Hydrogen Bonds: Simple after All?
Hydrogen bonds play integral roles in biological structure, function, and conformational dynamics and are fundamental to life as it has evolved on Earth. However, our understanding of these fundamental and ubiquitous interactions has seemed fractured and incomplete, and it has been difficult to extr...
Saved in:
Published in | Biochemistry (Easton) Vol. 57; no. 24; pp. 3338 - 3352 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
19.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen bonds play integral roles in biological structure, function, and conformational dynamics and are fundamental to life as it has evolved on Earth. However, our understanding of these fundamental and ubiquitous interactions has seemed fractured and incomplete, and it has been difficult to extract generalities and principles about hydrogen bonds despite thousands of papers published on this topic, perhaps in part because of the expanse of this subject and the density of studies. Fortunately, recent hydrogen bond proposals, discussions, and debates have stimulated new tests and models and have led to a remarkably simple picture of the structure of hydrogen bonds. This knowledge also provides clarity concerning hydrogen bond energetics, limiting and simplifying the factors that need be considered. Herein we recount the advances that have led to this simpler view of hydrogen bond structure, dynamics, and energetics. A quantitative predictive model for hydrogen bond length can now be broadly and deeply applied to evaluate current proposals and to uncover structural features of proteins, their conformational restraints, and their correlated motions. In contrast, a quantitative energetic description of molecular recognition and catalysis by proteins remains an important ongoing challenge, although our improved understanding of hydrogen bonds may aid in testing predictions from current and future models. We close by codifying our current state of understanding into five “Rules for Hydrogen Bonding” that may provide a foundation for understanding and teaching about these vital interactions and for building toward a deeper understanding of hydrogen bond energetics. |
---|---|
AbstractList | Hydrogen bonds play integral roles in biological structure, function, and conformational dynamics and are fundamental to life as it has evolved on Earth. However, our understanding of these fundamental and ubiquitous interactions has seemed fractured and incomplete, and it has been difficult to extract generalities and principles about hydrogen bonds despite thousands of papers published on this topic, perhaps in part because of the expanse of this subject and the density of studies. Fortunately, recent hydrogen bond proposals, discussions, and debates have stimulated new tests and models and have led to a remarkably simple picture of the structure of hydrogen bonds. This knowledge also provides clarity concerning hydrogen bond energetics, limiting and simplifying the factors that need be considered. Herein we recount the advances that have led to this simpler view of hydrogen bond structure, dynamics, and energetics. A quantitative predictive model for hydrogen bond length can now be broadly and deeply applied to evaluate current proposals and to uncover structural features of proteins, their conformational restraints, and their correlated motions. In contrast, a quantitative energetic description of molecular recognition and catalysis by proteins remains an important ongoing challenge, although our improved understanding of hydrogen bonds may aid in testing predictions from current and future models. We close by codifying our current state of understanding into five "Rules for Hydrogen Bonding" that may provide a foundation for understanding and teaching about these vital interactions and for building toward a deeper understanding of hydrogen bond energetics. Hydrogen bonds play integral roles in biological structure, function, and conformational dynamics and are fundamental to life as it has evolved on Earth. However, our understanding of these fundamental and ubiquitous interactions has seemed fractured and incomplete, and it has been difficult to extract generalities and principles about hydrogen bonds despite thousands of papers published on this topic, perhaps in part because of the expanse of this subject and the density of studies. Fortunately, recent hydrogen bond proposals, discussions, and debates have stimulated new tests and models and have led to a remarkably simple picture of the structure of hydrogen bonds. This knowledge also provides clarity concerning hydrogen bond energetics, limiting and simplifying the factors that need be considered. Herein we recount the advances that have led to this simpler view of hydrogen bond structure, dynamics, and energetics. A quantitative predictive model for hydrogen bond length can now be broadly and deeply applied to evaluate current proposals and to uncover structural features of proteins, their conformational restraints, and their correlated motions. In contrast, a quantitative energetic description of molecular recognition and catalysis by proteins remains an important ongoing challenge, although our improved understanding of hydrogen bonds may aid in testing predictions from current and future models. We close by codifying our current state of understanding into five "Rules for Hydrogen Bonding" that may provide a foundation for understanding and teaching about these vital interactions and for building toward a deeper understanding of hydrogen bond energetics.Hydrogen bonds play integral roles in biological structure, function, and conformational dynamics and are fundamental to life as it has evolved on Earth. However, our understanding of these fundamental and ubiquitous interactions has seemed fractured and incomplete, and it has been difficult to extract generalities and principles about hydrogen bonds despite thousands of papers published on this topic, perhaps in part because of the expanse of this subject and the density of studies. Fortunately, recent hydrogen bond proposals, discussions, and debates have stimulated new tests and models and have led to a remarkably simple picture of the structure of hydrogen bonds. This knowledge also provides clarity concerning hydrogen bond energetics, limiting and simplifying the factors that need be considered. Herein we recount the advances that have led to this simpler view of hydrogen bond structure, dynamics, and energetics. A quantitative predictive model for hydrogen bond length can now be broadly and deeply applied to evaluate current proposals and to uncover structural features of proteins, their conformational restraints, and their correlated motions. In contrast, a quantitative energetic description of molecular recognition and catalysis by proteins remains an important ongoing challenge, although our improved understanding of hydrogen bonds may aid in testing predictions from current and future models. We close by codifying our current state of understanding into five "Rules for Hydrogen Bonding" that may provide a foundation for understanding and teaching about these vital interactions and for building toward a deeper understanding of hydrogen bond energetics. |
Author | Herschlag, Daniel Pinney, Margaux M |
AuthorAffiliation | Department of Chemistry Department of Chemical Engineering Stanford University Department of Biochemistry Stanford ChEM-H |
AuthorAffiliation_xml | – name: Stanford ChEM-H – name: Department of Chemical Engineering – name: Department of Chemistry – name: Department of Biochemistry – name: Stanford University |
Author_xml | – sequence: 1 givenname: Daniel orcidid: 0000-0002-4685-1973 surname: Herschlag fullname: Herschlag, Daniel email: herschla@stanford.edu – sequence: 2 givenname: Margaux M orcidid: 0000-0002-7735-5032 surname: Pinney fullname: Pinney, Margaux M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29678112$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkLtOwzAUQC1URB_wBUiobCxp_UgcmwWVCihSJQZgjpz4GlIlcbGToX-PqwYGBjpd-fqcO5wxGjS2AYQuCZ4RTMlcFX6Wl7b4hHomchxW6QkakYTiKJYyGaARxphHVHI8RGPvN-EZ4zQ-Q8OwSwUhdISuVzvt7Ac003vbaH87fS3rbQVTZVpw00VV3Z2jU6MqDxf9nKD3x4e35Spavzw9LxfrSLFUtBHhWHOtFVDGlFGSghYJM4LQmENhchwbA3EusMwh1brQIpcJ42kigWGjOZugm8PdrbNfHfg2q0tfQFWpBmznM0oIl4zHiTyOYipkQkgiAnrVo11eg862rqyV22U_BQLADkDhrPcOzC9CcLbvnIXOWd856zsHS_6xirJVbWmb1qmyOuLOD-7-c2M714Ss_xrfTlKUeA |
CitedBy_id | crossref_primary_10_1002_cplu_202100235 crossref_primary_10_1039_D1QO01169C crossref_primary_10_1002_ange_201810922 crossref_primary_10_3390_app15020591 crossref_primary_10_3390_cryst11121596 crossref_primary_10_1016_j_jksus_2024_103134 crossref_primary_10_1002_jccs_202200430 crossref_primary_10_1039_D4TC03220A crossref_primary_10_1021_acs_jpcb_0c11392 crossref_primary_10_1016_j_foodhyd_2024_109877 crossref_primary_10_1016_j_seppur_2024_127856 crossref_primary_10_1016_j_plaphy_2024_109324 crossref_primary_10_1007_s00894_023_05500_z crossref_primary_10_1021_acssuschemeng_3c01209 crossref_primary_10_1002_anie_202117366 crossref_primary_10_1021_acssuschemeng_2c00920 crossref_primary_10_3390_v15071480 crossref_primary_10_1016_j_molliq_2023_122891 crossref_primary_10_1016_j_molliq_2024_124214 crossref_primary_10_1016_j_ijpharm_2023_123520 crossref_primary_10_1080_03067319_2023_2277888 crossref_primary_10_1039_D4BM01153H crossref_primary_10_1016_j_chempr_2022_04_007 crossref_primary_10_1039_D3NJ01797D crossref_primary_10_1039_D3CP04500E crossref_primary_10_1007_s00894_022_05369_4 crossref_primary_10_1016_j_jbc_2023_104762 crossref_primary_10_1002_chem_202402982 crossref_primary_10_1126_science_ado5068 crossref_primary_10_1007_s00894_020_04501_6 crossref_primary_10_1016_j_saa_2020_118070 crossref_primary_10_1002_anie_202014478 crossref_primary_10_1021_acs_jcim_4c02187 crossref_primary_10_1021_acs_joc_1c01279 crossref_primary_10_1002_chem_202400590 crossref_primary_10_1128_jvi_00331_22 crossref_primary_10_3390_molecules26185724 crossref_primary_10_1007_s11172_022_3664_2 crossref_primary_10_1021_acs_cgd_3c00880 crossref_primary_10_1515_cti_2023_0027 crossref_primary_10_1016_j_seppur_2023_125869 crossref_primary_10_1002_ange_202014478 crossref_primary_10_1021_jacs_8b01596 crossref_primary_10_1016_j_csbj_2021_12_042 crossref_primary_10_1080_00268976_2022_2067088 crossref_primary_10_1016_j_molliq_2021_118270 crossref_primary_10_1021_acs_jpcc_4c00942 crossref_primary_10_1016_j_napere_2024_100082 crossref_primary_10_1021_acs_cgd_5c00064 crossref_primary_10_1002_jcb_30409 crossref_primary_10_1021_acsomega_1c02699 crossref_primary_10_1039_D3CS00516J crossref_primary_10_1016_j_ejmech_2024_116364 crossref_primary_10_1093_nar_gkae1246 crossref_primary_10_1002_ange_202117366 crossref_primary_10_1002_smll_202204578 crossref_primary_10_1016_j_molstruc_2022_134475 crossref_primary_10_3390_ijms232012439 crossref_primary_10_1016_j_seppur_2025_132331 crossref_primary_10_1107_S2056989019012702 crossref_primary_10_1016_j_cclet_2024_109810 crossref_primary_10_3390_ijms232213701 crossref_primary_10_3390_molecules27030717 crossref_primary_10_3390_reactions5030027 crossref_primary_10_1021_acs_joc_2c02952 crossref_primary_10_1002_aoc_6222 crossref_primary_10_1039_D3CP03776B crossref_primary_10_3390_jfb14010014 crossref_primary_10_1039_D4ME00174E crossref_primary_10_1002_adfm_202315046 crossref_primary_10_3390_biology10060453 crossref_primary_10_3390_molecules28114462 crossref_primary_10_1016_j_chemphys_2023_112054 crossref_primary_10_1016_j_molstruc_2022_134800 crossref_primary_10_1021_acs_jctc_1c01128 crossref_primary_10_1021_acs_jpcc_1c07882 crossref_primary_10_3390_biom12101346 crossref_primary_10_1039_D5CC00646E crossref_primary_10_2139_ssrn_4192662 crossref_primary_10_2139_ssrn_4192663 crossref_primary_10_1002_anie_201810922 crossref_primary_10_1016_j_eurpolymj_2019_109460 crossref_primary_10_3390_ijms25031613 crossref_primary_10_1021_acsmedchemlett_3c00509 crossref_primary_10_1039_D4NR04537H crossref_primary_10_1039_D2CP04837J crossref_primary_10_1002_poc_4474 crossref_primary_10_1039_D1CP01704G crossref_primary_10_1039_D4CP02123A crossref_primary_10_1021_acs_jpcb_2c01269 crossref_primary_10_1016_j_snb_2022_132593 crossref_primary_10_3390_sym12111924 crossref_primary_10_1016_j_cap_2021_05_001 crossref_primary_10_1021_acscatal_4c03469 crossref_primary_10_1038_s41598_021_04306_4 crossref_primary_10_1021_acs_jpca_2c00112 crossref_primary_10_1093_nar_gkae349 crossref_primary_10_1080_07391102_2022_2126889 crossref_primary_10_3390_computation9030032 crossref_primary_10_1002_chem_202003680 crossref_primary_10_1016_j_jsb_2024_108152 crossref_primary_10_3390_molecules26185642 crossref_primary_10_3390_computation12010003 crossref_primary_10_1016_j_pestbp_2023_105379 crossref_primary_10_1515_pac_2022_1111 crossref_primary_10_1002_jrs_6205 crossref_primary_10_1016_j_molliq_2023_121302 crossref_primary_10_1038_s41598_024_77948_9 crossref_primary_10_1080_00958972_2024_2326898 crossref_primary_10_1021_acs_langmuir_4c04865 crossref_primary_10_1080_07391102_2024_2316790 crossref_primary_10_1016_j_bbapap_2020_140557 crossref_primary_10_1021_acs_joc_3c02038 crossref_primary_10_1021_acs_orglett_4c04824 crossref_primary_10_1039_D1CC02143E crossref_primary_10_1021_acs_inorgchem_1c01977 crossref_primary_10_1016_j_jcou_2022_102277 crossref_primary_10_1016_j_comptc_2025_115072 crossref_primary_10_1002_anie_202406024 crossref_primary_10_1002_smtd_202100645 crossref_primary_10_3897_pharmacia_72_e139273 crossref_primary_10_1002_mco2_99 crossref_primary_10_1016_j_molliq_2025_126992 crossref_primary_10_1371_journal_pone_0288810 crossref_primary_10_3390_molecules28176217 crossref_primary_10_1016_j_saa_2020_118937 crossref_primary_10_1126_science_aay2784 crossref_primary_10_1021_jacs_8b13785 crossref_primary_10_1016_j_colsurfa_2024_136013 crossref_primary_10_1126_sciadv_abn7738 crossref_primary_10_1021_acs_jpcc_3c05552 crossref_primary_10_1002_cbic_202000376 crossref_primary_10_3389_fmolb_2023_1286172 crossref_primary_10_1002_jsfa_12224 crossref_primary_10_2174_1570193X20666230725103217 crossref_primary_10_1016_j_foodhyd_2022_107846 crossref_primary_10_1002_adfm_202213209 crossref_primary_10_1063_5_0189140 crossref_primary_10_1093_nar_gkab1183 crossref_primary_10_1021_acs_energyfuels_0c02443 crossref_primary_10_1016_j_cclet_2022_107850 crossref_primary_10_1021_acssuschemeng_4c05869 crossref_primary_10_1039_D3QO01512B crossref_primary_10_1039_D3NJ02222F crossref_primary_10_1080_00268976_2022_2061387 crossref_primary_10_1016_j_molstruc_2024_137840 crossref_primary_10_1039_D2CP02962F crossref_primary_10_1021_acs_joc_1c02408 crossref_primary_10_3390_microorganisms12112239 crossref_primary_10_1021_acs_inorgchem_1c01485 crossref_primary_10_1016_j_micromeso_2024_113388 crossref_primary_10_1021_acs_jpca_3c02931 crossref_primary_10_1039_D3CP04060G crossref_primary_10_1021_acs_jpcb_0c07730 crossref_primary_10_1107_S2059798322005939 crossref_primary_10_1021_acs_jcim_9b00132 crossref_primary_10_1007_s00894_023_05558_9 crossref_primary_10_1021_acs_jpcb_3c02868 crossref_primary_10_1039_D2DT03456E crossref_primary_10_1021_acs_jpcc_1c05176 crossref_primary_10_3390_cryst10070587 crossref_primary_10_1039_D2ME00098A crossref_primary_10_1021_acsami_1c13493 crossref_primary_10_1021_acs_jcim_0c00294 crossref_primary_10_1016_j_compbiolchem_2025_108378 crossref_primary_10_1016_j_molliq_2024_124490 crossref_primary_10_1021_acs_jmedchem_9b00179 crossref_primary_10_1515_jib_2023_0030 crossref_primary_10_1021_acs_joc_1c00165 crossref_primary_10_1039_D1CS01012C crossref_primary_10_1002_chem_202102137 crossref_primary_10_1107_S2059798323005077 crossref_primary_10_1002_biot_202200092 crossref_primary_10_1063_5_0185832 crossref_primary_10_3390_ijms24021682 crossref_primary_10_1038_s41598_022_12779_0 crossref_primary_10_1021_acs_inorgchem_3c00369 crossref_primary_10_1016_j_molliq_2023_122339 crossref_primary_10_1016_j_matpr_2023_03_286 crossref_primary_10_1021_acscombsci_0c00136 crossref_primary_10_1002_ange_202406024 crossref_primary_10_1002_bmb_21854 crossref_primary_10_1186_s43141_023_00569_8 crossref_primary_10_1002_cmdc_202300662 crossref_primary_10_1016_j_cej_2021_132264 crossref_primary_10_1080_07391102_2021_1996462 crossref_primary_10_1016_j_jmgm_2020_107580 crossref_primary_10_1016_j_jsbmb_2024_106572 crossref_primary_10_1016_j_comptc_2021_113422 crossref_primary_10_1021_acs_joc_9b02407 crossref_primary_10_1039_D2CP05409D crossref_primary_10_1039_D1QM00752A crossref_primary_10_1261_rna_079506_122 crossref_primary_10_1016_j_envpol_2024_125320 crossref_primary_10_2118_219469_PA crossref_primary_10_1016_j_matdes_2024_113417 crossref_primary_10_1021_acsanm_3c03315 crossref_primary_10_1002_chem_202301920 crossref_primary_10_1002_cphc_202200476 crossref_primary_10_1002_ejic_202400799 crossref_primary_10_1016_j_molliq_2021_116679 crossref_primary_10_1021_acs_biomac_4c00450 crossref_primary_10_1186_s12951_023_02178_6 crossref_primary_10_1021_acsanm_0c03329 crossref_primary_10_1016_j_jinorgbio_2023_112442 crossref_primary_10_1021_acssuschemeng_4c09183 crossref_primary_10_1016_j_molstruc_2025_141363 crossref_primary_10_1016_j_polymer_2025_128240 crossref_primary_10_1063_5_0226184 crossref_primary_10_1016_j_microc_2024_110897 crossref_primary_10_1039_D4CY00321G crossref_primary_10_1021_acsomega_3c00205 crossref_primary_10_1073_pnas_2011350117 crossref_primary_10_1039_D2RA06988A crossref_primary_10_1021_acs_joc_1c01009 |
Cites_doi | 10.1021/ja413174b 10.1371/journal.pmed.1001747 10.1103/PhysRevLett.82.600 10.1021/jp002726n 10.1002/prot.20096 10.1021/bi026873i 10.7326/0003-4819-146-6-200703200-00154 10.1021/cr00023a005 10.1023/A:1011625728803 10.1371/journal.pone.0021101 10.1126/science.266.5191.1665 10.1107/S0108767394007622 10.1073/pnas.82.8.2225 10.1021/j100007a034 10.1021/ja00530a002 10.1371/journal.pone.0118053 10.1021/ja512980h 10.1080/08893119508039923 10.1186/1472-6769-5-2 10.1126/science.272.5258.97 10.1107/S0108768193011966 10.1039/C0CP01659D 10.1016/S0065-3160(08)60047-7 10.1126/science.8009219 10.1074/jbc.273.40.25529 10.1021/bi4000113 10.1021/j100043a023 10.1039/FT9938900119 10.1021/j100785a001 10.1021/ja00274a058 10.1002/qua.1525 10.1016/S0040-4020(01)00158-2 10.1146/annurev.biochem.72.121801.161617 10.1073/pnas.0911168107 10.1021/bi00047a010 10.1021/bi0028237 10.1021/ar800001k 10.1016/S0022-2860(00)00469-5 10.1006/bioo.1998.1102 10.1021/jo972262y 10.1021/ar50148a002 10.1016/S0021-9258(18)71587-1 10.1126/science.278.5340.1128 10.1002/anie.199621951 10.1016/j.tree.2010.11.006 10.1038/334406a0 10.1021/ja01199a022 10.1021/ja400611x 10.1016/0022-1902(69)80099-0 10.1039/c3dt50599e 10.1021/ct500864r 10.1111/j.1742-4658.2005.04604.x 10.1126/science.7716506 10.1111/tops.12006 10.1021/ar500464j 10.1021/jo010234g 10.1016/S1074-5521(97)90069-7 10.1021/ja075605a 10.1021/ja201113a 10.1126/science.146.3642.347 10.1038/nsb0295-122 10.1371/journal.pbio.0040099 10.1371/journal.pbio.1002295 10.1016/S1074-5521(96)90258-6 10.1038/nsmb.1610 10.1096/fj.12-218164 10.1074/jbc.M113.535641 10.1021/ja000921+ 10.1073/pnas.1417923111 10.1021/ja003060d 10.1107/S0108767394007609 10.1016/S0076-6879(99)08012-X 10.1021/ja991795g 10.1073/pnas.93.24.13665 10.12688/f1000research.3979.3 10.1016/S0022-2836(03)00021-4 10.1021/ja00385a077 10.1021/ja00348a003 10.1021/ja910167q 10.1002/pro.5560021222 10.1021/bi972039v 10.1126/science.7661899 10.1110/ps.4890102 10.1073/pnas.0505521102 10.1021/j100625a018 10.1073/pnas.0900168106 10.1136/bmj.c564 10.1021/ar100097j 10.1371/journal.pbio.1001779 10.1021/ar5003158 10.1038/314235a0 10.1021/jacs.7b08418 10.1021/cr0503106 10.1146/annurev-biochem-061516-044432 10.1021/bi301348x 10.1002/(SICI)1097-0134(19990515)35:3<275::AID-PROT1>3.0.CO;2-V 10.1002/9780470122884.ch4 10.1016/S0076-6879(99)08013-1 10.1021/jp964031l 10.1126/science.1259802 10.1101/SQB.1987.052.01.010 10.1371/journal.pmed.0020124 10.1021/ja039280j 10.1073/pnas.0307578101 10.7554/eLife.06181 10.1126/science.7661987 10.1021/ja803928m 10.1006/bioo.1998.1097 10.1039/C39940002341 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U 10.1073/pnas.93.25.14474 10.1093/oso/9780195090116.001.0001 10.1073/pnas.78.7.4046 10.1016/0968-0004(87)90146-0 10.1002/1097-461X(2000)80:4/5<1107::AID-QUA60>3.0.CO;2-T 10.1038/248667a0 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.biochem.8b00217 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1520-4995 |
EndPage | 3352 |
ExternalDocumentID | 29678112 10_1021_acs_biochem_8b00217 a551965829 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Review |
GroupedDBID | - .K2 02 23N 53G 55 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 KM L7B LG6 P2P ROL TN5 UI2 VF5 VG9 VQA W1F WH7 X X7M YZZ ZA5 --- -DZ -~X .55 4.4 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK XSW ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a378t-160d6ddae233afa92ed853f81246ecfb04ffe4b809be7ddcd8b9536759e30fd63 |
IEDL.DBID | ACS |
ISSN | 0006-2960 1520-4995 |
IngestDate | Fri Jul 11 03:56:26 EDT 2025 Fri Jul 11 05:16:41 EDT 2025 Mon Jul 21 05:59:49 EDT 2025 Tue Jul 01 03:33:40 EDT 2025 Thu Apr 24 23:00:40 EDT 2025 Thu Aug 27 13:43:10 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a378t-160d6ddae233afa92ed853f81246ecfb04ffe4b809be7ddcd8b9536759e30fd63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4685-1973 0000-0002-7735-5032 |
PMID | 29678112 |
PQID | 2028951158 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2116936459 proquest_miscellaneous_2028951158 pubmed_primary_29678112 crossref_primary_10_1021_acs_biochem_8b00217 crossref_citationtrail_10_1021_acs_biochem_8b00217 acs_journals_10_1021_acs_biochem_8b00217 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-19 |
PublicationDateYYYYMMDD | 2018-06-19 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemistry (Easton) |
PublicationTitleAlternate | Biochemistry |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 McDermott A. (ref118/cit118) 1996 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 Matsumura M. (ref84/cit84) 1989; 264 Jencks W. P. (ref94/cit94) 1987 ref117/cit117 ref20/cit20 ref48/cit48 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 Pinney M. M. (ref50/cit50) 2018 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 Scheiner S. (ref73/cit73) 1997 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 Pauling L. (ref1/cit1) 1939 ref22/cit22 ref121/cit121 ref33/cit33 ref87/cit87 ref106/cit106 ref44/cit44 ref70/cit70 ref125/cit125 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 Berg J. M. (ref98/cit98) 2002 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref78/cit78 ref36/cit36 Jeffrey G. A. (ref18/cit18) 1997 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 Charton M. (ref29/cit29) 2007; 13 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref26/cit26 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref123/cit123 Hopfinger A. J. (ref2/cit2) 1973 ref7/cit7 |
References_xml | – ident: ref93/cit93 doi: 10.1021/ja413174b – ident: ref17/cit17 doi: 10.1371/journal.pmed.1001747 – ident: ref71/cit71 doi: 10.1103/PhysRevLett.82.600 – ident: ref23/cit23 doi: 10.1021/jp002726n – ident: ref11/cit11 doi: 10.1002/prot.20096 – ident: ref35/cit35 doi: 10.1021/bi026873i – ident: ref68/cit68 doi: 10.7326/0003-4819-146-6-200703200-00154 – ident: ref79/cit79 doi: 10.1021/cr00023a005 – ident: ref110/cit110 doi: 10.1023/A:1011625728803 – ident: ref64/cit64 doi: 10.1371/journal.pone.0021101 – ident: ref19/cit19 doi: 10.1126/science.266.5191.1665 – ident: ref48/cit48 doi: 10.1107/S0108767394007622 – ident: ref99/cit99 doi: 10.1073/pnas.82.8.2225 – ident: ref90/cit90 doi: 10.1021/j100007a034 – ident: ref33/cit33 doi: 10.1021/ja00530a002 – ident: ref62/cit62 doi: 10.1371/journal.pone.0118053 – ident: ref26/cit26 doi: 10.1021/ja512980h – ident: ref40/cit40 doi: 10.1080/08893119508039923 – ident: ref30/cit30 doi: 10.1186/1472-6769-5-2 – ident: ref14/cit14 doi: 10.1126/science.272.5258.97 – ident: ref27/cit27 doi: 10.1107/S0108768193011966 – ident: ref122/cit122 doi: 10.1039/C0CP01659D – ident: ref36/cit36 doi: 10.1016/S0065-3160(08)60047-7 – ident: ref20/cit20 doi: 10.1126/science.8009219 – ident: ref6/cit6 doi: 10.1074/jbc.273.40.25529 – ident: ref108/cit108 doi: 10.1021/bi4000113 – ident: ref74/cit74 doi: 10.1021/j100043a023 – ident: ref91/cit91 doi: 10.1039/FT9938900119 – ident: ref109/cit109 doi: 10.1021/j100785a001 – ident: ref92/cit92 doi: 10.1021/ja00274a058 – ident: ref28/cit28 doi: 10.1002/qua.1525 – ident: ref42/cit42 doi: 10.1016/S0040-4020(01)00158-2 – ident: ref57/cit57 doi: 10.1146/annurev.biochem.72.121801.161617 – ident: ref81/cit81 doi: 10.1073/pnas.0911168107 – ident: ref21/cit21 doi: 10.1021/bi00047a010 – ident: ref123/cit123 doi: 10.1021/bi0028237 – ident: ref60/cit60 – ident: ref24/cit24 doi: 10.1021/ar800001k – ident: ref119/cit119 doi: 10.1016/S0022-2860(00)00469-5 – ident: ref43/cit43 doi: 10.1006/bioo.1998.1102 – ident: ref9/cit9 doi: 10.1021/jo972262y – ident: ref52/cit52 doi: 10.1021/ar50148a002 – volume: 264 start-page: 16059 year: 1989 ident: ref84/cit84 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)71587-1 – ident: ref7/cit7 doi: 10.1126/science.278.5340.1128 – ident: ref51/cit51 doi: 10.1002/anie.199621951 – ident: ref63/cit63 doi: 10.1016/j.tree.2010.11.006 – ident: ref83/cit83 doi: 10.1038/334406a0 – ident: ref88/cit88 doi: 10.1021/ja01199a022 – ident: ref116/cit116 doi: 10.1021/ja400611x – volume-title: An Introduction to Hydrogen Bonding year: 1997 ident: ref18/cit18 – ident: ref87/cit87 doi: 10.1016/0022-1902(69)80099-0 – ident: ref45/cit45 doi: 10.1039/c3dt50599e – ident: ref77/cit77 doi: 10.1021/ct500864r – ident: ref39/cit39 doi: 10.1111/j.1742-4658.2005.04604.x – ident: ref4/cit4 doi: 10.1126/science.7716506 – ident: ref65/cit65 doi: 10.1111/tops.12006 – ident: ref103/cit103 doi: 10.1021/ar500464j – ident: ref31/cit31 doi: 10.1021/jo010234g – ident: ref5/cit5 doi: 10.1016/S1074-5521(97)90069-7 – ident: ref114/cit114 doi: 10.1021/ja075605a – ident: ref115/cit115 doi: 10.1021/ja201113a – ident: ref15/cit15 doi: 10.1126/science.146.3642.347 – ident: ref82/cit82 doi: 10.1038/nsb0295-122 – ident: ref46/cit46 doi: 10.1371/journal.pbio.0040099 – ident: ref66/cit66 doi: 10.1371/journal.pbio.1002295 – ident: ref8/cit8 doi: 10.1016/S1074-5521(96)90258-6 – ident: ref34/cit34 doi: 10.1038/nsmb.1610 – ident: ref59/cit59 doi: 10.1096/fj.12-218164 – ident: ref124/cit124 doi: 10.1074/jbc.M113.535641 – ident: ref126/cit126 doi: 10.1021/ja000921+ – ident: ref78/cit78 doi: 10.1073/pnas.1417923111 – ident: ref44/cit44 doi: 10.1021/ja003060d – volume-title: Conformation Properties of Macromolecules year: 1973 ident: ref2/cit2 – ident: ref49/cit49 doi: 10.1107/S0108767394007609 – ident: ref38/cit38 doi: 10.1016/S0076-6879(99)08012-X – volume: 13 volume-title: Progress in Physical Organic Chemistry year: 2007 ident: ref29/cit29 – ident: ref70/cit70 doi: 10.1021/ja991795g – volume-title: Encyclopedia of NMR year: 1996 ident: ref118/cit118 – ident: ref13/cit13 doi: 10.1073/pnas.93.24.13665 – ident: ref61/cit61 doi: 10.12688/f1000research.3979.3 – ident: ref76/cit76 doi: 10.1016/S0022-2836(03)00021-4 – ident: ref89/cit89 doi: 10.1021/ja00385a077 – ident: ref111/cit111 doi: 10.1021/ja00348a003 – ident: ref121/cit121 doi: 10.1021/ja910167q – ident: ref85/cit85 doi: 10.1002/pro.5560021222 – ident: ref120/cit120 doi: 10.1021/bi972039v – ident: ref3/cit3 doi: 10.1126/science.7661899 – ident: ref72/cit72 doi: 10.1110/ps.4890102 – ident: ref37/cit37 doi: 10.1073/pnas.0505521102 – ident: ref86/cit86 doi: 10.1021/j100625a018 – ident: ref47/cit47 doi: 10.1073/pnas.0900168106 – volume-title: Catalysis in Chemistry and Enzymology year: 1987 ident: ref94/cit94 – ident: ref58/cit58 doi: 10.1136/bmj.c564 – ident: ref10/cit10 doi: 10.1021/ar100097j – ident: ref67/cit67 doi: 10.1371/journal.pbio.1001779 – ident: ref55/cit55 doi: 10.1021/ar5003158 – ident: ref80/cit80 doi: 10.1038/314235a0 – volume-title: Nature of the Chemical Bond and the Structure of Molecules and Crystals year: 1939 ident: ref1/cit1 – ident: ref56/cit56 doi: 10.1021/jacs.7b08418 – ident: ref105/cit105 doi: 10.1021/cr0503106 – ident: ref104/cit104 doi: 10.1146/annurev-biochem-061516-044432 – ident: ref112/cit112 doi: 10.1021/bi301348x – volume-title: J. Am. Chem. Soc. year: 2018 ident: ref50/cit50 – volume-title: Biochemistry year: 2002 ident: ref98/cit98 – ident: ref117/cit117 doi: 10.1002/(SICI)1097-0134(19990515)35:3<275::AID-PROT1>3.0.CO;2-V – ident: ref95/cit95 doi: 10.1002/9780470122884.ch4 – ident: ref101/cit101 doi: 10.1016/S0076-6879(99)08013-1 – ident: ref22/cit22 doi: 10.1021/jp964031l – ident: ref102/cit102 doi: 10.1126/science.1259802 – ident: ref96/cit96 doi: 10.1101/SQB.1987.052.01.010 – ident: ref16/cit16 doi: 10.1371/journal.pmed.0020124 – ident: ref125/cit125 doi: 10.1021/ja039280j – ident: ref75/cit75 doi: 10.1073/pnas.0307578101 – ident: ref106/cit106 doi: 10.1038/nsb0295-122 – ident: ref113/cit113 doi: 10.7554/eLife.06181 – ident: ref12/cit12 doi: 10.1126/science.7661987 – ident: ref54/cit54 doi: 10.1021/ja803928m – ident: ref41/cit41 doi: 10.1006/bioo.1998.1097 – ident: ref69/cit69 doi: 10.1039/C39940002341 – ident: ref25/cit25 doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U – ident: ref100/cit100 doi: 10.1073/pnas.93.25.14474 – volume-title: Hydrogen bonding: A theoretical perspective year: 1997 ident: ref73/cit73 doi: 10.1093/oso/9780195090116.001.0001 – ident: ref107/cit107 doi: 10.1073/pnas.78.7.4046 – ident: ref97/cit97 doi: 10.1016/0968-0004(87)90146-0 – ident: ref32/cit32 doi: 10.1002/1097-461X(2000)80:4/5<1107::AID-QUA60>3.0.CO;2-T – ident: ref53/cit53 doi: 10.1038/248667a0 |
SSID | ssj0004074 |
Score | 2.6348925 |
SecondaryResourceType | review_article |
Snippet | Hydrogen bonds play integral roles in biological structure, function, and conformational dynamics and are fundamental to life as it has evolved on Earth.... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3338 |
SubjectTerms | catalytic activity Hydrogen Bonding Molecular Structure prediction proteins Salicylates - chemistry Thermodynamics |
Title | Hydrogen Bonds: Simple after All? |
URI | http://dx.doi.org/10.1021/acs.biochem.8b00217 https://www.ncbi.nlm.nih.gov/pubmed/29678112 https://www.proquest.com/docview/2028951158 https://www.proquest.com/docview/2116936459 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEB5ae2gvfWgf9kWEUnpobLKJefRSRCpSqBcreAvZ7C5INRajB_vrO5OHfYu3EHYTdvdL5pudnW8ArhASjuCuraP34es2QhivfKHzUEVEiIVKo-fPXafTt58GjcGXZPUfEXxm3oVRUudDKh81rnsZh96ELeZ4LvlazVbvMw3SyEWX0UlmyMwLkaG_H0LmKEq-m6N_OGZqa9p70C0ydrIjJq_1-YzXo_ffAo7rDWMfdnPWqTUzmBzAhozLUGnG6HGPF9q1lp4DTTfYy7DdKmrAVaDWWYjpBDGmUfnh5F7rDUlNWEsri2vN0ejhEPrtx5dWR8-LKuih5Xoz3XQM4QgRSmZZoQp9JgVabEV23pGR4oatlLS5Z_hcukJEwuMU4XUbvrQMJRzrCErxJJYnoFEduIbiNsf_AnXmylI8YsLxhO2ilavCDY46yD-KJEjj3cwM6GY-FUE-FVVgxTIEUS5OTjUyRqs73S47vWXaHKub14r1DXAaKTASxnIyTwJG4VZkng1vRRuTZGtIeqcKxxk4li9FsFHCLjtdf8BnsIPUy6NDZ6Z_DqXZdC4vkN7M-GUK6g-J5_O_ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT-MwEB6xcGAvPBcorzXS7moPpCROmgcSQlUXVJbHBZC4hTi2JURJEUmFyu_hr_C_mHGTIhBbcUHaW2TFjjMee77RjL8B-IEq4UsReBZ6H5HloQrjUyQtkeiUALHUJnp-fOK3z72_F42LMXis7sLgJHIcKTdB_Bd2AWeL2sQVVZG6qYcDKF2mUh6q_j06avnOwR9c1Z-c7--dtdpWWUvAStwgLCzHt6UvZaK46yY6ibiSaKg0mTdfpVrYntbKE6EdCRVImcpQUGAzaETKtbX0XRz3C0wg_OHk4jVbpy-3L-2S6xl9c44OQcVt9P6kyQqm-Wsr-A9oa0zc_jQ8DYVjMluu671C1NOHN7yR_7v0ZmCqxNisOdgUszCmsjmYb2ZJ0b3ps1_MZL2acMIcTLaqinfzsNHuy7su7ihGxZbzbXZ6RdzJzNRRZ81OZ_cbnH_KxBdgPOtmagkYVb1raOEJPAWps9CuFimXfii9AG16DX6jlOPyCMhjE93nTkyNpejjUvQ14NXqx2lJxU4VQTqjO20OO90OmEhGv75RqVWMYqQwUJKpbi-POQWXEWc3whHvOETSQ0RDNVgc6OTwo6jjdD2ZL3_8h7_DZPvs-Cg-Ojg5XIGvCDpDSrdzolUYL-56ag2BXSHWzb5icPnZqvgM039ZHA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwED-NIsFeNrbB1m0wTwLEw1ISJ80fJISqblXHYEIalfaWxbEtTWvTaUmFyifiq_Ctduc6RSCoeNnD3iLLdpzL2Xen3_l3AC9RJUIposDB6CNxAlRhfEqkIzKdk0MstUHPP5-G_UHw8bx9vgQ_6rswuIgSZyoNiE-7-lpqyzDgvaV2cUmVpEateOZO23TKEzX9hsFa-f74EP_sK857R1-7fcfWE3AyP4orxwtdGUqZKe77mc4SriQaK00mLlS5Fm6gtQpE7CZCRVLmMhYEbkbtRPmulqGP8z6AhwQUUpjX6Z79uoHpWr5njM85BgU1v9HfF02WMC9_t4T_cG-Nmeutws-5gEx2y1VrUolW_v0P7sj7IMEnsGJ9bdaZbY41WFLFOmx0iqwaj6bsNTPZrwZWWIfH3bry3Qbs96fyZow7i1HR5fIdO7skDmVm6qmzznD44SkM7mThz6BRjAu1BYyq37W1CASehjRYaF-LnMswlkGEtr0Jb1DKqT0KytSg_NxLqdGKPrWibwKvNSDNLSU7VQYZLh50MB90PWMkWdx9v1atFMVIcFBWqPGkTDmBzOhvt-MFfTwi6yHCoSZszvRy_lLUc7qmzLf__4P34NGXw1766fj0ZAeW0feMKevOS3ahUd1M1HP07yrxwmwtBhd3rYm3K0xbnw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+Bonds%3A+Simple+after+All%3F&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Herschlag%2C+Daniel&rft.au=Pinney%2C+Margaux+M&rft.date=2018-06-19&rft.pub=American+Chemical+Society&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=57&rft.issue=24&rft.spage=3338&rft.epage=3352&rft_id=info:doi/10.1021%2Facs.biochem.8b00217&rft.externalDocID=a551965829 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |