Third intracellular loop of HCMV US28 is necessary for signaling and viral reactivation
Human cytomegalovirus (HCMV) is a β-herpesvirus that infects between 44% and 100% of the world population. Primary infection is typically asymptomatic and results in the establishment of latent infection within CD34 + hematopoietic progenitor cells (HPCs). However, reactivation from latent infection...
Saved in:
Published in | Journal of virology Vol. 99; no. 1; p. e0180124 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
31.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human cytomegalovirus (HCMV) is a β-herpesvirus that infects between 44% and 100% of the world population. Primary infection is typically asymptomatic and results in the establishment of latent infection within CD34
+
hematopoietic progenitor cells (HPCs). However, reactivation from latent infection remains a significant cause of morbidity and mortality in immunocompromised individuals. The viral chemokine receptor US28 influences various cellular processes crucial for viral latency and reactivation, yet the precise mechanism by which US28 functions remains unclear. Through mutational analysis, we identified key residues within the third intracellular loop (ICL3) of US28 that govern G-protein coupling, downstream signaling, and viral reactivation
in vitro
and
in vivo
. These findings offer novel insights into how US28 manipulates host signaling networks to regulate HCMV latency and reactivation and expand our understanding of HCMV pathogenesis. |
---|---|
AbstractList | The human cytomegalovirus (HCMV) encoded chemokine receptor US28 plays a critical role in viral pathogenesis, mediating several processes such as cellular migration, differentiation, transformation, and viral latency and reactivation. Despite significant research examining the signal transduction pathways utilized by US28, the precise mechanism by which US28 activates these pathways remains unclear. We performed a mutational analysis of US28 to identify signaling domains that are critical for functional activities. Our results indicate that specific residues within the third intracellular loop (ICL3) of US28 are major determinants of G-protein coupling and downstream signaling activity. Alanine substitutions at positions S218, K223, and R225 attenuated US28-mediated activation of MAPK and RhoA signal transduction pathways. Furthermore, we show that mutations at positions S218, K223, or R225 result in impaired coupling to multiple Gα isoforms. However, these substitutions did not affect US28 plasma membrane localization or the receptor internalization rate. Utilizing CD34
HPC models, we demonstrate that attenuation of US28 signaling
mutation of residues within the ICL3 region results in an inability of the virus to efficiently reactivate from latency. These results were recapitulated
, utilizing a humanized mouse model of HCMV infection. Together, our results provide new insights into the mechanism by which US28 manipulates host signaling networks to mediate viral latency and reactivation. The results reported here will guide the development of targeted therapies to prevent HCMV-associated disease.IMPORTANCEHuman cytomegalovirus (HCMV) is a β-herpesvirus that infects between 44% and 100% of the world population. Primary infection is typically asymptomatic and results in the establishment of latent infection within CD34
hematopoietic progenitor cells (HPCs). However, reactivation from latent infection remains a significant cause of morbidity and mortality in immunocompromised individuals. The viral chemokine receptor US28 influences various cellular processes crucial for viral latency and reactivation, yet the precise mechanism by which US28 functions remains unclear. Through mutational analysis, we identified key residues within the third intracellular loop (ICL3) of US28 that govern G-protein coupling, downstream signaling, and viral reactivation
and
. These findings offer novel insights into how US28 manipulates host signaling networks to regulate HCMV latency and reactivation and expand our understanding of HCMV pathogenesis. Human cytomegalovirus (HCMV) is a β-herpesvirus that infects between 44% and 100% of the world population. Primary infection is typically asymptomatic and results in the establishment of latent infection within CD34 + hematopoietic progenitor cells (HPCs). However, reactivation from latent infection remains a significant cause of morbidity and mortality in immunocompromised individuals. The viral chemokine receptor US28 influences various cellular processes crucial for viral latency and reactivation, yet the precise mechanism by which US28 functions remains unclear. Through mutational analysis, we identified key residues within the third intracellular loop (ICL3) of US28 that govern G-protein coupling, downstream signaling, and viral reactivation in vitro and in vivo . These findings offer novel insights into how US28 manipulates host signaling networks to regulate HCMV latency and reactivation and expand our understanding of HCMV pathogenesis. The human cytomegalovirus (HCMV) encoded chemokine receptor US28 plays a critical role in viral pathogenesis, mediating several processes such as cellular migration, differentiation, transformation, and viral latency and reactivation. Despite significant research examining the signal transduction pathways utilized by US28, the precise mechanism by which US28 activates these pathways remains unclear. We performed a mutational analysis of US28 to identify signaling domains that are critical for functional activities. Our results indicate that specific residues within the third intracellular loop (ICL3) of US28 are major determinants of G-protein coupling and downstream signaling activity. Alanine substitutions at positions S218, K223, and R225 attenuated US28-mediated activation of MAPK and RhoA signal transduction pathways. Furthermore, we show that mutations at positions S218, K223, or R225 result in impaired coupling to multiple Gα isoforms. However, these substitutions did not affect US28 plasma membrane localization or the receptor internalization rate. Utilizing CD34 + HPC models, we demonstrate that attenuation of US28 signaling via mutation of residues within the ICL3 region results in an inability of the virus to efficiently reactivate from latency. These results were recapitulated in vivo , utilizing a humanized mouse model of HCMV infection. Together, our results provide new insights into the mechanism by which US28 manipulates host signaling networks to mediate viral latency and reactivation. The results reported here will guide the development of targeted therapies to prevent HCMV-associated disease. The human cytomegalovirus (HCMV) encoded chemokine receptor US28 plays a critical role in viral pathogenesis, mediating several processes such as cellular migration, differentiation, transformation, and viral latency and reactivation. Despite significant research examining the signal transduction pathways utilized by US28, the precise mechanism by which US28 activates these pathways remains unclear. We performed a mutational analysis of US28 to identify signaling domains that are critical for functional activities. Our results indicate that specific residues within the third intracellular loop (ICL3) of US28 are major determinants of G-protein coupling and downstream signaling activity. Alanine substitutions at positions S218, K223, and R225 attenuated US28-mediated activation of MAPK and RhoA signal transduction pathways. Furthermore, we show that mutations at positions S218, K223, or R225 result in impaired coupling to multiple Gα isoforms. However, these substitutions did not affect US28 plasma membrane localization or the receptor internalization rate. Utilizing CD34+ HPC models, we demonstrate that attenuation of US28 signaling via mutation of residues within the ICL3 region results in an inability of the virus to efficiently reactivate from latency. These results were recapitulated in vivo, utilizing a humanized mouse model of HCMV infection. Together, our results provide new insights into the mechanism by which US28 manipulates host signaling networks to mediate viral latency and reactivation. The results reported here will guide the development of targeted therapies to prevent HCMV-associated disease.IMPORTANCEHuman cytomegalovirus (HCMV) is a β-herpesvirus that infects between 44% and 100% of the world population. Primary infection is typically asymptomatic and results in the establishment of latent infection within CD34+hematopoietic progenitor cells (HPCs). However, reactivation from latent infection remains a significant cause of morbidity and mortality in immunocompromised individuals. The viral chemokine receptor US28 influences various cellular processes crucial for viral latency and reactivation, yet the precise mechanism by which US28 functions remains unclear. Through mutational analysis, we identified key residues within the third intracellular loop (ICL3) of US28 that govern G-protein coupling, downstream signaling, and viral reactivation in vitro and in vivo. These findings offer novel insights into how US28 manipulates host signaling networks to regulate HCMV latency and reactivation and expand our understanding of HCMV pathogenesis.The human cytomegalovirus (HCMV) encoded chemokine receptor US28 plays a critical role in viral pathogenesis, mediating several processes such as cellular migration, differentiation, transformation, and viral latency and reactivation. Despite significant research examining the signal transduction pathways utilized by US28, the precise mechanism by which US28 activates these pathways remains unclear. We performed a mutational analysis of US28 to identify signaling domains that are critical for functional activities. Our results indicate that specific residues within the third intracellular loop (ICL3) of US28 are major determinants of G-protein coupling and downstream signaling activity. Alanine substitutions at positions S218, K223, and R225 attenuated US28-mediated activation of MAPK and RhoA signal transduction pathways. Furthermore, we show that mutations at positions S218, K223, or R225 result in impaired coupling to multiple Gα isoforms. However, these substitutions did not affect US28 plasma membrane localization or the receptor internalization rate. Utilizing CD34+ HPC models, we demonstrate that attenuation of US28 signaling via mutation of residues within the ICL3 region results in an inability of the virus to efficiently reactivate from latency. These results were recapitulated in vivo, utilizing a humanized mouse model of HCMV infection. Together, our results provide new insights into the mechanism by which US28 manipulates host signaling networks to mediate viral latency and reactivation. The results reported here will guide the development of targeted therapies to prevent HCMV-associated disease.IMPORTANCEHuman cytomegalovirus (HCMV) is a β-herpesvirus that infects between 44% and 100% of the world population. Primary infection is typically asymptomatic and results in the establishment of latent infection within CD34+hematopoietic progenitor cells (HPCs). However, reactivation from latent infection remains a significant cause of morbidity and mortality in immunocompromised individuals. The viral chemokine receptor US28 influences various cellular processes crucial for viral latency and reactivation, yet the precise mechanism by which US28 functions remains unclear. Through mutational analysis, we identified key residues within the third intracellular loop (ICL3) of US28 that govern G-protein coupling, downstream signaling, and viral reactivation in vitro and in vivo. These findings offer novel insights into how US28 manipulates host signaling networks to regulate HCMV latency and reactivation and expand our understanding of HCMV pathogenesis. The human cytomegalovirus (HCMV) encoded chemokine receptor US28 plays a critical role in viral pathogenesis, mediating several processes such as cellular migration, differentiation, transformation, and viral latency and reactivation. Despite significant research examining the signal transduction pathways utilized by US28, the precise mechanism by which US28 activates these pathways remains unclear. We performed a mutational analysis of US28 to identify signaling domains that are critical for functional activities. Our results indicate that specific residues within the third intracellular loop (ICL3) of US28 are major determinants of G-protein coupling and downstream signaling activity. Alanine substitutions at positions S218, K223, and R225 attenuated US28-mediated activation of MAPK and RhoA signal transduction pathways. Furthermore, we show that mutations at positions S218, K223, or R225 result in impaired coupling to multiple Gα isoforms. However, these substitutions did not affect US28 plasma membrane localization or the receptor internalization rate. Utilizing CD34+ HPC models, we demonstrate that attenuation of US28 signaling via mutation of residues within the ICL3 region results in an inability of the virus to efficiently reactivate from latency. These results were recapitulated in vivo, utilizing a humanized mouse model of HCMV infection. Together, our results provide new insights into the mechanism by which US28 manipulates host signaling networks to mediate viral latency and reactivation. The results reported here will guide the development of targeted therapies to prevent HCMV-associated disease.IMPORTANCEHuman cytomegalovirus (HCMV) is a β-herpesvirus that infects between 44% and 100% of the world population. Primary infection is typically asymptomatic and results in the establishment of latent infection within CD34+hematopoietic progenitor cells (HPCs). However, reactivation from latent infection remains a significant cause of morbidity and mortality in immunocompromised individuals. The viral chemokine receptor US28 influences various cellular processes crucial for viral latency and reactivation, yet the precise mechanism by which US28 functions remains unclear. Through mutational analysis, we identified key residues within the third intracellular loop (ICL3) of US28 that govern G-protein coupling, downstream signaling, and viral reactivation in vitro and in vivo. These findings offer novel insights into how US28 manipulates host signaling networks to regulate HCMV latency and reactivation and expand our understanding of HCMV pathogenesis. |
Author | Hancock, Meaghan H. Streblow, Zachary J. Denton, Michael Alexander, Timothy Slind, Luke E. Weber, Whitney C. Crawford, Lindsey B. Parkins, Christopher J. Sulgey, Gauthami Kreklywich, Craig N. Streblow, Daniel N. Kramer-Hansen, Olivia Perez, Wilma D. Medica, Samuel Mayo, Adam T. Jaeger, Hannah K. Pung, Lydia J. Rosenkilde, Mette M. Diggins, Nicole L. Daily, Michael A. Caposio, Patrizia |
Author_xml | – sequence: 1 givenname: Samuel orcidid: 0000-0002-3611-3715 surname: Medica fullname: Medica, Samuel – sequence: 2 givenname: Michael surname: Denton fullname: Denton, Michael – sequence: 3 givenname: Nicole L. orcidid: 0000-0001-8007-7865 surname: Diggins fullname: Diggins, Nicole L. – sequence: 4 givenname: Olivia surname: Kramer-Hansen fullname: Kramer-Hansen, Olivia – sequence: 5 givenname: Lindsey B. orcidid: 0000-0003-1248-253X surname: Crawford fullname: Crawford, Lindsey B. – sequence: 6 givenname: Adam T. surname: Mayo fullname: Mayo, Adam T. – sequence: 7 givenname: Wilma D. surname: Perez fullname: Perez, Wilma D. – sequence: 8 givenname: Michael A. surname: Daily fullname: Daily, Michael A. – sequence: 9 givenname: Christopher J. surname: Parkins fullname: Parkins, Christopher J. – sequence: 10 givenname: Luke E. surname: Slind fullname: Slind, Luke E. – sequence: 11 givenname: Lydia J. surname: Pung fullname: Pung, Lydia J. – sequence: 12 givenname: Whitney C. surname: Weber fullname: Weber, Whitney C. – sequence: 13 givenname: Hannah K. surname: Jaeger fullname: Jaeger, Hannah K. – sequence: 14 givenname: Zachary J. surname: Streblow fullname: Streblow, Zachary J. – sequence: 15 givenname: Gauthami surname: Sulgey fullname: Sulgey, Gauthami – sequence: 16 givenname: Craig N. surname: Kreklywich fullname: Kreklywich, Craig N. – sequence: 17 givenname: Timothy surname: Alexander fullname: Alexander, Timothy – sequence: 18 givenname: Mette M. surname: Rosenkilde fullname: Rosenkilde, Mette M. – sequence: 19 givenname: Patrizia orcidid: 0000-0001-7579-849X surname: Caposio fullname: Caposio, Patrizia – sequence: 20 givenname: Meaghan H. orcidid: 0000-0003-2945-0147 surname: Hancock fullname: Hancock, Meaghan H. – sequence: 21 givenname: Daniel N. orcidid: 0000-0002-6828-2492 surname: Streblow fullname: Streblow, Daniel N. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39655954$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1rFEEQxRuJmE305ln6qODErv6cPoksaoSIBxP11tT29Gx6me3edM8s-N8768agIBTUoX48Xr13Rk5SToGQ58AuAHj7ZrOPFwxaBg2Xj8gCmG0bpUCekAVjnDdKtD9OyVmtG8ZASi2fkFNhtVJWyQX5fn0bS0djGgv6MAzTgIUOOe9o7unl8vM3evOVtzRWmoIPtWL5SftcaI3rhENMa4qpo_tYcKAloB_jHseY01PyuMehhmf3-5zcfHh_vbxsrr58_LR8d9WgMHpsvGad4b1EjabtjQemOqYCRyP7zsyDTNgVwxV6UKoNQvfWiw6MXQktEcQ5eXvU3U2rbeh8ODwyuF2J29mqyxjdv5cUb9067x2AaSUHMyu8vFco-W4KdXTbWA9RYAp5qk6A1JpZZe2MvjqiWLfcbfJU5gyqA-YOTbi5Cfe7CcflzL7429iDoz_Rz8DrI-BLrrWE_gH5r94vHB2VcA |
Cites_doi | 10.1182/blood.V90.6.2482 10.1038/s41586-023-05789-z 10.1128/AAC.49.3.873-883.2005 10.1073/pnas.1710522114 10.1186/s11658-023-00427-y 10.1016/s0092-8674(00)81539-1 10.1016/j.mce.2004.06.004 10.1073/pnas.051629898 10.1002/cpz1.622 10.1128/mBio.01889-19 10.1128/JVI.01608-10 10.1016/j.tips.2009.02.006 10.1007/978-1-0716-1111-1 10.1016/j.virusres.2005.12.011 10.1128/jvi.01241-23 10.1099/vir.0.83286-0 10.1152/physrev.00003.2005 10.1002/rmv.1862 10.1128/mBio.01264-17 10.1128/jvi.75.18.8660-8673.2001 10.1038/s41579-021-00582-z 10.1101/2023.12.27.573477 10.1128/jvi.76.4.1744-1752.2002 10.1016/j.chom.2010.08.001 10.1016/j.immuni.2021.06.001 10.1111/bph.12842 10.1126/science.277.5332.1656 10.1016/j.virol.2016.07.025 10.3389/fcimb.2020.00130 10.1038/s41467-021-24574-y 10.1128/mBio.00682-18 10.1016/j.bbamcr.2020.118849 10.1128/JVI.02105-20 10.1016/S0021-9258(19)61936-8 10.1074/jbc.M804671200 10.1128/jvi.77.8.4489-4501.2003 10.1128/jvi.78.5.2460-2471.2004 10.1128/JVI.02507-15 10.1074/jbc.M008965200 10.1073/pnas.1816933116 10.3389/fcimb.2023.1189805 10.1016/j.bmc.2004.04.006 10.1128/JVI.72.10.8158-8165.1998 10.1371/journal.ppat.1000255 10.1128/mSphere.00986-20 10.1126/scisignal.2001180 10.1128/mBio.00109-17 10.1016/j.cell.2019.04.044 10.1038/nrd2199 10.1371/journal.pone.0048935 10.3390/microorganisms9081749 10.1128/jvi.76.16.8161-8168.2002 10.1128/mBio.01754-17 10.3390/v10080445 10.1074/jbc.M303219200 10.1128/JVI.78.15.8382-8391.2004 10.1016/j.celrep.2023.113173 10.3892/ijo.2017.4135 10.1128/AAC.00244-21 10.1126/science.282.5391.1145 10.1158/0008-5472.CAN-08-2487 10.1074/jbc.RA118.006231 10.1371/journal.pone.0050524 10.1074/jbc.M207495200 10.3390/v13050817 10.3390/v15061358 10.7554/eLife.54895 10.3389/fmicb.2022.999290 10.1016/j.bbamem.2013.08.009 10.3390/microorganisms8040525 10.1182/blood.v97.7.2031 10.7554/eLife.35850 10.3389/fimmu.2023.1135280 10.3389/fcimb.2020.00186 10.1091/mbc.12.6.1737 10.1111/j.1742-4658.2005.04829.x 10.1371/journal.ppat.1011682 10.1146/annurev-virology-110615-042422 10.1016/bs.aivir.2022.01.001 10.1128/mBio.00621-21 10.1186/s12889-022-13971-7 10.1128/mBio.01560-18 10.1128/JVI.00252-12 10.1007/s00430-019-00595-9 10.1128/mbio.01724-21 10.1126/sciadv.add1168 10.1016/j.cellsig.2008.04.010 10.1038/s41598-017-01051-5 10.1371/journal.ppat.1000304 10.1016/j.jim.2009.06.008 10.1084/jem.188.5.855 10.1007/978-1-62703-788-4_7 10.1016/j.tips.2023.05.001 10.2174/187152609789105696 10.1016/j.jmb.2016.08.002 |
ContentType | Journal Article |
Copyright | Copyright © 2024 Medica et al. Copyright © 2024 Medica et al. 2024 Medica et al. |
Copyright_xml | – notice: Copyright © 2024 Medica et al. – notice: Copyright © 2024 Medica et al. 2024 Medica et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1128/jvi.01801-24 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5514 |
Editor | Walsh, Derek |
Editor_xml | – sequence: 1 givenname: Derek surname: Walsh fullname: Walsh, Derek |
ExternalDocumentID | PMC11784217 jvi01801-24 39655954 10_1128_jvi_01801_24 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: P01 AI127335 – fundername: NIAID NIH HHS grantid: T32 AI170496 – fundername: HHS | National Institutes of Health (NIH) grantid: AI170496-01A1 – fundername: HHS | National Institutes of Health (NIH) grantid: AI21640 – fundername: NIAID NIH HHS grantid: R01 AI021640 – fundername: NIAID NIH HHS grantid: R37 AI021640 – fundername: HHS | National Institutes of Health (NIH) grantid: AI127335 – fundername: ; grantid: AI127335 – fundername: ; grantid: AI21640 – fundername: ; grantid: AI170496-01A1 |
GroupedDBID | --- -~X 0R~ 18M 2WC 39C 4.4 5GY 5RE 5VS 85S AAFWJ AAGFI AAYXX ABPPZ ACGFO ACNCT ADBBV AENEX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK E3Z EBS F5P FRP GX1 H13 HZ~ IH2 KQ8 N9A O9- OK1 P2P RHI RNS RPM RSF TR2 UPT W2D WH7 WOQ YQT ~02 ~KM CGR CUY CVF ECM EIF NPM 53G RHF UCJ 29L 7X8 HYE W8F 5PM |
ID | FETCH-LOGICAL-a376t-c60d72f4a6a78f7c105d05e2a74fd7fd7a039b0abac1558e36f9c3d179b364a13 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 18:38:47 EDT 2025 Fri Jul 11 10:16:27 EDT 2025 Fri Jan 31 22:40:52 EST 2025 Wed Jul 02 01:57:11 EDT 2025 Tue Jul 01 01:32:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | reactivation cytomegalovirus signal transduction G-protein-coupled receptor latency |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a376t-c60d72f4a6a78f7c105d05e2a74fd7fd7a039b0abac1558e36f9c3d179b364a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors declare no conflict of interest. Present address: Department of Biochemistry, University of Nebraska – Lincoln, Lincoln, Nebraska, USA |
ORCID | 0000-0001-7579-849X 0000-0002-3611-3715 0000-0001-8007-7865 0000-0003-1248-253X 0000-0002-6828-2492 0000-0003-2945-0147 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC11784217 |
PMID | 39655954 |
PQID | 3146609599 |
PQPubID | 23479 |
PageCount | 21 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11784217 proquest_miscellaneous_3146609599 asm2_journals_10_1128_jvi_01801_24 pubmed_primary_39655954 crossref_primary_10_1128_jvi_01801_24 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-31 |
PublicationDateYYYYMMDD | 2025-01-31 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAbbrev | J Virol |
PublicationTitleAlternate | J Virol |
PublicationYear | 2025 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_4_3_2 Hancock MH (e_1_3_4_44_2) 2017; 1 e_1_3_4_61_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_84_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_86_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_88_2 e_1_3_4_29_2 e_1_3_4_72_2 e_1_3_4_93_2 e_1_3_4_74_2 e_1_3_4_95_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_91_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_97_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_62_2 e_1_3_4_85_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_87_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_89_2 e_1_3_4_28_2 e_1_3_4_71_2 e_1_3_4_94_2 e_1_3_4_73_2 e_1_3_4_96_2 e_1_3_4_52_2 e_1_3_4_90_2 e_1_3_4_50_2 e_1_3_4_92_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_75_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_77_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 Kledal, TN, Rosenkilde, MM, Coulin, F, Simmons, G, Johnsen, AH, Alouani, S, Power, CA, Lüttichau, HR, Gerstoft, J, Clapham, PR, Clark-Lewis, I, Wells, TN, Schwartz, TW (B28) 1997; 277 Miller, WE, Zagorski, WA, Brenneman, JD, Avery, D, Miller, JLC, O’Connor, CM (B32) 2012; 7 Smith, MS, Goldman, DC, Bailey, AS, Pfaffle, DL, Kreklywich, CN, Spencer, DB, Othieno, FA, Streblow, DN, Garcia, JV, Fleming, WH, Nelson, JA (B68) 2010; 8 Vomaske, J, Melnychuk, RM, Smith, PP, Powell, J, Hall, L, DeFilippis, V, Früh, K, Smit, M, Schlaepfer, DD, Nelson, JA, Streblow, DN (B40) 2009; 5 Hancock, MH, Hook, LM, Mitchell, J, Nelson, JA (B87) 2017; 8 Moepps, B, Tulone, C, Kern, C, Minisini, R, Michels, G, Vatter, P, Wieland, T, Gierschik, P (B33) 2008; 20 Pati, S, Cavrois, M, Guo, HG, Foulke, JS, Kim, J, Feldman, RA, Reitz, M (B80) 2001; 75 Timossi, C, Ortiz-Elizondo, C, Pineda, DB, Dias, JA, Conn, PM, Ulloa-Aguirre, A (B57) 2004; 223 Hancock, MH, Crawford, LB, Perez, W, Struthers, HM, Mitchell, J, Caposio, P (B88) 2021; 6 Humby, MS, O’Connor, CM (B19) 2015; 90 Maussang, D, Langemeijer, E, Fitzsimons, CP, Stigter-van Walsum, M, Dijkman, R, Borg, MK, Slinger, E, Schreiber, A, Michel, D, Tensen, CP, van Dongen, G, Leurs, R, Smit, MJ (B31) 2009; 69 Masuho, I, Kise, R, Gainza, P, Von Moo, E, Li, X, Tany, R, Wakasugi-Masuho, H, Correia, BE, Martemyanov, KA (B15) 2023; 42 Yurochko, AD (B51) 2021 Wettschureck, N, Offermanns, S (B12) 2005; 85 Wu, S, Miller, WE (B61) 2016; 497 Crawford, LB, Tempel, R, Streblow, DN, Kreklywich, C, Smith, P, Picker, LJ, Nelson, JA, Caposio, P (B95) 2017; 7 Hu, Y, Smyth, GK (B52) 2009; 347 Thomson, JA, Itskovitz-Eldor, J, Shapiro, SS, Waknitz, MA, Swiergiel, JJ, Marshall, VS, Jones, JM (B84) 1998; 282 Crawford, LB (B73) 2023; 13 Sinzger, C, Hahn, G, Digel, M, Katona, R, Sampaio, KL, Messerle, M, Hengel, H, Koszinowski, U, Brune, W, Adler, B (B85) 2008; 89 Crawford, LB, Tempel, R, Streblow, DN, Yurochko, AD, Goodrum, FD, Nelson, JA, Caposio, P (B96) 2020; 8 Slinger, E, Maussang, D, Schreiber, A, Siderius, M, Rahbar, A, Fraile-Ramos, A, Lira, SA, Söderberg-Nauclér, C, Smit, MJ (B34) 2010; 3 Crawford, LB, Kim, JH, Collins-McMillen, D, Lee, B-J, Landais, I, Held, C, Nelson, JA, Yurochko, AD, Caposio, P (B86) 2018; 9 Poole, E, Sinclair, J (B5) 2022; 13 DeGraff, JL, Gurevich, VV, Benovic, JL (B54) 2002; 277 Overington, JP, Al-Lazikani, B, Hopkins, AL (B11) 2006; 5 Madrid, AS, Ganem, D (B82) 2012; 86 Krishna, BA, Miller, WE, O’Connor, CM (B18) 2018; 10 Pleskoff, O, Casarosa, P, Verneuil, L, Ainoun, F, Beisser, P, Smit, M, Leurs, R, Schneider, P, Michelson, S, Ameisen, JC (B65) 2005; 272 Gerna, G, Fornara, C, Furione, M, Lilleri, D (B2) 2021; 9 Krishna, BA, Poole, EL, Jackson, SE, Smit, MJ, Wills, MR, Sinclair, JH (B37) 2017; 8 Berg, C, Rosenkilde, MM (B83) 2023; 14 Vomaske, J, Nelson, JA, Streblow, DN (B64) 2009; 9 Umashankar, M, Goodrum, F (B50) 2014; 1119 Bodaghi, B, Jones, TR, Zipeto, D, Vita, C, Sun, L, Laurent, L, Arenzana-Seisdedos, F, Virelizier, JL, Michelson, S (B66) 1998; 188 Gao, JL, Murphy, PM (B17) 1994; 269 Griffiths, P, Reeves, M (B3) 2021; 19 Casarosa, P, Bakker, RA, Verzijl, D, Navis, M, Timmerman, H, Leurs, R, Smit, MJ (B29) 2001; 276 Wess, J (B58) 2023; 44 Frank, T, Niemann, I, Reichel, A, Stamminger, T (B26) 2019; 208 Chee, MJS, Mörl, K, Lindner, D, Merten, N, Zamponi, GW, Light, PE, Beck-Sickinger, AG, Colmers, WF (B53) 2008; 283 Dirck, A, Diggins, NL, Crawford, LB, Perez, WD, Parkins, CJ, Struthers, HH, Turner, R, Pham, AH, Mitchell, J, Papen, CR, Malouli, D, Hancock, MH, Caposio, P (B94) 2023; 97 Medica, S, Crawford, LB, Denton, M, Min, C-K, Jones, TA, Alexander, T, Parkins, CJ, Diggins, NL, Streblow, GJ, Mayo, AT, Kreklywich, CN, Smith, P, Jeng, S, McWeeney, S, Hancock, MH, Yurochko, A, Cohen, MS, Caposio, P, Streblow, DN (B39) 2023; 19 Forte, E, Zhang, Z, Thorp, EB, Hummel, M (B45) 2020; 10 Oliveira, SA, Shenk, TE (B22) 2001; 98 Minisini, R, Tulone, C, Lüske, A, Michel, D, Mertens, T, Gierschik, P, Moepps, B (B67) 2003; 77 Jones, EM, Lubock, NB, Venkatakrishnan, AJ, Wang, J, Tseng, AM, Paggi, JM, Latorraca, NR, Cancilla, D, Satyadi, M, Davis, JE, Babu, MM, Dror, RO, Kosuri, S (B13) 2020; 9 Vieira, J, Schall, TJ, Corey, L, Geballe, AP (B20) 1998; 72 Fraile-Ramos, A, Kledal, TN, Pelchen-Matthews, A, Bowers, K, Schwartz, TW, Marsh, M (B21) 2001; 12 Goodrum, F (B42) 2022; 112 Thiele, S, Mungalpara, J, Steen, A, Rosenkilde, MM, Våbenø, J (B91) 2014; 171 Sadler, F, Ma, N, Ritt, M, Sharma, Y, Vaidehi, N, Sivaramakrishnan, S (B56) 2023; 615 Laschet, C, Dupuis, N, Hanson, J (B63) 2019; 294 Inoue, A, Raimondi, F, Kadji, FMN, Singh, G, Kishi, T, Uwamizu, A, Ono, Y, Shinjo, Y, Ishida, S, Arang, N, Kawakami, K, Gutkind, JS, Aoki, J, Russell, RB (B69) 2019; 177 Goodrum, F (B4) 2016; 3 Langemeijer, EV, Slinger, E, de Munnik, S, Schreiber, A, Maussang, D, Vischer, H, Verkaar, F, Leurs, R, Siderius, M, Smit, MJ (B30) 2012; 7 Panda, K, Parashar, D, Viswanathan, R (B8) 2023; 15 Cambien, B, Pomeranz, M, Schmid-Antomarchi, H, Millet, MA, Breittmayer, V, Rossi, B, Schmid-Alliana, A (B25) 2001; 97 Crawford, LB, Caposio, P, Kreklywich, C, Pham, AH, Hancock, MH, Jones, TA, Smith, PP, Yurochko, AD, Nelson, JA, Streblow, DN (B35) 2019; 10 Streblow, DN, Soderberg-Naucler, C, Vieira, J, Smith, P, Wakabayashi, E, Ruchti, F, Mattison, K, Altschuler, Y, Nelson, JA (B27) 1999; 99 Perera, MR, Wills, MR, Sinclair, JH (B9) 2021; 13 Forte, E, Swaminathan, S, Schroeder, MW, Kim, JY, Terhune, SS, Hummel, M (B46) 2018; 9 Crawford, LB (B48) 2022; 2 Fowler, K, Mucha, J, Neumann, M, Lewandowski, W, Kaczanowska, M, Grys, M, Schmidt, E, Natenshon, A, Talarico, C, Buck, PO, Diaz-Decaro, J (B1) 2022; 22 Krishna, BA, Wass, AB, Sridharan, R, O’Connor, CM (B36) 2020; 10 Mavri, M, Glišić, S, Senćanski, M, Vrecl, M, Rosenkilde, MM, Spiess, K, Kubale, V (B92) 2023; 28 Syrovatkina, V, Alegre, KO, Dey, R, Huang, X-Y (B16) 2016; 428 Wass, AB, Krishna, BA, Herring, LE, Gilbert, TSK, Nukui, M, Groves, IJ, Dooley, AL, Kulp, KH, Matthews, SM, Rotroff, DM, Graves, LM, O’Connor, CM (B38) 2022; 8 Crawford, LB, Hancock, MH, Struthers, HM, Streblow, DN, Yurochko, AD, Caposio, P, Goodrum, FD, Nelson, JA (B49) 2021; 95 Farrell, HE, Bruce, K, Lawler, C, Oliveira, M, Cardin, R, Davis-Poynter, N, Stevenson, PG (B7) 2017; 8 Tsutsumi, N, Qu, Q, Mavri, M, Baggesen, MS, Maeda, S, Waghray, D, Berg, C, Kobilka, BK, Rosenkilde, MM, Skiniotis, G, Garcia, KC (B76) 2021; 54 Zuo, J, Quinn, LL, Tamblyn, J, Thomas, WA, Feederle, R, Delecluse, H-J, Hislop, AD, Rowe, M (B78) 2011; 85 Nygaard, R, Frimurer, TM, Holst, B, Rosenkilde, MM, Schwartz, TW (B14) 2009; 30 Krishna, BA, Humby, MS, Miller, WE, O’Connor, CM (B72) 2019; 116 Waldhoer, M, Kledal, TN, Farrell, H, Schwartz, TW (B24) 2002; 76 Prasad Pydi, S, Singh, N, Upadhyaya, J, Pal Bhullar, R, Chelikani, P (B55) 2014; 1838 Smit, MJ, Verzijl, D, Casarosa, P, Navis, M, Timmerman, H, Leurs, R (B81) 2002; 76 Gilbert, C, Boivin, G (B10) 2005; 49 Hancock, MH, Nelson, JA (B43) 2017; 1 Diggins, NL, Crawford, LB, Hancock, MH, Mitchell, J, Nelson, JA (B90) 2021; 12 Sundqvist, M, Holdfeldt, A, Wright, SC, Møller, TC, Siaw, E, Jennbacken, K, Franzyk, H, Bouvier, M, Dahlgren, C, Forsman, H (B93) 2020; 1867 Melnychuk, RM, Streblow, DN, Smith, PP, Hirsch, AJ, Pancheva, D, Nelson, JA (B59) 2004; 78 Haese, NN, May, NA, Taft-Benz, S, Moukha-Chafiq, O, Madadi, N, Zhang, S, Karyakarte, SD, Rodzinak, KJ, Nguyen, TH, Denton, M, Streblow, AD, Towers, NA, Rasmussen, L, Bostwick, RJ, Maddry, JA, Ananthan, S, Augelli-Szafran, CE, Suto, MJ, Sanders, W, Moorman, N, DeFilippis, V, Heise, MT, Pathak, AK, Streblow, DN, Morrison, TE (B89) 2021; 65 Taniguchi, M, Suzumura, K, Nagai, K, Kawasaki, T, Takasaki, J, Sekiguchi, M, Moritani, Y, Saito, T, Hayashi, K, Fujita, S, Tsukamoto, S, Suzuki, K (B47) 2004; 12 Zhuravskaya, T, Maciejewski, JP, Netski, DM, Bruening, E, Mackintosh, FR, St Jeor, S (B6) 1997; 90 Teo, WH, Chen, HP, Huang, JC, Chan, YJ (B41) 2017; 51 Miller, WE, Houtz, DA, Nelson, CD, Kolattukudy, PE, Lefkowitz, RJ (B23) 2003; 278 Miles, TF, Spiess, K, Jude, KM, Tsutsumi, N, Burg, JS, Ingram, JR, Waghray, D, Hjorto, GM, Larsen, O, Ploegh, HL, Rosenkilde, MM, Garcia, KC (B62) 2018; 7 Liu, C, Sandford, G, Fei, G, Nicholas, J (B77) 2004; 78 Cheng, S, Caviness, K, Buehler, J, Smithey, M, Nikolich-Žugich, J, Goodrum, F (B71) 2017; 114 Liu, A, Liu, Y, Llinàs del Torrent Masachs, C, Zhang, W, Pardo, L, Ye, RD (B75) 2023 Boomker, JM, The, TH, de Leij, L, Harmsen, MC (B60) 2006; 118 De Groof, TWM, Bergkamp, ND, Heukers, R, Giap, T, Bebelman, MP, Goeij-de Haas, R, Piersma, SR, Jimenez, CR, Garcia, KC, Ploegh, HL, Siderius, M, Smit, MJ (B70) 2021; 12 Dupont, L, Reeves, MB (B44) 2016; 26 Crawford, LB, Diggins, NL, Caposio, P, Hancock, MH (B74) 2022; 13 Zuo, J, Currin, A, Griffin, BD, Shannon-Lowe, C, Thomas, WA, Ressing, ME, Wiertz, EJHJ, Rowe, M (B79) 2009; 5 |
References_xml | – ident: e_1_3_4_7_2 doi: 10.1182/blood.V90.6.2482 – ident: e_1_3_4_57_2 doi: 10.1038/s41586-023-05789-z – ident: e_1_3_4_11_2 doi: 10.1128/AAC.49.3.873-883.2005 – ident: e_1_3_4_72_2 doi: 10.1073/pnas.1710522114 – ident: e_1_3_4_93_2 doi: 10.1186/s11658-023-00427-y – ident: e_1_3_4_28_2 doi: 10.1016/s0092-8674(00)81539-1 – ident: e_1_3_4_58_2 doi: 10.1016/j.mce.2004.06.004 – ident: e_1_3_4_23_2 doi: 10.1073/pnas.051629898 – ident: e_1_3_4_49_2 doi: 10.1002/cpz1.622 – ident: e_1_3_4_36_2 doi: 10.1128/mBio.01889-19 – ident: e_1_3_4_79_2 doi: 10.1128/JVI.01608-10 – ident: e_1_3_4_15_2 doi: 10.1016/j.tips.2009.02.006 – ident: e_1_3_4_52_2 doi: 10.1007/978-1-0716-1111-1 – ident: e_1_3_4_61_2 doi: 10.1016/j.virusres.2005.12.011 – ident: e_1_3_4_95_2 doi: 10.1128/jvi.01241-23 – ident: e_1_3_4_86_2 doi: 10.1099/vir.0.83286-0 – ident: e_1_3_4_13_2 doi: 10.1152/physrev.00003.2005 – volume: 1 year: 2017 ident: e_1_3_4_44_2 article-title: Modulation of the NFκb signalling pathway by human cytomegalovirus publication-title: Virol Hyd – ident: e_1_3_4_45_2 doi: 10.1002/rmv.1862 – ident: e_1_3_4_8_2 doi: 10.1128/mBio.01264-17 – ident: e_1_3_4_81_2 doi: 10.1128/jvi.75.18.8660-8673.2001 – ident: e_1_3_4_4_2 doi: 10.1038/s41579-021-00582-z – ident: e_1_3_4_76_2 doi: 10.1101/2023.12.27.573477 – ident: e_1_3_4_82_2 doi: 10.1128/jvi.76.4.1744-1752.2002 – ident: e_1_3_4_69_2 doi: 10.1016/j.chom.2010.08.001 – ident: e_1_3_4_77_2 doi: 10.1016/j.immuni.2021.06.001 – ident: e_1_3_4_92_2 doi: 10.1111/bph.12842 – ident: e_1_3_4_29_2 doi: 10.1126/science.277.5332.1656 – ident: e_1_3_4_62_2 doi: 10.1016/j.virol.2016.07.025 – ident: e_1_3_4_46_2 doi: 10.3389/fcimb.2020.00130 – ident: e_1_3_4_71_2 doi: 10.1038/s41467-021-24574-y – ident: e_1_3_4_87_2 doi: 10.1128/mBio.00682-18 – ident: e_1_3_4_94_2 doi: 10.1016/j.bbamcr.2020.118849 – ident: e_1_3_4_50_2 doi: 10.1128/JVI.02105-20 – ident: e_1_3_4_18_2 doi: 10.1016/S0021-9258(19)61936-8 – ident: e_1_3_4_54_2 doi: 10.1074/jbc.M804671200 – ident: e_1_3_4_68_2 doi: 10.1128/jvi.77.8.4489-4501.2003 – ident: e_1_3_4_78_2 doi: 10.1128/jvi.78.5.2460-2471.2004 – ident: e_1_3_4_20_2 doi: 10.1128/JVI.02507-15 – ident: e_1_3_4_30_2 doi: 10.1074/jbc.M008965200 – ident: e_1_3_4_73_2 doi: 10.1073/pnas.1816933116 – ident: e_1_3_4_74_2 doi: 10.3389/fcimb.2023.1189805 – ident: e_1_3_4_48_2 doi: 10.1016/j.bmc.2004.04.006 – ident: e_1_3_4_21_2 doi: 10.1128/JVI.72.10.8158-8165.1998 – ident: e_1_3_4_80_2 doi: 10.1371/journal.ppat.1000255 – ident: e_1_3_4_89_2 doi: 10.1128/mSphere.00986-20 – ident: e_1_3_4_35_2 doi: 10.1126/scisignal.2001180 – ident: e_1_3_4_88_2 doi: 10.1128/mBio.00109-17 – ident: e_1_3_4_70_2 doi: 10.1016/j.cell.2019.04.044 – ident: e_1_3_4_12_2 doi: 10.1038/nrd2199 – ident: e_1_3_4_31_2 doi: 10.1371/journal.pone.0048935 – ident: e_1_3_4_3_2 doi: 10.3390/microorganisms9081749 – ident: e_1_3_4_25_2 doi: 10.1128/jvi.76.16.8161-8168.2002 – ident: e_1_3_4_38_2 doi: 10.1128/mBio.01754-17 – ident: e_1_3_4_19_2 doi: 10.3390/v10080445 – ident: e_1_3_4_24_2 doi: 10.1074/jbc.M303219200 – ident: e_1_3_4_60_2 doi: 10.1128/JVI.78.15.8382-8391.2004 – ident: e_1_3_4_16_2 doi: 10.1016/j.celrep.2023.113173 – ident: e_1_3_4_42_2 doi: 10.3892/ijo.2017.4135 – ident: e_1_3_4_90_2 doi: 10.1128/AAC.00244-21 – ident: e_1_3_4_85_2 doi: 10.1126/science.282.5391.1145 – ident: e_1_3_4_32_2 doi: 10.1158/0008-5472.CAN-08-2487 – ident: e_1_3_4_64_2 doi: 10.1074/jbc.RA118.006231 – ident: e_1_3_4_33_2 doi: 10.1371/journal.pone.0050524 – ident: e_1_3_4_55_2 doi: 10.1074/jbc.M207495200 – ident: e_1_3_4_10_2 doi: 10.3390/v13050817 – ident: e_1_3_4_9_2 doi: 10.3390/v15061358 – ident: e_1_3_4_14_2 doi: 10.7554/eLife.54895 – ident: e_1_3_4_6_2 doi: 10.3389/fmicb.2022.999290 – ident: e_1_3_4_56_2 doi: 10.1016/j.bbamem.2013.08.009 – ident: e_1_3_4_97_2 doi: 10.3390/microorganisms8040525 – ident: e_1_3_4_26_2 doi: 10.1182/blood.v97.7.2031 – ident: e_1_3_4_63_2 doi: 10.7554/eLife.35850 – ident: e_1_3_4_84_2 doi: 10.3389/fimmu.2023.1135280 – ident: e_1_3_4_37_2 doi: 10.3389/fcimb.2020.00186 – ident: e_1_3_4_22_2 doi: 10.1091/mbc.12.6.1737 – ident: e_1_3_4_66_2 doi: 10.1111/j.1742-4658.2005.04829.x – ident: e_1_3_4_40_2 doi: 10.1371/journal.ppat.1011682 – ident: e_1_3_4_5_2 doi: 10.1146/annurev-virology-110615-042422 – ident: e_1_3_4_43_2 doi: 10.1016/bs.aivir.2022.01.001 – ident: e_1_3_4_91_2 doi: 10.1128/mBio.00621-21 – ident: e_1_3_4_2_2 doi: 10.1186/s12889-022-13971-7 – ident: e_1_3_4_47_2 doi: 10.1128/mBio.01560-18 – ident: e_1_3_4_83_2 doi: 10.1128/JVI.00252-12 – ident: e_1_3_4_27_2 doi: 10.1007/s00430-019-00595-9 – ident: e_1_3_4_75_2 doi: 10.1128/mbio.01724-21 – ident: e_1_3_4_39_2 doi: 10.1126/sciadv.add1168 – ident: e_1_3_4_34_2 doi: 10.1016/j.cellsig.2008.04.010 – ident: e_1_3_4_96_2 doi: 10.1038/s41598-017-01051-5 – ident: e_1_3_4_41_2 doi: 10.1371/journal.ppat.1000304 – ident: e_1_3_4_53_2 doi: 10.1016/j.jim.2009.06.008 – ident: e_1_3_4_67_2 doi: 10.1084/jem.188.5.855 – ident: e_1_3_4_51_2 doi: 10.1007/978-1-62703-788-4_7 – ident: e_1_3_4_59_2 doi: 10.1016/j.tips.2023.05.001 – ident: e_1_3_4_65_2 doi: 10.2174/187152609789105696 – ident: e_1_3_4_17_2 doi: 10.1016/j.jmb.2016.08.002 – volume: 69 start-page: 2861 year: 2009 end-page: 2869 ident: B31 article-title: The human cytomegalovirus–encoded chemokine receptor US28 promotes angiogenesis and tumor formation via cyclooxygenase-2 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-2487 – volume: 8 year: 2020 ident: B96 article-title: Human cytomegalovirus infection suppresses CD34+ progenitor cell engraftment in humanized mice publication-title: Microorganisms doi: 10.3390/microorganisms8040525 – volume: 51 start-page: 1415 year: 2017 end-page: 1426 ident: B41 article-title: Human cytomegalovirus infection enhances cell proliferation, migration and upregulation of EMT markers in colorectal cancer-derived stem cell-like cells publication-title: Int J Oncol doi: 10.3892/ijo.2017.4135 – volume: 7 year: 2018 ident: B62 article-title: Viral GPCR US28 can signal in response to chemokine agonists of nearly unlimited structural degeneracy publication-title: Elife doi: 10.7554/eLife.35850 – volume: 294 start-page: 4079 year: 2019 end-page: 4090 ident: B63 article-title: A dynamic and screening-compatible nanoluciferase-based complementation assay enables profiling of individual GPCR-G protein interactions publication-title: J Biol Chem doi: 10.1074/jbc.RA118.006231 – volume: 8 year: 2017 ident: B37 article-title: Latency-associated expression of human cytomegalovirus US28 attenuates cell signaling pathways to maintain latent infection publication-title: MBio doi: 10.1128/mBio.01754-17 – volume: 9 start-page: 548 year: 2009 end-page: 556 ident: B64 article-title: Human cytomegalovirus US28: a functionally selective chemokine binding receptor publication-title: Infect Disord Drug Targets doi: 10.2174/187152609789105696 – volume: 28 year: 2023 ident: B92 article-title: Patterns of human and porcine gammaherpesvirus-encoded BILF1 receptor endocytosis publication-title: Cell Mol Biol Lett doi: 10.1186/s11658-023-00427-y – volume: 269 start-page: 28539 year: 1994 end-page: 28542 ident: B17 article-title: Human cytomegalovirus open reading frame US28 encodes a functional beta chemokine receptor publication-title: J Biol Chem – volume: 76 start-page: 8161 year: 2002 end-page: 8168 ident: B24 article-title: Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities publication-title: J Virol doi: 10.1128/jvi.76.16.8161-8168.2002 – volume: 49 start-page: 873 year: 2005 end-page: 883 ident: B10 article-title: Human cytomegalovirus resistance to antiviral drugs publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.49.3.873-883.2005 – volume: 208 start-page: 447 year: 2019 end-page: 456 ident: B26 article-title: Emerging roles of cytomegalovirus-encoded G protein-coupled receptors during lytic and latent infection publication-title: Med Microbiol Immunol doi: 10.1007/s00430-019-00595-9 – volume: 10 year: 2018 ident: B18 article-title: HCMV’s swiss army knife publication-title: Viruses doi: 10.3390/v10080445 – volume: 188 start-page: 855 year: 1998 end-page: 866 ident: B66 article-title: Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells publication-title: J Exp Med doi: 10.1084/jem.188.5.855 – volume: 95 year: 2021 ident: B49 article-title: CD34+ hematopoietic progenitor cell subsets exhibit differential ability to maintain human cytomegalovirus latency and persistence publication-title: J Virol doi: 10.1128/JVI.02105-20 – volume: 428 start-page: 3850 year: 2016 end-page: 3868 ident: B16 article-title: Regulation, signaling and physiological functions of G-proteins publication-title: J Mol Biol doi: 10.1016/j.jmb.2016.08.002 – volume: 98 start-page: 3237 year: 2001 end-page: 3242 ident: B22 article-title: Murine cytomegalovirus M78 protein, a G protein-coupled receptor homologue, is a constituent of the virion and facilitates accumulation of immediate-early viral mRNA publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.051629898 – volume: 19 year: 2023 ident: B39 article-title: Proximity-dependent mapping of the HCMV US28 interactome identifies RhoGEF signaling as a requirement for efficient viral reactivation publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1011682 – volume: 44 start-page: 492 year: 2023 end-page: 494 ident: B58 article-title: The third intracellular loop of GPCRs: size matters publication-title: Trends Pharmacol Sci doi: 10.1016/j.tips.2023.05.001 – volume: 1838 start-page: 231 year: 2014 end-page: 236 ident: B55 article-title: The third intracellular loop plays a critical role in bitter taste receptor activation publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamem.2013.08.009 – volume: 85 start-page: 1604 year: 2011 end-page: 1614 ident: B78 article-title: The Epstein-Barr virus-encoded BILF1 protein modulates immune recognition of endogenously processed antigen by targeting major histocompatibility complex class I molecules trafficking on both the exocytic and endocytic pathways publication-title: J Virol doi: 10.1128/JVI.01608-10 – volume: 75 start-page: 8660 year: 2001 end-page: 8673 ident: B80 article-title: Activation of NF-kappaB by the human herpesvirus 8 chemokine receptor ORF74: evidence for a paracrine model of Kaposi’s sarcoma pathogenesis publication-title: J Virol doi: 10.1128/jvi.75.18.8660-8673.2001 – volume: 12 year: 2021 ident: B70 article-title: Selective targeting of ligand-dependent and -independent signaling by GPCR conformation-specific anti-US28 intrabodies publication-title: Nat Commun doi: 10.1038/s41467-021-24574-y – volume: 118 start-page: 196 year: 2006 end-page: 200 ident: B60 article-title: The human cytomegalovirus-encoded receptor US28 increases the activity of the major immediate-early promoter/enhancer publication-title: Virus Res doi: 10.1016/j.virusres.2005.12.011 – volume: 13 year: 2021 ident: B9 article-title: HCMV antivirals and strategies to target the latent reservoir publication-title: Viruses doi: 10.3390/v13050817 – volume: 9 year: 2018 ident: B46 article-title: Tumor necrosis factor alpha induces reactivation of human cytomegalovirus independently of myeloid cell differentiation following posttranscriptional establishment of latency publication-title: MBio doi: 10.1128/mBio.01560-18 – volume: 2 year: 2022 ident: B48 article-title: Human embryonic stem cells as a model for hematopoietic stem cell differentiation and viral infection publication-title: Curr Protoc doi: 10.1002/cpz1.622 – volume: 76 start-page: 1744 year: 2002 end-page: 1752 ident: B81 article-title: Kaposi’s sarcoma-associated herpesvirus-encoded G protein-coupled receptor ORF74 constitutively activates p44/p42 MAPK and Akt via Gi and phospholipase C-dependent signaling pathways publication-title: J Virol doi: 10.1128/jvi.76.4.1744-1752.2002 – volume: 347 start-page: 70 year: 2009 end-page: 78 ident: B52 article-title: ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays publication-title: J Immunol Methods doi: 10.1016/j.jim.2009.06.008 – volume: 14 year: 2023 ident: B83 article-title: Therapeutic targeting of HCMV-encoded chemokine receptor US28: progress and challenges publication-title: Front Immunol doi: 10.3389/fimmu.2023.1135280 – volume: 9 year: 2020 ident: B13 article-title: Structural and functional characterization of G protein-coupled receptors with deep mutational scanning publication-title: Elife doi: 10.7554/eLife.54895 – volume: 8 year: 2022 ident: B38 article-title: Cytomegalovirus US28 regulates cellular EphA2 to maintain viral latency publication-title: Sci Adv doi: 10.1126/sciadv.add1168 – volume: 86 start-page: 8693 year: 2012 end-page: 8704 ident: B82 article-title: Kaposi’s sarcoma-associated herpesvirus ORF54/dUTPase downregulates a ligand for the NK activating receptor NKp44 publication-title: J Virol doi: 10.1128/JVI.00252-12 – volume: 72 start-page: 8158 year: 1998 end-page: 8165 ident: B20 article-title: Functional analysis of the human cytomegalovirus US28 gene by insertion mutagenesis with the green fluorescent protein gene publication-title: J Virol doi: 10.1128/JVI.72.10.8158-8165.1998 – volume: 277 start-page: 43247 year: 2002 end-page: 43252 ident: B54 article-title: The third intracellular loop of α2-adrenergic receptors determines subtype specificity of arrestin interaction publication-title: J Biol Chem doi: 10.1074/jbc.M207495200 – volume: 1119 start-page: 99 year: 2014 end-page: 112 ident: B50 article-title: Hematopoietic long-term culture (hLTC) for human cytomegalovirus latency and reactivation publication-title: Methods Mol Biol doi: 10.1007/978-1-62703-788-4_7 – volume: 12 start-page: 1737 year: 2001 end-page: 1749 ident: B21 article-title: The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling publication-title: Mol Biol Cell doi: 10.1091/mbc.12.6.1737 – volume: 5 start-page: 993 year: 2006 end-page: 996 ident: B11 article-title: How many drug targets are there? publication-title: Nat Rev Drug Discov doi: 10.1038/nrd2199 – volume: 282 start-page: 1145 year: 1998 end-page: 1147 ident: B84 article-title: Embryonic stem cell lines derived from human blastocysts publication-title: Science doi: 10.1126/science.282.5391.1145 – volume: 8 year: 2017 ident: B7 article-title: Murine cytomegalovirus spreads by dendritic cell recirculation publication-title: MBio doi: 10.1128/mBio.01264-17 – volume: 278 start-page: 21663 year: 2003 end-page: 21671 ident: B23 article-title: G-protein-coupled receptor (GPCR) kinase phosphorylation and beta-arrestin recruitment regulate the constitutive signaling activity of the human cytomegalovirus US28 GPCR publication-title: J Biol Chem doi: 10.1074/jbc.M303219200 – volume: 10 year: 2020 ident: B36 article-title: The requirement for US28 during cytomegalovirus latency is independent of US27 and US29 gene expression publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2020.00186 – volume: 497 start-page: 233 year: 2016 end-page: 243 ident: B61 article-title: The HCMV US28 vGPCR induces potent Gαq/PLC-β signaling in monocytes leading to increased adhesion to endothelial cells publication-title: Virology (Auckl) doi: 10.1016/j.virol.2016.07.025 – volume: 7 year: 2012 ident: B30 article-title: Constitutive β-catenin signaling by the viral chemokine receptor US28 publication-title: PLoS One doi: 10.1371/journal.pone.0048935 – volume: 3 start-page: 333 year: 2016 end-page: 357 ident: B4 article-title: Human cytomegalovirus latency: approaching the gordian knot publication-title: Annu Rev Virol doi: 10.1146/annurev-virology-110615-042422 – volume: 112 start-page: 31 year: 2022 end-page: 85 ident: B42 article-title: The complex biology of human cytomegalovirus latency publication-title: Adv Virus Res doi: 10.1016/bs.aivir.2022.01.001 – volume: 116 start-page: 1755 year: 2019 end-page: 1764 ident: B72 article-title: Human cytomegalovirus G protein-coupled receptor US28 promotes latency by attenuating c-fos publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1816933116 – volume: 12 start-page: 3125 year: 2004 end-page: 3133 ident: B47 article-title: YM-254890 analogues, novel cyclic depsipeptides with Gαq/11 inhibitory activity from Chromobacterium sp. QS3666 publication-title: Bioorg Med Chem doi: 10.1016/j.bmc.2004.04.006 – volume: 5 year: 2009 ident: B40 article-title: Differential ligand binding to a human cytomegalovirus chemokine receptor determines cell type-specific motility publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000304 – volume: 13 year: 2022 ident: B5 article-title: Latency-associated upregulation of SERBP1 is important for the recruitment of transcriptional repressors to the viral major immediate early promoter of human cytomegalovirus during latent carriage publication-title: Front Microbiol doi: 10.3389/fmicb.2022.999290 – volume: 99 start-page: 511 year: 1999 end-page: 520 ident: B27 article-title: The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration publication-title: Cell doi: 10.1016/s0092-8674(00)81539-1 – volume: 42 start-page: 113173 year: 2023 ident: B15 article-title: Rules and mechanisms governing G protein coupling selectivity of GPCRs publication-title: Cell Rep doi: 10.1016/j.celrep.2023.113173 – volume: 277 start-page: 1656 year: 1997 end-page: 1659 ident: B28 article-title: A broad-spectrum chemokine antagonist encoded by Kaposi’s sarcoma-associated herpesvirus publication-title: Science doi: 10.1126/science.277.5332.1656 – volume: 114 start-page: E10586 year: 2017 end-page: E10595 ident: B71 article-title: Transcriptome-wide characterization of human cytomegalovirus in natural infection and experimental latency publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1710522114 – volume: 97 start-page: 2031 year: 2001 end-page: 2037 ident: B25 article-title: Signal transduction pathways involved in soluble fractalkine-induced monocytic cell adhesion publication-title: Blood doi: 10.1182/blood.v97.7.2031 – volume: 615 start-page: 734 year: 2023 end-page: 741 ident: B56 article-title: Autoregulation of GPCR signalling through the third intracellular loop publication-title: Nature New Biol doi: 10.1038/s41586-023-05789-z – volume: 78 start-page: 8382 year: 2004 end-page: 8391 ident: B59 article-title: Human cytomegalovirus-encoded G protein-coupled receptor US28 mediates smooth muscle cell migration through Galpha12 publication-title: J Virol doi: 10.1128/JVI.78.15.8382-8391.2004 – volume: 3 year: 2010 ident: B34 article-title: HCMV-encoded chemokine receptor US28 mediates proliferative signaling through the IL-6-STAT3 axis publication-title: Sci Signal doi: 10.1126/scisignal.2001180 – year: 2023 ident: B75 article-title: Structural basis for constitutive activation and CXCL1 recognition of human herpesvirus 8-encoded G protein-coupled receptor KSHV-GPCR publication-title: bioRxiv doi: 10.1101/2023.12.27.573477 – volume: 19 start-page: 759 year: 2021 end-page: 773 ident: B3 article-title: Pathogenesis of human cytomegalovirus in the immunocompromised host publication-title: Nat Rev Microbiol doi: 10.1038/s41579-021-00582-z – volume: 1 year: 2017 ident: B43 article-title: Modulation of the NFκb signalling pathway by human cytomegalovirus publication-title: Virol Hyd – volume: 7 year: 2017 ident: B95 article-title: Human cytomegalovirus induces cellular and humoral virus-specific immune responses in humanized BLT mice publication-title: Sci Rep doi: 10.1038/s41598-017-01051-5 – volume: 90 start-page: 2959 year: 2015 end-page: 2970 ident: B19 article-title: Human cytomegalovirus US28 is important for latent infection of hematopoietic progenitor cells publication-title: J Virol doi: 10.1128/JVI.02507-15 – volume: 177 start-page: 1933 year: 2019 end-page: 1947 ident: B69 article-title: Illuminating G-protein-coupling selectivity of GPCRs publication-title: Cell doi: 10.1016/j.cell.2019.04.044 – volume: 30 start-page: 249 year: 2009 end-page: 259 ident: B14 article-title: Ligand binding and micro-switches in 7TM receptor structures publication-title: Trends Pharmacol Sci doi: 10.1016/j.tips.2009.02.006 – volume: 8 year: 2017 ident: B87 article-title: Human cytomegalovirus MicroRNAs miR-US5-1 and miR-UL112-3p block proinflammatory cytokine production in response to NF-κB-activating factors through direct downregulation of IKKα and IKKβ publication-title: MBio doi: 10.1128/mBio.00109-17 – volume: 22 year: 2022 ident: B1 article-title: A systematic literature review of the global seroprevalence of cytomegalovirus: possible implications for treatment, screening, and vaccine development publication-title: BMC Public Health doi: 10.1186/s12889-022-13971-7 – volume: 97 year: 2023 ident: B94 article-title: HCMV UL8 interaction with β-catenin and DVL2 regulates viral reactivation in CD34+ hematopoietic progenitor cells publication-title: J Virol doi: 10.1128/jvi.01241-23 – volume: 7 year: 2012 ident: B32 article-title: US28 is a potent activator of phospholipase C during HCMV infection of clinically relevant target cells publication-title: PLoS One doi: 10.1371/journal.pone.0050524 – volume: 1867 start-page: 118849 year: 2020 ident: B93 article-title: Barbadin selectively modulates FPR2-mediated neutrophil functions independent of receptor endocytosis publication-title: Biochim Biophys Acta Mol Cell Res doi: 10.1016/j.bbamcr.2020.118849 – year: 2021 ident: B51 publication-title: Human cytomegaloviruses: methods and protocols ;ed ;Springer US ;New York, NY – volume: 272 start-page: 4163 year: 2005 end-page: 4177 ident: B65 article-title: The human cytomegalovirus-encoded chemokine receptor US28 induces caspase-dependent apoptosis publication-title: FEBS J doi: 10.1111/j.1742-4658.2005.04829.x – volume: 15 year: 2023 ident: B8 article-title: An update on current antiviral strategies to combat human cytomegalovirus infection publication-title: Viruses doi: 10.3390/v15061358 – volume: 223 start-page: 17 year: 2004 end-page: 26 ident: B57 article-title: Functional significance of the BBXXB motif reversed present in the cytoplasmic domains of the human follicle-stimulating hormone receptor publication-title: Mol Cell Endocrinol doi: 10.1016/j.mce.2004.06.004 – volume: 78 start-page: 2460 year: 2004 end-page: 2471 ident: B77 article-title: Gα protein selectivity determinant specified by a viral chemokine receptor-conserved region in the C tail of the human herpesvirus 8 G protein-coupled receptor publication-title: J Virol doi: 10.1128/jvi.78.5.2460-2471.2004 – volume: 283 start-page: 33337 year: 2008 end-page: 33346 ident: B53 article-title: The third intracellular loop stabilizes the inactive state of the neuropeptide Y1 receptor publication-title: J Biol Chem doi: 10.1074/jbc.M804671200 – volume: 12 year: 2021 ident: B90 article-title: Human cytomegalovirus miR-US25-1 targets the GTPase RhoA to inhibit CD34+ hematopoietic progenitor cell proliferation to maintain the latent viral genome publication-title: MBio doi: 10.1128/mBio.00621-21 – volume: 10 year: 2020 ident: B45 article-title: Cytomegalovirus latency and reactivation: an intricate interplay with the host immune response publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2020.00130 – volume: 171 start-page: 5313 year: 2014 end-page: 5329 ident: B91 article-title: Determination of the binding mode for the cyclopentapeptide CXCR4 antagonist FC131 using a dual approach of ligand modifications and receptor mutagenesis publication-title: Br J Pharmacol doi: 10.1111/bph.12842 – volume: 13 year: 2023 ident: B73 article-title: Hematopoietic stem cells and betaherpesvirus latency publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2023.1189805 – volume: 89 start-page: 359 year: 2008 end-page: 368 ident: B85 article-title: Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E publication-title: J Gen Virol doi: 10.1099/vir.0.83286-0 – volume: 9 start-page: e00682-18 year: 2018 ident: B86 article-title: Human cytomegalovirus encodes a novel FLT3 receptor ligand necessary for hematopoietic cell differentiation and viral reactivation publication-title: MBio doi: 10.1128/mBio.00682-18 – volume: 90 start-page: 2482 year: 1997 end-page: 2491 ident: B6 article-title: Spread of human cytomegalovirus (HCMV) after infection of human hematopoietic progenitor cells: model of HCMV latency publication-title: Blood – volume: 10 start-page: e01889 year: 2019 end-page: 19 ident: B35 article-title: Human cytomegalovirus US28 ligand binding activity is required for latency in CD34+ hematopoietic progenitor cells and humanized NSG mice publication-title: MBio doi: 10.1128/mBio.01889-19 – volume: 20 start-page: 1528 year: 2008 end-page: 1537 ident: B33 article-title: Constitutive serum response factor activation by the viral chemokine receptor homologue pUS28 is differentially regulated by Gαq/11 and Gα16 publication-title: Cell Signal doi: 10.1016/j.cellsig.2008.04.010 – volume: 54 start-page: 1405 year: 2021 end-page: 1416 ident: B76 article-title: Structural basis for the constitutive activity and immunomodulatory properties of the Epstein-Barr virus-encoded G protein-coupled receptor BILF1 publication-title: Immunity doi: 10.1016/j.immuni.2021.06.001 – volume: 5 year: 2009 ident: B79 article-title: The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000255 – volume: 6 year: 2021 ident: B88 article-title: Human cytomegalovirus UL7, miR-US5-1, and miR-UL112-3p inactivation of FOXO3a protects CD34+ hematopoietic progenitor cells from apoptosis publication-title: mSphere doi: 10.1128/mSphere.00986-20 – volume: 276 start-page: 1133 year: 2001 end-page: 1137 ident: B29 article-title: Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28 publication-title: J Biol Chem doi: 10.1074/jbc.M008965200 – volume: 13 year: 2022 ident: B74 article-title: Advances in model systems for human cytomegalovirus latency and reactivation publication-title: MBio doi: 10.1128/mbio.01724-21 – volume: 77 start-page: 4489 year: 2003 end-page: 4501 ident: B67 article-title: Constitutive inositol phosphate formation in cytomegalovirus-infected human fibroblasts is due to expression of the chemokine receptor homologue US28 publication-title: J Virol doi: 10.1128/jvi.77.8.4489-4501.2003 – volume: 9 year: 2021 ident: B2 article-title: Congenital human cytomegalovirus infection: a narrative review of maternal immune response and diagnosis in view of the development of a vaccine and prevention of primary and non-primary infections in pregnancy publication-title: Microorganisms doi: 10.3390/microorganisms9081749 – volume: 85 start-page: 1159 year: 2005 end-page: 1204 ident: B12 article-title: Mammalian G proteins and their cell type specific functions publication-title: Physiol Rev doi: 10.1152/physrev.00003.2005 – volume: 26 start-page: 75 year: 2016 end-page: 89 ident: B44 article-title: Cytomegalovirus latency and reactivation: recent insights into an age old problem publication-title: Rev Med Virol doi: 10.1002/rmv.1862 – volume: 8 start-page: 284 year: 2010 end-page: 291 ident: B68 article-title: Granulocyte-colony stimulating factor reactivates human cytomegalovirus in a latently infected humanized mouse model publication-title: Cell Host Microbe doi: 10.1016/j.chom.2010.08.001 – volume: 65 year: 2021 ident: B89 article-title: Identification of quinolinones as antivirals against venezuelan equine encephalitis virus publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00244-21 |
SSID | ssj0014464 |
Score | 2.4750073 |
Snippet | Human cytomegalovirus (HCMV) is a β-herpesvirus that infects between 44% and 100% of the world population. Primary infection is typically asymptomatic and... The human cytomegalovirus (HCMV) encoded chemokine receptor US28 plays a critical role in viral pathogenesis, mediating several processes such as cellular... |
SourceID | pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | e0180124 |
SubjectTerms | Animals Cytomegalovirus - genetics Cytomegalovirus - physiology Cytomegalovirus Infections - metabolism Cytomegalovirus Infections - virology Humans Mice Mutation Pathogenesis and Immunity Receptors, Chemokine - chemistry Receptors, Chemokine - genetics Receptors, Chemokine - metabolism Signal Transduction Viral Proteins - chemistry Viral Proteins - genetics Viral Proteins - metabolism Virology Virus Activation Virus Latency |
Title | Third intracellular loop of HCMV US28 is necessary for signaling and viral reactivation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39655954 https://journals.asm.org/doi/10.1128/jvi.01801-24 https://www.proquest.com/docview/3146609599 https://pubmed.ncbi.nlm.nih.gov/PMC11784217 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELZgERIviJvuAjIInlYpiePmeEQLqNwPbKFv0SSxRVA3WbVpJfj1zNjNtS3SglRFVeIc8nwez4y_GTP23PUyCHQWI3g1OFICOKnEcSXA1VmYahGkptrn52A6k-_nk3m3gm-yS-p0nP3em1fyP1LFcyhXypL9B8m2D8UT-B_li0eUMB4vKeNiSbWT6iVQAN4wShdVdW6i8yefvh3PvoqItiwvFWUDEEGOWIXE2YBFk51ILF8q7k8ZDptOTrsGK2XE9WPwdo3HhpXP1qqlarxW5R5OPl3owtsGgOr447hV-EQSWzpTKLchoS-LYlNAPyghiP_XaPMuSQB16dxOM1a3UulSMtD6ytfujtQH2a5OF5Sn8HNTjKnYmOfYnOth6ewLU1pLNDQujogSvDsxdydCXmXXBPoUxv9-96FdckK_WDal5enLmywJEb3svxunblidiaEZs-ObXKTY9myW01vs5lZ2_JVFzm12RZV32HW7_eivu-y7wQ8f4IcTfnilOeGHE354seItfjjih7f44YgfbvDD-_i5x2Zv35yeTJ3tRhsO4PxSO1ng5qHQEgIIIx1maHPn7kQJCKXOQ_yB68epCylkaH5Gyg90nPk56vLUDyR4_n12UFalesi4p2Iv13mqYjS0fRzttPGIwLYZ2oYhwIg9o-5LtqNoleyT0Ii9aDo3ObdFV_7S7mnT8wlqReopKFW1XiU-GgBUSjGOR-yBlUT7JD8O0I2e4N3RQEZtA6q4PrxSFj9M5XXPCyOJTvzhJT_wiN3oRscjdlAv1-oxGrF1-sSA7w-6aZ3h |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Third+intracellular+loop+of+HCMV+US28+is+necessary+for+signaling+and+viral+reactivation&rft.jtitle=Journal+of+virology&rft.au=Medica%2C+Samuel&rft.au=Denton%2C+Michael&rft.au=Diggins%2C+Nicole+L.&rft.au=Kramer-Hansen%2C+Olivia&rft.date=2025-01-31&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=99&rft.issue=1&rft_id=info:doi/10.1128%2Fjvi.01801-24&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_jvi_01801_24 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |