Hydromechanical triggering of landslides: From progressive local failures to mass release
Water infiltrating during intense rainfall on steep slopes gradually weakens the wet soil mass, inducing localized failures that may initiate a cascade of load redistributions and successive failures propagating across a hillslope. The challenge of linking the progressive nature of local events culm...
Saved in:
Published in | Water resources research Vol. 48; no. 3 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.03.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0043-1397 1944-7973 |
DOI | 10.1029/2011WR010947 |
Cover
Abstract | Water infiltrating during intense rainfall on steep slopes gradually weakens the wet soil mass, inducing localized failures that may initiate a cascade of load redistributions and successive failures propagating across a hillslope. The challenge of linking the progressive nature of local events culminating in an abrupt landslide is addressed by a new hydromechanical triggering model that links key hydrologic processes with threshold‐based mechanical interactions. A hillslope is represented as assembly of soil columns interconnected by frictional and tensile mechanical bonds represented as virtual bundles of fibers. Increasing water load exerted on mechanical bonds causes gradual failure of fibers until restraining forces are exceeded. Following failure at the soil‐bedrock interface, the load on a column is redistributed to its neighbors via intact mechanical (primarily tensile) bonds which, in turn, may also fail and transmit the load downslope as compressive stresses. When soil internal compressive strength is exceeded, a load‐bearing column may liquefy and initiate a landslide release that could propagate downslope or retrogressively upslope. The model reproduces observed power law frequency magnitude relationships of landslides with exponents ranging between −1.0 and −2.2 in agreement with landslide inventory data. We applied a criticality measure defined by Ramos (2011) to evaluate the specific influences of slope angle, soil texture, and root reinforcement on attainment of hillslope criticality in which a small local failure may trigger release of a large soil mass. The model provides new insights on the conditions giving rise to an abrupt transition from a seemingly stable hillslope to a catastrophic landslide.
Key Points
Small local mechanical perturbations may grow and culminate to landslides
Hillslope criticality increases with slope angle and root reinforcement
Hydro‐mechanical model computes spatial and temporal patterns of soil strength |
---|---|
AbstractList | Water infiltrating during intense rainfall on steep slopes gradually weakens the wet soil mass, inducing localized failures that may initiate a cascade of load redistributions and successive failures propagating across a hillslope. The challenge of linking the progressive nature of local events culminating in an abrupt landslide is addressed by a new hydromechanical triggering model that links key hydrologic processes with threshold‐based mechanical interactions. A hillslope is represented as assembly of soil columns interconnected by frictional and tensile mechanical bonds represented as virtual bundles of fibers. Increasing water load exerted on mechanical bonds causes gradual failure of fibers until restraining forces are exceeded. Following failure at the soil‐bedrock interface, the load on a column is redistributed to its neighbors via intact mechanical (primarily tensile) bonds which, in turn, may also fail and transmit the load downslope as compressive stresses. When soil internal compressive strength is exceeded, a load‐bearing column may liquefy and initiate a landslide release that could propagate downslope or retrogressively upslope. The model reproduces observed power law frequency magnitude relationships of landslides with exponents ranging between −1.0 and −2.2 in agreement with landslide inventory data. We applied a criticality measure defined by Ramos (2011) to evaluate the specific influences of slope angle, soil texture, and root reinforcement on attainment of hillslope criticality in which a small local failure may trigger release of a large soil mass. The model provides new insights on the conditions giving rise to an abrupt transition from a seemingly stable hillslope to a catastrophic landslide.
Key Points
Small local mechanical perturbations may grow and culminate to landslides
Hillslope criticality increases with slope angle and root reinforcement
Hydro‐mechanical model computes spatial and temporal patterns of soil strength Water infiltrating during intense rainfall on steep slopes gradually weakens the wet soil mass, inducing localized failures that may initiate a cascade of load redistributions and successive failures propagating across a hillslope. The challenge of linking the progressive nature of local events culminating in an abrupt landslide is addressed by a new hydromechanical triggering model that links key hydrologic processes with threshold‐based mechanical interactions. A hillslope is represented as assembly of soil columns interconnected by frictional and tensile mechanical bonds represented as virtual bundles of fibers. Increasing water load exerted on mechanical bonds causes gradual failure of fibers until restraining forces are exceeded. Following failure at the soil‐bedrock interface, the load on a column is redistributed to its neighbors via intact mechanical (primarily tensile) bonds which, in turn, may also fail and transmit the load downslope as compressive stresses. When soil internal compressive strength is exceeded, a load‐bearing column may liquefy and initiate a landslide release that could propagate downslope or retrogressively upslope. The model reproduces observed power law frequency magnitude relationships of landslides with exponents ranging between −1.0 and −2.2 in agreement with landslide inventory data. We applied a criticality measure defined by Ramos (2011) to evaluate the specific influences of slope angle, soil texture, and root reinforcement on attainment of hillslope criticality in which a small local failure may trigger release of a large soil mass. The model provides new insights on the conditions giving rise to an abrupt transition from a seemingly stable hillslope to a catastrophic landslide. Small local mechanical perturbations may grow and culminate to landslides Hillslope criticality increases with slope angle and root reinforcement Hydro‐mechanical model computes spatial and temporal patterns of soil strength |
Author | Lehmann, Peter Or, Dani |
Author_xml | – sequence: 1 givenname: Peter surname: Lehmann fullname: Lehmann, Peter email: peter.lehmann@env.ethz.ch organization: Soil and Terrestrial Environmental Physics STEP, Institute of Terrestrial Ecosystems,ETH Zurich, Zurich,Switzerland – sequence: 2 givenname: Dani surname: Or fullname: Or, Dani organization: Soil and Terrestrial Environmental Physics STEP, Institute of Terrestrial Ecosystems,ETH Zurich, Zurich,Switzerland |
BookMark | eNp9kF1LwzAUhoMouE3v_AH5AVZzmqRZvJPhNmEojMnUm5K2JzXatSOpH_v3dkxEBL06cHiel3PePtmvmxoJOQF2BizW5zEDWM4ZMC3UHumBFiJSWvF90mNM8Ai4VoekH8IzYyBkonrkYbopfLPC_MnULjcVbb0rS_SuLmljaWXqIlSuwHBBxx1H174pPYbg3pBWzVawxlWv3Yq2DV2ZEKjHCk3AI3JgTRXw-GsOyN34ajGaRrPbyfXochYZroY8UmCBJ0VuZCaSAhOFmZbCAsuwsEmuUXCV86EAyROrQGXGyqz7M1YgZWIZH5B4l5v7JgSPNs1da1rX1K3vTkuBpdty0p_ldNLpL2nt3cr4zV843-HvrsLNv2y6nI_mwGPOOyvaWS60-PFtGf-SJoormS5vJml8Hy8ep7oL4Z849oX6 |
CitedBy_id | crossref_primary_10_3390_w16020312 crossref_primary_10_1002_hyp_10829 crossref_primary_10_1016_j_enggeo_2020_105942 crossref_primary_10_1016_j_scitotenv_2018_12_206 crossref_primary_10_1002_wrcr_20418 crossref_primary_10_1061__ASCE_GM_1943_5622_0001903 crossref_primary_10_1016_j_jhydrol_2017_04_038 crossref_primary_10_5194_hess_24_1367_2020 crossref_primary_10_1016_j_enggeo_2020_105747 crossref_primary_10_1002_2015JF003615 crossref_primary_10_1007_s11069_023_05956_5 crossref_primary_10_5194_hess_22_3493_2018 crossref_primary_10_37153_2618_9283_2024_1_31_48 crossref_primary_10_5194_gh_70_1_2015 crossref_primary_10_1016_j_enggeo_2024_107480 crossref_primary_10_1016_j_jhydrol_2018_10_036 crossref_primary_10_1007_s10346_019_01197_5 crossref_primary_10_3390_rs11202347 crossref_primary_10_3390_w13060801 crossref_primary_10_1016_j_geomorph_2016_10_007 crossref_primary_10_1029_2022WR032716 crossref_primary_10_1007_s00550_024_00549_7 crossref_primary_10_3390_w10070950 crossref_primary_10_1029_2017MS001270 crossref_primary_10_1029_2020JF005669 crossref_primary_10_1002_2015WR017758 crossref_primary_10_3390_geohazards4010003 crossref_primary_10_1002_2015JF003520 crossref_primary_10_3390_su7055648 crossref_primary_10_1139_cgj_2016_0629 crossref_primary_10_1007_s11069_013_0769_9 crossref_primary_10_1029_2019WR025233 crossref_primary_10_1680_jgeot_23_00263 crossref_primary_10_1016_j_envsoft_2022_105354 crossref_primary_10_1002_2016GL071763 crossref_primary_10_1002_2015GL067494 crossref_primary_10_1073_pnas_2021855118 crossref_primary_10_1061__ASCE_GM_1943_5622_0001292 crossref_primary_10_1016_j_gsf_2023_101773 crossref_primary_10_3390_w10101290 crossref_primary_10_1002_2015WR016909 crossref_primary_10_1016_j_catena_2025_108793 crossref_primary_10_1007_s10346_024_02304_x crossref_primary_10_1016_j_advwatres_2020_103669 crossref_primary_10_1002_wat2_1126 crossref_primary_10_1016_j_jrmge_2023_04_004 crossref_primary_10_1186_s40677_016_0052_y crossref_primary_10_5194_hess_17_4095_2013 crossref_primary_10_5194_nhess_25_169_2025 crossref_primary_10_1007_s10346_023_02066_y crossref_primary_10_2136_vzj2018_10_0191 crossref_primary_10_1140_epjp_i2014_14089_y crossref_primary_10_1029_2024JF007815 crossref_primary_10_3390_app11062718 crossref_primary_10_1016_j_ecoleng_2021_106436 crossref_primary_10_1029_2017JF004557 crossref_primary_10_1029_2019GL085994 crossref_primary_10_5194_nhess_24_3387_2024 crossref_primary_10_1016_j_catena_2021_105213 crossref_primary_10_1002_esp_4479 crossref_primary_10_5194_nhess_15_905_2015 crossref_primary_10_1007_s10064_024_04022_z crossref_primary_10_1016_j_geomorph_2023_108638 crossref_primary_10_1029_2024WR039611 crossref_primary_10_1016_j_catena_2018_07_043 crossref_primary_10_1016_j_scitotenv_2017_03_258 crossref_primary_10_1016_j_enggeo_2019_04_009 crossref_primary_10_1016_j_geomorph_2014_11_030 crossref_primary_10_1016_j_geomorph_2017_04_017 crossref_primary_10_1002_2014JG002824 crossref_primary_10_1016_j_enggeo_2015_04_006 crossref_primary_10_1029_2022WR034243 crossref_primary_10_1029_2022GL100389 crossref_primary_10_1144_qjegh2024_138 crossref_primary_10_5194_esurf_5_451_2017 crossref_primary_10_1016_j_jhydrol_2016_03_036 crossref_primary_10_5194_esurf_6_903_2018 crossref_primary_10_1002_2014JF003135 crossref_primary_10_1016_j_ecolind_2024_112606 crossref_primary_10_1002_2014JF003137 crossref_primary_10_1016_j_geomorph_2020_107121 crossref_primary_10_1002_2013WR015122 |
Cites_doi | 10.1029/2009WR007889 10.1002/nme.1406 10.1029/WM018 10.5194/npg-16-515-2009 10.1002/hyp.6886 10.1126/science.238.4829.921 10.1002/esp.1064 10.5194/npg-16-179-2009 10.1103/PhysRevE.67.011302 10.1103/PhysRevLett.93.208001 10.1103/PhysRevLett.88.068302 10.1016/j.tecto.2009.11.007 10.1016/j.epsl.2009.01.005 10.1061/(ASCE)0733-9437(1989)115:4(744) 10.1139/t01-031 10.1103/PhysRevLett.68.1244 10.1029/2004GL022270 10.1029/2000WR900090 10.1029/2009JF001603 10.1038/ngeo776 10.1002/esp.470 10.1130/G21147.1 10.1016/S0013-7952(00)00038-7 10.1029/2009JF001604 10.1016/S0013-7952(00)00077-6 10.1007/s10707-008-0060-5 10.1103/PhysRevLett.93.125502 10.1016/j.advwatres.2005.02.016 10.1088/0034-4885/62/10/201 10.1061/(ASCE)1090-0241(2006)132:5(591) 10.2136/vzj2009.0154 10.5194/npg-16-233-2009 10.1103/PhysRevLett.65.1120 10.1038/nature03805 10.1016/S0013-7952(97)00041-0 10.4141/cjss76-019 10.3189/002214309790794869 10.1103/PhysRevE.67.051306 10.1097/00010694-195705000-00002 10.1007/s00254-006-0229-x 10.1680/geot.1999.49.3.387 10.1115/1.2894060 10.1016/j.enggeo.2008.04.009 10.1680/geot.1965.15.1.79 10.1130/0016-7606(2002)114<0983:LOCSSA>2.0.CO;2 10.1103/PhysRevE.74.016122 10.1007/978-3-662-04390-5 10.2136/sssaj2001.653624x 10.1029/93WR02979 10.1103/PhysRevLett.59.381 10.1126/science.158.3805.1182 10.1126/science.290.5491.513 10.1002/esp.1927 10.1139/t96-060 10.1016/j.epsl.2007.01.040 10.1680/geot.1998.48.5.681 10.1007/978-1-4757-5426-1 10.13031/2013.33720 10.1007/s10346-006-0037-0 10.1002/(SICI)1099-1085(20000228)14:3<369::AID-HYP943>3.0.CO;2-P 10.1146/annurev.earth.25.1.85 10.1139/t79-003 10.1103/PhysRevE.67.041304 10.1029/2006JF000495 10.1103/PhysRevLett.102.078701 10.1016/j.ecoleng.2009.06.014 10.1016/S0341-8162(03)00115-2 10.1029/2009WR008646 10.1029/2009JB006512 10.1016/j.geomorph.2005.08.013 10.1029/2010JF001886 10.1103/PhysRevLett.86.5490 10.1016/j.enggeo.2004.12.008 10.1186/BF03351762 10.1080/19447027.1926.10599953 10.1103/PhysRevE.76.040301 10.1680/geot.1955.5.1.7 10.1016/S0378-4371(99)00358-1 10.1029/2008JF001008 10.1680/geot.2005.55.6.467 10.1038/379049a0 10.1103/PhysRevE.59.R12 10.1111/j.1365-2389.1984.tb00303.x 10.1017/CBO9780511622717 10.1142/p365 10.5194/nhess-3-505-2003 10.1029/JB091iB10p10412 10.1098/rspa.1945.0011 10.1051/jp1:1994133 10.1016/S0012-821X(01)00589-1 |
ContentType | Journal Article |
Copyright | Copyright 2012 by the American Geophysical Union |
Copyright_xml | – notice: Copyright 2012 by the American Geophysical Union |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1029/2011WR010947 |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Economics |
EISSN | 1944-7973 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2011WR010947 WRCR13233 ark_67375_WNG_2X2TZH99_2 |
Genre | article |
GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 3V. 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A00 A6W AAESR AAHBH AAHHS AAIHA AAIKC AAMNW AANLZ AASGY AAXRX AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AIDBO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI BSCLL CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR WYJ XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AEUYN AFWVQ AAYXX ADXHL AETEA AGQPQ CITATION GROUPED_DOAJ PHGZM PHGZT |
ID | FETCH-LOGICAL-a3783-71f136dca5b46de67eb954f10bedf6c9e437c3841536f717baf5b011271556f03 |
ISSN | 0043-1397 |
IngestDate | Tue Jul 01 01:34:09 EDT 2025 Thu Apr 24 23:10:19 EDT 2025 Wed Jan 22 16:29:52 EST 2025 Wed Oct 30 09:52:25 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a3783-71f136dca5b46de67eb954f10bedf6c9e437c3841536f717baf5b011271556f03 |
Notes | istex:E7B8273837DD2A43E1762A3585FEEB7011B09501 ArticleID:2011WR010947 Tab-delimited Table 1. ark:/67375/WNG-2X2TZH99-2 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2011WR010947 |
PageCount | 24 |
ParticipantIDs | crossref_citationtrail_10_1029_2011WR010947 crossref_primary_10_1029_2011WR010947 wiley_primary_10_1029_2011WR010947_WRCR13233 istex_primary_ark_67375_WNG_2X2TZH99_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2012 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: March 2012 |
PublicationDecade | 2010 |
PublicationTitle | Water resources research |
PublicationTitleAlternate | Water Resour. Res |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Bak, P. (1996), How Nature Works: The Science of Self-Organized Criticality, Copernicus Springer, New York. Peirce, F. T. (1926), Tensile tests for cotton yarns, V: The weakest link, J. Textile Inst., Trans., 17, 355-368. Ramos, O., E.Altshuler, and K. J.Måløy (2009), Avalanche prediction in a self-organized pile of beads, Phys. Rev. Lett., 102, 078701. Piegari, E., V.Cataudella, R.Di Maio, L.Milano, and M.Nicodemi (2006), Finite driving rate and anisotropy effects in landslide modeling, Phys. Rev. E, 73, 026123, doi:10.1103/PhysRevLett.93.208001. Simoni, S., F.Zanotti, G.Bertoldi, and R.Rigon (2008), Modeling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop-FS, Hydrol. Processes, 22, 532-545. Malamud, B. D., D. L.Turcotte, F.Guzzetti, and P.Reichenbach (2004), Landslide inventories and their statistical properties, Earth Surf. Processes Landforms, 29, 687-711. Stark, C. P., and F.Guzzetti (2009), Landslide rupture and the probability distribution of mobilized debris volumes, J. Geophys. Res, 114, F00A02. Olami, Z., H. J. S.Feder, and K.Christensen (1992), Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Physi. Rev. Lett., 68(8), 1244-1247. Aegerter, C. M., R.Günther, and R. J.Wijngaarden (2003), Avalanche dynamics, surface roughening, and self-organized criticality: Experiments on a three-dimensional pile of rice, Phys. Rev. E, 67, 051306. Cadman, J. D., and R. E.Goodman (1967), Landslide noise, Science, 158, 1182-1184. Dai, F. C., and C. F.Lee (2001), Frequency-volume relation and prediction of rainfall-induced landslides, Eng. Geol., 59, 253-266. Yoshioka, N. (2003), A sandpile experiment and its implications for self-organized criticality and characteristic earthquake, Earth Planets Space, 55, 283-289. Khalili.N., and M. H.Khabbaz (1998), A unique relationship for χ for the determination of the shear strength of unsaturated soils, Géotechnique, 48(5), 681-687. Schwarz, M., D.Cohen, and D.Or (2010a), Root-soil mechanical interactions during pullout and failure of root bundles, J. Geophys. Res., 115, F04035, doi:10.1029/2009JF001603. Stark, C. P., and N.Hovius (2001), The characterization of landslide size distribution, Water Resour. Res., 28, 1091-1094. Lenhard, R. J., J. C.Parker, and S.Mishra (1989), On the correspondence between Brooks-Corey and van Genuchten models, J. Irrig. Drain. Eng., 115, 744-751. Rickli, C., and F.Graf (2009), Effects of forests on shallow landslides-Case studies in Switzerland, For. Snow Landscape Res., 82(1), 33-44. Amitrano, D., J. R.Grasso, and G.Senfaute (2005), Seismic precursory patterns before a cliff collapse and critical point phenomena, Geophys. Res. Lett., 32, L08314, doi:10.1029/2004GL022270. Gabet, E. J., and T.Dunne (2002), Landslides on coastal sage-scrub and grassland hillslopes in a sever El Niño winter: The effects of vegetation conversion on sediment delivery, Geol. Soc. Am. Bull., 114, 983-990. Hergarten, S. (2003), Landslides, sandpiles, and self-organized criticality, Nat. Hazards Earth Syst. Sci., 3, 505-514. Zheng, H., D. F.Liu, and C. G.Li (2005), Slope stability analysis based on elasto-plastic finite element method, Int. J. Numer. Methods Eng., 64, 1871-1888. Sornette, D. (2004), Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools, Springer, Berlin. Mitchell, J. K., and L.Soga (2005), Fundamentals of Soil Behavior, 3rd ed., John Wiley, New York. Chigira, M., and O.Yokoyama (2005), Weathering profile of non-welded ignimbrite and the water infiltration behavior within it in relation to the generation of shallow landslides, Eng. Geol., 78, 187-207. Cohen, D., M.Schwarz, and D.Or (2011), An analytical fiber bundle model for pullout mechanics of root bundles, J. Geophys. Res., 116, F03010, doi:10.1029/2010JF001886. Tromp-van Meerveld, H. J., and J. J.McDonnell (2006), On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale, Adv. Water Resour., 29, 293-310. Germer, K., and J.Braun (2011), Effects of saturation on slope stability: Laboratory experiments utilizing external load, Vadose Zone J., 10, 477-486. Costello, R. M. C., K. L.Cruz, C.Egnatuk, D. T.Jacobs, M. C.Krivos, T. S.Louis, R. J.Urban, and H.Wagner (2003), Self-organized criticality in a bead pile, Phys. Rev. E, 67, 041304. Brunetti, M. T., F.Guzzetti, and M.Rossi (2009), Probability distributions of landslide volumes, Nonlinear Processes Geophys., 16, 179-188. Hemmer, P. C., and A.Hansen (1992), The distribution of simultaneous fiber failures in fiber bundles, J. Appl. Mech., 59(4), 909-914. Cho, G.-C., J.Dodds, and J. C.Santamarina (2006), Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands, J. Geotech Geoenviron. Eng., 132, 591-602. Schmidt, K. M., J. J.Roering, J. D.Stock, W. E.Dietrich, D. R.Montgomery, and T.Schaub (2001), The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range, Can. Geotech. J., 38, 995-1024. Held, G. A., D. H.Solina, D. T.Keane, W. J.Haag, P. M.Horn, and G.Grinstein (1990), Experimental study of critical mass fluctuations in an evolving sandpile, Phys. Rev. Lett., 65, 1120-1123. Skempton, A. W., and F. A.DeLory (1957), Stability of natural slopes in London clay, Proceedings of the 4th International Conference on Soil Mechanics & Foundation Engineering, vol. 2, pp. 378-381, Butterworths Sci. Publ., London. Larsen, I. J., D. R.Montgomery, and O.Korup (2010), Landslide erosion controlled by hillslope material, Nat. Geosci., 3, 247-251. Schwarz, M., P.Lehmann, and D.Or (2010c), Quantifying lateral root reinforcement in steep slopes-From a bundle of roots to forest stands, Earth Surf. Processes Landforms, 35, 354-367. Klar, A., E.Aharonov, B.Kalderon-Asael, and O.Katz (2011), Analytical and observational relations between landslide volume and surface area, J. Geophys. Res., 116, F02001, doi:10.1029/2009JF001604. Iverson, R. M. (2000), Landslide triggering by rain infiltration, Water Resour. Res., 36(7), 1897-1910. Lörincz, K. A., and R. J.Wijngaarden (2007), Edge effects on the power-law distribution of granular avalanches, Phys. Rev. E, 76, 040301. Iverson, R. M., M. E.Reid, N. R.Iverson, R. G.LaHusen, M.Logan, J. E.Mann, and D. L.Brien (2000), Acute sensitivity of landslide rates to initial soil porosity, Science, 290, 513-516. Griffith, D. V., and P. A.Lane (1999), Slope stability analysis by finite elements, Géotechnique, 49(3), 387-403. Bishop, A. W. (1960), The principle of effective stress, Norwegian Geotechnical Institute Publication No.32, 1-5. Casadei, M., W. E.Dietrich, and N. L.Miller (2003), Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes, Earth Surf. Processes Landforms, 28, 925-950. Fernandes, N. F., R. F.Guimarães, R. A. T.Gomes, B. C.Vieira, D. R.Montgomery, and H.Greenberg (2004), Topographic controls of landslides in Rio de Janeiro: Field evidence and modeling, Catena, 55, 163-181. Keefer, D. K., R. C.Wilson, R. K.Mark, E. E.Brabb, W. M.BrownIII, S. D.Ellen, E. L.Harp, G. F.Wieczorek, C. S.Alger, and R. S.Zatkin (1987), Real-time landslide warning during heavy rainfall, Science, 238, 921-925. Petley, D. N., T.Higuchi, D. J.Petley, M. H.Bulmer, and J.Carey (2005), Development of progressive landslide failure in cohesive materials, Geology, 33, 201-204. Huang, C.-C., C.-L.Lo, J.-S.Jang, and L.-K.Hwu (2008), Internal soil moisture response to rainfall-induced slope failures and debris discharge, Eng. Geol., 101, 134-145. Mullins, C. E., and K. P.Panayiotopoulos (1984), The strength of unsaturated mixtures of sand and kaolin and the concept of effective stress, J. Soil Sci., 35, 459-468. Moreno, Y., J. B.Gómez, and A. F.Pacheco (1999), Self-organized criticality in a fiber-bundle-type model, Phys. A, 274, 400-409. Parise, M., and R. W.Jibson (2000), A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslide triggered by the 17 January, 1994 Northridge, California earthquake, Eng. Geol., 58, 251-270. Wu, T. H., W. P.McKinnel, and D. N.Swanston (1979), Strength of tree roots and landslides on Prince of Wales Island, Alaska, Can. Geotech. J., 16, 19-33. Majmudar, T. S. and R. P.Behringer (2005), Contact force measurements and stress-induced anisotropy in granular materials, Nature, 435, 1079-1082. Altshuler, E., O.Ramos, C.Martínez, L. E.Flores, and C.Noda (2001), Avalanches in one-dimensional piles with different types of bases, Phys. Rev. Lett., 86, 5490-5493. Schwarz, M., F.Preti, P.Lehmann, and D.Or (2010b), Quantifying the role of vegetation in slope stability: A case study in Tuscany (Italy), Ecol. Eng., 36, 285-291. Ramos, O. (2010), Criticality in earthquakes. Good or bad for prediction?, Tectonophysics, 485, 321-326. Christensen, K., and N. R.Moloney (2005), Complexity and Criticality, Imperial College Press, London. Sidle, R. C., and H.Ochiai (2006), Landslides: Processes, Prediction and Land Use, American Geophysical Union, Washington, DC. Faillettaz, J., F.Louchet, and J. R.Grasso (2004), Two-threshold model for scaling laws of noninteracting snow avalanches, Phys. Rev. Lett., 93(20), 208001, doi:10.1103/PhysRevLett.93.208001. Nerone, N., M. A.Aguirre, A.Calvo, D.Bideau, and I.Ippolito (2003), Instabilities in slowly driven granular packing, Phys. Rev. E, 67, 011302. Rawls, W. J., D. L.Brakensiek, and K. E.Saxton (1982), Estimation of soil water properties, Trans. Am. Soc. Agric. Eng., 25(5), 1316-1320. Reiweger, I., J.Schweizer, J.Dual, and H. J.Herrmann (2009), Modelling snow failure with a fibre bundle model, J. Glaciol., 55(194), 997-1002. Chessa, A., H. E.Stanley, A.Vespignani, and S.Zapperi (1999), Universality in sand piles, Phys. Rev. E, 59(1), R12-R15. Jensen, H. J. (1998), Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems, Cambri 2011; 116 1960; 32 2004; 29 1989; 115 2009; 82 1997; 48 1999; 49 2005; 64 1967; 158 1973 1992; 59 2008; 101 1965; 15 2007; 76 2009; 114 1978 2003; 55 1957; 83 2000; 14 1987; 238 2010; 115 1999; 59 2002; 88 2006; 29 2001; 59 2008; 22 1996; 379 2010; 3 2009; 16 2005; 78 1979; 16 1986; 91 2010; 36 2006; 50 2010; 35 1997; 25 1998 1996 1926; 17 1993 2001; 28 1987; 59 2004; 55 1976; 56 2010; 46 1984; 35 2009; 102 2003; 28 2001; 38 2009; 45 1998; 48 2006; 74 2006; 73 2002; 195 2002; 114 1955; 5 2006; 132 2011; 10 2009; 279 2001; 86 2000; 290 1996; 33 2009; 55 1982; 25 2007; 256 2000; 58 2001 2003; 3 2005; 32 1994; 30 2005; 33 1945; 183 2011 2010 2005; 435 2010; 485 2008 2007 2008; 13 2006 2005 2006; 3 2004 2003 1999; 62 2002 1957 2001; 65 2007; 112 1990; 65 1976; 13 2004; 93 2000; 36 1999; 274 1964 1992; 68 2005; 55 1968 1994; 4 2003; 67 e_1_2_11_70_1 e_1_2_11_93_1 Mitchell J. K. (e_1_2_11_60_1) 2005 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_29_1 e_1_2_11_4_1 O'Loughlin C. L. (e_1_2_11_67_1) 1976; 13 e_1_2_11_106_1 e_1_2_11_48_1 Stark C. P. (e_1_2_11_102_1) 2001; 28 Eichenberger J. (e_1_2_11_24_1) 2010 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_59_1 Bishop A. W. (e_1_2_11_9_1) 1960; 32 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 Sornette D. (e_1_2_11_100_1) 2004 e_1_2_11_103_1 e_1_2_11_28_1 e_1_2_11_5_1 Ramos O. (e_1_2_11_78_1) 2011 Skempton A. W. (e_1_2_11_98_1) 1957 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_16_1 Schofield A. (e_1_2_11_89_1) 1968 e_1_2_11_110_1 e_1_2_11_39_1 Dietrich W. E. (e_1_2_11_23_1) 2007 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_27_1 e_1_2_11_2_1 Schuster R. L. (e_1_2_11_90_1) 2002 e_1_2_11_83_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_38_1 e_1_2_11_19_1 Selby M. J. (e_1_2_11_94_1) 1993 e_1_2_11_71_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 Janbu N. (e_1_2_11_46_1) 1973 Rickli C. (e_1_2_11_84_1) 2009; 82 e_1_2_11_82_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_18_1 e_1_2_11_37_1 e_1_2_11_112_1 Varnes D. J. (e_1_2_11_108_1) 1978 |
References_xml | – reference: Stark, C. P., and F.Guzzetti (2009), Landslide rupture and the probability distribution of mobilized debris volumes, J. Geophys. Res, 114, F00A02. – reference: Keefer, D. K., R. C.Wilson, R. K.Mark, E. E.Brabb, W. M.BrownIII, S. D.Ellen, E. L.Harp, G. F.Wieczorek, C. S.Alger, and R. S.Zatkin (1987), Real-time landslide warning during heavy rainfall, Science, 238, 921-925. – reference: Schwarz, M., P.Lehmann, and D.Or (2010c), Quantifying lateral root reinforcement in steep slopes-From a bundle of roots to forest stands, Earth Surf. Processes Landforms, 35, 354-367. – reference: Fernandes, N. F., R. F.Guimarães, R. A. T.Gomes, B. C.Vieira, D. R.Montgomery, and H.Greenberg (2004), Topographic controls of landslides in Rio de Janeiro: Field evidence and modeling, Catena, 55, 163-181. – reference: Hergarten, S. (2003), Landslides, sandpiles, and self-organized criticality, Nat. Hazards Earth Syst. Sci., 3, 505-514. – reference: Brunetti, M. T., F.Guzzetti, and M.Rossi (2009), Probability distributions of landslide volumes, Nonlinear Processes Geophys., 16, 179-188. – reference: Mitchell, J. K., and L.Soga (2005), Fundamentals of Soil Behavior, 3rd ed., John Wiley, New York. – reference: Baiesi, M. (2009), Correlated earthquakes in a self-organized model, Nonlinear Processes Geophys., 16, 233-240. – reference: Ghezzehei, T. A., and D.Or (2001), Rheological properties of wet soils and clays under steady and oscillatory stresses, J. Soil Sci. Soc. Am., 65, 624-637. – reference: Iverson, R. M., M. E.Reid, N. R.Iverson, R. G.LaHusen, M.Logan, J. E.Mann, and D. L.Brien (2000), Acute sensitivity of landslide rates to initial soil porosity, Science, 290, 513-516. – reference: Majmudar, T. S. and R. P.Behringer (2005), Contact force measurements and stress-induced anisotropy in granular materials, Nature, 435, 1079-1082. – reference: Christensen, K., and N. R.Moloney (2005), Complexity and Criticality, Imperial College Press, London. – reference: Koslowski, M., R.LeSar, and R.Thomson (2004), Avalanches and scaling in plastic deformation, Phys. Rev. Lett., 93(12), 125-502. – reference: Rickli, C., and F.Graf (2009), Effects of forests on shallow landslides-Case studies in Switzerland, For. Snow Landscape Res., 82(1), 33-44. – reference: Bak, P., C.Tang, and K.Wiesenfeld (1987), Self-organized criticality: An explanation of 1/f noise, Phys. Rev. Lett., 59(4), 381-384. – reference: Rawls, W. J., D. L.Brakensiek, and K. E.Saxton (1982), Estimation of soil water properties, Trans. Am. Soc. Agric. Eng., 25(5), 1316-1320. – reference: Guzzetti, F., B. D.Malamud, D. L.Turcotte, and P.Reichenbach (2002), Power-law correlations of landslide areas in central Italy, Earth Planet. Sci. Lett., 195, 169-183. – reference: Yoshioka, N. (2003), A sandpile experiment and its implications for self-organized criticality and characteristic earthquake, Earth Planets Space, 55, 283-289. – reference: Ramos, O. (2010), Criticality in earthquakes. Good or bad for prediction?, Tectonophysics, 485, 321-326. – reference: Selby, M. J. (1993), Hillslope Materials and Processes, 2nd ed., Oxford University Press, Oxford. – reference: Morgenstern, N. R., and V. E.Price (1965), The analysis of the stability of general slip surfaces, Géotechnique, 15, 79-93. – reference: Salciarini, D., J. W.Godt, W. Z.Savage, P.Conversini, R. L.Baum, and J. A.Michael (2006), Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria region of central Italy, Landslides, 3, 181-194. – reference: Griffith, D. V., and P. A.Lane (1999), Slope stability analysis by finite elements, Géotechnique, 49(3), 387-403. – reference: Sornette, D. (2004), Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools, Springer, Berlin. – reference: Wu, T. H., W. P.McKinnel, and D. N.Swanston (1979), Strength of tree roots and landslides on Prince of Wales Island, Alaska, Can. Geotech. J., 16, 19-33. – reference: Bishop, A. W. (1960), The principle of effective stress, Norwegian Geotechnical Institute Publication No.32, 1-5. – reference: Zheng, H., D. F.Liu, and C. G.Li (2005), Slope stability analysis based on elasto-plastic finite element method, Int. J. Numer. Methods Eng., 64, 1871-1888. – reference: Lu, N., J. W.Godt, and D. T.Wu (2010), A closed form equation for effective stress in unsaturated soil, Water Resour. Res., 46, W05515, doi:10.1029/2009WR008646. – reference: Gabet, E. J., and S. M.Mudd (2006), The mobilization of debris flows from shallow landslides, Geomorphology, 74, 207-218. – reference: Pradhan, S., A.Hansen, and P. C.Hemmer (2006), Crossover behavior in failure avalanches, Phys. Rev. E, 74, 016122. – reference: Sidle, R. C., Y.Tsuboyama, S.Noguchi, I.Hosoda, M.Fujieda, and T.Shimizu (2000), Stormflow generation in steep forested headwaters: A linked hydrogeomorphic paradigm, Hydrol. Processes, 14, 369-385. – reference: Tromp-van Meerveld, H. J., and J. J.McDonnell (2006), On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale, Adv. Water Resour., 29, 293-310. – reference: Guzzetti, F., F.Ardizzone, M.Cardinali, M.Rossi, and D.Valigi (2009), Landslide volumes and landslide mobilization rates in Umbria, Central Italy, Earth Planet. Sci. Lett., 279, 222-229. – reference: Sornette, D. (1994), Sweeping of an instability: An alternative to self-organized criticality to get powerlaws without parameter tuning, J. Phys. I (France), 4, 209-221. – reference: Ramos, O., E.Altshuler, and K. J.Måløy (2009), Avalanche prediction in a self-organized pile of beads, Phys. Rev. Lett., 102, 078701. – reference: Chigira, M., and O.Yokoyama (2005), Weathering profile of non-welded ignimbrite and the water infiltration behavior within it in relation to the generation of shallow landslides, Eng. Geol., 78, 187-207. – reference: Dai, F. C., and C. F.Lee (2001), Frequency-volume relation and prediction of rainfall-induced landslides, Eng. Geol., 59, 253-266. – reference: Mullins, C. E., and K. P.Panayiotopoulos (1984), The strength of unsaturated mixtures of sand and kaolin and the concept of effective stress, J. Soil Sci., 35, 459-468. – reference: Khalili.N., and M. H.Khabbaz (1998), A unique relationship for χ for the determination of the shear strength of unsaturated soils, Géotechnique, 48(5), 681-687. – reference: Cho, G.-C., J.Dodds, and J. C.Santamarina (2006), Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands, J. Geotech Geoenviron. Eng., 132, 591-602. – reference: Klar, A., E.Aharonov, B.Kalderon-Asael, and O.Katz (2011), Analytical and observational relations between landslide volume and surface area, J. Geophys. Res., 116, F02001, doi:10.1029/2009JF001604. – reference: O'Loughlin, C. L., and A. J.Pearce (1976), Influence of cenozoic geology on mass movement and sediment yield response to forest removal, North Westland, New Zealand, Bull. Eng. Geol. Environ., 13, 41-46. – reference: Amitrano, D., J. R.Grasso, and G.Senfaute (2005), Seismic precursory patterns before a cliff collapse and critical point phenomena, Geophys. Res. Lett., 32, L08314, doi:10.1029/2004GL022270. – reference: Turcotte, D. L. (1999), Self-organized criticality, Rep. Progress Phys., 62, 1377-1429. – reference: Van Den Eeckhaut, M., J.Poesen, G.Govers, G.Verstraeten, and A.Demoulin (2007), Characteristics of the size distribution of recent and historical landslides in a populated hilly region, Earth Planet. Science. Lett., 256, 588-603. – reference: Nerone, N., M. A.Aguirre, A.Calvo, D.Bideau, and I.Ippolito (2003), Instabilities in slowly driven granular packing, Phys. Rev. E, 67, 011302. – reference: Lenhard, R. J., J. C.Parker, and S.Mishra (1989), On the correspondence between Brooks-Corey and van Genuchten models, J. Irrig. Drain. Eng., 115, 744-751. – reference: Larsen, I. J., D. R.Montgomery, and O.Korup (2010), Landslide erosion controlled by hillslope material, Nat. Geosci., 3, 247-251. – reference: Philip, J. R. (1957), The theory of infiltration: 1. The infiltration equation and its solution, Soil Sci., 83, 345-357. – reference: Hemmer, P. C., and A.Hansen (1992), The distribution of simultaneous fiber failures in fiber bundles, J. Appl. Mech., 59(4), 909-914. – reference: Bak, P. (1996), How Nature Works: The Science of Self-Organized Criticality, Copernicus Springer, New York. – reference: Simoni, S., F.Zanotti, G.Bertoldi, and R.Rigon (2008), Modeling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop-FS, Hydrol. Processes, 22, 532-545. – reference: Montgomery, D. R., and W. E.Dietrich (1994), A physically based model for the topographic control on shallow landslides, Water Resour. Res., 30(4), 1153-1171. – reference: Held, G. A., D. H.Solina, D. T.Keane, W. J.Haag, P. M.Horn, and G.Grinstein (1990), Experimental study of critical mass fluctuations in an evolving sandpile, Phys. Rev. Lett., 65, 1120-1123. – reference: Jensen, H. J. (1998), Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems, Cambridge University Press, Cambridge. – reference: Schmidt, K. M., J. J.Roering, J. D.Stock, W. E.Dietrich, D. R.Montgomery, and T.Schaub (2001), The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range, Can. Geotech. J., 38, 995-1024. – reference: Cohen, D., M.Schwarz, and D.Or (2011), An analytical fiber bundle model for pullout mechanics of root bundles, J. Geophys. Res., 116, F03010, doi:10.1029/2010JF001886. – reference: Reiweger, I., J.Schweizer, J.Dual, and H. J.Herrmann (2009), Modelling snow failure with a fibre bundle model, J. Glaciol., 55(194), 997-1002. – reference: Lörincz, K. A., and R. J.Wijngaarden (2007), Edge effects on the power-law distribution of granular avalanches, Phys. Rev. E, 76, 040301. – reference: Hergarten, S. (2002), Self-Organized Criticality in Earth Systems, Springer, Berlin. – reference: Imaizumi, M., and R.Sidle (2007), Linkage of sediment supply and transport processes in Miyagawa Dam catchment, Japan, J. Geophys. Res., 112, F03012, doi:10.1029/2006JF000495. – reference: Iverson, R. M. (2000), Landslide triggering by rain infiltration, Water Resour. Res., 36(7), 1897-1910. – reference: Parlange, J.-Y., and R. E.Smith (1976), Ponding time for variable rainfall rates, Can. J. Soil Sci., 56, 121-123. – reference: Altshuler, E., O.Ramos, C.Martínez, L. E.Flores, and C.Noda (2001), Avalanches in one-dimensional piles with different types of bases, Phys. Rev. Lett., 86, 5490-5493. – reference: Parise, M., and R. W.Jibson (2000), A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslide triggered by the 17 January, 1994 Northridge, California earthquake, Eng. Geol., 58, 251-270. – reference: Schwarz, M., D.Cohen, and D.Or (2010a), Root-soil mechanical interactions during pullout and failure of root bundles, J. Geophys. Res., 115, F04035, doi:10.1029/2009JF001603. – reference: Katz, J. I. (1986), A model of propagating brittle failure in heterogeneous media, J. Geophys. Res., 91, 10,412-10,420. – reference: Schofield, A., and P.Wroth (1968), Critical State Soil Mechanics, McGraw-Hill, London. – reference: Pelletier, J. D., B. D.Malamud, T.Blodgett, and T. L.Turcotte (1997), Scale-invariance of soil moisture variability and its implications for the frequency-size distribution of landslides, Eng. Geol., 48, 255-268. – reference: Germer, K., and J.Braun (2011), Effects of saturation on slope stability: Laboratory experiments utilizing external load, Vadose Zone J., 10, 477-486. – reference: Piegari, E., V.Cataudella, R.Di Maio, L.Milano, and M.Nicodemi (2006), Finite driving rate and anisotropy effects in landslide modeling, Phys. Rev. E, 73, 026123, doi:10.1103/PhysRevLett.93.208001. – reference: Sidle, R. C., and H.Ochiai (2006), Landslides: Processes, Prediction and Land Use, American Geophysical Union, Washington, DC. – reference: Gabet, E. J., and T.Dunne (2002), Landslides on coastal sage-scrub and grassland hillslopes in a sever El Niño winter: The effects of vegetation conversion on sediment delivery, Geol. Soc. Am. Bull., 114, 983-990. – reference: Bishop, A. W. (1955), The use of slip circle in the stability analysis of slopes. Géotechnique, 5, 7-17. – reference: Malamud, B. D., D. L.Turcotte, F.Guzzetti, and P.Reichenbach (2004), Landslide inventories and their statistical properties, Earth Surf. Processes Landforms, 29, 687-711. – reference: Olami, Z., H. J. S.Feder, and K.Christensen (1992), Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Physi. Rev. Lett., 68(8), 1244-1247. – reference: Casadei, M., W. E.Dietrich, and N. L.Miller (2003), Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes, Earth Surf. Processes Landforms, 28, 925-950. – reference: Daniels, H. E. (1945), The statistical theory of the strength of bundles of threads: I, Proc. R. Soc. London Ser. A, 183, 405-435. – reference: Sánchez, R., D. E.Newman, and B. A.Carreras (2002), Waiting-time statistics of self-organized-criticality systems, Phys. Rev. Lett., 88(6), 068302. – reference: Iverson, R. M., M. E.Reid, and R. G.LaHusen (1997), Debris-flow mobilization from landslides, Annu. Rev. Earth Planet. Sci., 25, 85-138. – reference: Vanapalli, S. K., D. G.Fredlund, D. E.Pufahl, and A. W.Clifton (1996), Model for the prediction of shear strength with respect to soil suction, Can. Geotech. J., 33, 379-392. – reference: Cadman, J. D., and R. E.Goodman (1967), Landslide noise, Science, 158, 1182-1184. – reference: Fannin, R. J., A.Eliadorani, and J. M. T.Wilkinson (2005), Shear strength of cohesionless soils at low stress, Géotechnique, 55, 467-478. – reference: Tsai, T.-L., and J. C.Yang (2006), Modeling of rainfall-triggered shallow landslide, Environ. Geol., 50, 525-534. – reference: Faillettaz, J., D.Sornette, and M.Funk (2010), Gravity-driven instabilities: Interplay between state- and velocity-dependent frictional sliding and stress corrosion damage cracking, J. Geophys. Res., 115, B03409, doi:10.1029/2009JB006512. – reference: Marchesini, I., C.Cencetti, and P.De Rosa (2008), A preliminary method for the evaluation of the landslides volume at regional scale, Geoinformatica, 13(3), 277-289. – reference: Aegerter, C. M., R.Günther, and R. J.Wijngaarden (2003), Avalanche dynamics, surface roughening, and self-organized criticality: Experiments on a three-dimensional pile of rice, Phys. Rev. E, 67, 051306. – reference: Skempton, A. W., and F. A.DeLory (1957), Stability of natural slopes in London clay, Proceedings of the 4th International Conference on Soil Mechanics & Foundation Engineering, vol. 2, pp. 378-381, Butterworths Sci. Publ., London. – reference: Moreno, Y., J. B.Gómez, and A. F.Pacheco (1999), Self-organized criticality in a fiber-bundle-type model, Phys. A, 274, 400-409. – reference: Chessa, A., H. E.Stanley, A.Vespignani, and S.Zapperi (1999), Universality in sand piles, Phys. Rev. E, 59(1), R12-R15. – reference: Petley, D. N., T.Higuchi, D. J.Petley, M. H.Bulmer, and J.Carey (2005), Development of progressive landslide failure in cohesive materials, Geology, 33, 201-204. – reference: Schwarz, M., F.Preti, P.Lehmann, and D.Or (2010b), Quantifying the role of vegetation in slope stability: A case study in Tuscany (Italy), Ecol. Eng., 36, 285-291. – reference: Stark, C. P., and N.Hovius (2001), The characterization of landslide size distribution, Water Resour. Res., 28, 1091-1094. – reference: Frette, V., K.Christensen, A.Malthe-Sørenssen, J.Feder, T.Jøssang, and P.Meakin (1996), Avalanche dynamics in a pile of rice, Nature, 379, 49-52. – reference: Faillettaz, J., F.Louchet, and J. R.Grasso (2004), Two-threshold model for scaling laws of noninteracting snow avalanches, Phys. Rev. Lett., 93(20), 208001, doi:10.1103/PhysRevLett.93.208001. – reference: Piegari, E., R.DiMaio, and L.Milano (2009), Characteristic scales in landslide modeling, Nonlinear Processes Geophys., 16, 515-523. – reference: Costello, R. M. C., K. L.Cruz, C.Egnatuk, D. T.Jacobs, M. C.Krivos, T. S.Louis, R. J.Urban, and H.Wagner (2003), Self-organized criticality in a bead pile, Phys. Rev. E, 67, 041304. – reference: Huang, C.-C., C.-L.Lo, J.-S.Jang, and L.-K.Hwu (2008), Internal soil moisture response to rainfall-induced slope failures and debris discharge, Eng. Geol., 101, 134-145. – reference: Peirce, F. T. (1926), Tensile tests for cotton yarns, V: The weakest link, J. Textile Inst., Trans., 17, 355-368. – reference: Cohen, D., P.Lehmann, and D.Or (2009), The fiber bundle model for multiscale modeling of hydro-mechanical triggering of shallow landslides, Water Resour. Res., 45, W10436, doi:10.1029/2009WR007889. – volume: 32 start-page: 1 year: 1960 end-page: 5 article-title: The principle of effective stress publication-title: Norwegian Geotechnical Institute Publication No. – volume: 114 start-page: 983 year: 2002 end-page: 990 article-title: Landslides on coastal sage‐scrub and grassland hillslopes in a sever El Niño winter: The effects of vegetation conversion on sediment delivery publication-title: Geol. Soc. Am. Bull. – volume: 82 start-page: 33 issue: 1 year: 2009 end-page: 44 article-title: Effects of forests on shallow landslides—Case studies in Switzerland publication-title: For. Snow Landscape Res. – volume: 55 start-page: 467 year: 2005 end-page: 478 article-title: Shear strength of cohesionless soils at low stress publication-title: Géotechnique – year: 2005 – volume: 49 start-page: 387 issue: 3 year: 1999 end-page: 403 article-title: Slope stability analysis by finite elements publication-title: Géotechnique – volume: 56 start-page: 121 year: 1976 end-page: 123 article-title: Ponding time for variable rainfall rates publication-title: Can. J. Soil Sci. – volume: 33 start-page: 379 year: 1996 end-page: 392 article-title: Model for the prediction of shear strength with respect to soil suction publication-title: Can. Geotech. J. – volume: 65 start-page: 1120 year: 1990 end-page: 1123 article-title: Experimental study of critical mass fluctuations in an evolving sandpile publication-title: Phys. Rev. Lett. – volume: 67 year: 2003 article-title: Instabilities in slowly driven granular packing publication-title: Phys. Rev. E – volume: 22 start-page: 532 year: 2008 end-page: 545 article-title: Modeling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop‐FS publication-title: Hydrol. Processes – start-page: 12 year: 2007 – volume: 59 start-page: 253 year: 2001 end-page: 266 article-title: Frequency‐volume relation and prediction of rainfall‐induced landslides publication-title: Eng. Geol. – year: 1998 – volume: 78 start-page: 187 year: 2005 end-page: 207 article-title: Weathering profile of non‐welded ignimbrite and the water infiltration behavior within it in relation to the generation of shallow landslides publication-title: Eng. Geol. – volume: 59 start-page: R12 issue: 1 year: 1999 end-page: R15 article-title: Universality in sand piles publication-title: Phys. Rev. E – volume: 36 start-page: 1897 issue: 7 year: 2000 end-page: 1910 article-title: Landslide triggering by rain infiltration publication-title: Water Resour. Res. – year: 2008 – volume: 112 year: 2007 article-title: Linkage of sediment supply and transport processes in Miyagawa Dam catchment, Japan publication-title: J. Geophys. Res. – volume: 290 start-page: 513 year: 2000 end-page: 516 article-title: Acute sensitivity of landslide rates to initial soil porosity publication-title: Science – volume: 158 start-page: 1182 year: 1967 end-page: 1184 article-title: Landslide noise publication-title: Science – volume: 3 start-page: 505 year: 2003 end-page: 514 article-title: Landslides, sandpiles, and self‐organized criticality publication-title: Nat. Hazards Earth Syst. Sci. – volume: 115 year: 2010 article-title: Gravity‐driven instabilities: Interplay between state‐ and velocity‐dependent frictional sliding and stress corrosion damage cracking publication-title: J. Geophys. Res. – volume: 25 start-page: 85 year: 1997 end-page: 138 article-title: Debris‐flow mobilization from landslides publication-title: Annu. Rev. Earth Planet. Sci. – volume: 13 start-page: 277 issue: 3 year: 2008 end-page: 289 article-title: A preliminary method for the evaluation of the landslides volume at regional scale publication-title: Geoinformatica – volume: 74 year: 2006 article-title: Crossover behavior in failure avalanches publication-title: Phys. Rev. E – year: 1993 – volume: 88 issue: 6 year: 2002 article-title: Waiting‐time statistics of self‐organized‐criticality systems publication-title: Phys. Rev. Lett. – volume: 17 start-page: 355 year: 1926 end-page: 368 article-title: Tensile tests for cotton yarns, V: The weakest link publication-title: J. Textile Inst., Trans. – year: 1964 – volume: 29 start-page: 293 year: 2006 end-page: 310 article-title: On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale publication-title: Adv. Water Resour. – volume: 58 start-page: 251 year: 2000 end-page: 270 article-title: A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslide triggered by the 17 January, 1994 Northridge, California earthquake publication-title: Eng. Geol. – volume: 279 start-page: 222 year: 2009 end-page: 229 article-title: Landslide volumes and landslide mobilization rates in Umbria, Central Italy publication-title: Earth Planet. Sci. Lett. – volume: 93 start-page: 125 issue: 12 year: 2004 end-page: 502 article-title: Avalanches and scaling in plastic deformation publication-title: Phys. Rev. Lett. – volume: 38 start-page: 995 year: 2001 end-page: 1024 article-title: The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range publication-title: Can. Geotech. J. – volume: 59 start-page: 381 issue: 4 year: 1987 end-page: 384 article-title: Self‐organized criticality: An explanation of 1/f noise publication-title: Phys. Rev. Lett. – volume: 68 start-page: 1244 issue: 8 year: 1992 end-page: 1247 article-title: Self‐organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes publication-title: Physi. Rev. Lett. – volume: 274 start-page: 400 year: 1999 end-page: 409 article-title: Self‐organized criticality in a fiber‐bundle‐type model publication-title: Phys. A – volume: 65 start-page: 624 year: 2001 end-page: 637 article-title: Rheological properties of wet soils and clays under steady and oscillatory stresses publication-title: J. Soil Sci. Soc. Am. – volume: 67 year: 2003 article-title: Avalanche dynamics, surface roughening, and self‐organized criticality: Experiments on a three‐dimensional pile of rice publication-title: Phys. Rev. E – volume: 55 start-page: 283 year: 2003 end-page: 289 article-title: A sandpile experiment and its implications for self‐organized criticality and characteristic earthquake publication-title: Earth Planets Space – start-page: 47 year: 1973 end-page: 86 – volume: 238 start-page: 921 year: 1987 end-page: 925 article-title: Real‐time landslide warning during heavy rainfall publication-title: Science – volume: 91 start-page: 10,412 year: 1986 end-page: 10,420 article-title: A model of propagating brittle failure in heterogeneous media publication-title: J. Geophys. Res. – volume: 46 year: 2010 article-title: A closed form equation for effective stress in unsaturated soil publication-title: Water Resour. Res. – volume: 485 start-page: 321 year: 2010 end-page: 326 article-title: Criticality in earthquakes. Good or bad for prediction? publication-title: Tectonophysics – year: 2002 – volume: 36 start-page: 285 year: 2010 end-page: 291 article-title: Quantifying the role of vegetation in slope stability: A case study in Tuscany (Italy) publication-title: Ecol. Eng. – volume: 183 start-page: 405 year: 1945 end-page: 435 article-title: The statistical theory of the strength of bundles of threads: I publication-title: Proc. R. Soc. London Ser. A – volume: 33 start-page: 201 year: 2005 end-page: 204 article-title: Development of progressive landslide failure in cohesive materials publication-title: Geology – volume: 25 start-page: 1316 issue: 5 year: 1982 end-page: 1320 article-title: Estimation of soil water properties publication-title: Trans. Am. Soc. Agric. Eng. – volume: 10 start-page: 477 year: 2011 end-page: 486 article-title: Effects of saturation on slope stability: Laboratory experiments utilizing external load publication-title: Vadose Zone J. – volume: 13 start-page: 41 year: 1976 end-page: 46 article-title: Influence of cenozoic geology on mass movement and sediment yield response to forest removal, North Westland, New Zealand publication-title: Bull. Eng. Geol. Environ. – volume: 74 start-page: 207 year: 2006 end-page: 218 article-title: The mobilization of debris flows from shallow landslides publication-title: Geomorphology – start-page: 11 year: 1978 end-page: 33 – volume: 93 issue: 20 year: 2004 article-title: Two‐threshold model for scaling laws of noninteracting snow avalanches publication-title: Phys. Rev. Lett. – volume: 59 start-page: 909 issue: 4 year: 1992 end-page: 914 article-title: The distribution of simultaneous fiber failures in fiber bundles publication-title: J. Appl. Mech. – start-page: 59 year: 2002 end-page: 78 – volume: 16 start-page: 19 year: 1979 end-page: 33 article-title: Strength of tree roots and landslides on Prince of Wales Island, Alaska publication-title: Can. Geotech. J. – year: 2001 – volume: 116 year: 2011 article-title: An analytical fiber bundle model for pullout mechanics of root bundles publication-title: J. Geophys. Res. – volume: 86 start-page: 5490 year: 2001 end-page: 5493 article-title: Avalanches in one‐dimensional piles with different types of bases publication-title: Phys. Rev. Lett. – volume: 73 year: 2006 article-title: Finite driving rate and anisotropy effects in landslide modeling publication-title: Phys. Rev. E – volume: 55 start-page: 997 issue: 194 year: 2009 end-page: 1002 article-title: Modelling snow failure with a fibre bundle model publication-title: J. Glaciol. – volume: 50 start-page: 525 year: 2006 end-page: 534 article-title: Modeling of rainfall‐triggered shallow landslide publication-title: Environ. Geol. – volume: 14 start-page: 369 year: 2000 end-page: 385 article-title: Stormflow generation in steep forested headwaters: A linked hydrogeomorphic paradigm publication-title: Hydrol. Processes – volume: 102 year: 2009 article-title: Avalanche prediction in a self‐organized pile of beads publication-title: Phys. Rev. Lett. – volume: 16 start-page: 515 year: 2009 end-page: 523 article-title: Characteristic scales in landslide modeling publication-title: Nonlinear Processes Geophys. – year: 2004 – volume: 16 start-page: 179 year: 2009 end-page: 188 article-title: Probability distributions of landslide volumes publication-title: Nonlinear Processes Geophys. – volume: 435 start-page: 1079 year: 2005 end-page: 1082 article-title: Contact force measurements and stress‐induced anisotropy in granular materials publication-title: Nature – start-page: 157 year: 2011 end-page: 188 – volume: 64 start-page: 1871 year: 2005 end-page: 1888 article-title: Slope stability analysis based on elasto‐plastic finite element method publication-title: Int. J. Numer. Methods Eng. – volume: 76 year: 2007 article-title: Edge effects on the power‐law distribution of granular avalanches publication-title: Phys. Rev. E – volume: 45 year: 2009 article-title: The fiber bundle model for multiscale modeling of hydro‐mechanical triggering of shallow landslides publication-title: Water Resour. Res. – volume: 48 start-page: 681 issue: 5 year: 1998 end-page: 687 article-title: A unique relationship for for the determination of the shear strength of unsaturated soils publication-title: Géotechnique – start-page: 378 year: 1957 end-page: 381 – volume: 30 start-page: 1153 issue: 4 year: 1994 end-page: 1171 article-title: A physically based model for the topographic control on shallow landslides publication-title: Water Resour. Res. – volume: 16 start-page: 233 year: 2009 end-page: 240 article-title: Correlated earthquakes in a self‐organized model publication-title: Nonlinear Processes Geophys. – volume: 256 start-page: 588 year: 2007 end-page: 603 article-title: Characteristics of the size distribution of recent and historical landslides in a populated hilly region publication-title: Earth Planet. Science. Lett. – volume: 101 start-page: 134 year: 2008 end-page: 145 article-title: Internal soil moisture response to rainfall‐induced slope failures and debris discharge publication-title: Eng. Geol. – year: 1968 – volume: 35 start-page: 459 year: 1984 end-page: 468 article-title: The strength of unsaturated mixtures of sand and kaolin and the concept of effective stress publication-title: J. Soil Sci. – year: 2003 – year: 1996 – volume: 83 start-page: 345 year: 1957 end-page: 357 article-title: The theory of infiltration: 1. The infiltration equation and its solution publication-title: Soil Sci. – volume: 3 start-page: 247 year: 2010 end-page: 251 article-title: Landslide erosion controlled by hillslope material publication-title: Nat. Geosci. – volume: 48 start-page: 255 year: 1997 end-page: 268 article-title: Scale‐invariance of soil moisture variability and its implications for the frequency‐size distribution of landslides publication-title: Eng. Geol. – volume: 28 start-page: 925 year: 2003 end-page: 950 article-title: Testing a model for predicting the timing and location of shallow landslide initiation in soil‐mantled landscapes publication-title: Earth Surf. Processes Landforms – volume: 62 start-page: 1377 year: 1999 end-page: 1429 article-title: Self‐organized criticality publication-title: Rep. Progress Phys. – volume: 116 year: 2011 article-title: Analytical and observational relations between landslide volume and surface area publication-title: J. Geophys. Res. – volume: 67 year: 2003 article-title: Self‐organized criticality in a bead pile publication-title: Phys. Rev. E – start-page: 235 year: 2010 end-page: 249 – volume: 114 year: 2009 article-title: Landslide rupture and the probability distribution of mobilized debris volumes publication-title: J. Geophys. Res – volume: 4 start-page: 209 year: 1994 end-page: 221 article-title: Sweeping of an instability: An alternative to self‐organized criticality to get powerlaws without parameter tuning publication-title: J. Phys. I (France – volume: 15 start-page: 79 year: 1965 end-page: 93 article-title: The analysis of the stability of general slip surfaces publication-title: Géotechnique – volume: 132 start-page: 591 year: 2006 end-page: 602 article-title: Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands publication-title: J. Geotech Geoenviron. Eng. – volume: 5 start-page: 7 year: 1955 end-page: 17 article-title: The use of slip circle in the stability analysis of slopes publication-title: Géotechnique – volume: 32 year: 2005 article-title: Seismic precursory patterns before a cliff collapse and critical point phenomena publication-title: Geophys. Res. Lett. – volume: 29 start-page: 687 year: 2004 end-page: 711 article-title: Landslide inventories and their statistical properties publication-title: Earth Surf. Processes Landforms – volume: 379 start-page: 49 year: 1996 end-page: 52 article-title: Avalanche dynamics in a pile of rice publication-title: Nature – volume: 28 start-page: 1091 year: 2001 end-page: 1094 article-title: The characterization of landslide size distribution publication-title: Water Resour. Res. – volume: 195 start-page: 169 year: 2002 end-page: 183 article-title: Power‐law correlations of landslide areas in central Italy publication-title: Earth Planet. Sci. Lett. – volume: 35 start-page: 354 year: 2010 end-page: 367 article-title: Quantifying lateral root reinforcement in steep slopes—From a bundle of roots to forest stands publication-title: Earth Surf. Processes Landforms – volume: 55 start-page: 163 year: 2004 end-page: 181 article-title: Topographic controls of landslides in Rio de Janeiro: Field evidence and modeling publication-title: Catena – year: 2006 – volume: 115 start-page: 744 year: 1989 end-page: 751 article-title: On the correspondence between Brooks‐Corey and van Genuchten models publication-title: J. Irrig. Drain. Eng. – volume: 115 year: 2010 article-title: Root‐soil mechanical interactions during pullout and failure of root bundles publication-title: J. Geophys. Res. – volume: 3 start-page: 181 year: 2006 end-page: 194 article-title: Modeling regional initiation of rainfall‐induced shallow landslides in the eastern Umbria region of central Italy publication-title: Landslides – ident: e_1_2_11_18_1 doi: 10.1029/2009WR007889 – ident: e_1_2_11_112_1 doi: 10.1002/nme.1406 – ident: e_1_2_11_95_1 doi: 10.1029/WM018 – ident: e_1_2_11_75_1 doi: 10.5194/npg-16-515-2009 – ident: e_1_2_11_10_1 – ident: e_1_2_11_97_1 doi: 10.1002/hyp.6886 – ident: e_1_2_11_49_1 doi: 10.1126/science.238.4829.921 – ident: e_1_2_11_58_1 doi: 10.1002/esp.1064 – ident: e_1_2_11_11_1 doi: 10.5194/npg-16-179-2009 – ident: e_1_2_11_65_1 doi: 10.1103/PhysRevE.67.011302 – ident: e_1_2_11_85_1 – ident: e_1_2_11_74_1 doi: 10.1103/PhysRevLett.93.208001 – ident: e_1_2_11_87_1 doi: 10.1103/PhysRevLett.88.068302 – ident: e_1_2_11_77_1 doi: 10.1016/j.tecto.2009.11.007 – ident: e_1_2_11_36_1 doi: 10.1016/j.epsl.2009.01.005 – ident: e_1_2_11_54_1 doi: 10.1061/(ASCE)0733-9437(1989)115:4(744) – ident: e_1_2_11_88_1 doi: 10.1139/t01-031 – ident: e_1_2_11_66_1 doi: 10.1103/PhysRevLett.68.1244 – ident: e_1_2_11_4_1 doi: 10.1029/2004GL022270 – ident: e_1_2_11_43_1 doi: 10.1029/2000WR900090 – ident: e_1_2_11_91_1 doi: 10.1029/2009JF001603 – volume: 28 start-page: 1091 year: 2001 ident: e_1_2_11_102_1 article-title: The characterization of landslide size distribution publication-title: Water Resour. Res. – ident: e_1_2_11_53_1 doi: 10.1038/ngeo776 – start-page: 378 volume-title: Proceedings of the 4th International Conference on Soil Mechanics & Foundation Engineering year: 1957 ident: e_1_2_11_98_1 – ident: e_1_2_11_13_1 doi: 10.1002/esp.470 – ident: e_1_2_11_72_1 doi: 10.1130/G21147.1 – ident: e_1_2_11_68_1 doi: 10.1016/S0013-7952(00)00038-7 – ident: e_1_2_11_51_1 doi: 10.1029/2009JF001604 – ident: e_1_2_11_21_1 doi: 10.1016/S0013-7952(00)00077-6 – ident: e_1_2_11_59_1 doi: 10.1007/s10707-008-0060-5 – ident: e_1_2_11_52_1 doi: 10.1103/PhysRevLett.93.125502 – ident: e_1_2_11_103_1 doi: 10.1016/j.advwatres.2005.02.016 – ident: e_1_2_11_105_1 doi: 10.1088/0034-4885/62/10/201 – ident: e_1_2_11_16_1 doi: 10.1061/(ASCE)1090-0241(2006)132:5(591) – ident: e_1_2_11_32_1 doi: 10.2136/vzj2009.0154 – ident: e_1_2_11_5_1 doi: 10.5194/npg-16-233-2009 – ident: e_1_2_11_37_1 doi: 10.1103/PhysRevLett.65.1120 – ident: e_1_2_11_57_1 doi: 10.1038/nature03805 – ident: e_1_2_11_71_1 doi: 10.1016/S0013-7952(97)00041-0 – ident: e_1_2_11_69_1 doi: 10.4141/cjss76-019 – ident: e_1_2_11_81_1 doi: 10.3189/002214309790794869 – start-page: 235 volume-title: Mechanics of Unsaturated Geomaterials year: 2010 ident: e_1_2_11_24_1 – volume-title: Critical State Soil Mechanics year: 1968 ident: e_1_2_11_89_1 – ident: e_1_2_11_2_1 doi: 10.1103/PhysRevE.67.051306 – ident: e_1_2_11_73_1 doi: 10.1097/00010694-195705000-00002 – ident: e_1_2_11_104_1 doi: 10.1007/s00254-006-0229-x – ident: e_1_2_11_34_1 doi: 10.1680/geot.1999.49.3.387 – ident: e_1_2_11_38_1 doi: 10.1115/1.2894060 – ident: e_1_2_11_41_1 doi: 10.1016/j.enggeo.2008.04.009 – ident: e_1_2_11_63_1 doi: 10.1680/geot.1965.15.1.79 – ident: e_1_2_11_30_1 doi: 10.1130/0016-7606(2002)114<0983:LOCSSA>2.0.CO;2 – start-page: 11 volume-title: Landslides‐Analysis and Control year: 1978 ident: e_1_2_11_108_1 – ident: e_1_2_11_83_1 – ident: e_1_2_11_76_1 doi: 10.1103/PhysRevE.74.016122 – start-page: 59 volume-title: Proceedings of the First European Conference on Landslides year: 2002 ident: e_1_2_11_90_1 – volume: 82 start-page: 33 issue: 1 year: 2009 ident: e_1_2_11_84_1 article-title: Effects of forests on shallow landslides—Case studies in Switzerland publication-title: For. Snow Landscape Res. – ident: e_1_2_11_39_1 doi: 10.1007/978-3-662-04390-5 – ident: e_1_2_11_33_1 doi: 10.2136/sssaj2001.653624x – ident: e_1_2_11_61_1 doi: 10.1029/93WR02979 – ident: e_1_2_11_7_1 doi: 10.1103/PhysRevLett.59.381 – ident: e_1_2_11_12_1 doi: 10.1126/science.158.3805.1182 – ident: e_1_2_11_45_1 doi: 10.1126/science.290.5491.513 – ident: e_1_2_11_93_1 doi: 10.1002/esp.1927 – ident: e_1_2_11_106_1 doi: 10.1139/t96-060 – ident: e_1_2_11_107_1 doi: 10.1016/j.epsl.2007.01.040 – start-page: 12 volume-title: Proceedings of the Fourth International Conference on Debris‐Flow Hazards Mitigation: Mechanics, Prediction, and Assessment (DFHM‐4) year: 2007 ident: e_1_2_11_23_1 – ident: e_1_2_11_50_1 doi: 10.1680/geot.1998.48.5.681 – ident: e_1_2_11_109_1 – ident: e_1_2_11_6_1 doi: 10.1007/978-1-4757-5426-1 – ident: e_1_2_11_80_1 doi: 10.13031/2013.33720 – ident: e_1_2_11_86_1 doi: 10.1007/s10346-006-0037-0 – ident: e_1_2_11_96_1 doi: 10.1002/(SICI)1099-1085(20000228)14:3<369::AID-HYP943>3.0.CO;2-P – ident: e_1_2_11_44_1 doi: 10.1146/annurev.earth.25.1.85 – ident: e_1_2_11_110_1 doi: 10.1139/t79-003 – ident: e_1_2_11_20_1 doi: 10.1103/PhysRevE.67.041304 – ident: e_1_2_11_42_1 doi: 10.1029/2006JF000495 – ident: e_1_2_11_79_1 doi: 10.1103/PhysRevLett.102.078701 – ident: e_1_2_11_92_1 doi: 10.1016/j.ecoleng.2009.06.014 – volume-title: Hillslope Materials and Processes year: 1993 ident: e_1_2_11_94_1 – ident: e_1_2_11_25_1 doi: 10.1103/PhysRevLett.93.208001 – ident: e_1_2_11_28_1 doi: 10.1016/S0341-8162(03)00115-2 – ident: e_1_2_11_56_1 doi: 10.1029/2009WR008646 – start-page: 47 volume-title: Embankment Dam Engineering, Casagrande Volume year: 1973 ident: e_1_2_11_46_1 – ident: e_1_2_11_26_1 doi: 10.1029/2009JB006512 – volume-title: Fundamentals of Soil Behavior year: 2005 ident: e_1_2_11_60_1 – ident: e_1_2_11_31_1 doi: 10.1016/j.geomorph.2005.08.013 – ident: e_1_2_11_19_1 doi: 10.1029/2010JF001886 – ident: e_1_2_11_3_1 doi: 10.1103/PhysRevLett.86.5490 – ident: e_1_2_11_15_1 doi: 10.1016/j.enggeo.2004.12.008 – ident: e_1_2_11_111_1 doi: 10.1186/BF03351762 – volume: 13 start-page: 41 year: 1976 ident: e_1_2_11_67_1 article-title: Influence of cenozoic geology on mass movement and sediment yield response to forest removal, North Westland, New Zealand publication-title: Bull. Eng. Geol. Environ. – start-page: 157 volume-title: Horizons in Earth Science Research year: 2011 ident: e_1_2_11_78_1 – ident: e_1_2_11_70_1 doi: 10.1080/19447027.1926.10599953 – ident: e_1_2_11_55_1 doi: 10.1103/PhysRevE.76.040301 – ident: e_1_2_11_8_1 doi: 10.1680/geot.1955.5.1.7 – ident: e_1_2_11_62_1 doi: 10.1016/S0378-4371(99)00358-1 – ident: e_1_2_11_82_1 – volume-title: Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools year: 2004 ident: e_1_2_11_100_1 – ident: e_1_2_11_101_1 doi: 10.1029/2008JF001008 – ident: e_1_2_11_27_1 doi: 10.1680/geot.2005.55.6.467 – ident: e_1_2_11_29_1 doi: 10.1038/379049a0 – ident: e_1_2_11_14_1 doi: 10.1103/PhysRevE.59.R12 – ident: e_1_2_11_64_1 doi: 10.1111/j.1365-2389.1984.tb00303.x – ident: e_1_2_11_47_1 doi: 10.1017/CBO9780511622717 – ident: e_1_2_11_17_1 doi: 10.1142/p365 – volume: 32 start-page: 1 year: 1960 ident: e_1_2_11_9_1 article-title: The principle of effective stress publication-title: Norwegian Geotechnical Institute Publication No. – ident: e_1_2_11_40_1 doi: 10.5194/nhess-3-505-2003 – ident: e_1_2_11_48_1 doi: 10.1029/JB091iB10p10412 – ident: e_1_2_11_22_1 doi: 10.1098/rspa.1945.0011 – ident: e_1_2_11_99_1 doi: 10.1051/jp1:1994133 – ident: e_1_2_11_35_1 doi: 10.1016/S0012-821X(01)00589-1 |
SSID | ssj0014567 |
Score | 2.3348505 |
Snippet | Water infiltrating during intense rainfall on steep slopes gradually weakens the wet soil mass, inducing localized failures that may initiate a cascade of load... |
SourceID | crossref wiley istex |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | criticality hillslope landslide |
Title | Hydromechanical triggering of landslides: From progressive local failures to mass release |
URI | https://api.istex.fr/ark:/67375/WNG-2X2TZH99-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011WR010947 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQ-gAviE9RvuQH4KVkJLZjJ7zBtFEhUVDVqYWXKE5sNthaVAJi_PXcOXGSFoYGL1YUWVbi-9l3Pv_ujpBHoSxh2xMyMCYMA6ElD5I8t9DIRCteRqzAAOc3Ezk-FK8X8aJzZbvokkrvFj__GFfyP1KFdyBXjJL9B8m2g8ILeAb5QgsShvZCMh6fuWwDGLzr5rqCo_ZHl1sQbUAXxXtyXNastwOMI3FsLCS-fjcjp8VGNj9GYrrL83AKhrQrouJvbD75EjGYSXHdOPqxS88F5sg8R6dNreUNuu_btQ9i7_sWkKTB-76FLR9i7RPr2EZuQ8UMp7ym2O6aeg9NhQhUWlco8ZusSHpg4j112yqj3_bykGEqVDRQ5lO8wBOq01n-nn5LlbUEw3z9GRlrKs7mk1cZW7DZh3GaZqCrB0wpvM8fvNyfvJu2F05gRypPRsD_aWIk4Bue9b9gw3oZ4EL8sXmqcWbJ7Bq52pwn6IsaHNfJJbO8QS77cPOv8NyUuT86u0nebwGGdoChK0s7wDynCBfagwt1cKEeLrRaUYQLbeByixwe7M_2xkFTWyPIuUp4oCIbcVkWeayFLI1URqexsFGoTWllkRrBVcETMO-4tHDk17mNNUwEU2CAShvy22RnuVqaO4SaKE1CC2YpK2AEVuQ5FgVgRRqp0lhphmTk5ywrmsTzWP_kJHMECAZi6c3wkDxue3-pE66c0--Jm_6203kiH5KnTj5_HS2bT_emEWec373ouPfIlW7J3Cc71fqbeQAGaqUfNuD6Bc7Pj04 |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydromechanical+triggering+of+landslides%3A+From+progressive+local+failures+to+mass+release&rft.jtitle=Water+resources+research&rft.au=Lehmann%2C+Peter&rft.au=Or%2C+Dani&rft.date=2012-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=48&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2011WR010947&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_2X2TZH99_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |