Third intracellular loop of HCMV US28 is necessary for signaling and viral reactivation

Human cytomegalovirus (HCMV) is a β-herpesvirus that infects between 44% and 100% of the world population. Primary infection is typically asymptomatic and results in the establishment of latent infection within CD34 + hematopoietic progenitor cells (HPCs). However, reactivation from latent infection...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 99; no. 1; p. e0180124
Main Authors Medica, Samuel, Denton, Michael, Diggins, Nicole L., Kramer-Hansen, Olivia, Crawford, Lindsey B., Mayo, Adam T., Perez, Wilma D., Daily, Michael A., Parkins, Christopher J., Slind, Luke E., Pung, Lydia J., Weber, Whitney C., Jaeger, Hannah K., Streblow, Zachary J., Sulgey, Gauthami, Kreklywich, Craig N., Alexander, Timothy, Rosenkilde, Mette M., Caposio, Patrizia, Hancock, Meaghan H., Streblow, Daniel N.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 31.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human cytomegalovirus (HCMV) is a β-herpesvirus that infects between 44% and 100% of the world population. Primary infection is typically asymptomatic and results in the establishment of latent infection within CD34 + hematopoietic progenitor cells (HPCs). However, reactivation from latent infection remains a significant cause of morbidity and mortality in immunocompromised individuals. The viral chemokine receptor US28 influences various cellular processes crucial for viral latency and reactivation, yet the precise mechanism by which US28 functions remains unclear. Through mutational analysis, we identified key residues within the third intracellular loop (ICL3) of US28 that govern G-protein coupling, downstream signaling, and viral reactivation in vitro and in vivo . These findings offer novel insights into how US28 manipulates host signaling networks to regulate HCMV latency and reactivation and expand our understanding of HCMV pathogenesis.
AbstractList The human cytomegalovirus (HCMV) encoded chemokine receptor US28 plays a critical role in viral pathogenesis, mediating several processes such as cellular migration, differentiation, transformation, and viral latency and reactivation. Despite significant research examining the signal transduction pathways utilized by US28, the precise mechanism by which US28 activates these pathways remains unclear. We performed a mutational analysis of US28 to identify signaling domains that are critical for functional activities. Our results indicate that specific residues within the third intracellular loop (ICL3) of US28 are major determinants of G-protein coupling and downstream signaling activity. Alanine substitutions at positions S218, K223, and R225 attenuated US28-mediated activation of MAPK and RhoA signal transduction pathways. Furthermore, we show that mutations at positions S218, K223, or R225 result in impaired coupling to multiple Gα isoforms. However, these substitutions did not affect US28 plasma membrane localization or the receptor internalization rate. Utilizing CD34 HPC models, we demonstrate that attenuation of US28 signaling mutation of residues within the ICL3 region results in an inability of the virus to efficiently reactivate from latency. These results were recapitulated , utilizing a humanized mouse model of HCMV infection. Together, our results provide new insights into the mechanism by which US28 manipulates host signaling networks to mediate viral latency and reactivation. The results reported here will guide the development of targeted therapies to prevent HCMV-associated disease.IMPORTANCEHuman cytomegalovirus (HCMV) is a β-herpesvirus that infects between 44% and 100% of the world population. Primary infection is typically asymptomatic and results in the establishment of latent infection within CD34 hematopoietic progenitor cells (HPCs). However, reactivation from latent infection remains a significant cause of morbidity and mortality in immunocompromised individuals. The viral chemokine receptor US28 influences various cellular processes crucial for viral latency and reactivation, yet the precise mechanism by which US28 functions remains unclear. Through mutational analysis, we identified key residues within the third intracellular loop (ICL3) of US28 that govern G-protein coupling, downstream signaling, and viral reactivation and . These findings offer novel insights into how US28 manipulates host signaling networks to regulate HCMV latency and reactivation and expand our understanding of HCMV pathogenesis.
Human cytomegalovirus (HCMV) is a β-herpesvirus that infects between 44% and 100% of the world population. Primary infection is typically asymptomatic and results in the establishment of latent infection within CD34 + hematopoietic progenitor cells (HPCs). However, reactivation from latent infection remains a significant cause of morbidity and mortality in immunocompromised individuals. The viral chemokine receptor US28 influences various cellular processes crucial for viral latency and reactivation, yet the precise mechanism by which US28 functions remains unclear. Through mutational analysis, we identified key residues within the third intracellular loop (ICL3) of US28 that govern G-protein coupling, downstream signaling, and viral reactivation in vitro and in vivo . These findings offer novel insights into how US28 manipulates host signaling networks to regulate HCMV latency and reactivation and expand our understanding of HCMV pathogenesis.
The human cytomegalovirus (HCMV) encoded chemokine receptor US28 plays a critical role in viral pathogenesis, mediating several processes such as cellular migration, differentiation, transformation, and viral latency and reactivation. Despite significant research examining the signal transduction pathways utilized by US28, the precise mechanism by which US28 activates these pathways remains unclear. We performed a mutational analysis of US28 to identify signaling domains that are critical for functional activities. Our results indicate that specific residues within the third intracellular loop (ICL3) of US28 are major determinants of G-protein coupling and downstream signaling activity. Alanine substitutions at positions S218, K223, and R225 attenuated US28-mediated activation of MAPK and RhoA signal transduction pathways. Furthermore, we show that mutations at positions S218, K223, or R225 result in impaired coupling to multiple Gα isoforms. However, these substitutions did not affect US28 plasma membrane localization or the receptor internalization rate. Utilizing CD34 + HPC models, we demonstrate that attenuation of US28 signaling via mutation of residues within the ICL3 region results in an inability of the virus to efficiently reactivate from latency. These results were recapitulated in vivo , utilizing a humanized mouse model of HCMV infection. Together, our results provide new insights into the mechanism by which US28 manipulates host signaling networks to mediate viral latency and reactivation. The results reported here will guide the development of targeted therapies to prevent HCMV-associated disease.
The human cytomegalovirus (HCMV) encoded chemokine receptor US28 plays a critical role in viral pathogenesis, mediating several processes such as cellular migration, differentiation, transformation, and viral latency and reactivation. Despite significant research examining the signal transduction pathways utilized by US28, the precise mechanism by which US28 activates these pathways remains unclear. We performed a mutational analysis of US28 to identify signaling domains that are critical for functional activities. Our results indicate that specific residues within the third intracellular loop (ICL3) of US28 are major determinants of G-protein coupling and downstream signaling activity. Alanine substitutions at positions S218, K223, and R225 attenuated US28-mediated activation of MAPK and RhoA signal transduction pathways. Furthermore, we show that mutations at positions S218, K223, or R225 result in impaired coupling to multiple Gα isoforms. However, these substitutions did not affect US28 plasma membrane localization or the receptor internalization rate. Utilizing CD34+ HPC models, we demonstrate that attenuation of US28 signaling via mutation of residues within the ICL3 region results in an inability of the virus to efficiently reactivate from latency. These results were recapitulated in vivo, utilizing a humanized mouse model of HCMV infection. Together, our results provide new insights into the mechanism by which US28 manipulates host signaling networks to mediate viral latency and reactivation. The results reported here will guide the development of targeted therapies to prevent HCMV-associated disease.IMPORTANCEHuman cytomegalovirus (HCMV) is a β-herpesvirus that infects between 44% and 100% of the world population. Primary infection is typically asymptomatic and results in the establishment of latent infection within CD34+hematopoietic progenitor cells (HPCs). However, reactivation from latent infection remains a significant cause of morbidity and mortality in immunocompromised individuals. The viral chemokine receptor US28 influences various cellular processes crucial for viral latency and reactivation, yet the precise mechanism by which US28 functions remains unclear. Through mutational analysis, we identified key residues within the third intracellular loop (ICL3) of US28 that govern G-protein coupling, downstream signaling, and viral reactivation in vitro and in vivo. These findings offer novel insights into how US28 manipulates host signaling networks to regulate HCMV latency and reactivation and expand our understanding of HCMV pathogenesis.The human cytomegalovirus (HCMV) encoded chemokine receptor US28 plays a critical role in viral pathogenesis, mediating several processes such as cellular migration, differentiation, transformation, and viral latency and reactivation. Despite significant research examining the signal transduction pathways utilized by US28, the precise mechanism by which US28 activates these pathways remains unclear. We performed a mutational analysis of US28 to identify signaling domains that are critical for functional activities. Our results indicate that specific residues within the third intracellular loop (ICL3) of US28 are major determinants of G-protein coupling and downstream signaling activity. Alanine substitutions at positions S218, K223, and R225 attenuated US28-mediated activation of MAPK and RhoA signal transduction pathways. Furthermore, we show that mutations at positions S218, K223, or R225 result in impaired coupling to multiple Gα isoforms. However, these substitutions did not affect US28 plasma membrane localization or the receptor internalization rate. Utilizing CD34+ HPC models, we demonstrate that attenuation of US28 signaling via mutation of residues within the ICL3 region results in an inability of the virus to efficiently reactivate from latency. These results were recapitulated in vivo, utilizing a humanized mouse model of HCMV infection. Together, our results provide new insights into the mechanism by which US28 manipulates host signaling networks to mediate viral latency and reactivation. The results reported here will guide the development of targeted therapies to prevent HCMV-associated disease.IMPORTANCEHuman cytomegalovirus (HCMV) is a β-herpesvirus that infects between 44% and 100% of the world population. Primary infection is typically asymptomatic and results in the establishment of latent infection within CD34+hematopoietic progenitor cells (HPCs). However, reactivation from latent infection remains a significant cause of morbidity and mortality in immunocompromised individuals. The viral chemokine receptor US28 influences various cellular processes crucial for viral latency and reactivation, yet the precise mechanism by which US28 functions remains unclear. Through mutational analysis, we identified key residues within the third intracellular loop (ICL3) of US28 that govern G-protein coupling, downstream signaling, and viral reactivation in vitro and in vivo. These findings offer novel insights into how US28 manipulates host signaling networks to regulate HCMV latency and reactivation and expand our understanding of HCMV pathogenesis.
The human cytomegalovirus (HCMV) encoded chemokine receptor US28 plays a critical role in viral pathogenesis, mediating several processes such as cellular migration, differentiation, transformation, and viral latency and reactivation. Despite significant research examining the signal transduction pathways utilized by US28, the precise mechanism by which US28 activates these pathways remains unclear. We performed a mutational analysis of US28 to identify signaling domains that are critical for functional activities. Our results indicate that specific residues within the third intracellular loop (ICL3) of US28 are major determinants of G-protein coupling and downstream signaling activity. Alanine substitutions at positions S218, K223, and R225 attenuated US28-mediated activation of MAPK and RhoA signal transduction pathways. Furthermore, we show that mutations at positions S218, K223, or R225 result in impaired coupling to multiple Gα isoforms. However, these substitutions did not affect US28 plasma membrane localization or the receptor internalization rate. Utilizing CD34+ HPC models, we demonstrate that attenuation of US28 signaling via mutation of residues within the ICL3 region results in an inability of the virus to efficiently reactivate from latency. These results were recapitulated in vivo, utilizing a humanized mouse model of HCMV infection. Together, our results provide new insights into the mechanism by which US28 manipulates host signaling networks to mediate viral latency and reactivation. The results reported here will guide the development of targeted therapies to prevent HCMV-associated disease.IMPORTANCEHuman cytomegalovirus (HCMV) is a β-herpesvirus that infects between 44% and 100% of the world population. Primary infection is typically asymptomatic and results in the establishment of latent infection within CD34+hematopoietic progenitor cells (HPCs). However, reactivation from latent infection remains a significant cause of morbidity and mortality in immunocompromised individuals. The viral chemokine receptor US28 influences various cellular processes crucial for viral latency and reactivation, yet the precise mechanism by which US28 functions remains unclear. Through mutational analysis, we identified key residues within the third intracellular loop (ICL3) of US28 that govern G-protein coupling, downstream signaling, and viral reactivation in vitro and in vivo. These findings offer novel insights into how US28 manipulates host signaling networks to regulate HCMV latency and reactivation and expand our understanding of HCMV pathogenesis.
Author Hancock, Meaghan H.
Streblow, Zachary J.
Denton, Michael
Alexander, Timothy
Slind, Luke E.
Weber, Whitney C.
Crawford, Lindsey B.
Parkins, Christopher J.
Sulgey, Gauthami
Kreklywich, Craig N.
Streblow, Daniel N.
Kramer-Hansen, Olivia
Perez, Wilma D.
Medica, Samuel
Mayo, Adam T.
Jaeger, Hannah K.
Pung, Lydia J.
Rosenkilde, Mette M.
Diggins, Nicole L.
Daily, Michael A.
Caposio, Patrizia
Author_xml – sequence: 1
  givenname: Samuel
  orcidid: 0000-0002-3611-3715
  surname: Medica
  fullname: Medica, Samuel
– sequence: 2
  givenname: Michael
  surname: Denton
  fullname: Denton, Michael
– sequence: 3
  givenname: Nicole L.
  orcidid: 0000-0001-8007-7865
  surname: Diggins
  fullname: Diggins, Nicole L.
– sequence: 4
  givenname: Olivia
  surname: Kramer-Hansen
  fullname: Kramer-Hansen, Olivia
– sequence: 5
  givenname: Lindsey B.
  orcidid: 0000-0003-1248-253X
  surname: Crawford
  fullname: Crawford, Lindsey B.
– sequence: 6
  givenname: Adam T.
  surname: Mayo
  fullname: Mayo, Adam T.
– sequence: 7
  givenname: Wilma D.
  surname: Perez
  fullname: Perez, Wilma D.
– sequence: 8
  givenname: Michael A.
  surname: Daily
  fullname: Daily, Michael A.
– sequence: 9
  givenname: Christopher J.
  surname: Parkins
  fullname: Parkins, Christopher J.
– sequence: 10
  givenname: Luke E.
  surname: Slind
  fullname: Slind, Luke E.
– sequence: 11
  givenname: Lydia J.
  surname: Pung
  fullname: Pung, Lydia J.
– sequence: 12
  givenname: Whitney C.
  surname: Weber
  fullname: Weber, Whitney C.
– sequence: 13
  givenname: Hannah K.
  surname: Jaeger
  fullname: Jaeger, Hannah K.
– sequence: 14
  givenname: Zachary J.
  surname: Streblow
  fullname: Streblow, Zachary J.
– sequence: 15
  givenname: Gauthami
  surname: Sulgey
  fullname: Sulgey, Gauthami
– sequence: 16
  givenname: Craig N.
  surname: Kreklywich
  fullname: Kreklywich, Craig N.
– sequence: 17
  givenname: Timothy
  surname: Alexander
  fullname: Alexander, Timothy
– sequence: 18
  givenname: Mette M.
  surname: Rosenkilde
  fullname: Rosenkilde, Mette M.
– sequence: 19
  givenname: Patrizia
  orcidid: 0000-0001-7579-849X
  surname: Caposio
  fullname: Caposio, Patrizia
– sequence: 20
  givenname: Meaghan H.
  orcidid: 0000-0003-2945-0147
  surname: Hancock
  fullname: Hancock, Meaghan H.
– sequence: 21
  givenname: Daniel N.
  orcidid: 0000-0002-6828-2492
  surname: Streblow
  fullname: Streblow, Daniel N.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39655954$$D View this record in MEDLINE/PubMed
BookMark eNptkc1rFEEQxRuJmE305ln6qODErv6cPoksaoSIBxP11tT29Gx6me3edM8s-N8768agIBTUoX48Xr13Rk5SToGQ58AuAHj7ZrOPFwxaBg2Xj8gCmG0bpUCekAVjnDdKtD9OyVmtG8ZASi2fkFNhtVJWyQX5fn0bS0djGgv6MAzTgIUOOe9o7unl8vM3evOVtzRWmoIPtWL5SftcaI3rhENMa4qpo_tYcKAloB_jHseY01PyuMehhmf3-5zcfHh_vbxsrr58_LR8d9WgMHpsvGad4b1EjabtjQemOqYCRyP7zsyDTNgVwxV6UKoNQvfWiw6MXQktEcQ5eXvU3U2rbeh8ODwyuF2J29mqyxjdv5cUb9067x2AaSUHMyu8vFco-W4KdXTbWA9RYAp5qk6A1JpZZe2MvjqiWLfcbfJU5gyqA-YOTbi5Cfe7CcflzL7429iDoz_Rz8DrI-BLrrWE_gH5r94vHB2VcA
Cites_doi 10.1182/blood.V90.6.2482
10.1038/s41586-023-05789-z
10.1128/AAC.49.3.873-883.2005
10.1073/pnas.1710522114
10.1186/s11658-023-00427-y
10.1016/s0092-8674(00)81539-1
10.1016/j.mce.2004.06.004
10.1073/pnas.051629898
10.1002/cpz1.622
10.1128/mBio.01889-19
10.1128/JVI.01608-10
10.1016/j.tips.2009.02.006
10.1007/978-1-0716-1111-1
10.1016/j.virusres.2005.12.011
10.1128/jvi.01241-23
10.1099/vir.0.83286-0
10.1152/physrev.00003.2005
10.1002/rmv.1862
10.1128/mBio.01264-17
10.1128/jvi.75.18.8660-8673.2001
10.1038/s41579-021-00582-z
10.1101/2023.12.27.573477
10.1128/jvi.76.4.1744-1752.2002
10.1016/j.chom.2010.08.001
10.1016/j.immuni.2021.06.001
10.1111/bph.12842
10.1126/science.277.5332.1656
10.1016/j.virol.2016.07.025
10.3389/fcimb.2020.00130
10.1038/s41467-021-24574-y
10.1128/mBio.00682-18
10.1016/j.bbamcr.2020.118849
10.1128/JVI.02105-20
10.1016/S0021-9258(19)61936-8
10.1074/jbc.M804671200
10.1128/jvi.77.8.4489-4501.2003
10.1128/jvi.78.5.2460-2471.2004
10.1128/JVI.02507-15
10.1074/jbc.M008965200
10.1073/pnas.1816933116
10.3389/fcimb.2023.1189805
10.1016/j.bmc.2004.04.006
10.1128/JVI.72.10.8158-8165.1998
10.1371/journal.ppat.1000255
10.1128/mSphere.00986-20
10.1126/scisignal.2001180
10.1128/mBio.00109-17
10.1016/j.cell.2019.04.044
10.1038/nrd2199
10.1371/journal.pone.0048935
10.3390/microorganisms9081749
10.1128/jvi.76.16.8161-8168.2002
10.1128/mBio.01754-17
10.3390/v10080445
10.1074/jbc.M303219200
10.1128/JVI.78.15.8382-8391.2004
10.1016/j.celrep.2023.113173
10.3892/ijo.2017.4135
10.1128/AAC.00244-21
10.1126/science.282.5391.1145
10.1158/0008-5472.CAN-08-2487
10.1074/jbc.RA118.006231
10.1371/journal.pone.0050524
10.1074/jbc.M207495200
10.3390/v13050817
10.3390/v15061358
10.7554/eLife.54895
10.3389/fmicb.2022.999290
10.1016/j.bbamem.2013.08.009
10.3390/microorganisms8040525
10.1182/blood.v97.7.2031
10.7554/eLife.35850
10.3389/fimmu.2023.1135280
10.3389/fcimb.2020.00186
10.1091/mbc.12.6.1737
10.1111/j.1742-4658.2005.04829.x
10.1371/journal.ppat.1011682
10.1146/annurev-virology-110615-042422
10.1016/bs.aivir.2022.01.001
10.1128/mBio.00621-21
10.1186/s12889-022-13971-7
10.1128/mBio.01560-18
10.1128/JVI.00252-12
10.1007/s00430-019-00595-9
10.1128/mbio.01724-21
10.1126/sciadv.add1168
10.1016/j.cellsig.2008.04.010
10.1038/s41598-017-01051-5
10.1371/journal.ppat.1000304
10.1016/j.jim.2009.06.008
10.1084/jem.188.5.855
10.1007/978-1-62703-788-4_7
10.1016/j.tips.2023.05.001
10.2174/187152609789105696
10.1016/j.jmb.2016.08.002
ContentType Journal Article
Copyright Copyright © 2024 Medica et al.
Copyright © 2024 Medica et al. 2024 Medica et al.
Copyright_xml – notice: Copyright © 2024 Medica et al.
– notice: Copyright © 2024 Medica et al. 2024 Medica et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1128/jvi.01801-24
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
Editor Walsh, Derek
Editor_xml – sequence: 1
  givenname: Derek
  surname: Walsh
  fullname: Walsh, Derek
ExternalDocumentID PMC11784217
jvi01801-24
39655954
10_1128_jvi_01801_24
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: P01 AI127335
– fundername: NIAID NIH HHS
  grantid: T32 AI170496
– fundername: HHS | National Institutes of Health (NIH)
  grantid: AI170496-01A1
– fundername: HHS | National Institutes of Health (NIH)
  grantid: AI21640
– fundername: NIAID NIH HHS
  grantid: R01 AI021640
– fundername: NIAID NIH HHS
  grantid: R37 AI021640
– fundername: HHS | National Institutes of Health (NIH)
  grantid: AI127335
– fundername: ;
  grantid: AI127335
– fundername: ;
  grantid: AI21640
– fundername: ;
  grantid: AI170496-01A1
GroupedDBID ---
-~X
0R~
18M
2WC
39C
4.4
5GY
5RE
5VS
85S
AAFWJ
AAGFI
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
E3Z
EBS
F5P
FRP
GX1
H13
HZ~
IH2
KQ8
N9A
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
W2D
WH7
WOQ
YQT
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
53G
RHF
UCJ
29L
7X8
HYE
W8F
5PM
ID FETCH-LOGICAL-a376t-c60d72f4a6a78f7c105d05e2a74fd7fd7a039b0abac1558e36f9c3d179b364a13
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 18:38:47 EDT 2025
Fri Jul 11 10:16:27 EDT 2025
Fri Jan 31 22:40:52 EST 2025
Wed Jul 02 01:57:11 EDT 2025
Tue Jul 01 01:32:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords reactivation
cytomegalovirus
signal transduction
G-protein-coupled receptor
latency
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a376t-c60d72f4a6a78f7c105d05e2a74fd7fd7a039b0abac1558e36f9c3d179b364a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors declare no conflict of interest.
Present address: Department of Biochemistry, University of Nebraska – Lincoln, Lincoln, Nebraska, USA
ORCID 0000-0001-7579-849X
0000-0002-3611-3715
0000-0001-8007-7865
0000-0003-1248-253X
0000-0002-6828-2492
0000-0003-2945-0147
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11784217
PMID 39655954
PQID 3146609599
PQPubID 23479
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11784217
proquest_miscellaneous_3146609599
asm2_journals_10_1128_jvi_01801_24
pubmed_primary_39655954
crossref_primary_10_1128_jvi_01801_24
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-31
PublicationDateYYYYMMDD 2025-01-31
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-31
  day: 31
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAbbrev J Virol
PublicationTitleAlternate J Virol
PublicationYear 2025
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_4_3_2
Hancock MH (e_1_3_4_44_2) 2017; 1
e_1_3_4_61_2
e_1_3_4_82_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_84_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_80_2
e_1_3_4_23_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_86_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_88_2
e_1_3_4_29_2
e_1_3_4_72_2
e_1_3_4_93_2
e_1_3_4_74_2
e_1_3_4_95_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_91_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_97_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_83_2
e_1_3_4_62_2
e_1_3_4_85_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_87_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_89_2
e_1_3_4_28_2
e_1_3_4_71_2
e_1_3_4_94_2
e_1_3_4_73_2
e_1_3_4_96_2
e_1_3_4_52_2
e_1_3_4_90_2
e_1_3_4_50_2
e_1_3_4_92_2
e_1_3_4_79_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_75_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_77_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
Kledal, TN, Rosenkilde, MM, Coulin, F, Simmons, G, Johnsen, AH, Alouani, S, Power, CA, Lüttichau, HR, Gerstoft, J, Clapham, PR, Clark-Lewis, I, Wells, TN, Schwartz, TW (B28) 1997; 277
Miller, WE, Zagorski, WA, Brenneman, JD, Avery, D, Miller, JLC, O’Connor, CM (B32) 2012; 7
Smith, MS, Goldman, DC, Bailey, AS, Pfaffle, DL, Kreklywich, CN, Spencer, DB, Othieno, FA, Streblow, DN, Garcia, JV, Fleming, WH, Nelson, JA (B68) 2010; 8
Vomaske, J, Melnychuk, RM, Smith, PP, Powell, J, Hall, L, DeFilippis, V, Früh, K, Smit, M, Schlaepfer, DD, Nelson, JA, Streblow, DN (B40) 2009; 5
Hancock, MH, Hook, LM, Mitchell, J, Nelson, JA (B87) 2017; 8
Moepps, B, Tulone, C, Kern, C, Minisini, R, Michels, G, Vatter, P, Wieland, T, Gierschik, P (B33) 2008; 20
Pati, S, Cavrois, M, Guo, HG, Foulke, JS, Kim, J, Feldman, RA, Reitz, M (B80) 2001; 75
Timossi, C, Ortiz-Elizondo, C, Pineda, DB, Dias, JA, Conn, PM, Ulloa-Aguirre, A (B57) 2004; 223
Hancock, MH, Crawford, LB, Perez, W, Struthers, HM, Mitchell, J, Caposio, P (B88) 2021; 6
Humby, MS, O’Connor, CM (B19) 2015; 90
Maussang, D, Langemeijer, E, Fitzsimons, CP, Stigter-van Walsum, M, Dijkman, R, Borg, MK, Slinger, E, Schreiber, A, Michel, D, Tensen, CP, van Dongen, G, Leurs, R, Smit, MJ (B31) 2009; 69
Masuho, I, Kise, R, Gainza, P, Von Moo, E, Li, X, Tany, R, Wakasugi-Masuho, H, Correia, BE, Martemyanov, KA (B15) 2023; 42
Yurochko, AD (B51) 2021
Wettschureck, N, Offermanns, S (B12) 2005; 85
Wu, S, Miller, WE (B61) 2016; 497
Crawford, LB, Tempel, R, Streblow, DN, Kreklywich, C, Smith, P, Picker, LJ, Nelson, JA, Caposio, P (B95) 2017; 7
Hu, Y, Smyth, GK (B52) 2009; 347
Thomson, JA, Itskovitz-Eldor, J, Shapiro, SS, Waknitz, MA, Swiergiel, JJ, Marshall, VS, Jones, JM (B84) 1998; 282
Crawford, LB (B73) 2023; 13
Sinzger, C, Hahn, G, Digel, M, Katona, R, Sampaio, KL, Messerle, M, Hengel, H, Koszinowski, U, Brune, W, Adler, B (B85) 2008; 89
Crawford, LB, Tempel, R, Streblow, DN, Yurochko, AD, Goodrum, FD, Nelson, JA, Caposio, P (B96) 2020; 8
Slinger, E, Maussang, D, Schreiber, A, Siderius, M, Rahbar, A, Fraile-Ramos, A, Lira, SA, Söderberg-Nauclér, C, Smit, MJ (B34) 2010; 3
Crawford, LB, Kim, JH, Collins-McMillen, D, Lee, B-J, Landais, I, Held, C, Nelson, JA, Yurochko, AD, Caposio, P (B86) 2018; 9
Poole, E, Sinclair, J (B5) 2022; 13
DeGraff, JL, Gurevich, VV, Benovic, JL (B54) 2002; 277
Overington, JP, Al-Lazikani, B, Hopkins, AL (B11) 2006; 5
Madrid, AS, Ganem, D (B82) 2012; 86
Krishna, BA, Miller, WE, O’Connor, CM (B18) 2018; 10
Pleskoff, O, Casarosa, P, Verneuil, L, Ainoun, F, Beisser, P, Smit, M, Leurs, R, Schneider, P, Michelson, S, Ameisen, JC (B65) 2005; 272
Gerna, G, Fornara, C, Furione, M, Lilleri, D (B2) 2021; 9
Krishna, BA, Poole, EL, Jackson, SE, Smit, MJ, Wills, MR, Sinclair, JH (B37) 2017; 8
Berg, C, Rosenkilde, MM (B83) 2023; 14
Vomaske, J, Nelson, JA, Streblow, DN (B64) 2009; 9
Umashankar, M, Goodrum, F (B50) 2014; 1119
Bodaghi, B, Jones, TR, Zipeto, D, Vita, C, Sun, L, Laurent, L, Arenzana-Seisdedos, F, Virelizier, JL, Michelson, S (B66) 1998; 188
Gao, JL, Murphy, PM (B17) 1994; 269
Griffiths, P, Reeves, M (B3) 2021; 19
Casarosa, P, Bakker, RA, Verzijl, D, Navis, M, Timmerman, H, Leurs, R, Smit, MJ (B29) 2001; 276
Wess, J (B58) 2023; 44
Frank, T, Niemann, I, Reichel, A, Stamminger, T (B26) 2019; 208
Chee, MJS, Mörl, K, Lindner, D, Merten, N, Zamponi, GW, Light, PE, Beck-Sickinger, AG, Colmers, WF (B53) 2008; 283
Dirck, A, Diggins, NL, Crawford, LB, Perez, WD, Parkins, CJ, Struthers, HH, Turner, R, Pham, AH, Mitchell, J, Papen, CR, Malouli, D, Hancock, MH, Caposio, P (B94) 2023; 97
Medica, S, Crawford, LB, Denton, M, Min, C-K, Jones, TA, Alexander, T, Parkins, CJ, Diggins, NL, Streblow, GJ, Mayo, AT, Kreklywich, CN, Smith, P, Jeng, S, McWeeney, S, Hancock, MH, Yurochko, A, Cohen, MS, Caposio, P, Streblow, DN (B39) 2023; 19
Forte, E, Zhang, Z, Thorp, EB, Hummel, M (B45) 2020; 10
Oliveira, SA, Shenk, TE (B22) 2001; 98
Minisini, R, Tulone, C, Lüske, A, Michel, D, Mertens, T, Gierschik, P, Moepps, B (B67) 2003; 77
Jones, EM, Lubock, NB, Venkatakrishnan, AJ, Wang, J, Tseng, AM, Paggi, JM, Latorraca, NR, Cancilla, D, Satyadi, M, Davis, JE, Babu, MM, Dror, RO, Kosuri, S (B13) 2020; 9
Vieira, J, Schall, TJ, Corey, L, Geballe, AP (B20) 1998; 72
Fraile-Ramos, A, Kledal, TN, Pelchen-Matthews, A, Bowers, K, Schwartz, TW, Marsh, M (B21) 2001; 12
Goodrum, F (B42) 2022; 112
Thiele, S, Mungalpara, J, Steen, A, Rosenkilde, MM, Våbenø, J (B91) 2014; 171
Sadler, F, Ma, N, Ritt, M, Sharma, Y, Vaidehi, N, Sivaramakrishnan, S (B56) 2023; 615
Laschet, C, Dupuis, N, Hanson, J (B63) 2019; 294
Inoue, A, Raimondi, F, Kadji, FMN, Singh, G, Kishi, T, Uwamizu, A, Ono, Y, Shinjo, Y, Ishida, S, Arang, N, Kawakami, K, Gutkind, JS, Aoki, J, Russell, RB (B69) 2019; 177
Goodrum, F (B4) 2016; 3
Langemeijer, EV, Slinger, E, de Munnik, S, Schreiber, A, Maussang, D, Vischer, H, Verkaar, F, Leurs, R, Siderius, M, Smit, MJ (B30) 2012; 7
Panda, K, Parashar, D, Viswanathan, R (B8) 2023; 15
Cambien, B, Pomeranz, M, Schmid-Antomarchi, H, Millet, MA, Breittmayer, V, Rossi, B, Schmid-Alliana, A (B25) 2001; 97
Crawford, LB, Caposio, P, Kreklywich, C, Pham, AH, Hancock, MH, Jones, TA, Smith, PP, Yurochko, AD, Nelson, JA, Streblow, DN (B35) 2019; 10
Streblow, DN, Soderberg-Naucler, C, Vieira, J, Smith, P, Wakabayashi, E, Ruchti, F, Mattison, K, Altschuler, Y, Nelson, JA (B27) 1999; 99
Perera, MR, Wills, MR, Sinclair, JH (B9) 2021; 13
Forte, E, Swaminathan, S, Schroeder, MW, Kim, JY, Terhune, SS, Hummel, M (B46) 2018; 9
Crawford, LB (B48) 2022; 2
Fowler, K, Mucha, J, Neumann, M, Lewandowski, W, Kaczanowska, M, Grys, M, Schmidt, E, Natenshon, A, Talarico, C, Buck, PO, Diaz-Decaro, J (B1) 2022; 22
Krishna, BA, Wass, AB, Sridharan, R, O’Connor, CM (B36) 2020; 10
Mavri, M, Glišić, S, Senćanski, M, Vrecl, M, Rosenkilde, MM, Spiess, K, Kubale, V (B92) 2023; 28
Syrovatkina, V, Alegre, KO, Dey, R, Huang, X-Y (B16) 2016; 428
Wass, AB, Krishna, BA, Herring, LE, Gilbert, TSK, Nukui, M, Groves, IJ, Dooley, AL, Kulp, KH, Matthews, SM, Rotroff, DM, Graves, LM, O’Connor, CM (B38) 2022; 8
Crawford, LB, Hancock, MH, Struthers, HM, Streblow, DN, Yurochko, AD, Caposio, P, Goodrum, FD, Nelson, JA (B49) 2021; 95
Farrell, HE, Bruce, K, Lawler, C, Oliveira, M, Cardin, R, Davis-Poynter, N, Stevenson, PG (B7) 2017; 8
Tsutsumi, N, Qu, Q, Mavri, M, Baggesen, MS, Maeda, S, Waghray, D, Berg, C, Kobilka, BK, Rosenkilde, MM, Skiniotis, G, Garcia, KC (B76) 2021; 54
Zuo, J, Quinn, LL, Tamblyn, J, Thomas, WA, Feederle, R, Delecluse, H-J, Hislop, AD, Rowe, M (B78) 2011; 85
Nygaard, R, Frimurer, TM, Holst, B, Rosenkilde, MM, Schwartz, TW (B14) 2009; 30
Krishna, BA, Humby, MS, Miller, WE, O’Connor, CM (B72) 2019; 116
Waldhoer, M, Kledal, TN, Farrell, H, Schwartz, TW (B24) 2002; 76
Prasad Pydi, S, Singh, N, Upadhyaya, J, Pal Bhullar, R, Chelikani, P (B55) 2014; 1838
Smit, MJ, Verzijl, D, Casarosa, P, Navis, M, Timmerman, H, Leurs, R (B81) 2002; 76
Gilbert, C, Boivin, G (B10) 2005; 49
Hancock, MH, Nelson, JA (B43) 2017; 1
Diggins, NL, Crawford, LB, Hancock, MH, Mitchell, J, Nelson, JA (B90) 2021; 12
Sundqvist, M, Holdfeldt, A, Wright, SC, Møller, TC, Siaw, E, Jennbacken, K, Franzyk, H, Bouvier, M, Dahlgren, C, Forsman, H (B93) 2020; 1867
Melnychuk, RM, Streblow, DN, Smith, PP, Hirsch, AJ, Pancheva, D, Nelson, JA (B59) 2004; 78
Haese, NN, May, NA, Taft-Benz, S, Moukha-Chafiq, O, Madadi, N, Zhang, S, Karyakarte, SD, Rodzinak, KJ, Nguyen, TH, Denton, M, Streblow, AD, Towers, NA, Rasmussen, L, Bostwick, RJ, Maddry, JA, Ananthan, S, Augelli-Szafran, CE, Suto, MJ, Sanders, W, Moorman, N, DeFilippis, V, Heise, MT, Pathak, AK, Streblow, DN, Morrison, TE (B89) 2021; 65
Taniguchi, M, Suzumura, K, Nagai, K, Kawasaki, T, Takasaki, J, Sekiguchi, M, Moritani, Y, Saito, T, Hayashi, K, Fujita, S, Tsukamoto, S, Suzuki, K (B47) 2004; 12
Zhuravskaya, T, Maciejewski, JP, Netski, DM, Bruening, E, Mackintosh, FR, St Jeor, S (B6) 1997; 90
Teo, WH, Chen, HP, Huang, JC, Chan, YJ (B41) 2017; 51
Miller, WE, Houtz, DA, Nelson, CD, Kolattukudy, PE, Lefkowitz, RJ (B23) 2003; 278
Miles, TF, Spiess, K, Jude, KM, Tsutsumi, N, Burg, JS, Ingram, JR, Waghray, D, Hjorto, GM, Larsen, O, Ploegh, HL, Rosenkilde, MM, Garcia, KC (B62) 2018; 7
Liu, C, Sandford, G, Fei, G, Nicholas, J (B77) 2004; 78
Cheng, S, Caviness, K, Buehler, J, Smithey, M, Nikolich-Žugich, J, Goodrum, F (B71) 2017; 114
Liu, A, Liu, Y, Llinàs del Torrent Masachs, C, Zhang, W, Pardo, L, Ye, RD (B75) 2023
Boomker, JM, The, TH, de Leij, L, Harmsen, MC (B60) 2006; 118
De Groof, TWM, Bergkamp, ND, Heukers, R, Giap, T, Bebelman, MP, Goeij-de Haas, R, Piersma, SR, Jimenez, CR, Garcia, KC, Ploegh, HL, Siderius, M, Smit, MJ (B70) 2021; 12
Dupont, L, Reeves, MB (B44) 2016; 26
Crawford, LB, Diggins, NL, Caposio, P, Hancock, MH (B74) 2022; 13
Zuo, J, Currin, A, Griffin, BD, Shannon-Lowe, C, Thomas, WA, Ressing, ME, Wiertz, EJHJ, Rowe, M (B79) 2009; 5
References_xml – ident: e_1_3_4_7_2
  doi: 10.1182/blood.V90.6.2482
– ident: e_1_3_4_57_2
  doi: 10.1038/s41586-023-05789-z
– ident: e_1_3_4_11_2
  doi: 10.1128/AAC.49.3.873-883.2005
– ident: e_1_3_4_72_2
  doi: 10.1073/pnas.1710522114
– ident: e_1_3_4_93_2
  doi: 10.1186/s11658-023-00427-y
– ident: e_1_3_4_28_2
  doi: 10.1016/s0092-8674(00)81539-1
– ident: e_1_3_4_58_2
  doi: 10.1016/j.mce.2004.06.004
– ident: e_1_3_4_23_2
  doi: 10.1073/pnas.051629898
– ident: e_1_3_4_49_2
  doi: 10.1002/cpz1.622
– ident: e_1_3_4_36_2
  doi: 10.1128/mBio.01889-19
– ident: e_1_3_4_79_2
  doi: 10.1128/JVI.01608-10
– ident: e_1_3_4_15_2
  doi: 10.1016/j.tips.2009.02.006
– ident: e_1_3_4_52_2
  doi: 10.1007/978-1-0716-1111-1
– ident: e_1_3_4_61_2
  doi: 10.1016/j.virusres.2005.12.011
– ident: e_1_3_4_95_2
  doi: 10.1128/jvi.01241-23
– ident: e_1_3_4_86_2
  doi: 10.1099/vir.0.83286-0
– ident: e_1_3_4_13_2
  doi: 10.1152/physrev.00003.2005
– volume: 1
  year: 2017
  ident: e_1_3_4_44_2
  article-title: Modulation of the NFκb signalling pathway by human cytomegalovirus
  publication-title: Virol Hyd
– ident: e_1_3_4_45_2
  doi: 10.1002/rmv.1862
– ident: e_1_3_4_8_2
  doi: 10.1128/mBio.01264-17
– ident: e_1_3_4_81_2
  doi: 10.1128/jvi.75.18.8660-8673.2001
– ident: e_1_3_4_4_2
  doi: 10.1038/s41579-021-00582-z
– ident: e_1_3_4_76_2
  doi: 10.1101/2023.12.27.573477
– ident: e_1_3_4_82_2
  doi: 10.1128/jvi.76.4.1744-1752.2002
– ident: e_1_3_4_69_2
  doi: 10.1016/j.chom.2010.08.001
– ident: e_1_3_4_77_2
  doi: 10.1016/j.immuni.2021.06.001
– ident: e_1_3_4_92_2
  doi: 10.1111/bph.12842
– ident: e_1_3_4_29_2
  doi: 10.1126/science.277.5332.1656
– ident: e_1_3_4_62_2
  doi: 10.1016/j.virol.2016.07.025
– ident: e_1_3_4_46_2
  doi: 10.3389/fcimb.2020.00130
– ident: e_1_3_4_71_2
  doi: 10.1038/s41467-021-24574-y
– ident: e_1_3_4_87_2
  doi: 10.1128/mBio.00682-18
– ident: e_1_3_4_94_2
  doi: 10.1016/j.bbamcr.2020.118849
– ident: e_1_3_4_50_2
  doi: 10.1128/JVI.02105-20
– ident: e_1_3_4_18_2
  doi: 10.1016/S0021-9258(19)61936-8
– ident: e_1_3_4_54_2
  doi: 10.1074/jbc.M804671200
– ident: e_1_3_4_68_2
  doi: 10.1128/jvi.77.8.4489-4501.2003
– ident: e_1_3_4_78_2
  doi: 10.1128/jvi.78.5.2460-2471.2004
– ident: e_1_3_4_20_2
  doi: 10.1128/JVI.02507-15
– ident: e_1_3_4_30_2
  doi: 10.1074/jbc.M008965200
– ident: e_1_3_4_73_2
  doi: 10.1073/pnas.1816933116
– ident: e_1_3_4_74_2
  doi: 10.3389/fcimb.2023.1189805
– ident: e_1_3_4_48_2
  doi: 10.1016/j.bmc.2004.04.006
– ident: e_1_3_4_21_2
  doi: 10.1128/JVI.72.10.8158-8165.1998
– ident: e_1_3_4_80_2
  doi: 10.1371/journal.ppat.1000255
– ident: e_1_3_4_89_2
  doi: 10.1128/mSphere.00986-20
– ident: e_1_3_4_35_2
  doi: 10.1126/scisignal.2001180
– ident: e_1_3_4_88_2
  doi: 10.1128/mBio.00109-17
– ident: e_1_3_4_70_2
  doi: 10.1016/j.cell.2019.04.044
– ident: e_1_3_4_12_2
  doi: 10.1038/nrd2199
– ident: e_1_3_4_31_2
  doi: 10.1371/journal.pone.0048935
– ident: e_1_3_4_3_2
  doi: 10.3390/microorganisms9081749
– ident: e_1_3_4_25_2
  doi: 10.1128/jvi.76.16.8161-8168.2002
– ident: e_1_3_4_38_2
  doi: 10.1128/mBio.01754-17
– ident: e_1_3_4_19_2
  doi: 10.3390/v10080445
– ident: e_1_3_4_24_2
  doi: 10.1074/jbc.M303219200
– ident: e_1_3_4_60_2
  doi: 10.1128/JVI.78.15.8382-8391.2004
– ident: e_1_3_4_16_2
  doi: 10.1016/j.celrep.2023.113173
– ident: e_1_3_4_42_2
  doi: 10.3892/ijo.2017.4135
– ident: e_1_3_4_90_2
  doi: 10.1128/AAC.00244-21
– ident: e_1_3_4_85_2
  doi: 10.1126/science.282.5391.1145
– ident: e_1_3_4_32_2
  doi: 10.1158/0008-5472.CAN-08-2487
– ident: e_1_3_4_64_2
  doi: 10.1074/jbc.RA118.006231
– ident: e_1_3_4_33_2
  doi: 10.1371/journal.pone.0050524
– ident: e_1_3_4_55_2
  doi: 10.1074/jbc.M207495200
– ident: e_1_3_4_10_2
  doi: 10.3390/v13050817
– ident: e_1_3_4_9_2
  doi: 10.3390/v15061358
– ident: e_1_3_4_14_2
  doi: 10.7554/eLife.54895
– ident: e_1_3_4_6_2
  doi: 10.3389/fmicb.2022.999290
– ident: e_1_3_4_56_2
  doi: 10.1016/j.bbamem.2013.08.009
– ident: e_1_3_4_97_2
  doi: 10.3390/microorganisms8040525
– ident: e_1_3_4_26_2
  doi: 10.1182/blood.v97.7.2031
– ident: e_1_3_4_63_2
  doi: 10.7554/eLife.35850
– ident: e_1_3_4_84_2
  doi: 10.3389/fimmu.2023.1135280
– ident: e_1_3_4_37_2
  doi: 10.3389/fcimb.2020.00186
– ident: e_1_3_4_22_2
  doi: 10.1091/mbc.12.6.1737
– ident: e_1_3_4_66_2
  doi: 10.1111/j.1742-4658.2005.04829.x
– ident: e_1_3_4_40_2
  doi: 10.1371/journal.ppat.1011682
– ident: e_1_3_4_5_2
  doi: 10.1146/annurev-virology-110615-042422
– ident: e_1_3_4_43_2
  doi: 10.1016/bs.aivir.2022.01.001
– ident: e_1_3_4_91_2
  doi: 10.1128/mBio.00621-21
– ident: e_1_3_4_2_2
  doi: 10.1186/s12889-022-13971-7
– ident: e_1_3_4_47_2
  doi: 10.1128/mBio.01560-18
– ident: e_1_3_4_83_2
  doi: 10.1128/JVI.00252-12
– ident: e_1_3_4_27_2
  doi: 10.1007/s00430-019-00595-9
– ident: e_1_3_4_75_2
  doi: 10.1128/mbio.01724-21
– ident: e_1_3_4_39_2
  doi: 10.1126/sciadv.add1168
– ident: e_1_3_4_34_2
  doi: 10.1016/j.cellsig.2008.04.010
– ident: e_1_3_4_96_2
  doi: 10.1038/s41598-017-01051-5
– ident: e_1_3_4_41_2
  doi: 10.1371/journal.ppat.1000304
– ident: e_1_3_4_53_2
  doi: 10.1016/j.jim.2009.06.008
– ident: e_1_3_4_67_2
  doi: 10.1084/jem.188.5.855
– ident: e_1_3_4_51_2
  doi: 10.1007/978-1-62703-788-4_7
– ident: e_1_3_4_59_2
  doi: 10.1016/j.tips.2023.05.001
– ident: e_1_3_4_65_2
  doi: 10.2174/187152609789105696
– ident: e_1_3_4_17_2
  doi: 10.1016/j.jmb.2016.08.002
– volume: 69
  start-page: 2861
  year: 2009
  end-page: 2869
  ident: B31
  article-title: The human cytomegalovirus–encoded chemokine receptor US28 promotes angiogenesis and tumor formation via cyclooxygenase-2
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-2487
– volume: 8
  year: 2020
  ident: B96
  article-title: Human cytomegalovirus infection suppresses CD34+ progenitor cell engraftment in humanized mice
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8040525
– volume: 51
  start-page: 1415
  year: 2017
  end-page: 1426
  ident: B41
  article-title: Human cytomegalovirus infection enhances cell proliferation, migration and upregulation of EMT markers in colorectal cancer-derived stem cell-like cells
  publication-title: Int J Oncol
  doi: 10.3892/ijo.2017.4135
– volume: 7
  year: 2018
  ident: B62
  article-title: Viral GPCR US28 can signal in response to chemokine agonists of nearly unlimited structural degeneracy
  publication-title: Elife
  doi: 10.7554/eLife.35850
– volume: 294
  start-page: 4079
  year: 2019
  end-page: 4090
  ident: B63
  article-title: A dynamic and screening-compatible nanoluciferase-based complementation assay enables profiling of individual GPCR-G protein interactions
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA118.006231
– volume: 8
  year: 2017
  ident: B37
  article-title: Latency-associated expression of human cytomegalovirus US28 attenuates cell signaling pathways to maintain latent infection
  publication-title: MBio
  doi: 10.1128/mBio.01754-17
– volume: 9
  start-page: 548
  year: 2009
  end-page: 556
  ident: B64
  article-title: Human cytomegalovirus US28: a functionally selective chemokine binding receptor
  publication-title: Infect Disord Drug Targets
  doi: 10.2174/187152609789105696
– volume: 28
  year: 2023
  ident: B92
  article-title: Patterns of human and porcine gammaherpesvirus-encoded BILF1 receptor endocytosis
  publication-title: Cell Mol Biol Lett
  doi: 10.1186/s11658-023-00427-y
– volume: 269
  start-page: 28539
  year: 1994
  end-page: 28542
  ident: B17
  article-title: Human cytomegalovirus open reading frame US28 encodes a functional beta chemokine receptor
  publication-title: J Biol Chem
– volume: 76
  start-page: 8161
  year: 2002
  end-page: 8168
  ident: B24
  article-title: Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities
  publication-title: J Virol
  doi: 10.1128/jvi.76.16.8161-8168.2002
– volume: 49
  start-page: 873
  year: 2005
  end-page: 883
  ident: B10
  article-title: Human cytomegalovirus resistance to antiviral drugs
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.49.3.873-883.2005
– volume: 208
  start-page: 447
  year: 2019
  end-page: 456
  ident: B26
  article-title: Emerging roles of cytomegalovirus-encoded G protein-coupled receptors during lytic and latent infection
  publication-title: Med Microbiol Immunol
  doi: 10.1007/s00430-019-00595-9
– volume: 10
  year: 2018
  ident: B18
  article-title: HCMV’s swiss army knife
  publication-title: Viruses
  doi: 10.3390/v10080445
– volume: 188
  start-page: 855
  year: 1998
  end-page: 866
  ident: B66
  article-title: Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells
  publication-title: J Exp Med
  doi: 10.1084/jem.188.5.855
– volume: 95
  year: 2021
  ident: B49
  article-title: CD34+ hematopoietic progenitor cell subsets exhibit differential ability to maintain human cytomegalovirus latency and persistence
  publication-title: J Virol
  doi: 10.1128/JVI.02105-20
– volume: 428
  start-page: 3850
  year: 2016
  end-page: 3868
  ident: B16
  article-title: Regulation, signaling and physiological functions of G-proteins
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2016.08.002
– volume: 98
  start-page: 3237
  year: 2001
  end-page: 3242
  ident: B22
  article-title: Murine cytomegalovirus M78 protein, a G protein-coupled receptor homologue, is a constituent of the virion and facilitates accumulation of immediate-early viral mRNA
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.051629898
– volume: 19
  year: 2023
  ident: B39
  article-title: Proximity-dependent mapping of the HCMV US28 interactome identifies RhoGEF signaling as a requirement for efficient viral reactivation
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1011682
– volume: 44
  start-page: 492
  year: 2023
  end-page: 494
  ident: B58
  article-title: The third intracellular loop of GPCRs: size matters
  publication-title: Trends Pharmacol Sci
  doi: 10.1016/j.tips.2023.05.001
– volume: 1838
  start-page: 231
  year: 2014
  end-page: 236
  ident: B55
  article-title: The third intracellular loop plays a critical role in bitter taste receptor activation
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamem.2013.08.009
– volume: 85
  start-page: 1604
  year: 2011
  end-page: 1614
  ident: B78
  article-title: The Epstein-Barr virus-encoded BILF1 protein modulates immune recognition of endogenously processed antigen by targeting major histocompatibility complex class I molecules trafficking on both the exocytic and endocytic pathways
  publication-title: J Virol
  doi: 10.1128/JVI.01608-10
– volume: 75
  start-page: 8660
  year: 2001
  end-page: 8673
  ident: B80
  article-title: Activation of NF-kappaB by the human herpesvirus 8 chemokine receptor ORF74: evidence for a paracrine model of Kaposi’s sarcoma pathogenesis
  publication-title: J Virol
  doi: 10.1128/jvi.75.18.8660-8673.2001
– volume: 12
  year: 2021
  ident: B70
  article-title: Selective targeting of ligand-dependent and -independent signaling by GPCR conformation-specific anti-US28 intrabodies
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-24574-y
– volume: 118
  start-page: 196
  year: 2006
  end-page: 200
  ident: B60
  article-title: The human cytomegalovirus-encoded receptor US28 increases the activity of the major immediate-early promoter/enhancer
  publication-title: Virus Res
  doi: 10.1016/j.virusres.2005.12.011
– volume: 13
  year: 2021
  ident: B9
  article-title: HCMV antivirals and strategies to target the latent reservoir
  publication-title: Viruses
  doi: 10.3390/v13050817
– volume: 9
  year: 2018
  ident: B46
  article-title: Tumor necrosis factor alpha induces reactivation of human cytomegalovirus independently of myeloid cell differentiation following posttranscriptional establishment of latency
  publication-title: MBio
  doi: 10.1128/mBio.01560-18
– volume: 2
  year: 2022
  ident: B48
  article-title: Human embryonic stem cells as a model for hematopoietic stem cell differentiation and viral infection
  publication-title: Curr Protoc
  doi: 10.1002/cpz1.622
– volume: 76
  start-page: 1744
  year: 2002
  end-page: 1752
  ident: B81
  article-title: Kaposi’s sarcoma-associated herpesvirus-encoded G protein-coupled receptor ORF74 constitutively activates p44/p42 MAPK and Akt via Gi and phospholipase C-dependent signaling pathways
  publication-title: J Virol
  doi: 10.1128/jvi.76.4.1744-1752.2002
– volume: 347
  start-page: 70
  year: 2009
  end-page: 78
  ident: B52
  article-title: ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays
  publication-title: J Immunol Methods
  doi: 10.1016/j.jim.2009.06.008
– volume: 14
  year: 2023
  ident: B83
  article-title: Therapeutic targeting of HCMV-encoded chemokine receptor US28: progress and challenges
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2023.1135280
– volume: 9
  year: 2020
  ident: B13
  article-title: Structural and functional characterization of G protein-coupled receptors with deep mutational scanning
  publication-title: Elife
  doi: 10.7554/eLife.54895
– volume: 8
  year: 2022
  ident: B38
  article-title: Cytomegalovirus US28 regulates cellular EphA2 to maintain viral latency
  publication-title: Sci Adv
  doi: 10.1126/sciadv.add1168
– volume: 86
  start-page: 8693
  year: 2012
  end-page: 8704
  ident: B82
  article-title: Kaposi’s sarcoma-associated herpesvirus ORF54/dUTPase downregulates a ligand for the NK activating receptor NKp44
  publication-title: J Virol
  doi: 10.1128/JVI.00252-12
– volume: 72
  start-page: 8158
  year: 1998
  end-page: 8165
  ident: B20
  article-title: Functional analysis of the human cytomegalovirus US28 gene by insertion mutagenesis with the green fluorescent protein gene
  publication-title: J Virol
  doi: 10.1128/JVI.72.10.8158-8165.1998
– volume: 277
  start-page: 43247
  year: 2002
  end-page: 43252
  ident: B54
  article-title: The third intracellular loop of α2-adrenergic receptors determines subtype specificity of arrestin interaction
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M207495200
– volume: 1119
  start-page: 99
  year: 2014
  end-page: 112
  ident: B50
  article-title: Hematopoietic long-term culture (hLTC) for human cytomegalovirus latency and reactivation
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-62703-788-4_7
– volume: 12
  start-page: 1737
  year: 2001
  end-page: 1749
  ident: B21
  article-title: The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.12.6.1737
– volume: 5
  start-page: 993
  year: 2006
  end-page: 996
  ident: B11
  article-title: How many drug targets are there?
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd2199
– volume: 282
  start-page: 1145
  year: 1998
  end-page: 1147
  ident: B84
  article-title: Embryonic stem cell lines derived from human blastocysts
  publication-title: Science
  doi: 10.1126/science.282.5391.1145
– volume: 8
  year: 2017
  ident: B7
  article-title: Murine cytomegalovirus spreads by dendritic cell recirculation
  publication-title: MBio
  doi: 10.1128/mBio.01264-17
– volume: 278
  start-page: 21663
  year: 2003
  end-page: 21671
  ident: B23
  article-title: G-protein-coupled receptor (GPCR) kinase phosphorylation and beta-arrestin recruitment regulate the constitutive signaling activity of the human cytomegalovirus US28 GPCR
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M303219200
– volume: 10
  year: 2020
  ident: B36
  article-title: The requirement for US28 during cytomegalovirus latency is independent of US27 and US29 gene expression
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2020.00186
– volume: 497
  start-page: 233
  year: 2016
  end-page: 243
  ident: B61
  article-title: The HCMV US28 vGPCR induces potent Gαq/PLC-β signaling in monocytes leading to increased adhesion to endothelial cells
  publication-title: Virology (Auckl)
  doi: 10.1016/j.virol.2016.07.025
– volume: 7
  year: 2012
  ident: B30
  article-title: Constitutive β-catenin signaling by the viral chemokine receptor US28
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0048935
– volume: 3
  start-page: 333
  year: 2016
  end-page: 357
  ident: B4
  article-title: Human cytomegalovirus latency: approaching the gordian knot
  publication-title: Annu Rev Virol
  doi: 10.1146/annurev-virology-110615-042422
– volume: 112
  start-page: 31
  year: 2022
  end-page: 85
  ident: B42
  article-title: The complex biology of human cytomegalovirus latency
  publication-title: Adv Virus Res
  doi: 10.1016/bs.aivir.2022.01.001
– volume: 116
  start-page: 1755
  year: 2019
  end-page: 1764
  ident: B72
  article-title: Human cytomegalovirus G protein-coupled receptor US28 promotes latency by attenuating c-fos
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1816933116
– volume: 12
  start-page: 3125
  year: 2004
  end-page: 3133
  ident: B47
  article-title: YM-254890 analogues, novel cyclic depsipeptides with Gαq/11 inhibitory activity from Chromobacterium sp. QS3666
  publication-title: Bioorg Med Chem
  doi: 10.1016/j.bmc.2004.04.006
– volume: 5
  year: 2009
  ident: B40
  article-title: Differential ligand binding to a human cytomegalovirus chemokine receptor determines cell type-specific motility
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000304
– volume: 13
  year: 2022
  ident: B5
  article-title: Latency-associated upregulation of SERBP1 is important for the recruitment of transcriptional repressors to the viral major immediate early promoter of human cytomegalovirus during latent carriage
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2022.999290
– volume: 99
  start-page: 511
  year: 1999
  end-page: 520
  ident: B27
  article-title: The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration
  publication-title: Cell
  doi: 10.1016/s0092-8674(00)81539-1
– volume: 42
  start-page: 113173
  year: 2023
  ident: B15
  article-title: Rules and mechanisms governing G protein coupling selectivity of GPCRs
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2023.113173
– volume: 277
  start-page: 1656
  year: 1997
  end-page: 1659
  ident: B28
  article-title: A broad-spectrum chemokine antagonist encoded by Kaposi’s sarcoma-associated herpesvirus
  publication-title: Science
  doi: 10.1126/science.277.5332.1656
– volume: 114
  start-page: E10586
  year: 2017
  end-page: E10595
  ident: B71
  article-title: Transcriptome-wide characterization of human cytomegalovirus in natural infection and experimental latency
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1710522114
– volume: 97
  start-page: 2031
  year: 2001
  end-page: 2037
  ident: B25
  article-title: Signal transduction pathways involved in soluble fractalkine-induced monocytic cell adhesion
  publication-title: Blood
  doi: 10.1182/blood.v97.7.2031
– volume: 615
  start-page: 734
  year: 2023
  end-page: 741
  ident: B56
  article-title: Autoregulation of GPCR signalling through the third intracellular loop
  publication-title: Nature New Biol
  doi: 10.1038/s41586-023-05789-z
– volume: 78
  start-page: 8382
  year: 2004
  end-page: 8391
  ident: B59
  article-title: Human cytomegalovirus-encoded G protein-coupled receptor US28 mediates smooth muscle cell migration through Galpha12
  publication-title: J Virol
  doi: 10.1128/JVI.78.15.8382-8391.2004
– volume: 3
  year: 2010
  ident: B34
  article-title: HCMV-encoded chemokine receptor US28 mediates proliferative signaling through the IL-6-STAT3 axis
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2001180
– year: 2023
  ident: B75
  article-title: Structural basis for constitutive activation and CXCL1 recognition of human herpesvirus 8-encoded G protein-coupled receptor KSHV-GPCR
  publication-title: bioRxiv
  doi: 10.1101/2023.12.27.573477
– volume: 19
  start-page: 759
  year: 2021
  end-page: 773
  ident: B3
  article-title: Pathogenesis of human cytomegalovirus in the immunocompromised host
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-021-00582-z
– volume: 1
  year: 2017
  ident: B43
  article-title: Modulation of the NFκb signalling pathway by human cytomegalovirus
  publication-title: Virol Hyd
– volume: 7
  year: 2017
  ident: B95
  article-title: Human cytomegalovirus induces cellular and humoral virus-specific immune responses in humanized BLT mice
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-01051-5
– volume: 90
  start-page: 2959
  year: 2015
  end-page: 2970
  ident: B19
  article-title: Human cytomegalovirus US28 is important for latent infection of hematopoietic progenitor cells
  publication-title: J Virol
  doi: 10.1128/JVI.02507-15
– volume: 177
  start-page: 1933
  year: 2019
  end-page: 1947
  ident: B69
  article-title: Illuminating G-protein-coupling selectivity of GPCRs
  publication-title: Cell
  doi: 10.1016/j.cell.2019.04.044
– volume: 30
  start-page: 249
  year: 2009
  end-page: 259
  ident: B14
  article-title: Ligand binding and micro-switches in 7TM receptor structures
  publication-title: Trends Pharmacol Sci
  doi: 10.1016/j.tips.2009.02.006
– volume: 8
  year: 2017
  ident: B87
  article-title: Human cytomegalovirus MicroRNAs miR-US5-1 and miR-UL112-3p block proinflammatory cytokine production in response to NF-κB-activating factors through direct downregulation of IKKα and IKKβ
  publication-title: MBio
  doi: 10.1128/mBio.00109-17
– volume: 22
  year: 2022
  ident: B1
  article-title: A systematic literature review of the global seroprevalence of cytomegalovirus: possible implications for treatment, screening, and vaccine development
  publication-title: BMC Public Health
  doi: 10.1186/s12889-022-13971-7
– volume: 97
  year: 2023
  ident: B94
  article-title: HCMV UL8 interaction with β-catenin and DVL2 regulates viral reactivation in CD34+ hematopoietic progenitor cells
  publication-title: J Virol
  doi: 10.1128/jvi.01241-23
– volume: 7
  year: 2012
  ident: B32
  article-title: US28 is a potent activator of phospholipase C during HCMV infection of clinically relevant target cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0050524
– volume: 1867
  start-page: 118849
  year: 2020
  ident: B93
  article-title: Barbadin selectively modulates FPR2-mediated neutrophil functions independent of receptor endocytosis
  publication-title: Biochim Biophys Acta Mol Cell Res
  doi: 10.1016/j.bbamcr.2020.118849
– year: 2021
  ident: B51
  publication-title: Human cytomegaloviruses: methods and protocols ;ed ;Springer US ;New York, NY
– volume: 272
  start-page: 4163
  year: 2005
  end-page: 4177
  ident: B65
  article-title: The human cytomegalovirus-encoded chemokine receptor US28 induces caspase-dependent apoptosis
  publication-title: FEBS J
  doi: 10.1111/j.1742-4658.2005.04829.x
– volume: 15
  year: 2023
  ident: B8
  article-title: An update on current antiviral strategies to combat human cytomegalovirus infection
  publication-title: Viruses
  doi: 10.3390/v15061358
– volume: 223
  start-page: 17
  year: 2004
  end-page: 26
  ident: B57
  article-title: Functional significance of the BBXXB motif reversed present in the cytoplasmic domains of the human follicle-stimulating hormone receptor
  publication-title: Mol Cell Endocrinol
  doi: 10.1016/j.mce.2004.06.004
– volume: 78
  start-page: 2460
  year: 2004
  end-page: 2471
  ident: B77
  article-title: Gα protein selectivity determinant specified by a viral chemokine receptor-conserved region in the C tail of the human herpesvirus 8 G protein-coupled receptor
  publication-title: J Virol
  doi: 10.1128/jvi.78.5.2460-2471.2004
– volume: 283
  start-page: 33337
  year: 2008
  end-page: 33346
  ident: B53
  article-title: The third intracellular loop stabilizes the inactive state of the neuropeptide Y1 receptor
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M804671200
– volume: 12
  year: 2021
  ident: B90
  article-title: Human cytomegalovirus miR-US25-1 targets the GTPase RhoA to inhibit CD34+ hematopoietic progenitor cell proliferation to maintain the latent viral genome
  publication-title: MBio
  doi: 10.1128/mBio.00621-21
– volume: 10
  year: 2020
  ident: B45
  article-title: Cytomegalovirus latency and reactivation: an intricate interplay with the host immune response
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2020.00130
– volume: 171
  start-page: 5313
  year: 2014
  end-page: 5329
  ident: B91
  article-title: Determination of the binding mode for the cyclopentapeptide CXCR4 antagonist FC131 using a dual approach of ligand modifications and receptor mutagenesis
  publication-title: Br J Pharmacol
  doi: 10.1111/bph.12842
– volume: 13
  year: 2023
  ident: B73
  article-title: Hematopoietic stem cells and betaherpesvirus latency
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2023.1189805
– volume: 89
  start-page: 359
  year: 2008
  end-page: 368
  ident: B85
  article-title: Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.83286-0
– volume: 9
  start-page: e00682-18
  year: 2018
  ident: B86
  article-title: Human cytomegalovirus encodes a novel FLT3 receptor ligand necessary for hematopoietic cell differentiation and viral reactivation
  publication-title: MBio
  doi: 10.1128/mBio.00682-18
– volume: 90
  start-page: 2482
  year: 1997
  end-page: 2491
  ident: B6
  article-title: Spread of human cytomegalovirus (HCMV) after infection of human hematopoietic progenitor cells: model of HCMV latency
  publication-title: Blood
– volume: 10
  start-page: e01889
  year: 2019
  end-page: 19
  ident: B35
  article-title: Human cytomegalovirus US28 ligand binding activity is required for latency in CD34+ hematopoietic progenitor cells and humanized NSG mice
  publication-title: MBio
  doi: 10.1128/mBio.01889-19
– volume: 20
  start-page: 1528
  year: 2008
  end-page: 1537
  ident: B33
  article-title: Constitutive serum response factor activation by the viral chemokine receptor homologue pUS28 is differentially regulated by Gαq/11 and Gα16
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2008.04.010
– volume: 54
  start-page: 1405
  year: 2021
  end-page: 1416
  ident: B76
  article-title: Structural basis for the constitutive activity and immunomodulatory properties of the Epstein-Barr virus-encoded G protein-coupled receptor BILF1
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.06.001
– volume: 5
  year: 2009
  ident: B79
  article-title: The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000255
– volume: 6
  year: 2021
  ident: B88
  article-title: Human cytomegalovirus UL7, miR-US5-1, and miR-UL112-3p inactivation of FOXO3a protects CD34+ hematopoietic progenitor cells from apoptosis
  publication-title: mSphere
  doi: 10.1128/mSphere.00986-20
– volume: 276
  start-page: 1133
  year: 2001
  end-page: 1137
  ident: B29
  article-title: Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M008965200
– volume: 13
  year: 2022
  ident: B74
  article-title: Advances in model systems for human cytomegalovirus latency and reactivation
  publication-title: MBio
  doi: 10.1128/mbio.01724-21
– volume: 77
  start-page: 4489
  year: 2003
  end-page: 4501
  ident: B67
  article-title: Constitutive inositol phosphate formation in cytomegalovirus-infected human fibroblasts is due to expression of the chemokine receptor homologue US28
  publication-title: J Virol
  doi: 10.1128/jvi.77.8.4489-4501.2003
– volume: 9
  year: 2021
  ident: B2
  article-title: Congenital human cytomegalovirus infection: a narrative review of maternal immune response and diagnosis in view of the development of a vaccine and prevention of primary and non-primary infections in pregnancy
  publication-title: Microorganisms
  doi: 10.3390/microorganisms9081749
– volume: 85
  start-page: 1159
  year: 2005
  end-page: 1204
  ident: B12
  article-title: Mammalian G proteins and their cell type specific functions
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00003.2005
– volume: 26
  start-page: 75
  year: 2016
  end-page: 89
  ident: B44
  article-title: Cytomegalovirus latency and reactivation: recent insights into an age old problem
  publication-title: Rev Med Virol
  doi: 10.1002/rmv.1862
– volume: 8
  start-page: 284
  year: 2010
  end-page: 291
  ident: B68
  article-title: Granulocyte-colony stimulating factor reactivates human cytomegalovirus in a latently infected humanized mouse model
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2010.08.001
– volume: 65
  year: 2021
  ident: B89
  article-title: Identification of quinolinones as antivirals against venezuelan equine encephalitis virus
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00244-21
SSID ssj0014464
Score 2.4750073
Snippet Human cytomegalovirus (HCMV) is a β-herpesvirus that infects between 44% and 100% of the world population. Primary infection is typically asymptomatic and...
The human cytomegalovirus (HCMV) encoded chemokine receptor US28 plays a critical role in viral pathogenesis, mediating several processes such as cellular...
SourceID pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage e0180124
SubjectTerms Animals
Cytomegalovirus - genetics
Cytomegalovirus - physiology
Cytomegalovirus Infections - metabolism
Cytomegalovirus Infections - virology
Humans
Mice
Mutation
Pathogenesis and Immunity
Receptors, Chemokine - chemistry
Receptors, Chemokine - genetics
Receptors, Chemokine - metabolism
Signal Transduction
Viral Proteins - chemistry
Viral Proteins - genetics
Viral Proteins - metabolism
Virology
Virus Activation
Virus Latency
Title Third intracellular loop of HCMV US28 is necessary for signaling and viral reactivation
URI https://www.ncbi.nlm.nih.gov/pubmed/39655954
https://journals.asm.org/doi/10.1128/jvi.01801-24
https://www.proquest.com/docview/3146609599
https://pubmed.ncbi.nlm.nih.gov/PMC11784217
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELZgERIviJvuAjIInlYpiePmeEQLqNwPbKFv0SSxRVA3WbVpJfj1zNjNtS3SglRFVeIc8nwez4y_GTP23PUyCHQWI3g1OFICOKnEcSXA1VmYahGkptrn52A6k-_nk3m3gm-yS-p0nP3em1fyP1LFcyhXypL9B8m2D8UT-B_li0eUMB4vKeNiSbWT6iVQAN4wShdVdW6i8yefvh3PvoqItiwvFWUDEEGOWIXE2YBFk51ILF8q7k8ZDptOTrsGK2XE9WPwdo3HhpXP1qqlarxW5R5OPl3owtsGgOr447hV-EQSWzpTKLchoS-LYlNAPyghiP_XaPMuSQB16dxOM1a3UulSMtD6ytfujtQH2a5OF5Sn8HNTjKnYmOfYnOth6ewLU1pLNDQujogSvDsxdydCXmXXBPoUxv9-96FdckK_WDal5enLmywJEb3svxunblidiaEZs-ObXKTY9myW01vs5lZ2_JVFzm12RZV32HW7_eivu-y7wQ8f4IcTfnilOeGHE354seItfjjih7f44YgfbvDD-_i5x2Zv35yeTJ3tRhsO4PxSO1ng5qHQEgIIIx1maHPn7kQJCKXOQ_yB68epCylkaH5Gyg90nPk56vLUDyR4_n12UFalesi4p2Iv13mqYjS0fRzttPGIwLYZ2oYhwIg9o-5LtqNoleyT0Ii9aDo3ObdFV_7S7mnT8wlqReopKFW1XiU-GgBUSjGOR-yBlUT7JD8O0I2e4N3RQEZtA6q4PrxSFj9M5XXPCyOJTvzhJT_wiN3oRscjdlAv1-oxGrF1-sSA7w-6aZ3h
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Third+intracellular+loop+of+HCMV+US28+is+necessary+for+signaling+and+viral+reactivation&rft.jtitle=Journal+of+virology&rft.au=Medica%2C+Samuel&rft.au=Denton%2C+Michael&rft.au=Diggins%2C+Nicole+L.&rft.au=Kramer-Hansen%2C+Olivia&rft.date=2025-01-31&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=99&rft.issue=1&rft_id=info:doi/10.1128%2Fjvi.01801-24&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_jvi_01801_24
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon