Using Native Woody Plants for Phytomanagement of Urban Technosols Contaminated by Wood Pole Preservatives
Technosols are a major component of urban areas with little to no value, but many benefits can be gained by the use of native plants for their ecological reclamation. The aim of this study is to examine the capacity of North American native woody species to establish in and remediate a wood preserva...
Saved in:
Published in | Clean : soil, air, water Vol. 49; no. 3 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Technosols are a major component of urban areas with little to no value, but many benefits can be gained by the use of native plants for their ecological reclamation. The aim of this study is to examine the capacity of North American native woody species to establish in and remediate a wood preservative‐contaminated technosol. Nine species are planted in mesocosms containing highly contaminated or non‐contaminated synthetic technosols. Remediation potential and plant physiology parameters (survival, photosynthesis and root growth) are monitored during one growing season. Results show an inverse relation between species performance ranking in the non‐contaminated technosol compared to ranking in contaminated soil. Overall, Salix bebbiana and Sambucus canadensis show good potential for phytomanagement of heterogenous contaminated technosols, offering the best compromise between performance in non‐contaminated and contaminated soils. Most species are able to phytoextract copper (Cu), with Rhus typhina, Alnus crispa, and S. bebbiana showing the highest Cu concentrations in stems. The use of multiple native species for technosol reclamation can be beneficial due to the heterogeneous nature of soil contaminants.
The potential of nine native North American woody plant species to remediate technosol is tested in a mesocosm experiment. There is an inverse relation between species’ performance ranking in the non‐contaminated technosol compared to their ranking in the contaminated soil. The use of multiple native species for technosol reclamation can be beneficial due to the heterogeneous nature of soil contamination. |
---|---|
AbstractList | Technosols are a major component of urban areas with little to no value, but many benefits can be gained by the use of native plants for their ecological reclamation. The aim of this study is to examine the capacity of North American native woody species to establish in and remediate a wood preservative‐contaminated technosol. Nine species are planted in mesocosms containing highly contaminated or non‐contaminated synthetic technosols. Remediation potential and plant physiology parameters (survival, photosynthesis and root growth) are monitored during one growing season. Results show an inverse relation between species performance ranking in the non‐contaminated technosol compared to ranking in contaminated soil. Overall, Salix bebbiana and Sambucus canadensis show good potential for phytomanagement of heterogenous contaminated technosols, offering the best compromise between performance in non‐contaminated and contaminated soils. Most species are able to phytoextract copper (Cu), with Rhus typhina, Alnus crispa, and S. bebbiana showing the highest Cu concentrations in stems. The use of multiple native species for technosol reclamation can be beneficial due to the heterogeneous nature of soil contaminants. Technosols are a major component of urban areas with little to no value, but many benefits can be gained by the use of native plants for their ecological reclamation. The aim of this study is to examine the capacity of North American native woody species to establish in and remediate a wood preservative‐contaminated technosol. Nine species are planted in mesocosms containing highly contaminated or non‐contaminated synthetic technosols. Remediation potential and plant physiology parameters (survival, photosynthesis and root growth) are monitored during one growing season. Results show an inverse relation between species performance ranking in the non‐contaminated technosol compared to ranking in contaminated soil. Overall, Salix bebbiana and Sambucus canadensis show good potential for phytomanagement of heterogenous contaminated technosols, offering the best compromise between performance in non‐contaminated and contaminated soils. Most species are able to phytoextract copper (Cu), with Rhus typhina, Alnus crispa, and S. bebbiana showing the highest Cu concentrations in stems. The use of multiple native species for technosol reclamation can be beneficial due to the heterogeneous nature of soil contaminants. The potential of nine native North American woody plant species to remediate technosol is tested in a mesocosm experiment. There is an inverse relation between species’ performance ranking in the non‐contaminated technosol compared to their ranking in the contaminated soil. The use of multiple native species for technosol reclamation can be beneficial due to the heterogeneous nature of soil contamination. Technosols are a major component of urban areas with little to no value, but many benefits can be gained by the use of native plants for their ecological reclamation. The aim of this study is to examine the capacity of North American native woody species to establish in and remediate a wood preservative‐contaminated technosol. Nine species are planted in mesocosms containing highly contaminated or non‐contaminated synthetic technosols. Remediation potential and plant physiology parameters (survival, photosynthesis and root growth) are monitored during one growing season. Results show an inverse relation between species performance ranking in the non‐contaminated technosol compared to ranking in contaminated soil. Overall, Salix bebbiana and Sambucus canadensis show good potential for phytomanagement of heterogenous contaminated technosols, offering the best compromise between performance in non‐contaminated and contaminated soils. Most species are able to phytoextract copper (Cu), with Rhus typhina , Alnus crispa , and S. bebbiana showing the highest Cu concentrations in stems. The use of multiple native species for technosol reclamation can be beneficial due to the heterogeneous nature of soil contaminants. |
Author | Heine, Philippe Labrecque, Michel Frenette‐Dussault, Cédric Zagury, Gérald J. Yavari, Sara Brisson, Jacques |
Author_xml | – sequence: 1 givenname: Philippe surname: Heine fullname: Heine, Philippe organization: Université de Montréal – sequence: 2 givenname: Sara surname: Yavari fullname: Yavari, Sara organization: Université de Montréal – sequence: 3 givenname: Cédric surname: Frenette‐Dussault fullname: Frenette‐Dussault, Cédric organization: Université de Montréal – sequence: 4 givenname: Gérald J. surname: Zagury fullname: Zagury, Gérald J. organization: École Polytechnique de Montréal – sequence: 5 givenname: Jacques orcidid: 0000-0003-0046-7551 surname: Brisson fullname: Brisson, Jacques email: jacques.brisson@umontreal.ca organization: Université de Montréal – sequence: 6 givenname: Michel surname: Labrecque fullname: Labrecque, Michel organization: Université de Montréal |
BookMark | eNqFkM1Lw0AQxRepYK1ePS94Tt1skk32KKF-QKk5tHgM02TSpiS7dTet5L9320oFQTzNDLzfm5l3TQZKKyTkzmdjnzH-UDSoxpxx5gbBL8jQT0TgMSHk4NxH7IpcW7thTDBf-ENSL2ytVnQGXb1H-q512dOsAdVZWmlDs3Xf6RYUrLBF1VFd0YVZgqJzLNZKW91YmmrVQVsr6LCky_5oQjPdIM0MWjT7o7e9IZcVNBZvv-uILJ4m8_TFm749v6aPUw-COOZeiVi668JEhkkgw5hxGWEFksdMMl4JiZgAgp9UsSgqJwJcRiBCcKOEMgpG5P7kuzX6Y4e2yzd6Z5RbmfNQCu5HMhJOFZ5UhdHWGqzyou7coe4XA3WT-yw_hJofQs3PoTps_AvbmroF0_8NyBPwWTfY_6PO0-lk9sN-AUETjVA |
CitedBy_id | crossref_primary_10_1002_clen_202100420 crossref_primary_10_1007_s11356_021_14076_1 crossref_primary_10_1007_s10934_023_01448_w |
Cites_doi | 10.1016/j.envpol.2006.08.029 10.1111/j.0022-0477.2005.00993.x 10.1016/j.scitotenv.2006.03.024 10.1016/S0048-9697(99)00338-1 10.1080/15538360802529807 10.1289/ehp.5840 10.1016/j.ufug.2019.126550 10.1007/s002540050490 10.1080/13574809.2014.944113 10.1002/ldr.472 10.1007/s11270-011-0878-6 10.1007/BF03030505 10.1080/10889860290777477 10.1111/j.1523-1739.2008.01076.x 10.1080/02757540.2017.1376664 10.1023/A:1012243129773 10.1080/02772240500165570 10.1080/10643389.2011.604254 10.1016/j.envexpbot.2010.06.003 10.1007/s10668-005-1262-8 10.1007/s11368-015-1090-x 10.1002/047127304X 10.1007/s11356-015-4984-7 10.1080/09593330.2013.822005 10.1126/science.1172460 10.1007/s00267-004-0171-1 10.1038/ngeo838 10.1016/j.chemosphere.2004.05.020 10.1007/s12649-017-0027-6 10.1016/j.ufug.2010.06.002 10.1007/s11368-017-1763-8 10.1093/treephys/21.15.1141 10.3389/fpls.2017.01115 10.1016/j.jenvman.2005.07.005 10.1016/j.envpol.2005.08.065 10.1016/j.ecoleng.2018.07.007 10.1016/j.scitotenv.2017.01.075 10.2172/1224969 10.1146/annurev.arplant.49.1.643 10.1016/S0048-9697(01)00833-6 10.1556/APhyt.47.2012.2.9 10.1071/FP03016 10.1007/s11356-013-1997-y |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI |
DOI | 10.1002/clen.202000262 |
DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1863-0669 |
EndPage | n/a |
ExternalDocumentID | 10_1002_clen_202000262 CLEN202000262 |
Genre | article |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OC 29B 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEIGN AEIMD AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HVGLF HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WOHZO WUPDE WXSBR WYISQ XG1 XV2 ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI |
ID | FETCH-LOGICAL-a3772-deed0064894839470295efa9270902f69ee8aea18f76cf948aeb5a64a76c9ad53 |
IEDL.DBID | DR2 |
ISSN | 1863-0650 |
IngestDate | Mon Jun 30 06:38:01 EDT 2025 Tue Jul 01 00:34:26 EDT 2025 Thu Apr 24 22:57:43 EDT 2025 Wed Jan 22 16:29:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a3772-deed0064894839470295efa9270902f69ee8aea18f76cf948aeb5a64a76c9ad53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0046-7551 |
PQID | 2496215956 |
PQPubID | 1006521 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2496215956 crossref_citationtrail_10_1002_clen_202000262 crossref_primary_10_1002_clen_202000262 wiley_primary_10_1002_clen_202000262_CLEN202000262 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Clean : soil, air, water |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1998; 49 2018; 120 2009; 23 2007; 147 2015; 15 2017; 8 2012; 223 2013; 43 2006; 79 2010 2001; 280 2019; 10 2004; 47 2002; 6 2002; 8 1976; 2 1999; 241 2006; 8 2005; 87 2008; 8 2003 2001; 23 2003; 30 2003; 111 2014; 21 2001; 21 2018; 18 2000; 39 2017; 33 2015; 22 2004; 57 2006; 141 2020; 47 2014; 35 2014; 19 2015 2005; 93 2017; 583 2010; 3 2012; 47 2010; 70 2001; 12 2006; 368 2001; 13 2016; 23 2010; 9 2009; 325 2005; 36 e_1_2_9_31_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 Dirr M. A. (e_1_2_9_37_1) 1976; 2 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_6_1 Kassel A. G. (e_1_2_9_17_1) 2002; 8 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_47_1 Smith G. R. (e_1_2_9_8_1) 2015; 22 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 Ruso J. (e_1_2_9_14_1) 2001; 13 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 United States Environmental Protection Agency (e_1_2_9_28_1) 2010 e_1_2_9_29_1 |
References_xml | – volume: 241 start-page: 161 year: 1999 publication-title: Sci. Total Environ. – volume: 368 start-page: 814 year: 2006 publication-title: Sci. Total Environ. – volume: 8 start-page: 216 year: 2008 publication-title: Int. J. Fruit Sci. – volume: 35 start-page: 177 year: 2014 publication-title: Environ. Technol. – volume: 147 start-page: 74 year: 2007 publication-title: Environ. Pollut. – volume: 13 start-page: 93 year: 2001 publication-title: Minerva Biotecnol. – volume: 15 start-page: 1510 year: 2015 publication-title: J. Soil Sediment – volume: 87 start-page: 335 year: 2005 publication-title: Toxicol. Environ. Chem. – year: 2003 – volume: 49 start-page: 643 year: 1998 publication-title: Annu. Rev. Plant Biol. – volume: 39 start-page: 753 year: 2000 publication-title: Environ. Geol. – volume: 79 start-page: 232 year: 2006 publication-title: J. Environ. Manage. – volume: 6 start-page: 57 year: 2002 publication-title: Biorem. J. – volume: 47 start-page: 285 year: 2012 publication-title: Acta Phytopathol. Entomol. Hung. – volume: 280 start-page: 239 year: 2001 publication-title: Sci. Total Environ. – volume: 43 start-page: 217 year: 2013 publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 57 start-page: 215 year: 2004 publication-title: Chemosphere – volume: 111 start-page: 1093 year: 2003 publication-title: Environ. Health Perspect. – volume: 70 start-page: 20 year: 2010 publication-title: Environ. Exp. Bot. – year: 2010 – volume: 23 start-page: 219 year: 2009 publication-title: Conserv. Biol. – volume: 19 start-page: 745 year: 2014 publication-title: J. Urban Des. – volume: 36 start-page: 675 year: 2005 publication-title: Environ. Manage. – volume: 23 start-page: 307 year: 2001 publication-title: Environ. Geochem. Health – volume: 3 start-page: 311 year: 2010 publication-title: Nat. Geosci. – volume: 8 start-page: 1115 year: 2017 publication-title: Front. Plant Sci. – volume: 583 start-page: 352 year: 2017 publication-title: Sci. Total Environ. – volume: 141 start-page: 387 year: 2006 publication-title: Environ. Pollut. – volume: 9 start-page: 323 year: 2010 publication-title: Urban For. Urban Greening – volume: 223 start-page: 511 year: 2012 publication-title: Water Air Soil Pollut – volume: 12 start-page: 519 year: 2001 publication-title: Land Degrad. Dev. – volume: 21 start-page: 1304 year: 2014 publication-title: Environ. Sci. Pollut. Res. – volume: 2 start-page: 209 year: 1976 publication-title: J. Arboricult. – volume: 33 start-page: 795 year: 2017 publication-title: Chem. Ecol. – volume: 23 start-page: 3120 year: 2016 publication-title: Environ. Sci. Pollut. Res. – volume: 22 start-page: 413 year: 2015 publication-title: Int. J. Sustainable Dev. World Ecol. – volume: 47 start-page: 174 year: 2004 publication-title: J. Plant Biol. – volume: 93 start-page: 384 year: 2005 publication-title: J. Ecol. – volume: 120 start-page: 532 year: 2018 publication-title: Ecol. Eng. – volume: 8 start-page: 3 year: 2002 publication-title: Physiol. Mol. Biol. Plant – volume: 47 year: 2020 publication-title: Urban For. Urban Greening – volume: 21 start-page: 1141 year: 2001 publication-title: Tree Physiol – volume: 30 start-page: 507 year: 2003 publication-title: Funct. Plant Biol. – volume: 325 start-page: 1121 year: 2009 publication-title: Science – volume: 8 start-page: 119 year: 2006 publication-title: Environ. Dev. Sustainability – volume: 18 start-page: 2188 year: 2018 publication-title: J. Soil Sediment – year: 2015 – volume: 10 start-page: 103 year: 2019 publication-title: Waste Biomass Valori. – ident: e_1_2_9_26_1 doi: 10.1016/j.envpol.2006.08.029 – ident: e_1_2_9_29_1 doi: 10.1111/j.0022-0477.2005.00993.x – volume: 22 start-page: 413 year: 2015 ident: e_1_2_9_8_1 publication-title: Int. J. Sustainable Dev. World Ecol. – ident: e_1_2_9_23_1 doi: 10.1016/j.scitotenv.2006.03.024 – ident: e_1_2_9_43_1 doi: 10.1016/S0048-9697(99)00338-1 – ident: e_1_2_9_39_1 doi: 10.1080/15538360802529807 – ident: e_1_2_9_21_1 doi: 10.1289/ehp.5840 – ident: e_1_2_9_5_1 doi: 10.1016/j.ufug.2019.126550 – ident: e_1_2_9_33_1 doi: 10.1007/s002540050490 – ident: e_1_2_9_7_1 doi: 10.1080/13574809.2014.944113 – ident: e_1_2_9_1_1 doi: 10.1002/ldr.472 – ident: e_1_2_9_25_1 doi: 10.1007/s11270-011-0878-6 – volume: 8 start-page: 3 year: 2002 ident: e_1_2_9_17_1 publication-title: Physiol. Mol. Biol. Plant – ident: e_1_2_9_18_1 doi: 10.1007/BF03030505 – ident: e_1_2_9_19_1 doi: 10.1080/10889860290777477 – volume: 2 start-page: 209 year: 1976 ident: e_1_2_9_37_1 publication-title: J. Arboricult. – ident: e_1_2_9_11_1 doi: 10.1111/j.1523-1739.2008.01076.x – ident: e_1_2_9_49_1 doi: 10.1080/02757540.2017.1376664 – ident: e_1_2_9_46_1 doi: 10.1023/A:1012243129773 – ident: e_1_2_9_35_1 doi: 10.1080/02772240500165570 – ident: e_1_2_9_20_1 doi: 10.1080/10643389.2011.604254 – ident: e_1_2_9_31_1 – ident: e_1_2_9_40_1 doi: 10.1016/j.envexpbot.2010.06.003 – ident: e_1_2_9_2_1 doi: 10.1007/s10668-005-1262-8 – ident: e_1_2_9_34_1 doi: 10.1007/s11368-015-1090-x – ident: e_1_2_9_41_1 doi: 10.1002/047127304X – ident: e_1_2_9_4_1 doi: 10.1007/s11356-015-4984-7 – ident: e_1_2_9_32_1 doi: 10.1080/09593330.2013.822005 – ident: e_1_2_9_47_1 doi: 10.1126/science.1172460 – ident: e_1_2_9_13_1 doi: 10.1007/s00267-004-0171-1 – ident: e_1_2_9_3_1 doi: 10.1038/ngeo838 – ident: e_1_2_9_44_1 doi: 10.1016/j.chemosphere.2004.05.020 – ident: e_1_2_9_36_1 doi: 10.1007/s12649-017-0027-6 – ident: e_1_2_9_6_1 doi: 10.1016/j.ufug.2010.06.002 – ident: e_1_2_9_12_1 doi: 10.1007/s11368-017-1763-8 – ident: e_1_2_9_42_1 doi: 10.1093/treephys/21.15.1141 – ident: e_1_2_9_45_1 doi: 10.3389/fpls.2017.01115 – ident: e_1_2_9_24_1 doi: 10.1016/j.jenvman.2005.07.005 – volume-title: Toxicological Review of Pentachlorophenol (CAS No. 87‐86‐5) in Support of Summary Information on the Integrated Risk Information System (IRIS) year: 2010 ident: e_1_2_9_28_1 – ident: e_1_2_9_48_1 doi: 10.1016/j.envpol.2005.08.065 – ident: e_1_2_9_10_1 doi: 10.1016/j.ecoleng.2018.07.007 – ident: e_1_2_9_16_1 doi: 10.1016/j.scitotenv.2017.01.075 – volume: 13 start-page: 93 year: 2001 ident: e_1_2_9_14_1 publication-title: Minerva Biotecnol. – ident: e_1_2_9_30_1 doi: 10.2172/1224969 – ident: e_1_2_9_9_1 doi: 10.1146/annurev.arplant.49.1.643 – ident: e_1_2_9_27_1 doi: 10.1016/S0048-9697(01)00833-6 – ident: e_1_2_9_15_1 doi: 10.1556/APhyt.47.2012.2.9 – ident: e_1_2_9_38_1 doi: 10.1071/FP03016 – ident: e_1_2_9_22_1 doi: 10.1007/s11356-013-1997-y |
SSID | ssj0060161 |
Score | 2.2773414 |
Snippet | Technosols are a major component of urban areas with little to no value, but many benefits can be gained by the use of native plants for their ecological... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | chromated copper arsenate Contaminants Copper Indigenous plants Indigenous species Mesocosms Native organisms Photosynthesis phytotechnology Plant physiology Preservatives Ranking Reclamation Salix bebbiana Sediment pollution Soil Soil contamination Soil pollution Soils Survival technosol Urban areas Wood Wood poles Wood preservatives Woody plants woody species |
Title | Using Native Woody Plants for Phytomanagement of Urban Technosols Contaminated by Wood Pole Preservatives |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fclen.202000262 https://www.proquest.com/docview/2496215956 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NS8MwGMaD7KQHv8XplBwET93WtM3ao4yNITqGONytvGkTFGcrayfMv968addtggh6LCShzefzpk9-IeSKI6CE2cpyeKAslwnQYw4P6nq2YJEjPSfCQPF-yAdj93biTdZO8Rd8iGrDDUeGma9xgIPIWitoqK5V5JfiURNmJmE0bKEqeqj4UYgaMRGXjz8rtRZZUhvbrLWZfXNVWknNdcFqVpz-HoHluxZGk9fmPBfN6PMbxvE_H7NPdks5Sm-K_nNAtmRySHbWIIVH5MW4CujQEMLpU5rGC4pXHeUZ1YKXjp4XefpWmWhoquh4JiChxaa97toZRQQWoOdGy1sqFqYQOkqnkqIDpNgW_pDZMRn3e4_dgVVe0GCBo1W5FesFFjWNH7haZ7mdNgs8qSBgHXR7Kh5I6YME21cdHimdCKTwgLugHwOIPeeE1JI0kaeExoChKfdAeq4LTiygbUe28p3YCZRw7Tqxlg0URiW9HC_RmIYFd5mFWIVhVYV1cl2lfy-4HT-mbCzbOyzHbxbqoJRrMaSDxzphpuF-KSXs3vWG1dPZXzKdk22GhhljcGuQWj6bywuteHJxaXr1F1O2934 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yH9QH7-J0ah4En7qt6WXto4yNqdsYsqFvIWkTFGcrayfMX29OenETRNDHQBLaJCf5zsmX7yB06YJACTGlYbm-NGzCmbI5eKjrmJwElnCsABzFwdDtTezbR6dgE8JbmEwfogy4gWXo_RoMHALSjS_VUDWsIGAKb00I7MLrkNZbe1X3pYIUiI1on8uD60qFRgrdxiZprLZfPZe-wOYyZNVnTncH8eJrM6rJS32e8nrw8U3I8V-_s4u2c0SKr7MltIfWRLSPtpZ0Cg_QsyYW4KEWCccPcRwuMGQ7ShOsMC8ePS3S-LXk0eBY4smMswhncXu1uhMMKlgMaDcK4WK-0J3gUTwVGEggWWT4XSSHaNLtjNs9I8_RYDBLAXMjVGcswBrPtxXUsltN4jtCMp-0gPApXV8IjwlmerLlBlJVYoI7zLWZKvosdKwjVIniSBwjHDLwTl2HCce2mRVy1jQDU3pWaPmS22YVGcUM0SAXMIc8GlOaSS8TCkNIyyGsoquy_lsm3fFjzVox4TQ34YQqv9RVeEj5j1VE9Mz90gtt9zvDsnTyl0YXaKM3HvRp_2Z4d4o2CfBnNN-thirpbC7OFABK-ble4p_Sg_uZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA2iIPrgtzidmgfBp25rmmbto-yDqXMMcbi3krQJirMdWyfMX29uunWbIII-BpLQ5t6bnJucnCB0xUCghNjKcpivLEoE1zEHF3VdW5DQka4TQqL40GGtHr3ru_2lW_yZPkS-4QaRYeZrCPBhpMoL0VA9qqBfCldNCEzCG5RVPPDr-mMuIAVaIybl8uC0UoORuWxjhZRX268uSwusuYxYzZLT3EV8_rEZ0-StNElFKfz8puP4n7_ZQzszPIpvMgfaR2syPkDbSyqFh-jV0Apwx0iE4-ckiaYY3jpKx1gjXtx9mabJe86iwYnCvZHgMc527bVvjzFoYHEg3Wh8i8XUdIK7yUBioIBk-8IfcnyEes3GU61lzV5osLijYbkV6RUWQI3nUw20aLVCfFcq7pMq0D0V86X0uOS2p6osVLoSl8LljHJd9HnkOsdoPU5ieYJwxCE3ZS6XLqXciQSv2KGtPCdyfCWoXUDW3EBBOJMvh1c0BkEmvEwCGMIgH8ICus7rDzPhjh9rFuf2DmYBPA50Vso0GtLZYwERY7hfeglq7UYnL53-pdEl2uzWm0H7tnN_hrYIkGcM2a2I1tPRRJ5r9JOKC-PgX_hU-lE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Native+Woody+Plants+for+Phytomanagement+of+Urban+Technosols+Contaminated+by+Wood+Pole+Preservatives&rft.jtitle=Clean+%3A+soil%2C+air%2C+water&rft.au=Heine%2C+Philippe&rft.au=Yavari%2C+Sara&rft.au=Frenette%E2%80%90Dussault%2C+C%C3%A9dric&rft.au=Zagury%2C+G%C3%A9rald+J.&rft.date=2021-03-01&rft.issn=1863-0650&rft.eissn=1863-0669&rft.volume=49&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fclen.202000262&rft.externalDBID=10.1002%252Fclen.202000262&rft.externalDocID=CLEN202000262 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-0650&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-0650&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-0650&client=summon |