A Superlattice-Stabilized Layered CuS Anode for High-Performance Aqueous Zinc-Ion Batteries
Rechargeable aqueous zinc ion batteries (AZIBs) are attracting extensive attention owing to environmental friendliness and high safety. However, its practical applications are limited to the poor Coulombic efficiency and stability of a Zn anode. Herein, we demonstrate a periodically stacked CuS-CTAB...
Saved in:
Published in | ACS nano Vol. 15; no. 11; pp. 17748 - 17756 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
23.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rechargeable aqueous zinc ion batteries (AZIBs) are attracting extensive attention owing to environmental friendliness and high safety. However, its practical applications are limited to the poor Coulombic efficiency and stability of a Zn anode. Herein, we demonstrate a periodically stacked CuS-CTAB superlattice, as a competitive conversion-type anode for AZIBs with greatly improved specific capacity, rate performance, and stability. The CuS layers react with Zn2+ to endow high capacity, while CTAB layers serve to stabilize the structure and facilitate Zn2+ diffusion kinetics. Accordingly, CuS-CTAB shows superior rate performance (225.3 mA h g–1 at 0.1 A g–1 with 144.4 mA h g–1 at 10 A g–1) and a respectable cyclability of 87.6% capacity retention over 3400 cycles at 10 A g–1. In view of the outstanding electrochemical properties, full batteries constructed with a CuS-CTAB anode and cathode (Zn x FeCo(CN)6 and Zn x MnO2) are evaluated in coin cells, which demonstrate impressive full-battery performance. |
---|---|
AbstractList | Rechargeable aqueous zinc ion batteries (AZIBs) are attracting extensive attention owing to environmental friendliness and high safety. However, its practical applications are limited to the poor Coulombic efficiency and stability of a Zn anode. Herein, we demonstrate a periodically stacked CuS-CTAB superlattice, as a competitive conversion-type anode for AZIBs with greatly improved specific capacity, rate performance, and stability. The CuS layers react with Zn2+ to endow high capacity, while CTAB layers serve to stabilize the structure and facilitate Zn2+ diffusion kinetics. Accordingly, CuS-CTAB shows superior rate performance (225.3 mA h g-1 at 0.1 A g-1 with 144.4 mA h g-1 at 10 A g-1) and a respectable cyclability of 87.6% capacity retention over 3400 cycles at 10 A g-1. In view of the outstanding electrochemical properties, full batteries constructed with a CuS-CTAB anode and cathode (ZnxFeCo(CN)6 and ZnxMnO2) are evaluated in coin cells, which demonstrate impressive full-battery performance.Rechargeable aqueous zinc ion batteries (AZIBs) are attracting extensive attention owing to environmental friendliness and high safety. However, its practical applications are limited to the poor Coulombic efficiency and stability of a Zn anode. Herein, we demonstrate a periodically stacked CuS-CTAB superlattice, as a competitive conversion-type anode for AZIBs with greatly improved specific capacity, rate performance, and stability. The CuS layers react with Zn2+ to endow high capacity, while CTAB layers serve to stabilize the structure and facilitate Zn2+ diffusion kinetics. Accordingly, CuS-CTAB shows superior rate performance (225.3 mA h g-1 at 0.1 A g-1 with 144.4 mA h g-1 at 10 A g-1) and a respectable cyclability of 87.6% capacity retention over 3400 cycles at 10 A g-1. In view of the outstanding electrochemical properties, full batteries constructed with a CuS-CTAB anode and cathode (ZnxFeCo(CN)6 and ZnxMnO2) are evaluated in coin cells, which demonstrate impressive full-battery performance. Rechargeable aqueous zinc ion batteries (AZIBs) are attracting extensive attention owing to environmental friendliness and high safety. However, its practical applications are limited to the poor Coulombic efficiency and stability of a Zn anode. Herein, we demonstrate a periodically stacked CuS-CTAB superlattice, as a competitive conversion-type anode for AZIBs with greatly improved specific capacity, rate performance, and stability. The CuS layers react with Zn2+ to endow high capacity, while CTAB layers serve to stabilize the structure and facilitate Zn2+ diffusion kinetics. Accordingly, CuS-CTAB shows superior rate performance (225.3 mA h g–1 at 0.1 A g–1 with 144.4 mA h g–1 at 10 A g–1) and a respectable cyclability of 87.6% capacity retention over 3400 cycles at 10 A g–1. In view of the outstanding electrochemical properties, full batteries constructed with a CuS-CTAB anode and cathode (Zn x FeCo(CN)6 and Zn x MnO2) are evaluated in coin cells, which demonstrate impressive full-battery performance. |
Author | Huang, Yaobo Zhang, Jiaqian Zhou, Xingtai Li, Jiong Li, Zhao Zeng, Mengqi Ren, Zhiguo Li, Xiaolong Wang, Yong Jiang, Zheng Zhu, Xiaohui Lei, Qi Ding, Yiran Liu, Shilei Fu, Lei Li, Ji Zhu, Daming |
AuthorAffiliation | The Institute for Advanced Studies (IAS) Chinese Academy of Sciences National Engineering Research Center of Light Alloy Net Forming, State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering Shanghai Institute of Applied Physics School of Physical Science and Technology College of Chemistry and Molecular Sciences Shanghai Advanced Research Institute University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: Shanghai Institute of Applied Physics – name: School of Physical Science and Technology – name: National Engineering Research Center of Light Alloy Net Forming, State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering – name: Shanghai Advanced Research Institute – name: Chinese Academy of Sciences – name: The Institute for Advanced Studies (IAS) – name: College of Chemistry and Molecular Sciences – name: University of Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Jiaqian surname: Zhang fullname: Zhang, Jiaqian organization: College of Chemistry and Molecular Sciences – sequence: 2 givenname: Qi surname: Lei fullname: Lei, Qi organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Zhiguo surname: Ren fullname: Ren, Zhiguo organization: Chinese Academy of Sciences – sequence: 4 givenname: Xiaohui surname: Zhu fullname: Zhu, Xiaohui organization: The Institute for Advanced Studies (IAS) – sequence: 5 givenname: Ji surname: Li fullname: Li, Ji organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Zhao surname: Li fullname: Li, Zhao organization: National Engineering Research Center of Light Alloy Net Forming, State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering – sequence: 7 givenname: Shilei surname: Liu fullname: Liu, Shilei organization: School of Physical Science and Technology – sequence: 8 givenname: Yiran surname: Ding fullname: Ding, Yiran organization: The Institute for Advanced Studies (IAS) – sequence: 9 givenname: Zheng orcidid: 0000-0002-0132-0319 surname: Jiang fullname: Jiang, Zheng organization: Chinese Academy of Sciences – sequence: 10 givenname: Jiong orcidid: 0000-0001-6826-9987 surname: Li fullname: Li, Jiong organization: Chinese Academy of Sciences – sequence: 11 givenname: Yaobo surname: Huang fullname: Huang, Yaobo organization: Chinese Academy of Sciences – sequence: 12 givenname: Xiaolong orcidid: 0000-0002-1674-9345 surname: Li fullname: Li, Xiaolong organization: Chinese Academy of Sciences – sequence: 13 givenname: Xingtai surname: Zhou fullname: Zhou, Xingtai organization: Shanghai Institute of Applied Physics – sequence: 14 givenname: Yong surname: Wang fullname: Wang, Yong email: wangyong@sinap.ac.cn organization: Chinese Academy of Sciences – sequence: 15 givenname: Daming orcidid: 0000-0003-2094-8360 surname: Zhu fullname: Zhu, Daming email: zhudaming@zjlab.org.cn organization: Chinese Academy of Sciences – sequence: 16 givenname: Mengqi orcidid: 0000-0002-1442-052X surname: Zeng fullname: Zeng, Mengqi email: zengmq_lan@whu.edu.cn organization: College of Chemistry and Molecular Sciences – sequence: 17 givenname: Lei orcidid: 0000-0003-1356-4422 surname: Fu fullname: Fu, Lei email: leifu@whu.edu.cn organization: College of Chemistry and Molecular Sciences |
BookMark | eNp9UE1LAzEUDFLBtnr2ukdBtk12N_txrEVtoaDQHkQP4W36oinbpCa7h_rrTWnxIOhphvdmhmEGpGesQUKuGR0xmrAxSG_A2BGTlBcJPyN9VqV5TMv8pffDObsgA-83NGjKIu-Tt0m07HboGmhbLTFetlDrRn_hOlrAHl3AabeMJsauMVLWRTP9_hE_owt8C0ZiNPns0HY-etVGxnNrorsQhU6jvyTnChqPVyccktXD_Wo6ixdPj_PpZBFDWuRtrFSSA-eYJVhiWsisyGhVQl6jSmupsopxlRcZJKpmCfACVMpoVodrWpbrLB2Sm2PsztnQxbdiq73EpgFzKCYSXlFG06JMgnR8lEpnvXeoxM7pLbi9YFQcVhSnFcVpxeDgvxxSt9Bqa1oHuvnHd3v0hYfY2M6ZsMCf6m8GW4nR |
CitedBy_id | crossref_primary_10_1002_advs_202417084 crossref_primary_10_1002_anie_202409096 crossref_primary_10_1007_s40820_022_00885_7 crossref_primary_10_1016_j_actamat_2024_120588 crossref_primary_10_1016_j_cej_2023_142433 crossref_primary_10_1016_j_cej_2023_141345 crossref_primary_10_1039_D3QI00324H crossref_primary_10_1021_acsnano_3c11892 crossref_primary_10_1002_adma_202208289 crossref_primary_10_1016_j_jcis_2024_05_208 crossref_primary_10_1021_acs_analchem_4c00590 crossref_primary_10_1002_sus2_184 crossref_primary_10_1021_acs_iecr_3c01127 crossref_primary_10_1039_D2TA04912K crossref_primary_10_1016_j_ensm_2022_06_015 crossref_primary_10_1016_j_jcis_2023_10_024 crossref_primary_10_1021_acsnano_2c11357 crossref_primary_10_1021_acsnano_3c05850 crossref_primary_10_1021_acssuschemeng_4c06019 crossref_primary_10_1002_smll_202403050 crossref_primary_10_1016_j_jcis_2023_02_112 crossref_primary_10_1016_j_jechem_2023_03_002 crossref_primary_10_1039_D3TA02772D crossref_primary_10_1021_acsami_4c01311 crossref_primary_10_1088_1361_6463_ad2f80 crossref_primary_10_1021_acsnano_2c02330 crossref_primary_10_1002_advs_202301178 crossref_primary_10_1016_j_jpowsour_2025_236835 crossref_primary_10_1002_smll_202300585 crossref_primary_10_1093_nsr_nwac268 crossref_primary_10_1002_aenm_202300236 crossref_primary_10_1016_j_mtphys_2023_101108 crossref_primary_10_1039_D3CC00107E crossref_primary_10_1039_D4QI00969J crossref_primary_10_1002_ange_202409096 crossref_primary_10_1016_j_cej_2024_149436 crossref_primary_10_1016_j_jelechem_2024_118908 crossref_primary_10_1021_acsami_2c04946 crossref_primary_10_1016_j_gce_2023_01_001 crossref_primary_10_1016_j_apsusc_2025_162548 crossref_primary_10_1021_acsestengg_2c00075 crossref_primary_10_1002_elt2_5 crossref_primary_10_1007_s12274_024_6956_z crossref_primary_10_1021_acsnano_3c01518 crossref_primary_10_1016_j_cej_2024_152274 crossref_primary_10_1016_j_cclet_2023_108307 crossref_primary_10_1016_j_jallcom_2024_175853 crossref_primary_10_1016_j_jcis_2023_09_039 crossref_primary_10_1016_j_jcis_2024_06_146 crossref_primary_10_1007_s11426_022_1556_x crossref_primary_10_1016_j_ensm_2022_10_048 crossref_primary_10_1021_acsnano_3c05282 crossref_primary_10_1002_smll_202501370 crossref_primary_10_1021_acsanm_4c06619 crossref_primary_10_1021_acsaem_2c03787 crossref_primary_10_26599_NRE_2024_9120127 crossref_primary_10_1021_acsaem_3c02980 crossref_primary_10_1002_adma_202304983 crossref_primary_10_1002_adma_202306689 crossref_primary_10_1016_j_matlet_2025_138109 crossref_primary_10_1002_smll_202311099 crossref_primary_10_1002_smtd_202201281 crossref_primary_10_1016_j_jcis_2024_10_094 crossref_primary_10_1021_acs_jpcc_4c07497 crossref_primary_10_1002_adfm_202416497 crossref_primary_10_1002_smll_202311810 crossref_primary_10_1007_s11581_022_04678_1 crossref_primary_10_1016_j_ensm_2022_11_050 crossref_primary_10_1016_j_apcatb_2024_123898 crossref_primary_10_1002_aenm_202403657 crossref_primary_10_1016_j_electacta_2023_143549 crossref_primary_10_1002_adma_202310434 crossref_primary_10_1002_eem2_12632 crossref_primary_10_1021_acsnano_3c08460 crossref_primary_10_1002_sstr_202200194 crossref_primary_10_1016_j_cej_2024_155816 crossref_primary_10_1021_acsestengg_4c00720 crossref_primary_10_1002_anie_202304400 crossref_primary_10_1016_j_jelechem_2024_118227 crossref_primary_10_1021_acsnano_3c06361 crossref_primary_10_1002_advs_202304146 crossref_primary_10_1021_acsami_2c19518 crossref_primary_10_1016_j_est_2025_116271 crossref_primary_10_1016_j_cej_2023_144784 crossref_primary_10_1002_adma_202306810 crossref_primary_10_1002_advs_202204087 crossref_primary_10_1016_j_ensm_2025_104056 crossref_primary_10_1002_aenm_202200547 crossref_primary_10_1021_acsanm_2c04836 crossref_primary_10_1021_acsnano_2c11469 crossref_primary_10_1002_adma_202209307 crossref_primary_10_1016_j_ensm_2022_06_029 crossref_primary_10_1016_j_est_2024_114440 crossref_primary_10_1002_ange_202304400 |
Cites_doi | 10.1021/acs.inorgchem.5b02362 10.1021/jacs.7b04471 10.1002/adma.202100359 10.1039/C4TA01644K 10.1002/advs.202000146 10.1002/adma.202001113 10.1126/science.aax6873 10.1021/acsami.9b21999 10.1016/j.chempr.2020.02.001 10.1038/s41467-018-03322-9 10.1021/acs.nanolett.7b02694 10.1002/advs.201903279 10.1039/C6TA07747A 10.1039/D0TA02236E 10.1016/j.jelechem.2021.115033 10.1021/acsami.6b03197 10.1038/s41467-020-15478-4 10.1038/s41467-018-04949-4 10.1038/nenergy.2016.39 10.1016/j.ensm.2018.10.005 10.1002/adfm.202005092 10.1002/sia.740230308 10.1126/science.1252817 10.1038/s41467-019-09931-2 10.1002/adfm.202007712 10.1021/acsnano.0c06606 10.1002/aelm.202000388 10.1016/0368-2048(92)80047-C 10.1002/aenm.201900145 10.1002/aenm.202000446 10.1002/aenm.202001852 10.1002/aenm.201900993 10.1039/C6TA09195D |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acsnano.1c05725 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 17756 |
ExternalDocumentID | 10_1021_acsnano_1c05725 d86975890 |
GroupedDBID | - 23M 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED F5P GGK GNL IH9 IHE JG K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV BAANH CITATION CUPRZ ED~ JG~ 7X8 |
ID | FETCH-LOGICAL-a376t-ff26a55e42e8e37c474098a6bef3bcf4915f674a2fb12a57af3104b15f388d43 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 07:59:14 EDT 2025 Thu Apr 24 23:07:20 EDT 2025 Tue Jul 01 03:37:17 EDT 2025 Thu Nov 25 03:13:29 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | cetyltrimethylammonium bromide aqueous zinc-ion batteries synchrotron radiation superlattice structure copper sulfide conversion reaction |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a376t-ff26a55e42e8e37c474098a6bef3bcf4915f674a2fb12a57af3104b15f388d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0132-0319 0000-0003-2094-8360 0000-0003-1356-4422 0000-0002-1674-9345 0000-0002-1442-052X 0000-0001-6826-9987 |
PQID | 2590103782 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2590103782 crossref_primary_10_1021_acsnano_1c05725 crossref_citationtrail_10_1021_acsnano_1c05725 acs_journals_10_1021_acsnano_1c05725 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-23 |
PublicationDateYYYYMMDD | 2021-11-23 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-23 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref24/cit24 doi: 10.1021/acs.inorgchem.5b02362 – ident: ref2/cit2 doi: 10.1021/jacs.7b04471 – ident: ref6/cit6 doi: 10.1002/adma.202100359 – ident: ref25/cit25 doi: 10.1039/C4TA01644K – ident: ref12/cit12 doi: 10.1002/advs.202000146 – ident: ref18/cit18 doi: 10.1002/adma.202001113 – ident: ref4/cit4 doi: 10.1126/science.aax6873 – ident: ref22/cit22 doi: 10.1021/acsami.9b21999 – ident: ref31/cit31 doi: 10.1016/j.chempr.2020.02.001 – ident: ref17/cit17 doi: 10.1038/s41467-018-03322-9 – ident: ref16/cit16 doi: 10.1021/acs.nanolett.7b02694 – ident: ref28/cit28 doi: 10.1002/advs.201903279 – ident: ref7/cit7 doi: 10.1039/C6TA07747A – ident: ref8/cit8 doi: 10.1039/D0TA02236E – ident: ref23/cit23 doi: 10.1016/j.jelechem.2021.115033 – ident: ref10/cit10 doi: 10.1021/acsami.6b03197 – ident: ref5/cit5 doi: 10.1038/s41467-020-15478-4 – ident: ref3/cit3 doi: 10.1038/s41467-018-04949-4 – ident: ref1/cit1 doi: 10.1038/nenergy.2016.39 – ident: ref32/cit32 doi: 10.1016/j.ensm.2018.10.005 – ident: ref21/cit21 doi: 10.1002/adfm.202005092 – ident: ref27/cit27 doi: 10.1002/sia.740230308 – ident: ref33/cit33 doi: 10.1126/science.1252817 – ident: ref13/cit13 doi: 10.1038/s41467-019-09931-2 – ident: ref29/cit29 doi: 10.1002/adfm.202007712 – ident: ref14/cit14 doi: 10.1021/acsnano.0c06606 – ident: ref9/cit9 doi: 10.1002/aelm.202000388 – ident: ref26/cit26 doi: 10.1016/0368-2048(92)80047-C – ident: ref15/cit15 doi: 10.1002/aenm.201900145 – ident: ref30/cit30 doi: 10.1002/aenm.202000446 – ident: ref19/cit19 doi: 10.1002/aenm.202001852 – ident: ref11/cit11 doi: 10.1002/aenm.201900993 – ident: ref20/cit20 doi: 10.1039/C6TA09195D |
SSID | ssj0057876 |
Score | 2.6299608 |
Snippet | Rechargeable aqueous zinc ion batteries (AZIBs) are attracting extensive attention owing to environmental friendliness and high safety. However, its practical... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 17748 |
Title | A Superlattice-Stabilized Layered CuS Anode for High-Performance Aqueous Zinc-Ion Batteries |
URI | http://dx.doi.org/10.1021/acsnano.1c05725 https://www.proquest.com/docview/2590103782 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66XvTgW3wTwYOXrCZN2_S4LIqKirAKooeSpgmIki62Peivd2bbXV-IXksT0kky86Xz5RtC9pU10rggYSYPEyaNBT-YJJYpFFfXADH0Ed4dvryKTm_l-V149yEW_T2DL_ihNqXXvuhyA9BChNNkRkSwhREF9Qdjp4vrLmoSyHBABhQxUfH50QGGIVN-DUNfvfAotJwsNKSscqRIiIySp25dZV3z9lOv8e9RL5L5FmDSXrMilsiU9ctk7pPs4Ap56NFBPcQfeRVS3xgATqTIvtmcXuhXLN5J-_WA9nyRWwqgliIZhF1_XDGgPfiOoi7p_aM37KzwtJHphFP3Krk5Ob7pn7K2yALT4Fsq5pyIdBhaKayyQWxkDCc-paPMuiAzTiY8dFEstXAZFzqMtQNAKDN4GiiVy2CNdHzh7TqhGbKoZASTr5yMTaxtIpTKOLfG6dwFG2QfrJK2e6RMR-lvwdPWVGlrqg3SHc9MalqdciyX8fx7g4NJg2Ej0fH7q3vjqU5hG2FuRHu0VyrwDu5RAHhp83_D3CKzAuktnDMRbJNO9VLbHcAnVbY7WpnvTbThYA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1ROLQcgPIhoJQaiQMXL2vHSZxjtCpa6IKKdishOESOY0uolYNIcoBf33E2u0ArJLhatjUZj8fPmZlngENptNA2SKguwoQKbdAPJomh0pOrK4QYqu9rh88vouEvcXYVXi1Af1YLg0JUOFPVBvGf2AXYMbY55coe04gwePgBlhCKcG_T6WA8873e_KJpHBnvyQgm5mQ-_03gTyNdvTyNXjrj9oQ5WYXLuWxtYsnvXlPnPf34D23je4Rfg5UObpJ0ah-fYcG4dVh-RkK4ATcpGTd3_rde7RPhKMJPnzD7aAoyUg_-KU8yaMYkdWVhCEJc4lND6M-nggOS4ueUTUWub52mp6UjU9JOvINvwuTk-2QwpN2TC1Shp6mptTxSYWgEN9IEsRYx3v-kinJjg1xbkbDQRrFQ3OaMqzBWFuGhyLE1kLIQwRYsutKZbSC5z6kSEZqCtCLWsTIJlzJnzGirChvswCFqJet2TJW1wXDOsk5VWaeqHejNFijTHWu5fzzjz-sDjuYD7qaEHa93PZiteIabykdKlPP6yrivyO0HiJ523ybmN_g4nJyPstHpxY8v8In7xBfGKA_2YLG-b8xXRC51vt8a61_Y8-nB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELVgkRA9AKVFUL6MxKEXL9hxEucYLayAUoS0IKFyiBzHlhDIWTXJofvrmclmt9AKqb1asWWPx-PnzMwbQo6UNdK4IGGmCBMmjQU7mCSWKSRX1wAx9AnmDn-_js7v5OV9eN8lhWEuDEyigpGq1omPp3pcuI5hgB9Du9e-7HMDKEOEi2QJnXao1-lgNLO_qILR1JcMb2UAFHNCn78GwBvJVG9vpLcGub1lhmvkbj6_Nrjkqd_Ued9M_qBu_N8FrJPVDnbSdKonH8mC9Rvkwysywk_kIaWjZoy_92oMiGMAQzFwdmILeqV_YUlPOmhGNPVlYSlAXYohIuzmd-IBTWFJZVPRH4_esIvS0yl5J7zFP5Pb4dnt4Jx1pReYBotTM-dEpMPQSmGVDWIjY3gHKh3l1gW5cTLhoYtiqYXLudBhrB3ARJlDa6BUIYNN0vOlt1uE5hhbJSNQCeVkbGJtE6FUzrk1Thcu2CZHIJWsOzlV1jrFBc86UWWdqLZJf7ZJmenYy7GIxvP7Hb7OO4ynxB3vf3o42_UMDhd6TLRHeWUCM3NPAkBRX_5tmgdk-eZ0mF1dXH_bISsC4184ZyLYJb36Z2P3AMDU-X6rry92ZexE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Superlattice-Stabilized+Layered+CuS+Anode+for+High-Performance+Aqueous+Zinc-Ion+Batteries&rft.jtitle=ACS+nano&rft.au=Zhang%2C+Jiaqian&rft.au=Lei%2C+Qi&rft.au=Ren%2C+Zhiguo&rft.au=Zhu%2C+Xiaohui&rft.date=2021-11-23&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=15&rft.issue=11&rft.spage=17748&rft.epage=17756&rft_id=info:doi/10.1021%2Facsnano.1c05725&rft.externalDocID=d86975890 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |