A Superlattice-Stabilized Layered CuS Anode for High-Performance Aqueous Zinc-Ion Batteries

Rechargeable aqueous zinc ion batteries (AZIBs) are attracting extensive attention owing to environmental friendliness and high safety. However, its practical applications are limited to the poor Coulombic efficiency and stability of a Zn anode. Herein, we demonstrate a periodically stacked CuS-CTAB...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 15; no. 11; pp. 17748 - 17756
Main Authors Zhang, Jiaqian, Lei, Qi, Ren, Zhiguo, Zhu, Xiaohui, Li, Ji, Li, Zhao, Liu, Shilei, Ding, Yiran, Jiang, Zheng, Li, Jiong, Huang, Yaobo, Li, Xiaolong, Zhou, Xingtai, Wang, Yong, Zhu, Daming, Zeng, Mengqi, Fu, Lei
Format Journal Article
LanguageEnglish
Published American Chemical Society 23.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rechargeable aqueous zinc ion batteries (AZIBs) are attracting extensive attention owing to environmental friendliness and high safety. However, its practical applications are limited to the poor Coulombic efficiency and stability of a Zn anode. Herein, we demonstrate a periodically stacked CuS-CTAB superlattice, as a competitive conversion-type anode for AZIBs with greatly improved specific capacity, rate performance, and stability. The CuS layers react with Zn2+ to endow high capacity, while CTAB layers serve to stabilize the structure and facilitate Zn2+ diffusion kinetics. Accordingly, CuS-CTAB shows superior rate performance (225.3 mA h g–1 at 0.1 A g–1 with 144.4 mA h g–1 at 10 A g–1) and a respectable cyclability of 87.6% capacity retention over 3400 cycles at 10 A g–1. In view of the outstanding electrochemical properties, full batteries constructed with a CuS-CTAB anode and cathode (Zn x FeCo­(CN)6 and Zn x MnO2) are evaluated in coin cells, which demonstrate impressive full-battery performance.
AbstractList Rechargeable aqueous zinc ion batteries (AZIBs) are attracting extensive attention owing to environmental friendliness and high safety. However, its practical applications are limited to the poor Coulombic efficiency and stability of a Zn anode. Herein, we demonstrate a periodically stacked CuS-CTAB superlattice, as a competitive conversion-type anode for AZIBs with greatly improved specific capacity, rate performance, and stability. The CuS layers react with Zn2+ to endow high capacity, while CTAB layers serve to stabilize the structure and facilitate Zn2+ diffusion kinetics. Accordingly, CuS-CTAB shows superior rate performance (225.3 mA h g-1 at 0.1 A g-1 with 144.4 mA h g-1 at 10 A g-1) and a respectable cyclability of 87.6% capacity retention over 3400 cycles at 10 A g-1. In view of the outstanding electrochemical properties, full batteries constructed with a CuS-CTAB anode and cathode (ZnxFeCo(CN)6 and ZnxMnO2) are evaluated in coin cells, which demonstrate impressive full-battery performance.Rechargeable aqueous zinc ion batteries (AZIBs) are attracting extensive attention owing to environmental friendliness and high safety. However, its practical applications are limited to the poor Coulombic efficiency and stability of a Zn anode. Herein, we demonstrate a periodically stacked CuS-CTAB superlattice, as a competitive conversion-type anode for AZIBs with greatly improved specific capacity, rate performance, and stability. The CuS layers react with Zn2+ to endow high capacity, while CTAB layers serve to stabilize the structure and facilitate Zn2+ diffusion kinetics. Accordingly, CuS-CTAB shows superior rate performance (225.3 mA h g-1 at 0.1 A g-1 with 144.4 mA h g-1 at 10 A g-1) and a respectable cyclability of 87.6% capacity retention over 3400 cycles at 10 A g-1. In view of the outstanding electrochemical properties, full batteries constructed with a CuS-CTAB anode and cathode (ZnxFeCo(CN)6 and ZnxMnO2) are evaluated in coin cells, which demonstrate impressive full-battery performance.
Rechargeable aqueous zinc ion batteries (AZIBs) are attracting extensive attention owing to environmental friendliness and high safety. However, its practical applications are limited to the poor Coulombic efficiency and stability of a Zn anode. Herein, we demonstrate a periodically stacked CuS-CTAB superlattice, as a competitive conversion-type anode for AZIBs with greatly improved specific capacity, rate performance, and stability. The CuS layers react with Zn2+ to endow high capacity, while CTAB layers serve to stabilize the structure and facilitate Zn2+ diffusion kinetics. Accordingly, CuS-CTAB shows superior rate performance (225.3 mA h g–1 at 0.1 A g–1 with 144.4 mA h g–1 at 10 A g–1) and a respectable cyclability of 87.6% capacity retention over 3400 cycles at 10 A g–1. In view of the outstanding electrochemical properties, full batteries constructed with a CuS-CTAB anode and cathode (Zn x FeCo­(CN)6 and Zn x MnO2) are evaluated in coin cells, which demonstrate impressive full-battery performance.
Author Huang, Yaobo
Zhang, Jiaqian
Zhou, Xingtai
Li, Jiong
Li, Zhao
Zeng, Mengqi
Ren, Zhiguo
Li, Xiaolong
Wang, Yong
Jiang, Zheng
Zhu, Xiaohui
Lei, Qi
Ding, Yiran
Liu, Shilei
Fu, Lei
Li, Ji
Zhu, Daming
AuthorAffiliation The Institute for Advanced Studies (IAS)
Chinese Academy of Sciences
National Engineering Research Center of Light Alloy Net Forming, State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering
Shanghai Institute of Applied Physics
School of Physical Science and Technology
College of Chemistry and Molecular Sciences
Shanghai Advanced Research Institute
University of Chinese Academy of Sciences
AuthorAffiliation_xml – name: Shanghai Institute of Applied Physics
– name: School of Physical Science and Technology
– name: National Engineering Research Center of Light Alloy Net Forming, State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering
– name: Shanghai Advanced Research Institute
– name: Chinese Academy of Sciences
– name: The Institute for Advanced Studies (IAS)
– name: College of Chemistry and Molecular Sciences
– name: University of Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Jiaqian
  surname: Zhang
  fullname: Zhang, Jiaqian
  organization: College of Chemistry and Molecular Sciences
– sequence: 2
  givenname: Qi
  surname: Lei
  fullname: Lei, Qi
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Zhiguo
  surname: Ren
  fullname: Ren, Zhiguo
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Xiaohui
  surname: Zhu
  fullname: Zhu, Xiaohui
  organization: The Institute for Advanced Studies (IAS)
– sequence: 5
  givenname: Ji
  surname: Li
  fullname: Li, Ji
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Zhao
  surname: Li
  fullname: Li, Zhao
  organization: National Engineering Research Center of Light Alloy Net Forming, State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering
– sequence: 7
  givenname: Shilei
  surname: Liu
  fullname: Liu, Shilei
  organization: School of Physical Science and Technology
– sequence: 8
  givenname: Yiran
  surname: Ding
  fullname: Ding, Yiran
  organization: The Institute for Advanced Studies (IAS)
– sequence: 9
  givenname: Zheng
  orcidid: 0000-0002-0132-0319
  surname: Jiang
  fullname: Jiang, Zheng
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Jiong
  orcidid: 0000-0001-6826-9987
  surname: Li
  fullname: Li, Jiong
  organization: Chinese Academy of Sciences
– sequence: 11
  givenname: Yaobo
  surname: Huang
  fullname: Huang, Yaobo
  organization: Chinese Academy of Sciences
– sequence: 12
  givenname: Xiaolong
  orcidid: 0000-0002-1674-9345
  surname: Li
  fullname: Li, Xiaolong
  organization: Chinese Academy of Sciences
– sequence: 13
  givenname: Xingtai
  surname: Zhou
  fullname: Zhou, Xingtai
  organization: Shanghai Institute of Applied Physics
– sequence: 14
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  email: wangyong@sinap.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 15
  givenname: Daming
  orcidid: 0000-0003-2094-8360
  surname: Zhu
  fullname: Zhu, Daming
  email: zhudaming@zjlab.org.cn
  organization: Chinese Academy of Sciences
– sequence: 16
  givenname: Mengqi
  orcidid: 0000-0002-1442-052X
  surname: Zeng
  fullname: Zeng, Mengqi
  email: zengmq_lan@whu.edu.cn
  organization: College of Chemistry and Molecular Sciences
– sequence: 17
  givenname: Lei
  orcidid: 0000-0003-1356-4422
  surname: Fu
  fullname: Fu, Lei
  email: leifu@whu.edu.cn
  organization: College of Chemistry and Molecular Sciences
BookMark eNp9UE1LAzEUDFLBtnr2ukdBtk12N_txrEVtoaDQHkQP4W36oinbpCa7h_rrTWnxIOhphvdmhmEGpGesQUKuGR0xmrAxSG_A2BGTlBcJPyN9VqV5TMv8pffDObsgA-83NGjKIu-Tt0m07HboGmhbLTFetlDrRn_hOlrAHl3AabeMJsauMVLWRTP9_hE_owt8C0ZiNPns0HY-etVGxnNrorsQhU6jvyTnChqPVyccktXD_Wo6ixdPj_PpZBFDWuRtrFSSA-eYJVhiWsisyGhVQl6jSmupsopxlRcZJKpmCfACVMpoVodrWpbrLB2Sm2PsztnQxbdiq73EpgFzKCYSXlFG06JMgnR8lEpnvXeoxM7pLbi9YFQcVhSnFcVpxeDgvxxSt9Bqa1oHuvnHd3v0hYfY2M6ZsMCf6m8GW4nR
CitedBy_id crossref_primary_10_1002_advs_202417084
crossref_primary_10_1002_anie_202409096
crossref_primary_10_1007_s40820_022_00885_7
crossref_primary_10_1016_j_actamat_2024_120588
crossref_primary_10_1016_j_cej_2023_142433
crossref_primary_10_1016_j_cej_2023_141345
crossref_primary_10_1039_D3QI00324H
crossref_primary_10_1021_acsnano_3c11892
crossref_primary_10_1002_adma_202208289
crossref_primary_10_1016_j_jcis_2024_05_208
crossref_primary_10_1021_acs_analchem_4c00590
crossref_primary_10_1002_sus2_184
crossref_primary_10_1021_acs_iecr_3c01127
crossref_primary_10_1039_D2TA04912K
crossref_primary_10_1016_j_ensm_2022_06_015
crossref_primary_10_1016_j_jcis_2023_10_024
crossref_primary_10_1021_acsnano_2c11357
crossref_primary_10_1021_acsnano_3c05850
crossref_primary_10_1021_acssuschemeng_4c06019
crossref_primary_10_1002_smll_202403050
crossref_primary_10_1016_j_jcis_2023_02_112
crossref_primary_10_1016_j_jechem_2023_03_002
crossref_primary_10_1039_D3TA02772D
crossref_primary_10_1021_acsami_4c01311
crossref_primary_10_1088_1361_6463_ad2f80
crossref_primary_10_1021_acsnano_2c02330
crossref_primary_10_1002_advs_202301178
crossref_primary_10_1016_j_jpowsour_2025_236835
crossref_primary_10_1002_smll_202300585
crossref_primary_10_1093_nsr_nwac268
crossref_primary_10_1002_aenm_202300236
crossref_primary_10_1016_j_mtphys_2023_101108
crossref_primary_10_1039_D3CC00107E
crossref_primary_10_1039_D4QI00969J
crossref_primary_10_1002_ange_202409096
crossref_primary_10_1016_j_cej_2024_149436
crossref_primary_10_1016_j_jelechem_2024_118908
crossref_primary_10_1021_acsami_2c04946
crossref_primary_10_1016_j_gce_2023_01_001
crossref_primary_10_1016_j_apsusc_2025_162548
crossref_primary_10_1021_acsestengg_2c00075
crossref_primary_10_1002_elt2_5
crossref_primary_10_1007_s12274_024_6956_z
crossref_primary_10_1021_acsnano_3c01518
crossref_primary_10_1016_j_cej_2024_152274
crossref_primary_10_1016_j_cclet_2023_108307
crossref_primary_10_1016_j_jallcom_2024_175853
crossref_primary_10_1016_j_jcis_2023_09_039
crossref_primary_10_1016_j_jcis_2024_06_146
crossref_primary_10_1007_s11426_022_1556_x
crossref_primary_10_1016_j_ensm_2022_10_048
crossref_primary_10_1021_acsnano_3c05282
crossref_primary_10_1002_smll_202501370
crossref_primary_10_1021_acsanm_4c06619
crossref_primary_10_1021_acsaem_2c03787
crossref_primary_10_26599_NRE_2024_9120127
crossref_primary_10_1021_acsaem_3c02980
crossref_primary_10_1002_adma_202304983
crossref_primary_10_1002_adma_202306689
crossref_primary_10_1016_j_matlet_2025_138109
crossref_primary_10_1002_smll_202311099
crossref_primary_10_1002_smtd_202201281
crossref_primary_10_1016_j_jcis_2024_10_094
crossref_primary_10_1021_acs_jpcc_4c07497
crossref_primary_10_1002_adfm_202416497
crossref_primary_10_1002_smll_202311810
crossref_primary_10_1007_s11581_022_04678_1
crossref_primary_10_1016_j_ensm_2022_11_050
crossref_primary_10_1016_j_apcatb_2024_123898
crossref_primary_10_1002_aenm_202403657
crossref_primary_10_1016_j_electacta_2023_143549
crossref_primary_10_1002_adma_202310434
crossref_primary_10_1002_eem2_12632
crossref_primary_10_1021_acsnano_3c08460
crossref_primary_10_1002_sstr_202200194
crossref_primary_10_1016_j_cej_2024_155816
crossref_primary_10_1021_acsestengg_4c00720
crossref_primary_10_1002_anie_202304400
crossref_primary_10_1016_j_jelechem_2024_118227
crossref_primary_10_1021_acsnano_3c06361
crossref_primary_10_1002_advs_202304146
crossref_primary_10_1021_acsami_2c19518
crossref_primary_10_1016_j_est_2025_116271
crossref_primary_10_1016_j_cej_2023_144784
crossref_primary_10_1002_adma_202306810
crossref_primary_10_1002_advs_202204087
crossref_primary_10_1016_j_ensm_2025_104056
crossref_primary_10_1002_aenm_202200547
crossref_primary_10_1021_acsanm_2c04836
crossref_primary_10_1021_acsnano_2c11469
crossref_primary_10_1002_adma_202209307
crossref_primary_10_1016_j_ensm_2022_06_029
crossref_primary_10_1016_j_est_2024_114440
crossref_primary_10_1002_ange_202304400
Cites_doi 10.1021/acs.inorgchem.5b02362
10.1021/jacs.7b04471
10.1002/adma.202100359
10.1039/C4TA01644K
10.1002/advs.202000146
10.1002/adma.202001113
10.1126/science.aax6873
10.1021/acsami.9b21999
10.1016/j.chempr.2020.02.001
10.1038/s41467-018-03322-9
10.1021/acs.nanolett.7b02694
10.1002/advs.201903279
10.1039/C6TA07747A
10.1039/D0TA02236E
10.1016/j.jelechem.2021.115033
10.1021/acsami.6b03197
10.1038/s41467-020-15478-4
10.1038/s41467-018-04949-4
10.1038/nenergy.2016.39
10.1016/j.ensm.2018.10.005
10.1002/adfm.202005092
10.1002/sia.740230308
10.1126/science.1252817
10.1038/s41467-019-09931-2
10.1002/adfm.202007712
10.1021/acsnano.0c06606
10.1002/aelm.202000388
10.1016/0368-2048(92)80047-C
10.1002/aenm.201900145
10.1002/aenm.202000446
10.1002/aenm.202001852
10.1002/aenm.201900993
10.1039/C6TA09195D
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acsnano.1c05725
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 17756
ExternalDocumentID 10_1021_acsnano_1c05725
d86975890
GroupedDBID -
23M
4.4
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
BAANH
CITATION
CUPRZ
ED~
JG~
7X8
ID FETCH-LOGICAL-a376t-ff26a55e42e8e37c474098a6bef3bcf4915f674a2fb12a57af3104b15f388d43
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 07:59:14 EDT 2025
Thu Apr 24 23:07:20 EDT 2025
Tue Jul 01 03:37:17 EDT 2025
Thu Nov 25 03:13:29 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords cetyltrimethylammonium bromide
aqueous zinc-ion batteries
synchrotron radiation
superlattice structure
copper sulfide
conversion reaction
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a376t-ff26a55e42e8e37c474098a6bef3bcf4915f674a2fb12a57af3104b15f388d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0132-0319
0000-0003-2094-8360
0000-0003-1356-4422
0000-0002-1674-9345
0000-0002-1442-052X
0000-0001-6826-9987
PQID 2590103782
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2590103782
crossref_primary_10_1021_acsnano_1c05725
crossref_citationtrail_10_1021_acsnano_1c05725
acs_journals_10_1021_acsnano_1c05725
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-23
PublicationDateYYYYMMDD 2021-11-23
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-23
  day: 23
PublicationDecade 2020
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref24/cit24
  doi: 10.1021/acs.inorgchem.5b02362
– ident: ref2/cit2
  doi: 10.1021/jacs.7b04471
– ident: ref6/cit6
  doi: 10.1002/adma.202100359
– ident: ref25/cit25
  doi: 10.1039/C4TA01644K
– ident: ref12/cit12
  doi: 10.1002/advs.202000146
– ident: ref18/cit18
  doi: 10.1002/adma.202001113
– ident: ref4/cit4
  doi: 10.1126/science.aax6873
– ident: ref22/cit22
  doi: 10.1021/acsami.9b21999
– ident: ref31/cit31
  doi: 10.1016/j.chempr.2020.02.001
– ident: ref17/cit17
  doi: 10.1038/s41467-018-03322-9
– ident: ref16/cit16
  doi: 10.1021/acs.nanolett.7b02694
– ident: ref28/cit28
  doi: 10.1002/advs.201903279
– ident: ref7/cit7
  doi: 10.1039/C6TA07747A
– ident: ref8/cit8
  doi: 10.1039/D0TA02236E
– ident: ref23/cit23
  doi: 10.1016/j.jelechem.2021.115033
– ident: ref10/cit10
  doi: 10.1021/acsami.6b03197
– ident: ref5/cit5
  doi: 10.1038/s41467-020-15478-4
– ident: ref3/cit3
  doi: 10.1038/s41467-018-04949-4
– ident: ref1/cit1
  doi: 10.1038/nenergy.2016.39
– ident: ref32/cit32
  doi: 10.1016/j.ensm.2018.10.005
– ident: ref21/cit21
  doi: 10.1002/adfm.202005092
– ident: ref27/cit27
  doi: 10.1002/sia.740230308
– ident: ref33/cit33
  doi: 10.1126/science.1252817
– ident: ref13/cit13
  doi: 10.1038/s41467-019-09931-2
– ident: ref29/cit29
  doi: 10.1002/adfm.202007712
– ident: ref14/cit14
  doi: 10.1021/acsnano.0c06606
– ident: ref9/cit9
  doi: 10.1002/aelm.202000388
– ident: ref26/cit26
  doi: 10.1016/0368-2048(92)80047-C
– ident: ref15/cit15
  doi: 10.1002/aenm.201900145
– ident: ref30/cit30
  doi: 10.1002/aenm.202000446
– ident: ref19/cit19
  doi: 10.1002/aenm.202001852
– ident: ref11/cit11
  doi: 10.1002/aenm.201900993
– ident: ref20/cit20
  doi: 10.1039/C6TA09195D
SSID ssj0057876
Score 2.6299608
Snippet Rechargeable aqueous zinc ion batteries (AZIBs) are attracting extensive attention owing to environmental friendliness and high safety. However, its practical...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17748
Title A Superlattice-Stabilized Layered CuS Anode for High-Performance Aqueous Zinc-Ion Batteries
URI http://dx.doi.org/10.1021/acsnano.1c05725
https://www.proquest.com/docview/2590103782
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66XvTgW3wTwYOXrCZN2_S4LIqKirAKooeSpgmIki62Peivd2bbXV-IXksT0kky86Xz5RtC9pU10rggYSYPEyaNBT-YJJYpFFfXADH0Ed4dvryKTm_l-V149yEW_T2DL_ihNqXXvuhyA9BChNNkRkSwhREF9Qdjp4vrLmoSyHBABhQxUfH50QGGIVN-DUNfvfAotJwsNKSscqRIiIySp25dZV3z9lOv8e9RL5L5FmDSXrMilsiU9ctk7pPs4Ap56NFBPcQfeRVS3xgATqTIvtmcXuhXLN5J-_WA9nyRWwqgliIZhF1_XDGgPfiOoi7p_aM37KzwtJHphFP3Krk5Ob7pn7K2yALT4Fsq5pyIdBhaKayyQWxkDCc-paPMuiAzTiY8dFEstXAZFzqMtQNAKDN4GiiVy2CNdHzh7TqhGbKoZASTr5yMTaxtIpTKOLfG6dwFG2QfrJK2e6RMR-lvwdPWVGlrqg3SHc9MalqdciyX8fx7g4NJg2Ej0fH7q3vjqU5hG2FuRHu0VyrwDu5RAHhp83_D3CKzAuktnDMRbJNO9VLbHcAnVbY7WpnvTbThYA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1ROLQcgPIhoJQaiQMXL2vHSZxjtCpa6IKKdishOESOY0uolYNIcoBf33E2u0ArJLhatjUZj8fPmZlngENptNA2SKguwoQKbdAPJomh0pOrK4QYqu9rh88vouEvcXYVXi1Af1YLg0JUOFPVBvGf2AXYMbY55coe04gwePgBlhCKcG_T6WA8873e_KJpHBnvyQgm5mQ-_03gTyNdvTyNXjrj9oQ5WYXLuWxtYsnvXlPnPf34D23je4Rfg5UObpJ0ah-fYcG4dVh-RkK4ATcpGTd3_rde7RPhKMJPnzD7aAoyUg_-KU8yaMYkdWVhCEJc4lND6M-nggOS4ueUTUWub52mp6UjU9JOvINvwuTk-2QwpN2TC1Shp6mptTxSYWgEN9IEsRYx3v-kinJjg1xbkbDQRrFQ3OaMqzBWFuGhyLE1kLIQwRYsutKZbSC5z6kSEZqCtCLWsTIJlzJnzGirChvswCFqJet2TJW1wXDOsk5VWaeqHejNFijTHWu5fzzjz-sDjuYD7qaEHa93PZiteIabykdKlPP6yrivyO0HiJ523ybmN_g4nJyPstHpxY8v8In7xBfGKA_2YLG-b8xXRC51vt8a61_Y8-nB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELVgkRA9AKVFUL6MxKEXL9hxEucYLayAUoS0IKFyiBzHlhDIWTXJofvrmclmt9AKqb1asWWPx-PnzMwbQo6UNdK4IGGmCBMmjQU7mCSWKSRX1wAx9AnmDn-_js7v5OV9eN8lhWEuDEyigpGq1omPp3pcuI5hgB9Du9e-7HMDKEOEi2QJnXao1-lgNLO_qILR1JcMb2UAFHNCn78GwBvJVG9vpLcGub1lhmvkbj6_Nrjkqd_Ued9M_qBu_N8FrJPVDnbSdKonH8mC9Rvkwysywk_kIaWjZoy_92oMiGMAQzFwdmILeqV_YUlPOmhGNPVlYSlAXYohIuzmd-IBTWFJZVPRH4_esIvS0yl5J7zFP5Pb4dnt4Jx1pReYBotTM-dEpMPQSmGVDWIjY3gHKh3l1gW5cTLhoYtiqYXLudBhrB3ARJlDa6BUIYNN0vOlt1uE5hhbJSNQCeVkbGJtE6FUzrk1Thcu2CZHIJWsOzlV1jrFBc86UWWdqLZJf7ZJmenYy7GIxvP7Hb7OO4ynxB3vf3o42_UMDhd6TLRHeWUCM3NPAkBRX_5tmgdk-eZ0mF1dXH_bISsC4184ZyLYJb36Z2P3AMDU-X6rry92ZexE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Superlattice-Stabilized+Layered+CuS+Anode+for+High-Performance+Aqueous+Zinc-Ion+Batteries&rft.jtitle=ACS+nano&rft.au=Zhang%2C+Jiaqian&rft.au=Lei%2C+Qi&rft.au=Ren%2C+Zhiguo&rft.au=Zhu%2C+Xiaohui&rft.date=2021-11-23&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=15&rft.issue=11&rft.spage=17748&rft.epage=17756&rft_id=info:doi/10.1021%2Facsnano.1c05725&rft.externalDocID=d86975890
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon