Hydrogen Bonds: Simple after All?

Hydrogen bonds play integral roles in biological structure, function, and conformational dynamics and are fundamental to life as it has evolved on Earth. However, our understanding of these fundamental and ubiquitous interactions has seemed fractured and incomplete, and it has been difficult to extr...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 57; no. 24; pp. 3338 - 3352
Main Authors Herschlag, Daniel, Pinney, Margaux M
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 19.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen bonds play integral roles in biological structure, function, and conformational dynamics and are fundamental to life as it has evolved on Earth. However, our understanding of these fundamental and ubiquitous interactions has seemed fractured and incomplete, and it has been difficult to extract generalities and principles about hydrogen bonds despite thousands of papers published on this topic, perhaps in part because of the expanse of this subject and the density of studies. Fortunately, recent hydrogen bond proposals, discussions, and debates have stimulated new tests and models and have led to a remarkably simple picture of the structure of hydrogen bonds. This knowledge also provides clarity concerning hydrogen bond energetics, limiting and simplifying the factors that need be considered. Herein we recount the advances that have led to this simpler view of hydrogen bond structure, dynamics, and energetics. A quantitative predictive model for hydrogen bond length can now be broadly and deeply applied to evaluate current proposals and to uncover structural features of proteins, their conformational restraints, and their correlated motions. In contrast, a quantitative energetic description of molecular recognition and catalysis by proteins remains an important ongoing challenge, although our improved understanding of hydrogen bonds may aid in testing predictions from current and future models. We close by codifying our current state of understanding into five “Rules for Hydrogen Bonding” that may provide a foundation for understanding and teaching about these vital interactions and for building toward a deeper understanding of hydrogen bond energetics.
AbstractList Hydrogen bonds play integral roles in biological structure, function, and conformational dynamics and are fundamental to life as it has evolved on Earth. However, our understanding of these fundamental and ubiquitous interactions has seemed fractured and incomplete, and it has been difficult to extract generalities and principles about hydrogen bonds despite thousands of papers published on this topic, perhaps in part because of the expanse of this subject and the density of studies. Fortunately, recent hydrogen bond proposals, discussions, and debates have stimulated new tests and models and have led to a remarkably simple picture of the structure of hydrogen bonds. This knowledge also provides clarity concerning hydrogen bond energetics, limiting and simplifying the factors that need be considered. Herein we recount the advances that have led to this simpler view of hydrogen bond structure, dynamics, and energetics. A quantitative predictive model for hydrogen bond length can now be broadly and deeply applied to evaluate current proposals and to uncover structural features of proteins, their conformational restraints, and their correlated motions. In contrast, a quantitative energetic description of molecular recognition and catalysis by proteins remains an important ongoing challenge, although our improved understanding of hydrogen bonds may aid in testing predictions from current and future models. We close by codifying our current state of understanding into five "Rules for Hydrogen Bonding" that may provide a foundation for understanding and teaching about these vital interactions and for building toward a deeper understanding of hydrogen bond energetics.
Hydrogen bonds play integral roles in biological structure, function, and conformational dynamics and are fundamental to life as it has evolved on Earth. However, our understanding of these fundamental and ubiquitous interactions has seemed fractured and incomplete, and it has been difficult to extract generalities and principles about hydrogen bonds despite thousands of papers published on this topic, perhaps in part because of the expanse of this subject and the density of studies. Fortunately, recent hydrogen bond proposals, discussions, and debates have stimulated new tests and models and have led to a remarkably simple picture of the structure of hydrogen bonds. This knowledge also provides clarity concerning hydrogen bond energetics, limiting and simplifying the factors that need be considered. Herein we recount the advances that have led to this simpler view of hydrogen bond structure, dynamics, and energetics. A quantitative predictive model for hydrogen bond length can now be broadly and deeply applied to evaluate current proposals and to uncover structural features of proteins, their conformational restraints, and their correlated motions. In contrast, a quantitative energetic description of molecular recognition and catalysis by proteins remains an important ongoing challenge, although our improved understanding of hydrogen bonds may aid in testing predictions from current and future models. We close by codifying our current state of understanding into five "Rules for Hydrogen Bonding" that may provide a foundation for understanding and teaching about these vital interactions and for building toward a deeper understanding of hydrogen bond energetics.Hydrogen bonds play integral roles in biological structure, function, and conformational dynamics and are fundamental to life as it has evolved on Earth. However, our understanding of these fundamental and ubiquitous interactions has seemed fractured and incomplete, and it has been difficult to extract generalities and principles about hydrogen bonds despite thousands of papers published on this topic, perhaps in part because of the expanse of this subject and the density of studies. Fortunately, recent hydrogen bond proposals, discussions, and debates have stimulated new tests and models and have led to a remarkably simple picture of the structure of hydrogen bonds. This knowledge also provides clarity concerning hydrogen bond energetics, limiting and simplifying the factors that need be considered. Herein we recount the advances that have led to this simpler view of hydrogen bond structure, dynamics, and energetics. A quantitative predictive model for hydrogen bond length can now be broadly and deeply applied to evaluate current proposals and to uncover structural features of proteins, their conformational restraints, and their correlated motions. In contrast, a quantitative energetic description of molecular recognition and catalysis by proteins remains an important ongoing challenge, although our improved understanding of hydrogen bonds may aid in testing predictions from current and future models. We close by codifying our current state of understanding into five "Rules for Hydrogen Bonding" that may provide a foundation for understanding and teaching about these vital interactions and for building toward a deeper understanding of hydrogen bond energetics.
Author Herschlag, Daniel
Pinney, Margaux M
AuthorAffiliation Department of Chemistry
Department of Chemical Engineering
Stanford University
Department of Biochemistry
Stanford ChEM-H
AuthorAffiliation_xml – name: Stanford ChEM-H
– name: Department of Chemical Engineering
– name: Department of Chemistry
– name: Department of Biochemistry
– name: Stanford University
Author_xml – sequence: 1
  givenname: Daniel
  orcidid: 0000-0002-4685-1973
  surname: Herschlag
  fullname: Herschlag, Daniel
  email: herschla@stanford.edu
– sequence: 2
  givenname: Margaux M
  orcidid: 0000-0002-7735-5032
  surname: Pinney
  fullname: Pinney, Margaux M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29678112$$D View this record in MEDLINE/PubMed
BookMark eNqFkLtOwzAUQC1URB_wBUiobCxp_UgcmwWVCihSJQZgjpz4GlIlcbGToX-PqwYGBjpd-fqcO5wxGjS2AYQuCZ4RTMlcFX6Wl7b4hHomchxW6QkakYTiKJYyGaARxphHVHI8RGPvN-EZ4zQ-Q8OwSwUhdISuVzvt7Ac003vbaH87fS3rbQVTZVpw00VV3Z2jU6MqDxf9nKD3x4e35Spavzw9LxfrSLFUtBHhWHOtFVDGlFGSghYJM4LQmENhchwbA3EusMwh1brQIpcJ42kigWGjOZugm8PdrbNfHfg2q0tfQFWpBmznM0oIl4zHiTyOYipkQkgiAnrVo11eg862rqyV22U_BQLADkDhrPcOzC9CcLbvnIXOWd856zsHS_6xirJVbWmb1qmyOuLOD-7-c2M714Ss_xrfTlKUeA
CitedBy_id crossref_primary_10_1002_cplu_202100235
crossref_primary_10_1039_D1QO01169C
crossref_primary_10_1002_ange_201810922
crossref_primary_10_3390_app15020591
crossref_primary_10_3390_cryst11121596
crossref_primary_10_1016_j_jksus_2024_103134
crossref_primary_10_1002_jccs_202200430
crossref_primary_10_1039_D4TC03220A
crossref_primary_10_1021_acs_jpcb_0c11392
crossref_primary_10_1016_j_foodhyd_2024_109877
crossref_primary_10_1016_j_seppur_2024_127856
crossref_primary_10_1016_j_plaphy_2024_109324
crossref_primary_10_1007_s00894_023_05500_z
crossref_primary_10_1021_acssuschemeng_3c01209
crossref_primary_10_1002_anie_202117366
crossref_primary_10_1021_acssuschemeng_2c00920
crossref_primary_10_3390_v15071480
crossref_primary_10_1016_j_molliq_2023_122891
crossref_primary_10_1016_j_molliq_2024_124214
crossref_primary_10_1016_j_ijpharm_2023_123520
crossref_primary_10_1080_03067319_2023_2277888
crossref_primary_10_1039_D4BM01153H
crossref_primary_10_1016_j_chempr_2022_04_007
crossref_primary_10_1039_D3NJ01797D
crossref_primary_10_1039_D3CP04500E
crossref_primary_10_1007_s00894_022_05369_4
crossref_primary_10_1016_j_jbc_2023_104762
crossref_primary_10_1002_chem_202402982
crossref_primary_10_1126_science_ado5068
crossref_primary_10_1007_s00894_020_04501_6
crossref_primary_10_1016_j_saa_2020_118070
crossref_primary_10_1002_anie_202014478
crossref_primary_10_1021_acs_jcim_4c02187
crossref_primary_10_1021_acs_joc_1c01279
crossref_primary_10_1002_chem_202400590
crossref_primary_10_1128_jvi_00331_22
crossref_primary_10_3390_molecules26185724
crossref_primary_10_1007_s11172_022_3664_2
crossref_primary_10_1021_acs_cgd_3c00880
crossref_primary_10_1515_cti_2023_0027
crossref_primary_10_1016_j_seppur_2023_125869
crossref_primary_10_1002_ange_202014478
crossref_primary_10_1021_jacs_8b01596
crossref_primary_10_1016_j_csbj_2021_12_042
crossref_primary_10_1080_00268976_2022_2067088
crossref_primary_10_1016_j_molliq_2021_118270
crossref_primary_10_1021_acs_jpcc_4c00942
crossref_primary_10_1016_j_napere_2024_100082
crossref_primary_10_1021_acs_cgd_5c00064
crossref_primary_10_1002_jcb_30409
crossref_primary_10_1021_acsomega_1c02699
crossref_primary_10_1039_D3CS00516J
crossref_primary_10_1016_j_ejmech_2024_116364
crossref_primary_10_1093_nar_gkae1246
crossref_primary_10_1002_ange_202117366
crossref_primary_10_1002_smll_202204578
crossref_primary_10_1016_j_molstruc_2022_134475
crossref_primary_10_3390_ijms232012439
crossref_primary_10_1016_j_seppur_2025_132331
crossref_primary_10_1107_S2056989019012702
crossref_primary_10_1016_j_cclet_2024_109810
crossref_primary_10_3390_ijms232213701
crossref_primary_10_3390_molecules27030717
crossref_primary_10_3390_reactions5030027
crossref_primary_10_1021_acs_joc_2c02952
crossref_primary_10_1002_aoc_6222
crossref_primary_10_1039_D3CP03776B
crossref_primary_10_3390_jfb14010014
crossref_primary_10_1039_D4ME00174E
crossref_primary_10_1002_adfm_202315046
crossref_primary_10_3390_biology10060453
crossref_primary_10_3390_molecules28114462
crossref_primary_10_1016_j_chemphys_2023_112054
crossref_primary_10_1016_j_molstruc_2022_134800
crossref_primary_10_1021_acs_jctc_1c01128
crossref_primary_10_1021_acs_jpcc_1c07882
crossref_primary_10_3390_biom12101346
crossref_primary_10_1039_D5CC00646E
crossref_primary_10_2139_ssrn_4192662
crossref_primary_10_2139_ssrn_4192663
crossref_primary_10_1002_anie_201810922
crossref_primary_10_1016_j_eurpolymj_2019_109460
crossref_primary_10_3390_ijms25031613
crossref_primary_10_1021_acsmedchemlett_3c00509
crossref_primary_10_1039_D4NR04537H
crossref_primary_10_1039_D2CP04837J
crossref_primary_10_1002_poc_4474
crossref_primary_10_1039_D1CP01704G
crossref_primary_10_1039_D4CP02123A
crossref_primary_10_1021_acs_jpcb_2c01269
crossref_primary_10_1016_j_snb_2022_132593
crossref_primary_10_3390_sym12111924
crossref_primary_10_1016_j_cap_2021_05_001
crossref_primary_10_1021_acscatal_4c03469
crossref_primary_10_1038_s41598_021_04306_4
crossref_primary_10_1021_acs_jpca_2c00112
crossref_primary_10_1093_nar_gkae349
crossref_primary_10_1080_07391102_2022_2126889
crossref_primary_10_3390_computation9030032
crossref_primary_10_1002_chem_202003680
crossref_primary_10_1016_j_jsb_2024_108152
crossref_primary_10_3390_molecules26185642
crossref_primary_10_3390_computation12010003
crossref_primary_10_1016_j_pestbp_2023_105379
crossref_primary_10_1515_pac_2022_1111
crossref_primary_10_1002_jrs_6205
crossref_primary_10_1016_j_molliq_2023_121302
crossref_primary_10_1038_s41598_024_77948_9
crossref_primary_10_1080_00958972_2024_2326898
crossref_primary_10_1021_acs_langmuir_4c04865
crossref_primary_10_1080_07391102_2024_2316790
crossref_primary_10_1016_j_bbapap_2020_140557
crossref_primary_10_1021_acs_joc_3c02038
crossref_primary_10_1021_acs_orglett_4c04824
crossref_primary_10_1039_D1CC02143E
crossref_primary_10_1021_acs_inorgchem_1c01977
crossref_primary_10_1016_j_jcou_2022_102277
crossref_primary_10_1016_j_comptc_2025_115072
crossref_primary_10_1002_anie_202406024
crossref_primary_10_1002_smtd_202100645
crossref_primary_10_3897_pharmacia_72_e139273
crossref_primary_10_1002_mco2_99
crossref_primary_10_1016_j_molliq_2025_126992
crossref_primary_10_1371_journal_pone_0288810
crossref_primary_10_3390_molecules28176217
crossref_primary_10_1016_j_saa_2020_118937
crossref_primary_10_1126_science_aay2784
crossref_primary_10_1021_jacs_8b13785
crossref_primary_10_1016_j_colsurfa_2024_136013
crossref_primary_10_1126_sciadv_abn7738
crossref_primary_10_1021_acs_jpcc_3c05552
crossref_primary_10_1002_cbic_202000376
crossref_primary_10_3389_fmolb_2023_1286172
crossref_primary_10_1002_jsfa_12224
crossref_primary_10_2174_1570193X20666230725103217
crossref_primary_10_1016_j_foodhyd_2022_107846
crossref_primary_10_1002_adfm_202213209
crossref_primary_10_1063_5_0189140
crossref_primary_10_1093_nar_gkab1183
crossref_primary_10_1021_acs_energyfuels_0c02443
crossref_primary_10_1016_j_cclet_2022_107850
crossref_primary_10_1021_acssuschemeng_4c05869
crossref_primary_10_1039_D3QO01512B
crossref_primary_10_1039_D3NJ02222F
crossref_primary_10_1080_00268976_2022_2061387
crossref_primary_10_1016_j_molstruc_2024_137840
crossref_primary_10_1039_D2CP02962F
crossref_primary_10_1021_acs_joc_1c02408
crossref_primary_10_3390_microorganisms12112239
crossref_primary_10_1021_acs_inorgchem_1c01485
crossref_primary_10_1016_j_micromeso_2024_113388
crossref_primary_10_1021_acs_jpca_3c02931
crossref_primary_10_1039_D3CP04060G
crossref_primary_10_1021_acs_jpcb_0c07730
crossref_primary_10_1107_S2059798322005939
crossref_primary_10_1021_acs_jcim_9b00132
crossref_primary_10_1007_s00894_023_05558_9
crossref_primary_10_1021_acs_jpcb_3c02868
crossref_primary_10_1039_D2DT03456E
crossref_primary_10_1021_acs_jpcc_1c05176
crossref_primary_10_3390_cryst10070587
crossref_primary_10_1039_D2ME00098A
crossref_primary_10_1021_acsami_1c13493
crossref_primary_10_1021_acs_jcim_0c00294
crossref_primary_10_1016_j_compbiolchem_2025_108378
crossref_primary_10_1016_j_molliq_2024_124490
crossref_primary_10_1021_acs_jmedchem_9b00179
crossref_primary_10_1515_jib_2023_0030
crossref_primary_10_1021_acs_joc_1c00165
crossref_primary_10_1039_D1CS01012C
crossref_primary_10_1002_chem_202102137
crossref_primary_10_1107_S2059798323005077
crossref_primary_10_1002_biot_202200092
crossref_primary_10_1063_5_0185832
crossref_primary_10_3390_ijms24021682
crossref_primary_10_1038_s41598_022_12779_0
crossref_primary_10_1021_acs_inorgchem_3c00369
crossref_primary_10_1016_j_molliq_2023_122339
crossref_primary_10_1016_j_matpr_2023_03_286
crossref_primary_10_1021_acscombsci_0c00136
crossref_primary_10_1002_ange_202406024
crossref_primary_10_1002_bmb_21854
crossref_primary_10_1186_s43141_023_00569_8
crossref_primary_10_1002_cmdc_202300662
crossref_primary_10_1016_j_cej_2021_132264
crossref_primary_10_1080_07391102_2021_1996462
crossref_primary_10_1016_j_jmgm_2020_107580
crossref_primary_10_1016_j_jsbmb_2024_106572
crossref_primary_10_1016_j_comptc_2021_113422
crossref_primary_10_1021_acs_joc_9b02407
crossref_primary_10_1039_D2CP05409D
crossref_primary_10_1039_D1QM00752A
crossref_primary_10_1261_rna_079506_122
crossref_primary_10_1016_j_envpol_2024_125320
crossref_primary_10_2118_219469_PA
crossref_primary_10_1016_j_matdes_2024_113417
crossref_primary_10_1021_acsanm_3c03315
crossref_primary_10_1002_chem_202301920
crossref_primary_10_1002_cphc_202200476
crossref_primary_10_1002_ejic_202400799
crossref_primary_10_1016_j_molliq_2021_116679
crossref_primary_10_1021_acs_biomac_4c00450
crossref_primary_10_1186_s12951_023_02178_6
crossref_primary_10_1021_acsanm_0c03329
crossref_primary_10_1016_j_jinorgbio_2023_112442
crossref_primary_10_1021_acssuschemeng_4c09183
crossref_primary_10_1016_j_molstruc_2025_141363
crossref_primary_10_1016_j_polymer_2025_128240
crossref_primary_10_1063_5_0226184
crossref_primary_10_1016_j_microc_2024_110897
crossref_primary_10_1039_D4CY00321G
crossref_primary_10_1021_acsomega_3c00205
crossref_primary_10_1073_pnas_2011350117
crossref_primary_10_1039_D2RA06988A
crossref_primary_10_1021_acs_joc_1c01009
Cites_doi 10.1021/ja413174b
10.1371/journal.pmed.1001747
10.1103/PhysRevLett.82.600
10.1021/jp002726n
10.1002/prot.20096
10.1021/bi026873i
10.7326/0003-4819-146-6-200703200-00154
10.1021/cr00023a005
10.1023/A:1011625728803
10.1371/journal.pone.0021101
10.1126/science.266.5191.1665
10.1107/S0108767394007622
10.1073/pnas.82.8.2225
10.1021/j100007a034
10.1021/ja00530a002
10.1371/journal.pone.0118053
10.1021/ja512980h
10.1080/08893119508039923
10.1186/1472-6769-5-2
10.1126/science.272.5258.97
10.1107/S0108768193011966
10.1039/C0CP01659D
10.1016/S0065-3160(08)60047-7
10.1126/science.8009219
10.1074/jbc.273.40.25529
10.1021/bi4000113
10.1021/j100043a023
10.1039/FT9938900119
10.1021/j100785a001
10.1021/ja00274a058
10.1002/qua.1525
10.1016/S0040-4020(01)00158-2
10.1146/annurev.biochem.72.121801.161617
10.1073/pnas.0911168107
10.1021/bi00047a010
10.1021/bi0028237
10.1021/ar800001k
10.1016/S0022-2860(00)00469-5
10.1006/bioo.1998.1102
10.1021/jo972262y
10.1021/ar50148a002
10.1016/S0021-9258(18)71587-1
10.1126/science.278.5340.1128
10.1002/anie.199621951
10.1016/j.tree.2010.11.006
10.1038/334406a0
10.1021/ja01199a022
10.1021/ja400611x
10.1016/0022-1902(69)80099-0
10.1039/c3dt50599e
10.1021/ct500864r
10.1111/j.1742-4658.2005.04604.x
10.1126/science.7716506
10.1111/tops.12006
10.1021/ar500464j
10.1021/jo010234g
10.1016/S1074-5521(97)90069-7
10.1021/ja075605a
10.1021/ja201113a
10.1126/science.146.3642.347
10.1038/nsb0295-122
10.1371/journal.pbio.0040099
10.1371/journal.pbio.1002295
10.1016/S1074-5521(96)90258-6
10.1038/nsmb.1610
10.1096/fj.12-218164
10.1074/jbc.M113.535641
10.1021/ja000921+
10.1073/pnas.1417923111
10.1021/ja003060d
10.1107/S0108767394007609
10.1016/S0076-6879(99)08012-X
10.1021/ja991795g
10.1073/pnas.93.24.13665
10.12688/f1000research.3979.3
10.1016/S0022-2836(03)00021-4
10.1021/ja00385a077
10.1021/ja00348a003
10.1021/ja910167q
10.1002/pro.5560021222
10.1021/bi972039v
10.1126/science.7661899
10.1110/ps.4890102
10.1073/pnas.0505521102
10.1021/j100625a018
10.1073/pnas.0900168106
10.1136/bmj.c564
10.1021/ar100097j
10.1371/journal.pbio.1001779
10.1021/ar5003158
10.1038/314235a0
10.1021/jacs.7b08418
10.1021/cr0503106
10.1146/annurev-biochem-061516-044432
10.1021/bi301348x
10.1002/(SICI)1097-0134(19990515)35:3<275::AID-PROT1>3.0.CO;2-V
10.1002/9780470122884.ch4
10.1016/S0076-6879(99)08013-1
10.1021/jp964031l
10.1126/science.1259802
10.1101/SQB.1987.052.01.010
10.1371/journal.pmed.0020124
10.1021/ja039280j
10.1073/pnas.0307578101
10.7554/eLife.06181
10.1126/science.7661987
10.1021/ja803928m
10.1006/bioo.1998.1097
10.1039/C39940002341
10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
10.1073/pnas.93.25.14474
10.1093/oso/9780195090116.001.0001
10.1073/pnas.78.7.4046
10.1016/0968-0004(87)90146-0
10.1002/1097-461X(2000)80:4/5<1107::AID-QUA60>3.0.CO;2-T
10.1038/248667a0
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acs.biochem.8b00217
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 3352
ExternalDocumentID 29678112
10_1021_acs_biochem_8b00217
a551965829
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Review
GroupedDBID -
.K2
02
23N
53G
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
KM
L7B
LG6
P2P
ROL
TN5
UI2
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
---
-DZ
-~X
.55
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a378t-160d6ddae233afa92ed853f81246ecfb04ffe4b809be7ddcd8b9536759e30fd63
IEDL.DBID ACS
ISSN 0006-2960
1520-4995
IngestDate Fri Jul 11 03:56:26 EDT 2025
Fri Jul 11 05:16:41 EDT 2025
Mon Jul 21 05:59:49 EDT 2025
Tue Jul 01 03:33:40 EDT 2025
Thu Apr 24 23:00:40 EDT 2025
Thu Aug 27 13:43:10 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a378t-160d6ddae233afa92ed853f81246ecfb04ffe4b809be7ddcd8b9536759e30fd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4685-1973
0000-0002-7735-5032
PMID 29678112
PQID 2028951158
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2116936459
proquest_miscellaneous_2028951158
pubmed_primary_29678112
crossref_primary_10_1021_acs_biochem_8b00217
crossref_citationtrail_10_1021_acs_biochem_8b00217
acs_journals_10_1021_acs_biochem_8b00217
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-19
PublicationDateYYYYMMDD 2018-06-19
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
McDermott A. (ref118/cit118) 1996
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
Matsumura M. (ref84/cit84) 1989; 264
Jencks W. P. (ref94/cit94) 1987
ref117/cit117
ref20/cit20
ref48/cit48
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
Pinney M. M. (ref50/cit50) 2018
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
Scheiner S. (ref73/cit73) 1997
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
Pauling L. (ref1/cit1) 1939
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref44/cit44
ref70/cit70
ref125/cit125
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
Berg J. M. (ref98/cit98) 2002
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref78/cit78
ref36/cit36
Jeffrey G. A. (ref18/cit18) 1997
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
Charton M. (ref29/cit29) 2007; 13
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref26/cit26
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref123/cit123
Hopfinger A. J. (ref2/cit2) 1973
ref7/cit7
References_xml – ident: ref93/cit93
  doi: 10.1021/ja413174b
– ident: ref17/cit17
  doi: 10.1371/journal.pmed.1001747
– ident: ref71/cit71
  doi: 10.1103/PhysRevLett.82.600
– ident: ref23/cit23
  doi: 10.1021/jp002726n
– ident: ref11/cit11
  doi: 10.1002/prot.20096
– ident: ref35/cit35
  doi: 10.1021/bi026873i
– ident: ref68/cit68
  doi: 10.7326/0003-4819-146-6-200703200-00154
– ident: ref79/cit79
  doi: 10.1021/cr00023a005
– ident: ref110/cit110
  doi: 10.1023/A:1011625728803
– ident: ref64/cit64
  doi: 10.1371/journal.pone.0021101
– ident: ref19/cit19
  doi: 10.1126/science.266.5191.1665
– ident: ref48/cit48
  doi: 10.1107/S0108767394007622
– ident: ref99/cit99
  doi: 10.1073/pnas.82.8.2225
– ident: ref90/cit90
  doi: 10.1021/j100007a034
– ident: ref33/cit33
  doi: 10.1021/ja00530a002
– ident: ref62/cit62
  doi: 10.1371/journal.pone.0118053
– ident: ref26/cit26
  doi: 10.1021/ja512980h
– ident: ref40/cit40
  doi: 10.1080/08893119508039923
– ident: ref30/cit30
  doi: 10.1186/1472-6769-5-2
– ident: ref14/cit14
  doi: 10.1126/science.272.5258.97
– ident: ref27/cit27
  doi: 10.1107/S0108768193011966
– ident: ref122/cit122
  doi: 10.1039/C0CP01659D
– ident: ref36/cit36
  doi: 10.1016/S0065-3160(08)60047-7
– ident: ref20/cit20
  doi: 10.1126/science.8009219
– ident: ref6/cit6
  doi: 10.1074/jbc.273.40.25529
– ident: ref108/cit108
  doi: 10.1021/bi4000113
– ident: ref74/cit74
  doi: 10.1021/j100043a023
– ident: ref91/cit91
  doi: 10.1039/FT9938900119
– ident: ref109/cit109
  doi: 10.1021/j100785a001
– ident: ref92/cit92
  doi: 10.1021/ja00274a058
– ident: ref28/cit28
  doi: 10.1002/qua.1525
– ident: ref42/cit42
  doi: 10.1016/S0040-4020(01)00158-2
– ident: ref57/cit57
  doi: 10.1146/annurev.biochem.72.121801.161617
– ident: ref81/cit81
  doi: 10.1073/pnas.0911168107
– ident: ref21/cit21
  doi: 10.1021/bi00047a010
– ident: ref123/cit123
  doi: 10.1021/bi0028237
– ident: ref60/cit60
– ident: ref24/cit24
  doi: 10.1021/ar800001k
– ident: ref119/cit119
  doi: 10.1016/S0022-2860(00)00469-5
– ident: ref43/cit43
  doi: 10.1006/bioo.1998.1102
– ident: ref9/cit9
  doi: 10.1021/jo972262y
– ident: ref52/cit52
  doi: 10.1021/ar50148a002
– volume: 264
  start-page: 16059
  year: 1989
  ident: ref84/cit84
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)71587-1
– ident: ref7/cit7
  doi: 10.1126/science.278.5340.1128
– ident: ref51/cit51
  doi: 10.1002/anie.199621951
– ident: ref63/cit63
  doi: 10.1016/j.tree.2010.11.006
– ident: ref83/cit83
  doi: 10.1038/334406a0
– ident: ref88/cit88
  doi: 10.1021/ja01199a022
– ident: ref116/cit116
  doi: 10.1021/ja400611x
– volume-title: An Introduction to Hydrogen Bonding
  year: 1997
  ident: ref18/cit18
– ident: ref87/cit87
  doi: 10.1016/0022-1902(69)80099-0
– ident: ref45/cit45
  doi: 10.1039/c3dt50599e
– ident: ref77/cit77
  doi: 10.1021/ct500864r
– ident: ref39/cit39
  doi: 10.1111/j.1742-4658.2005.04604.x
– ident: ref4/cit4
  doi: 10.1126/science.7716506
– ident: ref65/cit65
  doi: 10.1111/tops.12006
– ident: ref103/cit103
  doi: 10.1021/ar500464j
– ident: ref31/cit31
  doi: 10.1021/jo010234g
– ident: ref5/cit5
  doi: 10.1016/S1074-5521(97)90069-7
– ident: ref114/cit114
  doi: 10.1021/ja075605a
– ident: ref115/cit115
  doi: 10.1021/ja201113a
– ident: ref15/cit15
  doi: 10.1126/science.146.3642.347
– ident: ref82/cit82
  doi: 10.1038/nsb0295-122
– ident: ref46/cit46
  doi: 10.1371/journal.pbio.0040099
– ident: ref66/cit66
  doi: 10.1371/journal.pbio.1002295
– ident: ref8/cit8
  doi: 10.1016/S1074-5521(96)90258-6
– ident: ref34/cit34
  doi: 10.1038/nsmb.1610
– ident: ref59/cit59
  doi: 10.1096/fj.12-218164
– ident: ref124/cit124
  doi: 10.1074/jbc.M113.535641
– ident: ref126/cit126
  doi: 10.1021/ja000921+
– ident: ref78/cit78
  doi: 10.1073/pnas.1417923111
– ident: ref44/cit44
  doi: 10.1021/ja003060d
– volume-title: Conformation Properties of Macromolecules
  year: 1973
  ident: ref2/cit2
– ident: ref49/cit49
  doi: 10.1107/S0108767394007609
– ident: ref38/cit38
  doi: 10.1016/S0076-6879(99)08012-X
– volume: 13
  volume-title: Progress in Physical Organic Chemistry
  year: 2007
  ident: ref29/cit29
– ident: ref70/cit70
  doi: 10.1021/ja991795g
– volume-title: Encyclopedia of NMR
  year: 1996
  ident: ref118/cit118
– ident: ref13/cit13
  doi: 10.1073/pnas.93.24.13665
– ident: ref61/cit61
  doi: 10.12688/f1000research.3979.3
– ident: ref76/cit76
  doi: 10.1016/S0022-2836(03)00021-4
– ident: ref89/cit89
  doi: 10.1021/ja00385a077
– ident: ref111/cit111
  doi: 10.1021/ja00348a003
– ident: ref121/cit121
  doi: 10.1021/ja910167q
– ident: ref85/cit85
  doi: 10.1002/pro.5560021222
– ident: ref120/cit120
  doi: 10.1021/bi972039v
– ident: ref3/cit3
  doi: 10.1126/science.7661899
– ident: ref72/cit72
  doi: 10.1110/ps.4890102
– ident: ref37/cit37
  doi: 10.1073/pnas.0505521102
– ident: ref86/cit86
  doi: 10.1021/j100625a018
– ident: ref47/cit47
  doi: 10.1073/pnas.0900168106
– volume-title: Catalysis in Chemistry and Enzymology
  year: 1987
  ident: ref94/cit94
– ident: ref58/cit58
  doi: 10.1136/bmj.c564
– ident: ref10/cit10
  doi: 10.1021/ar100097j
– ident: ref67/cit67
  doi: 10.1371/journal.pbio.1001779
– ident: ref55/cit55
  doi: 10.1021/ar5003158
– ident: ref80/cit80
  doi: 10.1038/314235a0
– volume-title: Nature of the Chemical Bond and the Structure of Molecules and Crystals
  year: 1939
  ident: ref1/cit1
– ident: ref56/cit56
  doi: 10.1021/jacs.7b08418
– ident: ref105/cit105
  doi: 10.1021/cr0503106
– ident: ref104/cit104
  doi: 10.1146/annurev-biochem-061516-044432
– ident: ref112/cit112
  doi: 10.1021/bi301348x
– volume-title: J. Am. Chem. Soc.
  year: 2018
  ident: ref50/cit50
– volume-title: Biochemistry
  year: 2002
  ident: ref98/cit98
– ident: ref117/cit117
  doi: 10.1002/(SICI)1097-0134(19990515)35:3<275::AID-PROT1>3.0.CO;2-V
– ident: ref95/cit95
  doi: 10.1002/9780470122884.ch4
– ident: ref101/cit101
  doi: 10.1016/S0076-6879(99)08013-1
– ident: ref22/cit22
  doi: 10.1021/jp964031l
– ident: ref102/cit102
  doi: 10.1126/science.1259802
– ident: ref96/cit96
  doi: 10.1101/SQB.1987.052.01.010
– ident: ref16/cit16
  doi: 10.1371/journal.pmed.0020124
– ident: ref125/cit125
  doi: 10.1021/ja039280j
– ident: ref75/cit75
  doi: 10.1073/pnas.0307578101
– ident: ref106/cit106
  doi: 10.1038/nsb0295-122
– ident: ref113/cit113
  doi: 10.7554/eLife.06181
– ident: ref12/cit12
  doi: 10.1126/science.7661987
– ident: ref54/cit54
  doi: 10.1021/ja803928m
– ident: ref41/cit41
  doi: 10.1006/bioo.1998.1097
– ident: ref69/cit69
  doi: 10.1039/C39940002341
– ident: ref25/cit25
  doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
– ident: ref100/cit100
  doi: 10.1073/pnas.93.25.14474
– volume-title: Hydrogen bonding: A theoretical perspective
  year: 1997
  ident: ref73/cit73
  doi: 10.1093/oso/9780195090116.001.0001
– ident: ref107/cit107
  doi: 10.1073/pnas.78.7.4046
– ident: ref97/cit97
  doi: 10.1016/0968-0004(87)90146-0
– ident: ref32/cit32
  doi: 10.1002/1097-461X(2000)80:4/5<1107::AID-QUA60>3.0.CO;2-T
– ident: ref53/cit53
  doi: 10.1038/248667a0
SSID ssj0004074
Score 2.6348925
SecondaryResourceType review_article
Snippet Hydrogen bonds play integral roles in biological structure, function, and conformational dynamics and are fundamental to life as it has evolved on Earth....
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3338
SubjectTerms catalytic activity
Hydrogen Bonding
Molecular Structure
prediction
proteins
Salicylates - chemistry
Thermodynamics
Title Hydrogen Bonds: Simple after All?
URI http://dx.doi.org/10.1021/acs.biochem.8b00217
https://www.ncbi.nlm.nih.gov/pubmed/29678112
https://www.proquest.com/docview/2028951158
https://www.proquest.com/docview/2116936459
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEB5ae2gvfWgf9kWEUnpobLKJefRSRCpSqBcreAvZ7C5INRajB_vrO5OHfYu3EHYTdvdL5pudnW8ArhASjuCuraP34es2QhivfKHzUEVEiIVKo-fPXafTt58GjcGXZPUfEXxm3oVRUudDKh81rnsZh96ELeZ4LvlazVbvMw3SyEWX0UlmyMwLkaG_H0LmKEq-m6N_OGZqa9p70C0ydrIjJq_1-YzXo_ffAo7rDWMfdnPWqTUzmBzAhozLUGnG6HGPF9q1lp4DTTfYy7DdKmrAVaDWWYjpBDGmUfnh5F7rDUlNWEsri2vN0ejhEPrtx5dWR8-LKuih5Xoz3XQM4QgRSmZZoQp9JgVabEV23pGR4oatlLS5Z_hcukJEwuMU4XUbvrQMJRzrCErxJJYnoFEduIbiNsf_AnXmylI8YsLxhO2ilavCDY46yD-KJEjj3cwM6GY-FUE-FVVgxTIEUS5OTjUyRqs73S47vWXaHKub14r1DXAaKTASxnIyTwJG4VZkng1vRRuTZGtIeqcKxxk4li9FsFHCLjtdf8BnsIPUy6NDZ6Z_DqXZdC4vkN7M-GUK6g-J5_O_
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT-MwEB6xcGAvPBcorzXS7moPpCROmgcSQlUXVJbHBZC4hTi2JURJEUmFyu_hr_C_mHGTIhBbcUHaW2TFjjMee77RjL8B-IEq4UsReBZ6H5HloQrjUyQtkeiUALHUJnp-fOK3z72_F42LMXis7sLgJHIcKTdB_Bd2AWeL2sQVVZG6qYcDKF2mUh6q_j06avnOwR9c1Z-c7--dtdpWWUvAStwgLCzHt6UvZaK46yY6ibiSaKg0mTdfpVrYntbKE6EdCRVImcpQUGAzaETKtbX0XRz3C0wg_OHk4jVbpy-3L-2S6xl9c44OQcVt9P6kyQqm-Wsr-A9oa0zc_jQ8DYVjMluu671C1NOHN7yR_7v0ZmCqxNisOdgUszCmsjmYb2ZJ0b3ps1_MZL2acMIcTLaqinfzsNHuy7su7ihGxZbzbXZ6RdzJzNRRZ81OZ_cbnH_KxBdgPOtmagkYVb1raOEJPAWps9CuFimXfii9AG16DX6jlOPyCMhjE93nTkyNpejjUvQ14NXqx2lJxU4VQTqjO20OO90OmEhGv75RqVWMYqQwUJKpbi-POQWXEWc3whHvOETSQ0RDNVgc6OTwo6jjdD2ZL3_8h7_DZPvs-Cg-Ojg5XIGvCDpDSrdzolUYL-56ag2BXSHWzb5icPnZqvgM039ZHA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwED-NIsFeNrbB1m0wTwLEw1ISJ80fJISqblXHYEIalfaWxbEtTWvTaUmFyifiq_Ctduc6RSCoeNnD3iLLdpzL2Xen3_l3AC9RJUIposDB6CNxAlRhfEqkIzKdk0MstUHPP5-G_UHw8bx9vgQ_6rswuIgSZyoNiE-7-lpqyzDgvaV2cUmVpEateOZO23TKEzX9hsFa-f74EP_sK857R1-7fcfWE3AyP4orxwtdGUqZKe77mc4SriQaK00mLlS5Fm6gtQpE7CZCRVLmMhYEbkbtRPmulqGP8z6AhwQUUpjX6Z79uoHpWr5njM85BgU1v9HfF02WMC9_t4T_cG-Nmeutws-5gEx2y1VrUolW_v0P7sj7IMEnsGJ9bdaZbY41WFLFOmx0iqwaj6bsNTPZrwZWWIfH3bry3Qbs96fyZow7i1HR5fIdO7skDmVm6qmzznD44SkM7mThz6BRjAu1BYyq37W1CASehjRYaF-LnMswlkGEtr0Jb1DKqT0KytSg_NxLqdGKPrWibwKvNSDNLSU7VQYZLh50MB90PWMkWdx9v1atFMVIcFBWqPGkTDmBzOhvt-MFfTwi6yHCoSZszvRy_lLUc7qmzLf__4P34NGXw1766fj0ZAeW0feMKevOS3ahUd1M1HP07yrxwmwtBhd3rYm3K0xbnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+Bonds%3A+Simple+after+All%3F&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Herschlag%2C+Daniel&rft.au=Pinney%2C+Margaux+M&rft.date=2018-06-19&rft.pub=American+Chemical+Society&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=57&rft.issue=24&rft.spage=3338&rft.epage=3352&rft_id=info:doi/10.1021%2Facs.biochem.8b00217&rft.externalDocID=a551965829
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon