Hydromechanical triggering of landslides: From progressive local failures to mass release

Water infiltrating during intense rainfall on steep slopes gradually weakens the wet soil mass, inducing localized failures that may initiate a cascade of load redistributions and successive failures propagating across a hillslope. The challenge of linking the progressive nature of local events culm...

Full description

Saved in:
Bibliographic Details
Published inWater resources research Vol. 48; no. 3
Main Authors Lehmann, Peter, Or, Dani
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.03.2012
Subjects
Online AccessGet full text
ISSN0043-1397
1944-7973
DOI10.1029/2011WR010947

Cover

Abstract Water infiltrating during intense rainfall on steep slopes gradually weakens the wet soil mass, inducing localized failures that may initiate a cascade of load redistributions and successive failures propagating across a hillslope. The challenge of linking the progressive nature of local events culminating in an abrupt landslide is addressed by a new hydromechanical triggering model that links key hydrologic processes with threshold‐based mechanical interactions. A hillslope is represented as assembly of soil columns interconnected by frictional and tensile mechanical bonds represented as virtual bundles of fibers. Increasing water load exerted on mechanical bonds causes gradual failure of fibers until restraining forces are exceeded. Following failure at the soil‐bedrock interface, the load on a column is redistributed to its neighbors via intact mechanical (primarily tensile) bonds which, in turn, may also fail and transmit the load downslope as compressive stresses. When soil internal compressive strength is exceeded, a load‐bearing column may liquefy and initiate a landslide release that could propagate downslope or retrogressively upslope. The model reproduces observed power law frequency magnitude relationships of landslides with exponents ranging between −1.0 and −2.2 in agreement with landslide inventory data. We applied a criticality measure defined by Ramos (2011) to evaluate the specific influences of slope angle, soil texture, and root reinforcement on attainment of hillslope criticality in which a small local failure may trigger release of a large soil mass. The model provides new insights on the conditions giving rise to an abrupt transition from a seemingly stable hillslope to a catastrophic landslide. Key Points Small local mechanical perturbations may grow and culminate to landslides Hillslope criticality increases with slope angle and root reinforcement Hydro‐mechanical model computes spatial and temporal patterns of soil strength
AbstractList Water infiltrating during intense rainfall on steep slopes gradually weakens the wet soil mass, inducing localized failures that may initiate a cascade of load redistributions and successive failures propagating across a hillslope. The challenge of linking the progressive nature of local events culminating in an abrupt landslide is addressed by a new hydromechanical triggering model that links key hydrologic processes with threshold‐based mechanical interactions. A hillslope is represented as assembly of soil columns interconnected by frictional and tensile mechanical bonds represented as virtual bundles of fibers. Increasing water load exerted on mechanical bonds causes gradual failure of fibers until restraining forces are exceeded. Following failure at the soil‐bedrock interface, the load on a column is redistributed to its neighbors via intact mechanical (primarily tensile) bonds which, in turn, may also fail and transmit the load downslope as compressive stresses. When soil internal compressive strength is exceeded, a load‐bearing column may liquefy and initiate a landslide release that could propagate downslope or retrogressively upslope. The model reproduces observed power law frequency magnitude relationships of landslides with exponents ranging between −1.0 and −2.2 in agreement with landslide inventory data. We applied a criticality measure defined by Ramos (2011) to evaluate the specific influences of slope angle, soil texture, and root reinforcement on attainment of hillslope criticality in which a small local failure may trigger release of a large soil mass. The model provides new insights on the conditions giving rise to an abrupt transition from a seemingly stable hillslope to a catastrophic landslide. Key Points Small local mechanical perturbations may grow and culminate to landslides Hillslope criticality increases with slope angle and root reinforcement Hydro‐mechanical model computes spatial and temporal patterns of soil strength
Water infiltrating during intense rainfall on steep slopes gradually weakens the wet soil mass, inducing localized failures that may initiate a cascade of load redistributions and successive failures propagating across a hillslope. The challenge of linking the progressive nature of local events culminating in an abrupt landslide is addressed by a new hydromechanical triggering model that links key hydrologic processes with threshold‐based mechanical interactions. A hillslope is represented as assembly of soil columns interconnected by frictional and tensile mechanical bonds represented as virtual bundles of fibers. Increasing water load exerted on mechanical bonds causes gradual failure of fibers until restraining forces are exceeded. Following failure at the soil‐bedrock interface, the load on a column is redistributed to its neighbors via intact mechanical (primarily tensile) bonds which, in turn, may also fail and transmit the load downslope as compressive stresses. When soil internal compressive strength is exceeded, a load‐bearing column may liquefy and initiate a landslide release that could propagate downslope or retrogressively upslope. The model reproduces observed power law frequency magnitude relationships of landslides with exponents ranging between −1.0 and −2.2 in agreement with landslide inventory data. We applied a criticality measure defined by Ramos (2011) to evaluate the specific influences of slope angle, soil texture, and root reinforcement on attainment of hillslope criticality in which a small local failure may trigger release of a large soil mass. The model provides new insights on the conditions giving rise to an abrupt transition from a seemingly stable hillslope to a catastrophic landslide. Small local mechanical perturbations may grow and culminate to landslides Hillslope criticality increases with slope angle and root reinforcement Hydro‐mechanical model computes spatial and temporal patterns of soil strength
Author Lehmann, Peter
Or, Dani
Author_xml – sequence: 1
  givenname: Peter
  surname: Lehmann
  fullname: Lehmann, Peter
  email: peter.lehmann@env.ethz.ch
  organization: Soil and Terrestrial Environmental Physics STEP, Institute of Terrestrial Ecosystems,ETH Zurich, Zurich,Switzerland
– sequence: 2
  givenname: Dani
  surname: Or
  fullname: Or, Dani
  organization: Soil and Terrestrial Environmental Physics STEP, Institute of Terrestrial Ecosystems,ETH Zurich, Zurich,Switzerland
BookMark eNp9kF1LwzAUhoMouE3v_AH5AVZzmqRZvJPhNmEojMnUm5K2JzXatSOpH_v3dkxEBL06cHiel3PePtmvmxoJOQF2BizW5zEDWM4ZMC3UHumBFiJSWvF90mNM8Ai4VoekH8IzYyBkonrkYbopfLPC_MnULjcVbb0rS_SuLmljaWXqIlSuwHBBxx1H174pPYbg3pBWzVawxlWv3Yq2DV2ZEKjHCk3AI3JgTRXw-GsOyN34ajGaRrPbyfXochYZroY8UmCBJ0VuZCaSAhOFmZbCAsuwsEmuUXCV86EAyROrQGXGyqz7M1YgZWIZH5B4l5v7JgSPNs1da1rX1K3vTkuBpdty0p_ldNLpL2nt3cr4zV843-HvrsLNv2y6nI_mwGPOOyvaWS60-PFtGf-SJoormS5vJml8Hy8ep7oL4Z849oX6
CitedBy_id crossref_primary_10_3390_w16020312
crossref_primary_10_1002_hyp_10829
crossref_primary_10_1016_j_enggeo_2020_105942
crossref_primary_10_1016_j_scitotenv_2018_12_206
crossref_primary_10_1002_wrcr_20418
crossref_primary_10_1061__ASCE_GM_1943_5622_0001903
crossref_primary_10_1016_j_jhydrol_2017_04_038
crossref_primary_10_5194_hess_24_1367_2020
crossref_primary_10_1016_j_enggeo_2020_105747
crossref_primary_10_1002_2015JF003615
crossref_primary_10_1007_s11069_023_05956_5
crossref_primary_10_5194_hess_22_3493_2018
crossref_primary_10_37153_2618_9283_2024_1_31_48
crossref_primary_10_5194_gh_70_1_2015
crossref_primary_10_1016_j_enggeo_2024_107480
crossref_primary_10_1016_j_jhydrol_2018_10_036
crossref_primary_10_1007_s10346_019_01197_5
crossref_primary_10_3390_rs11202347
crossref_primary_10_3390_w13060801
crossref_primary_10_1016_j_geomorph_2016_10_007
crossref_primary_10_1029_2022WR032716
crossref_primary_10_1007_s00550_024_00549_7
crossref_primary_10_3390_w10070950
crossref_primary_10_1029_2017MS001270
crossref_primary_10_1029_2020JF005669
crossref_primary_10_1002_2015WR017758
crossref_primary_10_3390_geohazards4010003
crossref_primary_10_1002_2015JF003520
crossref_primary_10_3390_su7055648
crossref_primary_10_1139_cgj_2016_0629
crossref_primary_10_1007_s11069_013_0769_9
crossref_primary_10_1029_2019WR025233
crossref_primary_10_1680_jgeot_23_00263
crossref_primary_10_1016_j_envsoft_2022_105354
crossref_primary_10_1002_2016GL071763
crossref_primary_10_1002_2015GL067494
crossref_primary_10_1073_pnas_2021855118
crossref_primary_10_1061__ASCE_GM_1943_5622_0001292
crossref_primary_10_1016_j_gsf_2023_101773
crossref_primary_10_3390_w10101290
crossref_primary_10_1002_2015WR016909
crossref_primary_10_1016_j_catena_2025_108793
crossref_primary_10_1007_s10346_024_02304_x
crossref_primary_10_1016_j_advwatres_2020_103669
crossref_primary_10_1002_wat2_1126
crossref_primary_10_1016_j_jrmge_2023_04_004
crossref_primary_10_1186_s40677_016_0052_y
crossref_primary_10_5194_hess_17_4095_2013
crossref_primary_10_5194_nhess_25_169_2025
crossref_primary_10_1007_s10346_023_02066_y
crossref_primary_10_2136_vzj2018_10_0191
crossref_primary_10_1140_epjp_i2014_14089_y
crossref_primary_10_1029_2024JF007815
crossref_primary_10_3390_app11062718
crossref_primary_10_1016_j_ecoleng_2021_106436
crossref_primary_10_1029_2017JF004557
crossref_primary_10_1029_2019GL085994
crossref_primary_10_5194_nhess_24_3387_2024
crossref_primary_10_1016_j_catena_2021_105213
crossref_primary_10_1002_esp_4479
crossref_primary_10_5194_nhess_15_905_2015
crossref_primary_10_1007_s10064_024_04022_z
crossref_primary_10_1016_j_geomorph_2023_108638
crossref_primary_10_1029_2024WR039611
crossref_primary_10_1016_j_catena_2018_07_043
crossref_primary_10_1016_j_scitotenv_2017_03_258
crossref_primary_10_1016_j_enggeo_2019_04_009
crossref_primary_10_1016_j_geomorph_2014_11_030
crossref_primary_10_1016_j_geomorph_2017_04_017
crossref_primary_10_1002_2014JG002824
crossref_primary_10_1016_j_enggeo_2015_04_006
crossref_primary_10_1029_2022WR034243
crossref_primary_10_1029_2022GL100389
crossref_primary_10_1144_qjegh2024_138
crossref_primary_10_5194_esurf_5_451_2017
crossref_primary_10_1016_j_jhydrol_2016_03_036
crossref_primary_10_5194_esurf_6_903_2018
crossref_primary_10_1002_2014JF003135
crossref_primary_10_1016_j_ecolind_2024_112606
crossref_primary_10_1002_2014JF003137
crossref_primary_10_1016_j_geomorph_2020_107121
crossref_primary_10_1002_2013WR015122
Cites_doi 10.1029/2009WR007889
10.1002/nme.1406
10.1029/WM018
10.5194/npg-16-515-2009
10.1002/hyp.6886
10.1126/science.238.4829.921
10.1002/esp.1064
10.5194/npg-16-179-2009
10.1103/PhysRevE.67.011302
10.1103/PhysRevLett.93.208001
10.1103/PhysRevLett.88.068302
10.1016/j.tecto.2009.11.007
10.1016/j.epsl.2009.01.005
10.1061/(ASCE)0733-9437(1989)115:4(744)
10.1139/t01-031
10.1103/PhysRevLett.68.1244
10.1029/2004GL022270
10.1029/2000WR900090
10.1029/2009JF001603
10.1038/ngeo776
10.1002/esp.470
10.1130/G21147.1
10.1016/S0013-7952(00)00038-7
10.1029/2009JF001604
10.1016/S0013-7952(00)00077-6
10.1007/s10707-008-0060-5
10.1103/PhysRevLett.93.125502
10.1016/j.advwatres.2005.02.016
10.1088/0034-4885/62/10/201
10.1061/(ASCE)1090-0241(2006)132:5(591)
10.2136/vzj2009.0154
10.5194/npg-16-233-2009
10.1103/PhysRevLett.65.1120
10.1038/nature03805
10.1016/S0013-7952(97)00041-0
10.4141/cjss76-019
10.3189/002214309790794869
10.1103/PhysRevE.67.051306
10.1097/00010694-195705000-00002
10.1007/s00254-006-0229-x
10.1680/geot.1999.49.3.387
10.1115/1.2894060
10.1016/j.enggeo.2008.04.009
10.1680/geot.1965.15.1.79
10.1130/0016-7606(2002)114<0983:LOCSSA>2.0.CO;2
10.1103/PhysRevE.74.016122
10.1007/978-3-662-04390-5
10.2136/sssaj2001.653624x
10.1029/93WR02979
10.1103/PhysRevLett.59.381
10.1126/science.158.3805.1182
10.1126/science.290.5491.513
10.1002/esp.1927
10.1139/t96-060
10.1016/j.epsl.2007.01.040
10.1680/geot.1998.48.5.681
10.1007/978-1-4757-5426-1
10.13031/2013.33720
10.1007/s10346-006-0037-0
10.1002/(SICI)1099-1085(20000228)14:3<369::AID-HYP943>3.0.CO;2-P
10.1146/annurev.earth.25.1.85
10.1139/t79-003
10.1103/PhysRevE.67.041304
10.1029/2006JF000495
10.1103/PhysRevLett.102.078701
10.1016/j.ecoleng.2009.06.014
10.1016/S0341-8162(03)00115-2
10.1029/2009WR008646
10.1029/2009JB006512
10.1016/j.geomorph.2005.08.013
10.1029/2010JF001886
10.1103/PhysRevLett.86.5490
10.1016/j.enggeo.2004.12.008
10.1186/BF03351762
10.1080/19447027.1926.10599953
10.1103/PhysRevE.76.040301
10.1680/geot.1955.5.1.7
10.1016/S0378-4371(99)00358-1
10.1029/2008JF001008
10.1680/geot.2005.55.6.467
10.1038/379049a0
10.1103/PhysRevE.59.R12
10.1111/j.1365-2389.1984.tb00303.x
10.1017/CBO9780511622717
10.1142/p365
10.5194/nhess-3-505-2003
10.1029/JB091iB10p10412
10.1098/rspa.1945.0011
10.1051/jp1:1994133
10.1016/S0012-821X(01)00589-1
ContentType Journal Article
Copyright Copyright 2012 by the American Geophysical Union
Copyright_xml – notice: Copyright 2012 by the American Geophysical Union
DBID BSCLL
AAYXX
CITATION
DOI 10.1029/2011WR010947
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID 10_1029_2011WR010947
WRCR13233
ark_67375_WNG_2X2TZH99_2
Genre article
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANLZ
AASGY
AAXRX
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
BSCLL
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AEUYN
AFWVQ
AAYXX
ADXHL
AETEA
AGQPQ
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
ID FETCH-LOGICAL-a3783-71f136dca5b46de67eb954f10bedf6c9e437c3841536f717baf5b011271556f03
ISSN 0043-1397
IngestDate Tue Jul 01 01:34:09 EDT 2025
Thu Apr 24 23:10:19 EDT 2025
Wed Jan 22 16:29:52 EST 2025
Wed Oct 30 09:52:25 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a3783-71f136dca5b46de67eb954f10bedf6c9e437c3841536f717baf5b011271556f03
Notes istex:E7B8273837DD2A43E1762A3585FEEB7011B09501
ArticleID:2011WR010947
Tab-delimited Table 1.
ark:/67375/WNG-2X2TZH99-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2011WR010947
PageCount 24
ParticipantIDs crossref_citationtrail_10_1029_2011WR010947
crossref_primary_10_1029_2011WR010947
wiley_primary_10_1029_2011WR010947_WRCR13233
istex_primary_ark_67375_WNG_2X2TZH99_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2012
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: March 2012
PublicationDecade 2010
PublicationTitle Water resources research
PublicationTitleAlternate Water Resour. Res
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Bak, P. (1996), How Nature Works: The Science of Self-Organized Criticality, Copernicus Springer, New York.
Peirce, F. T. (1926), Tensile tests for cotton yarns, V: The weakest link, J. Textile Inst., Trans., 17, 355-368.
Ramos, O., E.Altshuler, and K. J.Måløy (2009), Avalanche prediction in a self-organized pile of beads, Phys. Rev. Lett., 102, 078701.
Piegari, E., V.Cataudella, R.Di Maio, L.Milano, and M.Nicodemi (2006), Finite driving rate and anisotropy effects in landslide modeling, Phys. Rev. E, 73, 026123, doi:10.1103/PhysRevLett.93.208001.
Simoni, S., F.Zanotti, G.Bertoldi, and R.Rigon (2008), Modeling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop-FS, Hydrol. Processes, 22, 532-545.
Malamud, B. D., D. L.Turcotte, F.Guzzetti, and P.Reichenbach (2004), Landslide inventories and their statistical properties, Earth Surf. Processes Landforms, 29, 687-711.
Stark, C. P., and F.Guzzetti (2009), Landslide rupture and the probability distribution of mobilized debris volumes, J. Geophys. Res, 114, F00A02.
Olami, Z., H. J. S.Feder, and K.Christensen (1992), Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Physi. Rev. Lett., 68(8), 1244-1247.
Aegerter, C. M., R.Günther, and R. J.Wijngaarden (2003), Avalanche dynamics, surface roughening, and self-organized criticality: Experiments on a three-dimensional pile of rice, Phys. Rev. E, 67, 051306.
Cadman, J. D., and R. E.Goodman (1967), Landslide noise, Science, 158, 1182-1184.
Dai, F. C., and C. F.Lee (2001), Frequency-volume relation and prediction of rainfall-induced landslides, Eng. Geol., 59, 253-266.
Yoshioka, N. (2003), A sandpile experiment and its implications for self-organized criticality and characteristic earthquake, Earth Planets Space, 55, 283-289.
Khalili.N., and M. H.Khabbaz (1998), A unique relationship for χ for the determination of the shear strength of unsaturated soils, Géotechnique, 48(5), 681-687.
Schwarz, M., D.Cohen, and D.Or (2010a), Root-soil mechanical interactions during pullout and failure of root bundles, J. Geophys. Res., 115, F04035, doi:10.1029/2009JF001603.
Stark, C. P., and N.Hovius (2001), The characterization of landslide size distribution, Water Resour. Res., 28, 1091-1094.
Lenhard, R. J., J. C.Parker, and S.Mishra (1989), On the correspondence between Brooks-Corey and van Genuchten models, J. Irrig. Drain. Eng., 115, 744-751.
Rickli, C., and F.Graf (2009), Effects of forests on shallow landslides-Case studies in Switzerland, For. Snow Landscape Res., 82(1), 33-44.
Amitrano, D., J. R.Grasso, and G.Senfaute (2005), Seismic precursory patterns before a cliff collapse and critical point phenomena, Geophys. Res. Lett., 32, L08314, doi:10.1029/2004GL022270.
Gabet, E. J., and T.Dunne (2002), Landslides on coastal sage-scrub and grassland hillslopes in a sever El Niño winter: The effects of vegetation conversion on sediment delivery, Geol. Soc. Am. Bull., 114, 983-990.
Hergarten, S. (2003), Landslides, sandpiles, and self-organized criticality, Nat. Hazards Earth Syst. Sci., 3, 505-514.
Zheng, H., D. F.Liu, and C. G.Li (2005), Slope stability analysis based on elasto-plastic finite element method, Int. J. Numer. Methods Eng., 64, 1871-1888.
Sornette, D. (2004), Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools, Springer, Berlin.
Mitchell, J. K., and L.Soga (2005), Fundamentals of Soil Behavior, 3rd ed., John Wiley, New York.
Chigira, M., and O.Yokoyama (2005), Weathering profile of non-welded ignimbrite and the water infiltration behavior within it in relation to the generation of shallow landslides, Eng. Geol., 78, 187-207.
Cohen, D., M.Schwarz, and D.Or (2011), An analytical fiber bundle model for pullout mechanics of root bundles, J. Geophys. Res., 116, F03010, doi:10.1029/2010JF001886.
Tromp-van Meerveld, H. J., and J. J.McDonnell (2006), On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale, Adv. Water Resour., 29, 293-310.
Germer, K., and J.Braun (2011), Effects of saturation on slope stability: Laboratory experiments utilizing external load, Vadose Zone J., 10, 477-486.
Costello, R. M. C., K. L.Cruz, C.Egnatuk, D. T.Jacobs, M. C.Krivos, T. S.Louis, R. J.Urban, and H.Wagner (2003), Self-organized criticality in a bead pile, Phys. Rev. E, 67, 041304.
Brunetti, M. T., F.Guzzetti, and M.Rossi (2009), Probability distributions of landslide volumes, Nonlinear Processes Geophys., 16, 179-188.
Hemmer, P. C., and A.Hansen (1992), The distribution of simultaneous fiber failures in fiber bundles, J. Appl. Mech., 59(4), 909-914.
Cho, G.-C., J.Dodds, and J. C.Santamarina (2006), Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands, J. Geotech Geoenviron. Eng., 132, 591-602.
Schmidt, K. M., J. J.Roering, J. D.Stock, W. E.Dietrich, D. R.Montgomery, and T.Schaub (2001), The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range, Can. Geotech. J., 38, 995-1024.
Held, G. A., D. H.Solina, D. T.Keane, W. J.Haag, P. M.Horn, and G.Grinstein (1990), Experimental study of critical mass fluctuations in an evolving sandpile, Phys. Rev. Lett., 65, 1120-1123.
Skempton, A. W., and F. A.DeLory (1957), Stability of natural slopes in London clay, Proceedings of the 4th International Conference on Soil Mechanics & Foundation Engineering, vol. 2, pp. 378-381, Butterworths Sci. Publ., London.
Larsen, I. J., D. R.Montgomery, and O.Korup (2010), Landslide erosion controlled by hillslope material, Nat. Geosci., 3, 247-251.
Schwarz, M., P.Lehmann, and D.Or (2010c), Quantifying lateral root reinforcement in steep slopes-From a bundle of roots to forest stands, Earth Surf. Processes Landforms, 35, 354-367.
Klar, A., E.Aharonov, B.Kalderon-Asael, and O.Katz (2011), Analytical and observational relations between landslide volume and surface area, J. Geophys. Res., 116, F02001, doi:10.1029/2009JF001604.
Iverson, R. M. (2000), Landslide triggering by rain infiltration, Water Resour. Res., 36(7), 1897-1910.
Lörincz, K. A., and R. J.Wijngaarden (2007), Edge effects on the power-law distribution of granular avalanches, Phys. Rev. E, 76, 040301.
Iverson, R. M., M. E.Reid, N. R.Iverson, R. G.LaHusen, M.Logan, J. E.Mann, and D. L.Brien (2000), Acute sensitivity of landslide rates to initial soil porosity, Science, 290, 513-516.
Griffith, D. V., and P. A.Lane (1999), Slope stability analysis by finite elements, Géotechnique, 49(3), 387-403.
Bishop, A. W. (1960), The principle of effective stress, Norwegian Geotechnical Institute Publication No.32, 1-5.
Casadei, M., W. E.Dietrich, and N. L.Miller (2003), Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes, Earth Surf. Processes Landforms, 28, 925-950.
Fernandes, N. F., R. F.Guimarães, R. A. T.Gomes, B. C.Vieira, D. R.Montgomery, and H.Greenberg (2004), Topographic controls of landslides in Rio de Janeiro: Field evidence and modeling, Catena, 55, 163-181.
Keefer, D. K., R. C.Wilson, R. K.Mark, E. E.Brabb, W. M.BrownIII, S. D.Ellen, E. L.Harp, G. F.Wieczorek, C. S.Alger, and R. S.Zatkin (1987), Real-time landslide warning during heavy rainfall, Science, 238, 921-925.
Petley, D. N., T.Higuchi, D. J.Petley, M. H.Bulmer, and J.Carey (2005), Development of progressive landslide failure in cohesive materials, Geology, 33, 201-204.
Huang, C.-C., C.-L.Lo, J.-S.Jang, and L.-K.Hwu (2008), Internal soil moisture response to rainfall-induced slope failures and debris discharge, Eng. Geol., 101, 134-145.
Mullins, C. E., and K. P.Panayiotopoulos (1984), The strength of unsaturated mixtures of sand and kaolin and the concept of effective stress, J. Soil Sci., 35, 459-468.
Moreno, Y., J. B.Gómez, and A. F.Pacheco (1999), Self-organized criticality in a fiber-bundle-type model, Phys. A, 274, 400-409.
Parise, M., and R. W.Jibson (2000), A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslide triggered by the 17 January, 1994 Northridge, California earthquake, Eng. Geol., 58, 251-270.
Wu, T. H., W. P.McKinnel, and D. N.Swanston (1979), Strength of tree roots and landslides on Prince of Wales Island, Alaska, Can. Geotech. J., 16, 19-33.
Majmudar, T. S. and R. P.Behringer (2005), Contact force measurements and stress-induced anisotropy in granular materials, Nature, 435, 1079-1082.
Altshuler, E., O.Ramos, C.Martínez, L. E.Flores, and C.Noda (2001), Avalanches in one-dimensional piles with different types of bases, Phys. Rev. Lett., 86, 5490-5493.
Schwarz, M., F.Preti, P.Lehmann, and D.Or (2010b), Quantifying the role of vegetation in slope stability: A case study in Tuscany (Italy), Ecol. Eng., 36, 285-291.
Ramos, O. (2010), Criticality in earthquakes. Good or bad for prediction?, Tectonophysics, 485, 321-326.
Christensen, K., and N. R.Moloney (2005), Complexity and Criticality, Imperial College Press, London.
Sidle, R. C., and H.Ochiai (2006), Landslides: Processes, Prediction and Land Use, American Geophysical Union, Washington, DC.
Faillettaz, J., F.Louchet, and J. R.Grasso (2004), Two-threshold model for scaling laws of noninteracting snow avalanches, Phys. Rev. Lett., 93(20), 208001, doi:10.1103/PhysRevLett.93.208001.
Nerone, N., M. A.Aguirre, A.Calvo, D.Bideau, and I.Ippolito (2003), Instabilities in slowly driven granular packing, Phys. Rev. E, 67, 011302.
Rawls, W. J., D. L.Brakensiek, and K. E.Saxton (1982), Estimation of soil water properties, Trans. Am. Soc. Agric. Eng., 25(5), 1316-1320.
Reiweger, I., J.Schweizer, J.Dual, and H. J.Herrmann (2009), Modelling snow failure with a fibre bundle model, J. Glaciol., 55(194), 997-1002.
Chessa, A., H. E.Stanley, A.Vespignani, and S.Zapperi (1999), Universality in sand piles, Phys. Rev. E, 59(1), R12-R15.
Jensen, H. J. (1998), Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems, Cambri
2011; 116
1960; 32
2004; 29
1989; 115
2009; 82
1997; 48
1999; 49
2005; 64
1967; 158
1973
1992; 59
2008; 101
1965; 15
2007; 76
2009; 114
1978
2003; 55
1957; 83
2000; 14
1987; 238
2010; 115
1999; 59
2002; 88
2006; 29
2001; 59
2008; 22
1996; 379
2010; 3
2009; 16
2005; 78
1979; 16
1986; 91
2010; 36
2006; 50
2010; 35
1997; 25
1998
1996
1926; 17
1993
2001; 28
1987; 59
2004; 55
1976; 56
2010; 46
1984; 35
2009; 102
2003; 28
2001; 38
2009; 45
1998; 48
2006; 74
2006; 73
2002; 195
2002; 114
1955; 5
2006; 132
2011; 10
2009; 279
2001; 86
2000; 290
1996; 33
2009; 55
1982; 25
2007; 256
2000; 58
2001
2003; 3
2005; 32
1994; 30
2005; 33
1945; 183
2011
2010
2005; 435
2010; 485
2008
2007
2008; 13
2006
2005
2006; 3
2004
2003
1999; 62
2002
1957
2001; 65
2007; 112
1990; 65
1976; 13
2004; 93
2000; 36
1999; 274
1964
1992; 68
2005; 55
1968
1994; 4
2003; 67
e_1_2_11_70_1
e_1_2_11_93_1
Mitchell J. K. (e_1_2_11_60_1) 2005
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_29_1
e_1_2_11_4_1
O'Loughlin C. L. (e_1_2_11_67_1) 1976; 13
e_1_2_11_106_1
e_1_2_11_48_1
Stark C. P. (e_1_2_11_102_1) 2001; 28
Eichenberger J. (e_1_2_11_24_1) 2010
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_59_1
Bishop A. W. (e_1_2_11_9_1) 1960; 32
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
Sornette D. (e_1_2_11_100_1) 2004
e_1_2_11_103_1
e_1_2_11_28_1
e_1_2_11_5_1
Ramos O. (e_1_2_11_78_1) 2011
Skempton A. W. (e_1_2_11_98_1) 1957
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_107_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_16_1
Schofield A. (e_1_2_11_89_1) 1968
e_1_2_11_110_1
e_1_2_11_39_1
Dietrich W. E. (e_1_2_11_23_1) 2007
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_2_1
Schuster R. L. (e_1_2_11_90_1) 2002
e_1_2_11_83_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_38_1
e_1_2_11_19_1
Selby M. J. (e_1_2_11_94_1) 1993
e_1_2_11_71_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
Janbu N. (e_1_2_11_46_1) 1973
Rickli C. (e_1_2_11_84_1) 2009; 82
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_18_1
e_1_2_11_37_1
e_1_2_11_112_1
Varnes D. J. (e_1_2_11_108_1) 1978
References_xml – reference: Stark, C. P., and F.Guzzetti (2009), Landslide rupture and the probability distribution of mobilized debris volumes, J. Geophys. Res, 114, F00A02.
– reference: Keefer, D. K., R. C.Wilson, R. K.Mark, E. E.Brabb, W. M.BrownIII, S. D.Ellen, E. L.Harp, G. F.Wieczorek, C. S.Alger, and R. S.Zatkin (1987), Real-time landslide warning during heavy rainfall, Science, 238, 921-925.
– reference: Schwarz, M., P.Lehmann, and D.Or (2010c), Quantifying lateral root reinforcement in steep slopes-From a bundle of roots to forest stands, Earth Surf. Processes Landforms, 35, 354-367.
– reference: Fernandes, N. F., R. F.Guimarães, R. A. T.Gomes, B. C.Vieira, D. R.Montgomery, and H.Greenberg (2004), Topographic controls of landslides in Rio de Janeiro: Field evidence and modeling, Catena, 55, 163-181.
– reference: Hergarten, S. (2003), Landslides, sandpiles, and self-organized criticality, Nat. Hazards Earth Syst. Sci., 3, 505-514.
– reference: Brunetti, M. T., F.Guzzetti, and M.Rossi (2009), Probability distributions of landslide volumes, Nonlinear Processes Geophys., 16, 179-188.
– reference: Mitchell, J. K., and L.Soga (2005), Fundamentals of Soil Behavior, 3rd ed., John Wiley, New York.
– reference: Baiesi, M. (2009), Correlated earthquakes in a self-organized model, Nonlinear Processes Geophys., 16, 233-240.
– reference: Ghezzehei, T. A., and D.Or (2001), Rheological properties of wet soils and clays under steady and oscillatory stresses, J. Soil Sci. Soc. Am., 65, 624-637.
– reference: Iverson, R. M., M. E.Reid, N. R.Iverson, R. G.LaHusen, M.Logan, J. E.Mann, and D. L.Brien (2000), Acute sensitivity of landslide rates to initial soil porosity, Science, 290, 513-516.
– reference: Majmudar, T. S. and R. P.Behringer (2005), Contact force measurements and stress-induced anisotropy in granular materials, Nature, 435, 1079-1082.
– reference: Christensen, K., and N. R.Moloney (2005), Complexity and Criticality, Imperial College Press, London.
– reference: Koslowski, M., R.LeSar, and R.Thomson (2004), Avalanches and scaling in plastic deformation, Phys. Rev. Lett., 93(12), 125-502.
– reference: Rickli, C., and F.Graf (2009), Effects of forests on shallow landslides-Case studies in Switzerland, For. Snow Landscape Res., 82(1), 33-44.
– reference: Bak, P., C.Tang, and K.Wiesenfeld (1987), Self-organized criticality: An explanation of 1/f noise, Phys. Rev. Lett., 59(4), 381-384.
– reference: Rawls, W. J., D. L.Brakensiek, and K. E.Saxton (1982), Estimation of soil water properties, Trans. Am. Soc. Agric. Eng., 25(5), 1316-1320.
– reference: Guzzetti, F., B. D.Malamud, D. L.Turcotte, and P.Reichenbach (2002), Power-law correlations of landslide areas in central Italy, Earth Planet. Sci. Lett., 195, 169-183.
– reference: Yoshioka, N. (2003), A sandpile experiment and its implications for self-organized criticality and characteristic earthquake, Earth Planets Space, 55, 283-289.
– reference: Ramos, O. (2010), Criticality in earthquakes. Good or bad for prediction?, Tectonophysics, 485, 321-326.
– reference: Selby, M. J. (1993), Hillslope Materials and Processes, 2nd ed., Oxford University Press, Oxford.
– reference: Morgenstern, N. R., and V. E.Price (1965), The analysis of the stability of general slip surfaces, Géotechnique, 15, 79-93.
– reference: Salciarini, D., J. W.Godt, W. Z.Savage, P.Conversini, R. L.Baum, and J. A.Michael (2006), Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria region of central Italy, Landslides, 3, 181-194.
– reference: Griffith, D. V., and P. A.Lane (1999), Slope stability analysis by finite elements, Géotechnique, 49(3), 387-403.
– reference: Sornette, D. (2004), Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools, Springer, Berlin.
– reference: Wu, T. H., W. P.McKinnel, and D. N.Swanston (1979), Strength of tree roots and landslides on Prince of Wales Island, Alaska, Can. Geotech. J., 16, 19-33.
– reference: Bishop, A. W. (1960), The principle of effective stress, Norwegian Geotechnical Institute Publication No.32, 1-5.
– reference: Zheng, H., D. F.Liu, and C. G.Li (2005), Slope stability analysis based on elasto-plastic finite element method, Int. J. Numer. Methods Eng., 64, 1871-1888.
– reference: Lu, N., J. W.Godt, and D. T.Wu (2010), A closed form equation for effective stress in unsaturated soil, Water Resour. Res., 46, W05515, doi:10.1029/2009WR008646.
– reference: Gabet, E. J., and S. M.Mudd (2006), The mobilization of debris flows from shallow landslides, Geomorphology, 74, 207-218.
– reference: Pradhan, S., A.Hansen, and P. C.Hemmer (2006), Crossover behavior in failure avalanches, Phys. Rev. E, 74, 016122.
– reference: Sidle, R. C., Y.Tsuboyama, S.Noguchi, I.Hosoda, M.Fujieda, and T.Shimizu (2000), Stormflow generation in steep forested headwaters: A linked hydrogeomorphic paradigm, Hydrol. Processes, 14, 369-385.
– reference: Tromp-van Meerveld, H. J., and J. J.McDonnell (2006), On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale, Adv. Water Resour., 29, 293-310.
– reference: Guzzetti, F., F.Ardizzone, M.Cardinali, M.Rossi, and D.Valigi (2009), Landslide volumes and landslide mobilization rates in Umbria, Central Italy, Earth Planet. Sci. Lett., 279, 222-229.
– reference: Sornette, D. (1994), Sweeping of an instability: An alternative to self-organized criticality to get powerlaws without parameter tuning, J. Phys. I (France), 4, 209-221.
– reference: Ramos, O., E.Altshuler, and K. J.Måløy (2009), Avalanche prediction in a self-organized pile of beads, Phys. Rev. Lett., 102, 078701.
– reference: Chigira, M., and O.Yokoyama (2005), Weathering profile of non-welded ignimbrite and the water infiltration behavior within it in relation to the generation of shallow landslides, Eng. Geol., 78, 187-207.
– reference: Dai, F. C., and C. F.Lee (2001), Frequency-volume relation and prediction of rainfall-induced landslides, Eng. Geol., 59, 253-266.
– reference: Mullins, C. E., and K. P.Panayiotopoulos (1984), The strength of unsaturated mixtures of sand and kaolin and the concept of effective stress, J. Soil Sci., 35, 459-468.
– reference: Khalili.N., and M. H.Khabbaz (1998), A unique relationship for χ for the determination of the shear strength of unsaturated soils, Géotechnique, 48(5), 681-687.
– reference: Cho, G.-C., J.Dodds, and J. C.Santamarina (2006), Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands, J. Geotech Geoenviron. Eng., 132, 591-602.
– reference: Klar, A., E.Aharonov, B.Kalderon-Asael, and O.Katz (2011), Analytical and observational relations between landslide volume and surface area, J. Geophys. Res., 116, F02001, doi:10.1029/2009JF001604.
– reference: O'Loughlin, C. L., and A. J.Pearce (1976), Influence of cenozoic geology on mass movement and sediment yield response to forest removal, North Westland, New Zealand, Bull. Eng. Geol. Environ., 13, 41-46.
– reference: Amitrano, D., J. R.Grasso, and G.Senfaute (2005), Seismic precursory patterns before a cliff collapse and critical point phenomena, Geophys. Res. Lett., 32, L08314, doi:10.1029/2004GL022270.
– reference: Turcotte, D. L. (1999), Self-organized criticality, Rep. Progress Phys., 62, 1377-1429.
– reference: Van Den Eeckhaut, M., J.Poesen, G.Govers, G.Verstraeten, and A.Demoulin (2007), Characteristics of the size distribution of recent and historical landslides in a populated hilly region, Earth Planet. Science. Lett., 256, 588-603.
– reference: Nerone, N., M. A.Aguirre, A.Calvo, D.Bideau, and I.Ippolito (2003), Instabilities in slowly driven granular packing, Phys. Rev. E, 67, 011302.
– reference: Lenhard, R. J., J. C.Parker, and S.Mishra (1989), On the correspondence between Brooks-Corey and van Genuchten models, J. Irrig. Drain. Eng., 115, 744-751.
– reference: Larsen, I. J., D. R.Montgomery, and O.Korup (2010), Landslide erosion controlled by hillslope material, Nat. Geosci., 3, 247-251.
– reference: Philip, J. R. (1957), The theory of infiltration: 1. The infiltration equation and its solution, Soil Sci., 83, 345-357.
– reference: Hemmer, P. C., and A.Hansen (1992), The distribution of simultaneous fiber failures in fiber bundles, J. Appl. Mech., 59(4), 909-914.
– reference: Bak, P. (1996), How Nature Works: The Science of Self-Organized Criticality, Copernicus Springer, New York.
– reference: Simoni, S., F.Zanotti, G.Bertoldi, and R.Rigon (2008), Modeling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop-FS, Hydrol. Processes, 22, 532-545.
– reference: Montgomery, D. R., and W. E.Dietrich (1994), A physically based model for the topographic control on shallow landslides, Water Resour. Res., 30(4), 1153-1171.
– reference: Held, G. A., D. H.Solina, D. T.Keane, W. J.Haag, P. M.Horn, and G.Grinstein (1990), Experimental study of critical mass fluctuations in an evolving sandpile, Phys. Rev. Lett., 65, 1120-1123.
– reference: Jensen, H. J. (1998), Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems, Cambridge University Press, Cambridge.
– reference: Schmidt, K. M., J. J.Roering, J. D.Stock, W. E.Dietrich, D. R.Montgomery, and T.Schaub (2001), The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range, Can. Geotech. J., 38, 995-1024.
– reference: Cohen, D., M.Schwarz, and D.Or (2011), An analytical fiber bundle model for pullout mechanics of root bundles, J. Geophys. Res., 116, F03010, doi:10.1029/2010JF001886.
– reference: Reiweger, I., J.Schweizer, J.Dual, and H. J.Herrmann (2009), Modelling snow failure with a fibre bundle model, J. Glaciol., 55(194), 997-1002.
– reference: Lörincz, K. A., and R. J.Wijngaarden (2007), Edge effects on the power-law distribution of granular avalanches, Phys. Rev. E, 76, 040301.
– reference: Hergarten, S. (2002), Self-Organized Criticality in Earth Systems, Springer, Berlin.
– reference: Imaizumi, M., and R.Sidle (2007), Linkage of sediment supply and transport processes in Miyagawa Dam catchment, Japan, J. Geophys. Res., 112, F03012, doi:10.1029/2006JF000495.
– reference: Iverson, R. M. (2000), Landslide triggering by rain infiltration, Water Resour. Res., 36(7), 1897-1910.
– reference: Parlange, J.-Y., and R. E.Smith (1976), Ponding time for variable rainfall rates, Can. J. Soil Sci., 56, 121-123.
– reference: Altshuler, E., O.Ramos, C.Martínez, L. E.Flores, and C.Noda (2001), Avalanches in one-dimensional piles with different types of bases, Phys. Rev. Lett., 86, 5490-5493.
– reference: Parise, M., and R. W.Jibson (2000), A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslide triggered by the 17 January, 1994 Northridge, California earthquake, Eng. Geol., 58, 251-270.
– reference: Schwarz, M., D.Cohen, and D.Or (2010a), Root-soil mechanical interactions during pullout and failure of root bundles, J. Geophys. Res., 115, F04035, doi:10.1029/2009JF001603.
– reference: Katz, J. I. (1986), A model of propagating brittle failure in heterogeneous media, J. Geophys. Res., 91, 10,412-10,420.
– reference: Schofield, A., and P.Wroth (1968), Critical State Soil Mechanics, McGraw-Hill, London.
– reference: Pelletier, J. D., B. D.Malamud, T.Blodgett, and T. L.Turcotte (1997), Scale-invariance of soil moisture variability and its implications for the frequency-size distribution of landslides, Eng. Geol., 48, 255-268.
– reference: Germer, K., and J.Braun (2011), Effects of saturation on slope stability: Laboratory experiments utilizing external load, Vadose Zone J., 10, 477-486.
– reference: Piegari, E., V.Cataudella, R.Di Maio, L.Milano, and M.Nicodemi (2006), Finite driving rate and anisotropy effects in landslide modeling, Phys. Rev. E, 73, 026123, doi:10.1103/PhysRevLett.93.208001.
– reference: Sidle, R. C., and H.Ochiai (2006), Landslides: Processes, Prediction and Land Use, American Geophysical Union, Washington, DC.
– reference: Gabet, E. J., and T.Dunne (2002), Landslides on coastal sage-scrub and grassland hillslopes in a sever El Niño winter: The effects of vegetation conversion on sediment delivery, Geol. Soc. Am. Bull., 114, 983-990.
– reference: Bishop, A. W. (1955), The use of slip circle in the stability analysis of slopes. Géotechnique, 5, 7-17.
– reference: Malamud, B. D., D. L.Turcotte, F.Guzzetti, and P.Reichenbach (2004), Landslide inventories and their statistical properties, Earth Surf. Processes Landforms, 29, 687-711.
– reference: Olami, Z., H. J. S.Feder, and K.Christensen (1992), Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Physi. Rev. Lett., 68(8), 1244-1247.
– reference: Casadei, M., W. E.Dietrich, and N. L.Miller (2003), Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes, Earth Surf. Processes Landforms, 28, 925-950.
– reference: Daniels, H. E. (1945), The statistical theory of the strength of bundles of threads: I, Proc. R. Soc. London Ser. A, 183, 405-435.
– reference: Sánchez, R., D. E.Newman, and B. A.Carreras (2002), Waiting-time statistics of self-organized-criticality systems, Phys. Rev. Lett., 88(6), 068302.
– reference: Iverson, R. M., M. E.Reid, and R. G.LaHusen (1997), Debris-flow mobilization from landslides, Annu. Rev. Earth Planet. Sci., 25, 85-138.
– reference: Vanapalli, S. K., D. G.Fredlund, D. E.Pufahl, and A. W.Clifton (1996), Model for the prediction of shear strength with respect to soil suction, Can. Geotech. J., 33, 379-392.
– reference: Cadman, J. D., and R. E.Goodman (1967), Landslide noise, Science, 158, 1182-1184.
– reference: Fannin, R. J., A.Eliadorani, and J. M. T.Wilkinson (2005), Shear strength of cohesionless soils at low stress, Géotechnique, 55, 467-478.
– reference: Tsai, T.-L., and J. C.Yang (2006), Modeling of rainfall-triggered shallow landslide, Environ. Geol., 50, 525-534.
– reference: Faillettaz, J., D.Sornette, and M.Funk (2010), Gravity-driven instabilities: Interplay between state- and velocity-dependent frictional sliding and stress corrosion damage cracking, J. Geophys. Res., 115, B03409, doi:10.1029/2009JB006512.
– reference: Marchesini, I., C.Cencetti, and P.De Rosa (2008), A preliminary method for the evaluation of the landslides volume at regional scale, Geoinformatica, 13(3), 277-289.
– reference: Aegerter, C. M., R.Günther, and R. J.Wijngaarden (2003), Avalanche dynamics, surface roughening, and self-organized criticality: Experiments on a three-dimensional pile of rice, Phys. Rev. E, 67, 051306.
– reference: Skempton, A. W., and F. A.DeLory (1957), Stability of natural slopes in London clay, Proceedings of the 4th International Conference on Soil Mechanics & Foundation Engineering, vol. 2, pp. 378-381, Butterworths Sci. Publ., London.
– reference: Moreno, Y., J. B.Gómez, and A. F.Pacheco (1999), Self-organized criticality in a fiber-bundle-type model, Phys. A, 274, 400-409.
– reference: Chessa, A., H. E.Stanley, A.Vespignani, and S.Zapperi (1999), Universality in sand piles, Phys. Rev. E, 59(1), R12-R15.
– reference: Petley, D. N., T.Higuchi, D. J.Petley, M. H.Bulmer, and J.Carey (2005), Development of progressive landslide failure in cohesive materials, Geology, 33, 201-204.
– reference: Schwarz, M., F.Preti, P.Lehmann, and D.Or (2010b), Quantifying the role of vegetation in slope stability: A case study in Tuscany (Italy), Ecol. Eng., 36, 285-291.
– reference: Stark, C. P., and N.Hovius (2001), The characterization of landslide size distribution, Water Resour. Res., 28, 1091-1094.
– reference: Frette, V., K.Christensen, A.Malthe-Sørenssen, J.Feder, T.Jøssang, and P.Meakin (1996), Avalanche dynamics in a pile of rice, Nature, 379, 49-52.
– reference: Faillettaz, J., F.Louchet, and J. R.Grasso (2004), Two-threshold model for scaling laws of noninteracting snow avalanches, Phys. Rev. Lett., 93(20), 208001, doi:10.1103/PhysRevLett.93.208001.
– reference: Piegari, E., R.DiMaio, and L.Milano (2009), Characteristic scales in landslide modeling, Nonlinear Processes Geophys., 16, 515-523.
– reference: Costello, R. M. C., K. L.Cruz, C.Egnatuk, D. T.Jacobs, M. C.Krivos, T. S.Louis, R. J.Urban, and H.Wagner (2003), Self-organized criticality in a bead pile, Phys. Rev. E, 67, 041304.
– reference: Huang, C.-C., C.-L.Lo, J.-S.Jang, and L.-K.Hwu (2008), Internal soil moisture response to rainfall-induced slope failures and debris discharge, Eng. Geol., 101, 134-145.
– reference: Peirce, F. T. (1926), Tensile tests for cotton yarns, V: The weakest link, J. Textile Inst., Trans., 17, 355-368.
– reference: Cohen, D., P.Lehmann, and D.Or (2009), The fiber bundle model for multiscale modeling of hydro-mechanical triggering of shallow landslides, Water Resour. Res., 45, W10436, doi:10.1029/2009WR007889.
– volume: 32
  start-page: 1
  year: 1960
  end-page: 5
  article-title: The principle of effective stress
  publication-title: Norwegian Geotechnical Institute Publication No.
– volume: 114
  start-page: 983
  year: 2002
  end-page: 990
  article-title: Landslides on coastal sage‐scrub and grassland hillslopes in a sever El Niño winter: The effects of vegetation conversion on sediment delivery
  publication-title: Geol. Soc. Am. Bull.
– volume: 82
  start-page: 33
  issue: 1
  year: 2009
  end-page: 44
  article-title: Effects of forests on shallow landslides—Case studies in Switzerland
  publication-title: For. Snow Landscape Res.
– volume: 55
  start-page: 467
  year: 2005
  end-page: 478
  article-title: Shear strength of cohesionless soils at low stress
  publication-title: Géotechnique
– year: 2005
– volume: 49
  start-page: 387
  issue: 3
  year: 1999
  end-page: 403
  article-title: Slope stability analysis by finite elements
  publication-title: Géotechnique
– volume: 56
  start-page: 121
  year: 1976
  end-page: 123
  article-title: Ponding time for variable rainfall rates
  publication-title: Can. J. Soil Sci.
– volume: 33
  start-page: 379
  year: 1996
  end-page: 392
  article-title: Model for the prediction of shear strength with respect to soil suction
  publication-title: Can. Geotech. J.
– volume: 65
  start-page: 1120
  year: 1990
  end-page: 1123
  article-title: Experimental study of critical mass fluctuations in an evolving sandpile
  publication-title: Phys. Rev. Lett.
– volume: 67
  year: 2003
  article-title: Instabilities in slowly driven granular packing
  publication-title: Phys. Rev. E
– volume: 22
  start-page: 532
  year: 2008
  end-page: 545
  article-title: Modeling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop‐FS
  publication-title: Hydrol. Processes
– start-page: 12
  year: 2007
– volume: 59
  start-page: 253
  year: 2001
  end-page: 266
  article-title: Frequency‐volume relation and prediction of rainfall‐induced landslides
  publication-title: Eng. Geol.
– year: 1998
– volume: 78
  start-page: 187
  year: 2005
  end-page: 207
  article-title: Weathering profile of non‐welded ignimbrite and the water infiltration behavior within it in relation to the generation of shallow landslides
  publication-title: Eng. Geol.
– volume: 59
  start-page: R12
  issue: 1
  year: 1999
  end-page: R15
  article-title: Universality in sand piles
  publication-title: Phys. Rev. E
– volume: 36
  start-page: 1897
  issue: 7
  year: 2000
  end-page: 1910
  article-title: Landslide triggering by rain infiltration
  publication-title: Water Resour. Res.
– year: 2008
– volume: 112
  year: 2007
  article-title: Linkage of sediment supply and transport processes in Miyagawa Dam catchment, Japan
  publication-title: J. Geophys. Res.
– volume: 290
  start-page: 513
  year: 2000
  end-page: 516
  article-title: Acute sensitivity of landslide rates to initial soil porosity
  publication-title: Science
– volume: 158
  start-page: 1182
  year: 1967
  end-page: 1184
  article-title: Landslide noise
  publication-title: Science
– volume: 3
  start-page: 505
  year: 2003
  end-page: 514
  article-title: Landslides, sandpiles, and self‐organized criticality
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 115
  year: 2010
  article-title: Gravity‐driven instabilities: Interplay between state‐ and velocity‐dependent frictional sliding and stress corrosion damage cracking
  publication-title: J. Geophys. Res.
– volume: 25
  start-page: 85
  year: 1997
  end-page: 138
  article-title: Debris‐flow mobilization from landslides
  publication-title: Annu. Rev. Earth Planet. Sci.
– volume: 13
  start-page: 277
  issue: 3
  year: 2008
  end-page: 289
  article-title: A preliminary method for the evaluation of the landslides volume at regional scale
  publication-title: Geoinformatica
– volume: 74
  year: 2006
  article-title: Crossover behavior in failure avalanches
  publication-title: Phys. Rev. E
– year: 1993
– volume: 88
  issue: 6
  year: 2002
  article-title: Waiting‐time statistics of self‐organized‐criticality systems
  publication-title: Phys. Rev. Lett.
– volume: 17
  start-page: 355
  year: 1926
  end-page: 368
  article-title: Tensile tests for cotton yarns, V: The weakest link
  publication-title: J. Textile Inst., Trans.
– year: 1964
– volume: 29
  start-page: 293
  year: 2006
  end-page: 310
  article-title: On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale
  publication-title: Adv. Water Resour.
– volume: 58
  start-page: 251
  year: 2000
  end-page: 270
  article-title: A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslide triggered by the 17 January, 1994 Northridge, California earthquake
  publication-title: Eng. Geol.
– volume: 279
  start-page: 222
  year: 2009
  end-page: 229
  article-title: Landslide volumes and landslide mobilization rates in Umbria, Central Italy
  publication-title: Earth Planet. Sci. Lett.
– volume: 93
  start-page: 125
  issue: 12
  year: 2004
  end-page: 502
  article-title: Avalanches and scaling in plastic deformation
  publication-title: Phys. Rev. Lett.
– volume: 38
  start-page: 995
  year: 2001
  end-page: 1024
  article-title: The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range
  publication-title: Can. Geotech. J.
– volume: 59
  start-page: 381
  issue: 4
  year: 1987
  end-page: 384
  article-title: Self‐organized criticality: An explanation of 1/f noise
  publication-title: Phys. Rev. Lett.
– volume: 68
  start-page: 1244
  issue: 8
  year: 1992
  end-page: 1247
  article-title: Self‐organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes
  publication-title: Physi. Rev. Lett.
– volume: 274
  start-page: 400
  year: 1999
  end-page: 409
  article-title: Self‐organized criticality in a fiber‐bundle‐type model
  publication-title: Phys. A
– volume: 65
  start-page: 624
  year: 2001
  end-page: 637
  article-title: Rheological properties of wet soils and clays under steady and oscillatory stresses
  publication-title: J. Soil Sci. Soc. Am.
– volume: 67
  year: 2003
  article-title: Avalanche dynamics, surface roughening, and self‐organized criticality: Experiments on a three‐dimensional pile of rice
  publication-title: Phys. Rev. E
– volume: 55
  start-page: 283
  year: 2003
  end-page: 289
  article-title: A sandpile experiment and its implications for self‐organized criticality and characteristic earthquake
  publication-title: Earth Planets Space
– start-page: 47
  year: 1973
  end-page: 86
– volume: 238
  start-page: 921
  year: 1987
  end-page: 925
  article-title: Real‐time landslide warning during heavy rainfall
  publication-title: Science
– volume: 91
  start-page: 10,412
  year: 1986
  end-page: 10,420
  article-title: A model of propagating brittle failure in heterogeneous media
  publication-title: J. Geophys. Res.
– volume: 46
  year: 2010
  article-title: A closed form equation for effective stress in unsaturated soil
  publication-title: Water Resour. Res.
– volume: 485
  start-page: 321
  year: 2010
  end-page: 326
  article-title: Criticality in earthquakes. Good or bad for prediction?
  publication-title: Tectonophysics
– year: 2002
– volume: 36
  start-page: 285
  year: 2010
  end-page: 291
  article-title: Quantifying the role of vegetation in slope stability: A case study in Tuscany (Italy)
  publication-title: Ecol. Eng.
– volume: 183
  start-page: 405
  year: 1945
  end-page: 435
  article-title: The statistical theory of the strength of bundles of threads: I
  publication-title: Proc. R. Soc. London Ser. A
– volume: 33
  start-page: 201
  year: 2005
  end-page: 204
  article-title: Development of progressive landslide failure in cohesive materials
  publication-title: Geology
– volume: 25
  start-page: 1316
  issue: 5
  year: 1982
  end-page: 1320
  article-title: Estimation of soil water properties
  publication-title: Trans. Am. Soc. Agric. Eng.
– volume: 10
  start-page: 477
  year: 2011
  end-page: 486
  article-title: Effects of saturation on slope stability: Laboratory experiments utilizing external load
  publication-title: Vadose Zone J.
– volume: 13
  start-page: 41
  year: 1976
  end-page: 46
  article-title: Influence of cenozoic geology on mass movement and sediment yield response to forest removal, North Westland, New Zealand
  publication-title: Bull. Eng. Geol. Environ.
– volume: 74
  start-page: 207
  year: 2006
  end-page: 218
  article-title: The mobilization of debris flows from shallow landslides
  publication-title: Geomorphology
– start-page: 11
  year: 1978
  end-page: 33
– volume: 93
  issue: 20
  year: 2004
  article-title: Two‐threshold model for scaling laws of noninteracting snow avalanches
  publication-title: Phys. Rev. Lett.
– volume: 59
  start-page: 909
  issue: 4
  year: 1992
  end-page: 914
  article-title: The distribution of simultaneous fiber failures in fiber bundles
  publication-title: J. Appl. Mech.
– start-page: 59
  year: 2002
  end-page: 78
– volume: 16
  start-page: 19
  year: 1979
  end-page: 33
  article-title: Strength of tree roots and landslides on Prince of Wales Island, Alaska
  publication-title: Can. Geotech. J.
– year: 2001
– volume: 116
  year: 2011
  article-title: An analytical fiber bundle model for pullout mechanics of root bundles
  publication-title: J. Geophys. Res.
– volume: 86
  start-page: 5490
  year: 2001
  end-page: 5493
  article-title: Avalanches in one‐dimensional piles with different types of bases
  publication-title: Phys. Rev. Lett.
– volume: 73
  year: 2006
  article-title: Finite driving rate and anisotropy effects in landslide modeling
  publication-title: Phys. Rev. E
– volume: 55
  start-page: 997
  issue: 194
  year: 2009
  end-page: 1002
  article-title: Modelling snow failure with a fibre bundle model
  publication-title: J. Glaciol.
– volume: 50
  start-page: 525
  year: 2006
  end-page: 534
  article-title: Modeling of rainfall‐triggered shallow landslide
  publication-title: Environ. Geol.
– volume: 14
  start-page: 369
  year: 2000
  end-page: 385
  article-title: Stormflow generation in steep forested headwaters: A linked hydrogeomorphic paradigm
  publication-title: Hydrol. Processes
– volume: 102
  year: 2009
  article-title: Avalanche prediction in a self‐organized pile of beads
  publication-title: Phys. Rev. Lett.
– volume: 16
  start-page: 515
  year: 2009
  end-page: 523
  article-title: Characteristic scales in landslide modeling
  publication-title: Nonlinear Processes Geophys.
– year: 2004
– volume: 16
  start-page: 179
  year: 2009
  end-page: 188
  article-title: Probability distributions of landslide volumes
  publication-title: Nonlinear Processes Geophys.
– volume: 435
  start-page: 1079
  year: 2005
  end-page: 1082
  article-title: Contact force measurements and stress‐induced anisotropy in granular materials
  publication-title: Nature
– start-page: 157
  year: 2011
  end-page: 188
– volume: 64
  start-page: 1871
  year: 2005
  end-page: 1888
  article-title: Slope stability analysis based on elasto‐plastic finite element method
  publication-title: Int. J. Numer. Methods Eng.
– volume: 76
  year: 2007
  article-title: Edge effects on the power‐law distribution of granular avalanches
  publication-title: Phys. Rev. E
– volume: 45
  year: 2009
  article-title: The fiber bundle model for multiscale modeling of hydro‐mechanical triggering of shallow landslides
  publication-title: Water Resour. Res.
– volume: 48
  start-page: 681
  issue: 5
  year: 1998
  end-page: 687
  article-title: A unique relationship for for the determination of the shear strength of unsaturated soils
  publication-title: Géotechnique
– start-page: 378
  year: 1957
  end-page: 381
– volume: 30
  start-page: 1153
  issue: 4
  year: 1994
  end-page: 1171
  article-title: A physically based model for the topographic control on shallow landslides
  publication-title: Water Resour. Res.
– volume: 16
  start-page: 233
  year: 2009
  end-page: 240
  article-title: Correlated earthquakes in a self‐organized model
  publication-title: Nonlinear Processes Geophys.
– volume: 256
  start-page: 588
  year: 2007
  end-page: 603
  article-title: Characteristics of the size distribution of recent and historical landslides in a populated hilly region
  publication-title: Earth Planet. Science. Lett.
– volume: 101
  start-page: 134
  year: 2008
  end-page: 145
  article-title: Internal soil moisture response to rainfall‐induced slope failures and debris discharge
  publication-title: Eng. Geol.
– year: 1968
– volume: 35
  start-page: 459
  year: 1984
  end-page: 468
  article-title: The strength of unsaturated mixtures of sand and kaolin and the concept of effective stress
  publication-title: J. Soil Sci.
– year: 2003
– year: 1996
– volume: 83
  start-page: 345
  year: 1957
  end-page: 357
  article-title: The theory of infiltration: 1. The infiltration equation and its solution
  publication-title: Soil Sci.
– volume: 3
  start-page: 247
  year: 2010
  end-page: 251
  article-title: Landslide erosion controlled by hillslope material
  publication-title: Nat. Geosci.
– volume: 48
  start-page: 255
  year: 1997
  end-page: 268
  article-title: Scale‐invariance of soil moisture variability and its implications for the frequency‐size distribution of landslides
  publication-title: Eng. Geol.
– volume: 28
  start-page: 925
  year: 2003
  end-page: 950
  article-title: Testing a model for predicting the timing and location of shallow landslide initiation in soil‐mantled landscapes
  publication-title: Earth Surf. Processes Landforms
– volume: 62
  start-page: 1377
  year: 1999
  end-page: 1429
  article-title: Self‐organized criticality
  publication-title: Rep. Progress Phys.
– volume: 116
  year: 2011
  article-title: Analytical and observational relations between landslide volume and surface area
  publication-title: J. Geophys. Res.
– volume: 67
  year: 2003
  article-title: Self‐organized criticality in a bead pile
  publication-title: Phys. Rev. E
– start-page: 235
  year: 2010
  end-page: 249
– volume: 114
  year: 2009
  article-title: Landslide rupture and the probability distribution of mobilized debris volumes
  publication-title: J. Geophys. Res
– volume: 4
  start-page: 209
  year: 1994
  end-page: 221
  article-title: Sweeping of an instability: An alternative to self‐organized criticality to get powerlaws without parameter tuning
  publication-title: J. Phys. I (France
– volume: 15
  start-page: 79
  year: 1965
  end-page: 93
  article-title: The analysis of the stability of general slip surfaces
  publication-title: Géotechnique
– volume: 132
  start-page: 591
  year: 2006
  end-page: 602
  article-title: Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands
  publication-title: J. Geotech Geoenviron. Eng.
– volume: 5
  start-page: 7
  year: 1955
  end-page: 17
  article-title: The use of slip circle in the stability analysis of slopes
  publication-title: Géotechnique
– volume: 32
  year: 2005
  article-title: Seismic precursory patterns before a cliff collapse and critical point phenomena
  publication-title: Geophys. Res. Lett.
– volume: 29
  start-page: 687
  year: 2004
  end-page: 711
  article-title: Landslide inventories and their statistical properties
  publication-title: Earth Surf. Processes Landforms
– volume: 379
  start-page: 49
  year: 1996
  end-page: 52
  article-title: Avalanche dynamics in a pile of rice
  publication-title: Nature
– volume: 28
  start-page: 1091
  year: 2001
  end-page: 1094
  article-title: The characterization of landslide size distribution
  publication-title: Water Resour. Res.
– volume: 195
  start-page: 169
  year: 2002
  end-page: 183
  article-title: Power‐law correlations of landslide areas in central Italy
  publication-title: Earth Planet. Sci. Lett.
– volume: 35
  start-page: 354
  year: 2010
  end-page: 367
  article-title: Quantifying lateral root reinforcement in steep slopes—From a bundle of roots to forest stands
  publication-title: Earth Surf. Processes Landforms
– volume: 55
  start-page: 163
  year: 2004
  end-page: 181
  article-title: Topographic controls of landslides in Rio de Janeiro: Field evidence and modeling
  publication-title: Catena
– year: 2006
– volume: 115
  start-page: 744
  year: 1989
  end-page: 751
  article-title: On the correspondence between Brooks‐Corey and van Genuchten models
  publication-title: J. Irrig. Drain. Eng.
– volume: 115
  year: 2010
  article-title: Root‐soil mechanical interactions during pullout and failure of root bundles
  publication-title: J. Geophys. Res.
– volume: 3
  start-page: 181
  year: 2006
  end-page: 194
  article-title: Modeling regional initiation of rainfall‐induced shallow landslides in the eastern Umbria region of central Italy
  publication-title: Landslides
– ident: e_1_2_11_18_1
  doi: 10.1029/2009WR007889
– ident: e_1_2_11_112_1
  doi: 10.1002/nme.1406
– ident: e_1_2_11_95_1
  doi: 10.1029/WM018
– ident: e_1_2_11_75_1
  doi: 10.5194/npg-16-515-2009
– ident: e_1_2_11_10_1
– ident: e_1_2_11_97_1
  doi: 10.1002/hyp.6886
– ident: e_1_2_11_49_1
  doi: 10.1126/science.238.4829.921
– ident: e_1_2_11_58_1
  doi: 10.1002/esp.1064
– ident: e_1_2_11_11_1
  doi: 10.5194/npg-16-179-2009
– ident: e_1_2_11_65_1
  doi: 10.1103/PhysRevE.67.011302
– ident: e_1_2_11_85_1
– ident: e_1_2_11_74_1
  doi: 10.1103/PhysRevLett.93.208001
– ident: e_1_2_11_87_1
  doi: 10.1103/PhysRevLett.88.068302
– ident: e_1_2_11_77_1
  doi: 10.1016/j.tecto.2009.11.007
– ident: e_1_2_11_36_1
  doi: 10.1016/j.epsl.2009.01.005
– ident: e_1_2_11_54_1
  doi: 10.1061/(ASCE)0733-9437(1989)115:4(744)
– ident: e_1_2_11_88_1
  doi: 10.1139/t01-031
– ident: e_1_2_11_66_1
  doi: 10.1103/PhysRevLett.68.1244
– ident: e_1_2_11_4_1
  doi: 10.1029/2004GL022270
– ident: e_1_2_11_43_1
  doi: 10.1029/2000WR900090
– ident: e_1_2_11_91_1
  doi: 10.1029/2009JF001603
– volume: 28
  start-page: 1091
  year: 2001
  ident: e_1_2_11_102_1
  article-title: The characterization of landslide size distribution
  publication-title: Water Resour. Res.
– ident: e_1_2_11_53_1
  doi: 10.1038/ngeo776
– start-page: 378
  volume-title: Proceedings of the 4th International Conference on Soil Mechanics & Foundation Engineering
  year: 1957
  ident: e_1_2_11_98_1
– ident: e_1_2_11_13_1
  doi: 10.1002/esp.470
– ident: e_1_2_11_72_1
  doi: 10.1130/G21147.1
– ident: e_1_2_11_68_1
  doi: 10.1016/S0013-7952(00)00038-7
– ident: e_1_2_11_51_1
  doi: 10.1029/2009JF001604
– ident: e_1_2_11_21_1
  doi: 10.1016/S0013-7952(00)00077-6
– ident: e_1_2_11_59_1
  doi: 10.1007/s10707-008-0060-5
– ident: e_1_2_11_52_1
  doi: 10.1103/PhysRevLett.93.125502
– ident: e_1_2_11_103_1
  doi: 10.1016/j.advwatres.2005.02.016
– ident: e_1_2_11_105_1
  doi: 10.1088/0034-4885/62/10/201
– ident: e_1_2_11_16_1
  doi: 10.1061/(ASCE)1090-0241(2006)132:5(591)
– ident: e_1_2_11_32_1
  doi: 10.2136/vzj2009.0154
– ident: e_1_2_11_5_1
  doi: 10.5194/npg-16-233-2009
– ident: e_1_2_11_37_1
  doi: 10.1103/PhysRevLett.65.1120
– ident: e_1_2_11_57_1
  doi: 10.1038/nature03805
– ident: e_1_2_11_71_1
  doi: 10.1016/S0013-7952(97)00041-0
– ident: e_1_2_11_69_1
  doi: 10.4141/cjss76-019
– ident: e_1_2_11_81_1
  doi: 10.3189/002214309790794869
– start-page: 235
  volume-title: Mechanics of Unsaturated Geomaterials
  year: 2010
  ident: e_1_2_11_24_1
– volume-title: Critical State Soil Mechanics
  year: 1968
  ident: e_1_2_11_89_1
– ident: e_1_2_11_2_1
  doi: 10.1103/PhysRevE.67.051306
– ident: e_1_2_11_73_1
  doi: 10.1097/00010694-195705000-00002
– ident: e_1_2_11_104_1
  doi: 10.1007/s00254-006-0229-x
– ident: e_1_2_11_34_1
  doi: 10.1680/geot.1999.49.3.387
– ident: e_1_2_11_38_1
  doi: 10.1115/1.2894060
– ident: e_1_2_11_41_1
  doi: 10.1016/j.enggeo.2008.04.009
– ident: e_1_2_11_63_1
  doi: 10.1680/geot.1965.15.1.79
– ident: e_1_2_11_30_1
  doi: 10.1130/0016-7606(2002)114<0983:LOCSSA>2.0.CO;2
– start-page: 11
  volume-title: Landslides‐Analysis and Control
  year: 1978
  ident: e_1_2_11_108_1
– ident: e_1_2_11_83_1
– ident: e_1_2_11_76_1
  doi: 10.1103/PhysRevE.74.016122
– start-page: 59
  volume-title: Proceedings of the First European Conference on Landslides
  year: 2002
  ident: e_1_2_11_90_1
– volume: 82
  start-page: 33
  issue: 1
  year: 2009
  ident: e_1_2_11_84_1
  article-title: Effects of forests on shallow landslides—Case studies in Switzerland
  publication-title: For. Snow Landscape Res.
– ident: e_1_2_11_39_1
  doi: 10.1007/978-3-662-04390-5
– ident: e_1_2_11_33_1
  doi: 10.2136/sssaj2001.653624x
– ident: e_1_2_11_61_1
  doi: 10.1029/93WR02979
– ident: e_1_2_11_7_1
  doi: 10.1103/PhysRevLett.59.381
– ident: e_1_2_11_12_1
  doi: 10.1126/science.158.3805.1182
– ident: e_1_2_11_45_1
  doi: 10.1126/science.290.5491.513
– ident: e_1_2_11_93_1
  doi: 10.1002/esp.1927
– ident: e_1_2_11_106_1
  doi: 10.1139/t96-060
– ident: e_1_2_11_107_1
  doi: 10.1016/j.epsl.2007.01.040
– start-page: 12
  volume-title: Proceedings of the Fourth International Conference on Debris‐Flow Hazards Mitigation: Mechanics, Prediction, and Assessment (DFHM‐4)
  year: 2007
  ident: e_1_2_11_23_1
– ident: e_1_2_11_50_1
  doi: 10.1680/geot.1998.48.5.681
– ident: e_1_2_11_109_1
– ident: e_1_2_11_6_1
  doi: 10.1007/978-1-4757-5426-1
– ident: e_1_2_11_80_1
  doi: 10.13031/2013.33720
– ident: e_1_2_11_86_1
  doi: 10.1007/s10346-006-0037-0
– ident: e_1_2_11_96_1
  doi: 10.1002/(SICI)1099-1085(20000228)14:3<369::AID-HYP943>3.0.CO;2-P
– ident: e_1_2_11_44_1
  doi: 10.1146/annurev.earth.25.1.85
– ident: e_1_2_11_110_1
  doi: 10.1139/t79-003
– ident: e_1_2_11_20_1
  doi: 10.1103/PhysRevE.67.041304
– ident: e_1_2_11_42_1
  doi: 10.1029/2006JF000495
– ident: e_1_2_11_79_1
  doi: 10.1103/PhysRevLett.102.078701
– ident: e_1_2_11_92_1
  doi: 10.1016/j.ecoleng.2009.06.014
– volume-title: Hillslope Materials and Processes
  year: 1993
  ident: e_1_2_11_94_1
– ident: e_1_2_11_25_1
  doi: 10.1103/PhysRevLett.93.208001
– ident: e_1_2_11_28_1
  doi: 10.1016/S0341-8162(03)00115-2
– ident: e_1_2_11_56_1
  doi: 10.1029/2009WR008646
– start-page: 47
  volume-title: Embankment Dam Engineering, Casagrande Volume
  year: 1973
  ident: e_1_2_11_46_1
– ident: e_1_2_11_26_1
  doi: 10.1029/2009JB006512
– volume-title: Fundamentals of Soil Behavior
  year: 2005
  ident: e_1_2_11_60_1
– ident: e_1_2_11_31_1
  doi: 10.1016/j.geomorph.2005.08.013
– ident: e_1_2_11_19_1
  doi: 10.1029/2010JF001886
– ident: e_1_2_11_3_1
  doi: 10.1103/PhysRevLett.86.5490
– ident: e_1_2_11_15_1
  doi: 10.1016/j.enggeo.2004.12.008
– ident: e_1_2_11_111_1
  doi: 10.1186/BF03351762
– volume: 13
  start-page: 41
  year: 1976
  ident: e_1_2_11_67_1
  article-title: Influence of cenozoic geology on mass movement and sediment yield response to forest removal, North Westland, New Zealand
  publication-title: Bull. Eng. Geol. Environ.
– start-page: 157
  volume-title: Horizons in Earth Science Research
  year: 2011
  ident: e_1_2_11_78_1
– ident: e_1_2_11_70_1
  doi: 10.1080/19447027.1926.10599953
– ident: e_1_2_11_55_1
  doi: 10.1103/PhysRevE.76.040301
– ident: e_1_2_11_8_1
  doi: 10.1680/geot.1955.5.1.7
– ident: e_1_2_11_62_1
  doi: 10.1016/S0378-4371(99)00358-1
– ident: e_1_2_11_82_1
– volume-title: Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools
  year: 2004
  ident: e_1_2_11_100_1
– ident: e_1_2_11_101_1
  doi: 10.1029/2008JF001008
– ident: e_1_2_11_27_1
  doi: 10.1680/geot.2005.55.6.467
– ident: e_1_2_11_29_1
  doi: 10.1038/379049a0
– ident: e_1_2_11_14_1
  doi: 10.1103/PhysRevE.59.R12
– ident: e_1_2_11_64_1
  doi: 10.1111/j.1365-2389.1984.tb00303.x
– ident: e_1_2_11_47_1
  doi: 10.1017/CBO9780511622717
– ident: e_1_2_11_17_1
  doi: 10.1142/p365
– volume: 32
  start-page: 1
  year: 1960
  ident: e_1_2_11_9_1
  article-title: The principle of effective stress
  publication-title: Norwegian Geotechnical Institute Publication No.
– ident: e_1_2_11_40_1
  doi: 10.5194/nhess-3-505-2003
– ident: e_1_2_11_48_1
  doi: 10.1029/JB091iB10p10412
– ident: e_1_2_11_22_1
  doi: 10.1098/rspa.1945.0011
– ident: e_1_2_11_99_1
  doi: 10.1051/jp1:1994133
– ident: e_1_2_11_35_1
  doi: 10.1016/S0012-821X(01)00589-1
SSID ssj0014567
Score 2.3348505
Snippet Water infiltrating during intense rainfall on steep slopes gradually weakens the wet soil mass, inducing localized failures that may initiate a cascade of load...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms criticality
hillslope
landslide
Title Hydromechanical triggering of landslides: From progressive local failures to mass release
URI https://api.istex.fr/ark:/67375/WNG-2X2TZH99-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011WR010947
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQ-gAviE9RvuQH4KVkJLZjJ7zBtFEhUVDVqYWXKE5sNthaVAJi_PXcOXGSFoYGL1YUWVbi-9l3Pv_ujpBHoSxh2xMyMCYMA6ElD5I8t9DIRCteRqzAAOc3Ezk-FK8X8aJzZbvokkrvFj__GFfyP1KFdyBXjJL9B8m2g8ILeAb5QgsShvZCMh6fuWwDGLzr5rqCo_ZHl1sQbUAXxXtyXNastwOMI3FsLCS-fjcjp8VGNj9GYrrL83AKhrQrouJvbD75EjGYSXHdOPqxS88F5sg8R6dNreUNuu_btQ9i7_sWkKTB-76FLR9i7RPr2EZuQ8UMp7ym2O6aeg9NhQhUWlco8ZusSHpg4j112yqj3_bykGEqVDRQ5lO8wBOq01n-nn5LlbUEw3z9GRlrKs7mk1cZW7DZh3GaZqCrB0wpvM8fvNyfvJu2F05gRypPRsD_aWIk4Bue9b9gw3oZ4EL8sXmqcWbJ7Bq52pwn6IsaHNfJJbO8QS77cPOv8NyUuT86u0nebwGGdoChK0s7wDynCBfagwt1cKEeLrRaUYQLbeByixwe7M_2xkFTWyPIuUp4oCIbcVkWeayFLI1URqexsFGoTWllkRrBVcETMO-4tHDk17mNNUwEU2CAShvy22RnuVqaO4SaKE1CC2YpK2AEVuQ5FgVgRRqp0lhphmTk5ywrmsTzWP_kJHMECAZi6c3wkDxue3-pE66c0--Jm_6203kiH5KnTj5_HS2bT_emEWec373ouPfIlW7J3Cc71fqbeQAGaqUfNuD6Bc7Pj04
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydromechanical+triggering+of+landslides%3A+From+progressive+local+failures+to+mass+release&rft.jtitle=Water+resources+research&rft.au=Lehmann%2C+Peter&rft.au=Or%2C+Dani&rft.date=2012-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=48&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2011WR010947&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_2X2TZH99_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon