence of experimental boundary conditions on bilayer structural changes as well as the consequences on interaction pressures. Significant discrepancies are observed between pressures obtained in osmotic stress and hydration methods on one hand and the surface force apparatus method on the other hand. We quantify the contribution of lipid volume compressibility to the total work of dehydration and find it to be substantial for high pressures. In a wide hydration range, the interaction pressure is mostly determined by the area per lipid molecule. This means that the influence of fatty acid chemistry on experimental pressure–distance curves is indirect and mediated by the area per lipid. |
---|---|
AbstractList | Using the novel thermodynamic extrapolation technique in molecular dynamics simulations, we investigate the interaction between phospholipid bilayers subject to various boundary conditions that correspond to established experimental methods for the determination of pressure-distance curves: the osmotic stress method, the hydrostatic method, and the surface force apparatus method. We discuss the roles of van der Waals and Helfrich undulation pressures in the force balance and find that they do not play a major role in the distance range below 28 water molecules per lipid as considered by us. We address the influence of experimental boundary conditions on bilayer structural changes as well as the consequences on interaction pressures. Significant discrepancies are observed between pressures obtained in osmotic stress and hydration methods on one hand and the surface force apparatus method on the other hand. We quantify the contribution of lipid volume compressibility to the total work of dehydration and find it to be substantial for high pressures. In a wide hydration range, the interaction pressure is mostly determined by the area per lipid molecule. This means that the influence of fatty acid chemistry on experimental pressure-distance curves is indirect and mediated by the area per lipid.Using the novel thermodynamic extrapolation technique in molecular dynamics simulations, we investigate the interaction between phospholipid bilayers subject to various boundary conditions that correspond to established experimental methods for the determination of pressure-distance curves: the osmotic stress method, the hydrostatic method, and the surface force apparatus method. We discuss the roles of van der Waals and Helfrich undulation pressures in the force balance and find that they do not play a major role in the distance range below 28 water molecules per lipid as considered by us. We address the influence of experimental boundary conditions on bilayer structural changes as well as the consequences on interaction pressures. Significant discrepancies are observed between pressures obtained in osmotic stress and hydration methods on one hand and the surface force apparatus method on the other hand. We quantify the contribution of lipid volume compressibility to the total work of dehydration and find it to be substantial for high pressures. In a wide hydration range, the interaction pressure is mostly determined by the area per lipid molecule. This means that the influence of fatty acid chemistry on experimental pressure-distance curves is indirect and mediated by the area per lipid. Using the novel thermodynamic extrapolation technique in molecular dynamics simulations, we investigate the interaction between phospholipid bilayers subject to various boundary conditions that correspond to established experimental methods for the determination of pressure–distance curves: the osmotic stress method, the hydrostatic method, and the surface force apparatus method. We discuss the roles of van der Waals and Helfrich undulation pressures in the force balance and find that they do not play a major role in the distance range below 28 water molecules per lipid as considered by us. We address the influence of experimental boundary conditions on bilayer structural changes as well as the consequences on interaction pressures. Significant discrepancies are observed between pressures obtained in osmotic stress and hydration methods on one hand and the surface force apparatus method on the other hand. We quantify the contribution of lipid volume compressibility to the total work of dehydration and find it to be substantial for high pressures. In a wide hydration range, the interaction pressure is mostly determined by the area per lipid molecule. This means that the influence of fatty acid chemistry on experimental pressure–distance curves is indirect and mediated by the area per lipid. |
Author | Kanduč, Matej Schneck, Emanuel Netz, Roland R |
AuthorAffiliation | J. Stefan Institute Free University Berlin Institut Laue-Langevin |
AuthorAffiliation_xml | – name: Institut Laue-Langevin – name: Free University Berlin – name: J. Stefan Institute |
Author_xml | – sequence: 1 givenname: Matej surname: Kanduč fullname: Kanduč, Matej email: matej.kanduc@ijs.si – sequence: 2 givenname: Emanuel surname: Schneck fullname: Schneck, Emanuel – sequence: 3 givenname: Roland R surname: Netz fullname: Netz, Roland R |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27609508$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23848998$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c1qFTEUB_AgFXtbXfgCko2gi7EnX5MZd6WtttCioK6HTJLxpmSSa5JB7lv4yOa2twpScJVD-OXk5J8jdBBisAi9JPCOACUnXnEghMvxCVoRQaERHZUHaAWSs0bylh2io5xvAaBnvH-GDinreNf33Qr9utyapIqLAV-FYpPSd_Voy09rA_68jnmzjt5tnME3dh6TCja_rza77-uCXSgRn7tpssmGUoXKS7Lzrr4IuXpvM55SnPFpibPLxWl8E73Vi1cJn2-Dmp3O-Iub68bu5vwcPZ2Uz_bFfj1G3z5cfD27bK4_fbw6O71uFJNdaYisD1B8sgRAMKqA0mkEojuhBGN9b6gxo4ZRd8qMPcAIzAgFVlrSCmNadoze3PfdpPhjsbkMdTxtva8PjEseaE1LCCnb_1PCCSUt4byv9NWeLuNszbBJblZpOzwEXsHrPVBZKz_VPLXLf51soRewcyf3TqeYc7LToF25S6gk5fxAYNh9_fDn6-uJt_-ceGj6mN1PoXQebuOSQo36Efcbo-W8Ag |
CODEN | LANGD5 |
CitedBy_id | crossref_primary_10_1103_PhysRevLett_126_216001 crossref_primary_10_1002_smll_202100788 crossref_primary_10_1021_acs_jpcb_4c04719 crossref_primary_10_1021_acsnano_1c08512 crossref_primary_10_1016_j_physa_2014_06_088 crossref_primary_10_1103_PhysRevE_102_012806 crossref_primary_10_1002_admi_201600349 crossref_primary_10_1002_anie_201400546 crossref_primary_10_1021_acs_langmuir_3c03656 crossref_primary_10_1039_D2TB02783F crossref_primary_10_1007_s11433_018_9264_x crossref_primary_10_7498_aps_65_186101 crossref_primary_10_1038_s41467_021_23722_8 crossref_primary_10_1021_acs_jpcb_5b04878 crossref_primary_10_1103_PhysRevE_93_022609 crossref_primary_10_1021_acs_langmuir_5b02786 crossref_primary_10_1063_5_0053758 crossref_primary_10_3390_computation6010003 crossref_primary_10_1021_acs_jpcb_5b05501 crossref_primary_10_3389_fphy_2021_703472 crossref_primary_10_1002_ange_201400546 crossref_primary_10_1016_j_cis_2014_02_001 crossref_primary_10_1016_j_cocis_2016_04_002 crossref_primary_10_1021_acs_langmuir_2c00636 crossref_primary_10_1111_tpj_15125 crossref_primary_10_1021_acs_jcim_0c01299 crossref_primary_10_1021_acs_jpclett_7b00977 crossref_primary_10_1016_j_colsurfb_2020_110908 crossref_primary_10_1002_cphc_201402893 crossref_primary_10_1021_acs_langmuir_6b01727 crossref_primary_10_1016_j_bpj_2015_05_003 crossref_primary_10_1038_ncomms14899 crossref_primary_10_1021_acs_jpcb_0c01967 crossref_primary_10_1016_j_colsurfa_2014_11_029 crossref_primary_10_1007_s11426_014_5308_3 |
Cites_doi | 10.1016/0304-4157(89)90010-5 10.1039/dc9868100239 10.1007/s101890070026 10.1021/jp001020q 10.1021/jp901747s 10.1103/PhysRevA.44.8356 10.1016/S0304-4157(97)00008-7 10.1063/1.1504436 10.1063/1.464397 10.1088/0034-4885/73/3/036601 10.1021/jp104529m 10.1039/f19787400975 10.1002/jcc.20291 10.1103/PhysRevE.57.7014 10.1021/j100099a005 10.1063/1.464521 10.1063/1.448118 10.1103/PhysRevE.51.2286 10.1039/b926184b 10.1209/0295-5075/29/4/013 10.1016/j.cocis.2011.06.010 10.1063/1.3615937 10.1063/1.470117 10.1016/0166-6622(89)80138-6 10.1021/ar00143a005 10.1007/BF01868048 10.1021/j100308a038 10.1016/0009-2614(76)80567-2 10.1016/S0006-3495(21)00385-4 10.1021/la901314b 10.1073/pnas.76.6.2750 10.1515/zna-1978-0308 10.1016/S0304-4157(00)00016-2 10.1073/pnas.1205811109 10.1021/bi00083a042 10.1016/S0006-3495(97)78845-3 10.1038/259601a0 10.1021/la00059a049 10.1016/j.cocis.2011.04.007 10.1021/la00036a044 10.1063/1.1734110 10.1021/bi00397a020 10.1038/379219a0 10.1016/S0006-3495(89)82906-6 10.1021/bi00338a020 10.1021/la960672w 10.1021/la00025a045 10.1021/la0622929 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical Society 2014 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/la401147b |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 9137 |
ExternalDocumentID | 23848998 27609508 10_1021_la401147b a111498815 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 RNS ROL TN5 UI2 UPT VF5 VG9 W1F X --- -~X AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK YQT ~02 .HR 186 1WB 6TJ ABHMW ACRPL ADNMO AEYZD AFFNX ANPPW ANTXH IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a378t-17489a4fe100532a022fb01c85a53399d2ddbc0bc8adb900b03d5a0e7e165dd63 |
IEDL.DBID | ACS |
ISSN | 0743-7463 1520-5827 |
IngestDate | Fri Jul 11 15:32:06 EDT 2025 Thu Jul 10 18:24:30 EDT 2025 Mon Jul 21 06:04:53 EDT 2025 Wed Apr 02 07:49:45 EDT 2025 Tue Jul 01 02:30:18 EDT 2025 Thu Apr 24 22:56:26 EDT 2025 Thu Aug 27 13:50:42 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Keywords | Molecular dynamics Phospholipid Membrane Hydration Simulation |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a378t-17489a4fe100532a022fb01c85a53399d2ddbc0bc8adb900b03d5a0e7e165dd63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23848998 |
PQID | 1412161449 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2000557766 proquest_miscellaneous_1412161449 pubmed_primary_23848998 pascalfrancis_primary_27609508 crossref_citationtrail_10_1021_la401147b crossref_primary_10_1021_la401147b acs_journals_10_1021_la401147b |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-07-23 |
PublicationDateYYYYMMDD | 2013-07-23 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Essmann U. (ref50/cit50) 1995; 103 Widom B. (ref52/cit52) 1963; 39 McIntosh T. J. (ref11/cit11) 1987; 26 Kummrow M. (ref44/cit44) 1991; 44 Berendsen H. J. C. (ref51/cit51) 1987; 91 Parsegian V. A. (ref2/cit2) 2011; 16 Neuman R. D. (ref35/cit35) 1994; 98 Lis L. J. (ref9/cit9) 1982; 37 Israelachvili J. N. (ref17/cit17) 1991 Petrache H. I. (ref12/cit12) 1998; 57 Frenkel D. (ref53/cit53) 2002 Tieleman D. P. (ref24/cit24) 1997; 1331 Afshar-Rad T. (ref8/cit8) 1986; 81 LeNeveu D. M. (ref19/cit19) 1976; 259 Netz R. R. (ref37/cit37) 2000; 3 Tsao Y. (ref39/cit39) 1993; 9 Parsegian V. A. (ref1/cit1) 1979; 76 Schneck E. (ref25/cit25) 2011; 16 Lu D. R. (ref7/cit7) 1991; 3 Israelachvili J. N. (ref15/cit15) 1987; 20 Norde W. (ref6/cit6) 1989; 38 McIntosh T. J. (ref32/cit32) 1993; 32 Mahanty J. (ref55/cit55) 1976 Parsegian V. A. (ref41/cit41) 2006 Marsh D. (ref4/cit4) 1989; 55 Israelachvili J. N. (ref14/cit14) 1978; 74 ref36/cit36 van der Spoel D. (ref47/cit47) 2005; 26 Hayashi T. (ref27/cit27) 2002; 117 Parsegian V. A. (ref38/cit38) 1993; 9 Besseling N. A. M. (ref5/cit5) 1997; 13 Hammer M. (ref22/cit22) 2010; 146 Israelachvili J. (ref21/cit21) 1996; 379 Markova N. (ref29/cit29) 2000; 104 Marčelja S. (ref20/cit20) 1976; 42 Patrick S. Coppock P. S (ref31/cit31) 2010; 114 Schneider M. J. T. (ref18/cit18) 1972; 9 Rand R. P. (ref3/cit3) 1989; 988 Netz R. R. (ref45/cit45) 1995; 51 Israelachvili J. (ref16/cit16) 2010; 73 Pertsin A. (ref28/cit28) 2007; 23 Chen Y. L. E. (ref34/cit34) 1991; 7 Sendner C. (ref46/cit46) 2009; 25 Helfrich W. (ref42/cit42) 1978; 33 Marra J. (ref10/cit10) 1985; 24 Allen M. P. (ref54/cit54) 1991 Schubert T. (ref30/cit30) 2011; 135 Berger O. (ref40/cit40) 1997; 72 Berendsen H. J. C. (ref48/cit48) 1984; 81 Nagle J. F. (ref13/cit13) 2000; 1469 Lipowsky R. (ref43/cit43) 1995; 29 Luzar A. (ref56/cit56) 1993; 98 Eun C. (ref26/cit26) 2009; 113 Schneck E. (ref23/cit23) 2012; 36 Darden T. (ref49/cit49) 1993; 98 Chen Y. L. E. (ref33/cit33) 1989; 93 |
References_xml | – volume: 988 start-page: 351 year: 1989 ident: ref3/cit3 publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4157(89)90010-5 – volume: 81 start-page: 239 year: 1986 ident: ref8/cit8 publication-title: Faraday Discuss. Chem. Soc. doi: 10.1039/dc9868100239 – volume: 3 start-page: 131 year: 2000 ident: ref37/cit37 publication-title: Eur. Phys. J. E doi: 10.1007/s101890070026 – volume: 104 start-page: 8053 year: 2000 ident: ref29/cit29 publication-title: J. Phys. Chem. B doi: 10.1021/jp001020q – volume: 113 start-page: 13222 year: 2009 ident: ref26/cit26 publication-title: J. Phys. Chem. B doi: 10.1021/jp901747s – volume: 44 start-page: 8356 year: 1991 ident: ref44/cit44 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.44.8356 – volume: 1331 start-page: 235 year: 1997 ident: ref24/cit24 publication-title: Biochim. Biophys. Acta doi: 10.1016/S0304-4157(97)00008-7 – ident: ref36/cit36 – volume: 117 start-page: 6271 year: 2002 ident: ref27/cit27 publication-title: J. Chem. Phys. doi: 10.1063/1.1504436 – volume: 3 start-page: 127 year: 1991 ident: ref7/cit7 publication-title: J. Biomater. Sci., Polym. Ed. – volume: 98 start-page: 10089 year: 1993 ident: ref49/cit49 publication-title: J. Chem. Phys. doi: 10.1063/1.464397 – volume: 73 start-page: 036601 year: 2010 ident: ref16/cit16 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/73/3/036601 – volume: 114 start-page: 11468 year: 2010 ident: ref31/cit31 publication-title: J. Phys. Chem. B doi: 10.1021/jp104529m – volume: 74 start-page: 975 year: 1978 ident: ref14/cit14 publication-title: J. Chem. Soc., Faraday Trans. I doi: 10.1039/f19787400975 – volume: 26 start-page: 1701 year: 2005 ident: ref47/cit47 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20291 – volume: 57 start-page: 7014 year: 1998 ident: ref12/cit12 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.57.7014 – volume: 98 start-page: 12474 year: 1994 ident: ref35/cit35 publication-title: J. Phys. Chem. doi: 10.1021/j100099a005 – volume: 98 start-page: 8160 year: 1993 ident: ref56/cit56 publication-title: J. Chem. Phys. doi: 10.1063/1.464521 – volume-title: Intermolecular and Surface Forces year: 1991 ident: ref17/cit17 – volume: 81 start-page: 3684 year: 1984 ident: ref48/cit48 publication-title: J. Chem. Phys. doi: 10.1063/1.448118 – volume: 51 start-page: 2286 year: 1995 ident: ref45/cit45 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.51.2286 – volume: 146 start-page: 299 year: 2010 ident: ref22/cit22 publication-title: Faraday Discuss. doi: 10.1039/b926184b – volume: 29 start-page: 345 year: 1995 ident: ref43/cit43 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/29/4/013 – volume: 16 start-page: 618 year: 2011 ident: ref2/cit2 publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2011.06.010 – volume: 135 start-page: 055105-1 year: 2011 ident: ref30/cit30 publication-title: J. Chem. Phys. doi: 10.1063/1.3615937 – volume: 103 start-page: 8577 year: 1995 ident: ref50/cit50 publication-title: J. Chem. Phys. doi: 10.1063/1.470117 – volume-title: Computer Simulation of Liquids year: 1991 ident: ref54/cit54 – volume: 38 start-page: 1 year: 1989 ident: ref6/cit6 publication-title: Colloids Surf. doi: 10.1016/0166-6622(89)80138-6 – volume: 20 start-page: 415 year: 1987 ident: ref15/cit15 publication-title: Acc. Chem. Res. doi: 10.1021/ar00143a005 – volume: 9 start-page: 127 year: 1972 ident: ref18/cit18 publication-title: J. Membr. Biol. doi: 10.1007/BF01868048 – volume: 91 start-page: 6269 year: 1987 ident: ref51/cit51 publication-title: J. Phys. Chem. doi: 10.1021/j100308a038 – volume: 42 start-page: 129 year: 1976 ident: ref20/cit20 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(76)80567-2 – volume: 93 start-page: 1051 year: 1989 ident: ref33/cit33 publication-title: J. Phys. Chem. – volume: 37 start-page: 657 year: 1982 ident: ref9/cit9 publication-title: Biophys. J. doi: 10.1016/S0006-3495(21)00385-4 – volume: 25 start-page: 10768 year: 2009 ident: ref46/cit46 publication-title: Langmuir doi: 10.1021/la901314b – volume: 76 start-page: 2750 year: 1979 ident: ref1/cit1 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.76.6.2750 – volume: 33 start-page: 305 year: 1978 ident: ref42/cit42 publication-title: Z. Naturforsch. doi: 10.1515/zna-1978-0308 – volume-title: Understanding Molecular Simulation: From Algorithms to Applications year: 2002 ident: ref53/cit53 – volume: 1469 start-page: 159 year: 2000 ident: ref13/cit13 publication-title: Biochim. Biophys. Acta doi: 10.1016/S0304-4157(00)00016-2 – volume-title: Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists year: 2006 ident: ref41/cit41 – volume: 36 start-page: 14405 year: 2012 ident: ref23/cit23 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1205811109 – volume: 32 start-page: 8374 year: 1993 ident: ref32/cit32 publication-title: Biochemistry doi: 10.1021/bi00083a042 – volume: 72 start-page: 2002 year: 1997 ident: ref40/cit40 publication-title: Biophys. J. doi: 10.1016/S0006-3495(97)78845-3 – volume: 259 start-page: 601 year: 1976 ident: ref19/cit19 publication-title: Nature doi: 10.1038/259601a0 – volume: 7 start-page: 2694 year: 1991 ident: ref34/cit34 publication-title: Langmuir doi: 10.1021/la00059a049 – volume: 16 start-page: 607 year: 2011 ident: ref25/cit25 publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2011.04.007 – volume: 9 start-page: 3625 year: 1993 ident: ref38/cit38 publication-title: Langmuir doi: 10.1021/la00036a044 – volume: 39 start-page: 2808 year: 1963 ident: ref52/cit52 publication-title: J. Chem. Phys. doi: 10.1063/1.1734110 – volume: 26 start-page: 7325 year: 1987 ident: ref11/cit11 publication-title: Biochemistry doi: 10.1021/bi00397a020 – volume: 379 start-page: 219 year: 1996 ident: ref21/cit21 publication-title: Nature doi: 10.1038/379219a0 – volume: 55 start-page: 1093 year: 1989 ident: ref4/cit4 publication-title: Biophys. J. doi: 10.1016/S0006-3495(89)82906-6 – volume: 24 start-page: 4608 year: 1985 ident: ref10/cit10 publication-title: Biochemistry doi: 10.1021/bi00338a020 – volume: 13 start-page: 2113 year: 1997 ident: ref5/cit5 publication-title: Langmuir doi: 10.1021/la960672w – volume: 9 start-page: 233 year: 1993 ident: ref39/cit39 publication-title: Langmuir doi: 10.1021/la00025a045 – volume-title: Dispersion Forces year: 1976 ident: ref55/cit55 – volume: 23 start-page: 1388 year: 2007 ident: ref28/cit28 publication-title: Langmuir doi: 10.1021/la0622929 |
SSID | ssj0009349 |
Score | 2.2820685 |
Snippet | Using the novel thermodynamic extrapolation technique in molecular dynamics simulations, we investigate the interaction between phospholipid bilayers subject... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9126 |
SubjectTerms | Cell Membrane - chemistry Chemistry Colloidal state and disperse state compressibility Exact sciences and technology fatty acids General and physical chemistry Lipid Bilayers - chemistry Membranes Molecular Conformation molecular dynamics Molecular Dynamics Simulation osmotic stress Phosphatidylcholines - chemistry phospholipids Pressure Thermodynamics van der Waals forces Water - chemistry |
Title | Hydration Interaction between Phospholipid Membranes: Insight into Different Measurement Ensembles from Atomistic Molecular Dynamics Simulations |
URI | http://dx.doi.org/10.1021/la401147b https://www.ncbi.nlm.nih.gov/pubmed/23848998 https://www.proquest.com/docview/1412161449 https://www.proquest.com/docview/2000557766 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZKOYBUUZ5loazM48AlxbHjOOmt2m21QlqEVCr1FvkpInaTFc4eyq_gJ-PJY9uKLtzHSuwZe2Y8nu9D6ENwyVbHlkc2E0BhRm2UKaAEZIIpJ0WeOqjozr-ks4vk8yW_3EHvt1TwafxpIRMI2oW6h-7TNJgXxD-T82tkXdbFuIC1KZKUDfBBN4eC69H-luvZW0kfVsF19BXb48vWz5zto-nQrdM9L_lxtG7Ukf71N3jjv6bwGD3q40x80hnGE7Rjq6fowWSgd3uGfs-uTKd93N4Kdg0OuH-3hb9-r_0qnIzlqjR4bpchqQ6H4nGQ9ZDO47Jqajzt2VWaILG5asSnlQ_yC-sx9K7gk6ZetmjQeD5Q8eLpVSWXpfb4vFz2_GH-Obo4O_02mUU9PUMkmciaKAbgGpk4G8NOpjJEA06RWGdchhgyzw01RmmidCaNyglRhBkuiRU2TrkxKXuBdqu6si8RdlJK6zh1WrEEcjCVCxfGKU6c1AkZoXHQX9FvL1-0lXMaF5uFHaGPg2oL3YObA8fG4i7RdxvRVYfocZfQ-JZ9bCSpAIQ-ko3Q28FgirCIUGUJaqjX4d-SmMaQZufbZaA_inMh0nSEDjpru_4CyxJIgl_9b86v0UPacnOIiLJDtNv8XNs3IUJq1LjdIX8ATqcNJA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHIqEeD-Wx2IQBy4psZ3ECbfVttUC3QqprdRbZDu2iNhNVjh7KL-Cn8xMHrsUtYL7OPFj7JnxeL6PkHdgkq1hNg5sKpHCjNsg1UgJKKTQTskscZjRnR8ns7Po83l83sPkYC0MdMLDl3ybxN-iC7APCxWh7y71TXILnBCONA2T6ckWYFd0ri5CbsooEQOK0J9N0QIZf8kC3VkpD5PhOhaL693M1twc3ut4i9qOtq9Mvu-tG71nfv6F4fh_I7lP7vZeJ510avKA3LDVQ7I7HcjeHpFfs4ui0wXa3hF25Q60f8VFv36r_QrOyXJVFnRulxBiwxH5EWQ9Bve0rJqa7vdcKw1IbC4e6UHlQX5hPcVKFjpp6mWLDU3nAzEv3b-o1LI0np6Uy55NzD8mZ4cHp9NZ0JM1BErItAkYwtioyFmG-5or8A2cDplJYwUeZZYVvCi0CbVJVaGzMNShKGIVWmlZEhdFIp6Qnaqu7DNCnVLKupg7o0WEEZnOpIN2Og6dMlE4ImOY17zfbD5v8-ic5ZuJHZH3wwrnpoc6R8aNxVWibzeiqw7f4yqh8SU12UhyiXh9YToibwa9yWESMecCy1CvoW8R4wyD7ux6GayWimMpk2REnnZKt_2DSCMMiZ__a8yvye7sdH6UH306_vKC3OYta4cMuHhJdpofa_sKfKdGj9tN8xubrhWF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELagSFCp4i5djsUgHnhJSeI4Tnhb7Xa1HFsqlUp9i3yqUXeTCGcfyq_gJ-PJVYpawfs48TFjz3g834fQO3ckaxlo6umEAYVZqL1EACUgYUQYztLYQEZ3eRgvTqLPp_S0CxShFsZ1wrov2SaJD1ZdKdMhDAQfVjwC_52J2-gOpOuAqmEyPb4E2SWtuwuwmyyKSY8k9GdTOIWkvXIK7VTcugkxLZPFza5mc-TMH6BvQ2eblybn-5ta7Muff-E4_v9oHqL7nfeJJ626PEK3dPEY3Zv2pG9P0K_FhWp1Ajd3hW3ZA-5ec-Gjs9JWbr_Mq1zhpV67UNttlR-drIUgH-dFXeJZx7lSO4nhAhIfFNbJr7TFUNGCJ3W5bjCi8bIn6MWzi4Kvc2nxcb7uWMXsU3QyP_g-XXgdaYPHCUtqLwA4Gx4ZHYB9h9z5CEb4gUwod55lmqpQKSF9IROuROr7wieKcl8zHcRUqZjsoq2iLPQewoZzrg0NjRQkgshMpMy4doL6hsvIH6Gxm9usMzqbNfn0MMiGiR2h9_0qZ7KDPAfmjdV1om8H0arF-bhOaHxFVQbJkAFun5-M0JtedzI3iZB7cctQblzfoiAMIPhOb5aBqilKGYvjEXrWKt7lH0gSQWj8_F9jfo3uHs3m2ddPh19eoO2wIe9gXkheoq36x0a_ci5ULcaN3fwGevcYCA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydration+interaction+between+phospholipid+membranes%3A+insight+into+different+measurement+ensembles+from+atomistic+molecular+dynamics+simulations&rft.jtitle=Langmuir&rft.au=Kandu%C4%8D%2C+Matej&rft.au=Schneck%2C+Emanuel&rft.au=Netz%2C+Roland+R&rft.date=2013-07-23&rft.issn=1520-5827&rft.eissn=1520-5827&rft.volume=29&rft.issue=29&rft.spage=9126&rft_id=info:doi/10.1021%2Fla401147b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |