LyGo: A Platform for Rapid Screening of Lytic Polysaccharide Monooxygenase Production

Environmentally friendly sources of energy and chemicals are essential constituents of a sustainable society. An important step toward this goal is the utilization of biomass to supply building blocks for future biorefineries. Lytic polysaccharide monooxygenases (LPMOs) are enzymes that play a criti...

Full description

Saved in:
Bibliographic Details
Published inACS synthetic biology Vol. 10; no. 4; pp. 897 - 906
Main Authors Hernández-Rollán, Cristina, Falkenberg, Kristoffer B, Rennig, Maja, Bertelsen, Andreas B, Ipsen, Johan Ø, Brander, Søren, Daley, Daniel O, Johansen, Katja S, Nørholm, Morten H. H
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.04.2021
Subjects
Online AccessGet full text
ISSN2161-5063
2161-5063
DOI10.1021/acssynbio.1c00034

Cover

Loading…
Abstract Environmentally friendly sources of energy and chemicals are essential constituents of a sustainable society. An important step toward this goal is the utilization of biomass to supply building blocks for future biorefineries. Lytic polysaccharide monooxygenases (LPMOs) are enzymes that play a critical role in breaking the chemical bonds in the most abundant polymers found in recalcitrant biomass, such as cellulose and chitin. To use them in industrial processes they need to be produced in high titers in cell factories. Predicting optimal strategies for producing LPMOs is often nontrivial, and methods allowing for screening several strategies simultaneously are therefore needed. Here, we present a standardized platform for cloning LPMOs. The platform allows users to combine gene fragments with 14 different expression vectors in a simple 15 min reaction, thus enabling rapid exploration of several gene contexts, hosts, and expression strategies in parallel. The open-source LyGo platform is accompanied by easy-to-follow online protocols for both cloning and expression. As a demonstration of its utility, we explore different strategies for expressing several different LPMOs in Escherichia coli, Bacillus subtilis, and Komagataella phaffii.
AbstractList Environmentally friendly sources of energy and chemicals are essential constituents of a sustainable society. An important step toward this goal is the utilization of biomass to supply building blocks for future biorefineries. Lytic polysaccharide monooxygenases (LPMOs) are enzymes that play a critical role in breaking the chemical bonds in the most abundant polymers found in recalcitrant biomass, such as cellulose and chitin. To use them in industrial processes they need to be produced in high titers in cell factories. Predicting optimal strategies for producing LPMOs is often nontrivial, and methods allowing for screening several strategies simultaneously are therefore needed. Here, we present a standardized platform for cloning LPMOs. The platform allows users to combine gene fragments with 14 different expression vectors in a simple 15 min reaction, thus enabling rapid exploration of several gene contexts, hosts, and expression strategies in parallel. The open-source LyGo platform is accompanied by easy-to-follow online protocols for both cloning and expression. As a demonstration of its utility, we explore different strategies for expressing several different LPMOs in , , and .
Environmentally friendly sources of energy and chemicals are essential constituents of a sustainable society. An important step toward this goal is the utilization of biomass to supply building blocks for future biorefineries. Lytic polysaccharide monooxygenases (LPMOs) are enzymes that play a critical role in breaking the chemical bonds in the most abundant polymers found in recalcitrant biomass, such as cellulose and chitin. To use them in industrial processes they need to be produced in high titers in cell factories. Predicting optimal strategies for producing LPMOs is often nontrivial, and methods allowing for screening several strategies simultaneously are therefore needed. Here, we present a standardized platform for cloning LPMOs. The platform allows users to combine gene fragments with 14 different expression vectors in a simple 15 min reaction, thus enabling rapid exploration of several gene contexts, hosts, and expression strategies in parallel. The open-source LyGo platform is accompanied by easy-to-follow online protocols for both cloning and expression. As a demonstration of its utility, we explore different strategies for expressing several different LPMOs in Escherichia coli, Bacillus subtilis, and Komagataella phaffii.
Environmentally friendly sources of energy and chemicals are essential constituents of a sustainable society. An important step toward this goal is the utilization of biomass to supply building blocks for future biorefineries. Lytic polysaccharide monooxygenases (LPMOs) are enzymes that play a critical role in breaking the chemical bonds in the most abundant polymers found in recalcitrant biomass, such as cellulose and chitin. To use them in industrial processes they need to be produced in high titers in cell factories. Predicting optimal strategies for producing LPMOs is often nontrivial, and methods allowing for screening several strategies simultaneously are therefore needed. Here, we present a standardized platform for cloning LPMOs. The platform allows users to combine gene fragments with 14 different expression vectors in a simple 15 min reaction, thus enabling rapid exploration of several gene contexts, hosts, and expression strategies in parallel. The open-source LyGo platform is accompanied by easy-to-follow online protocols for both cloning and expression. As a demonstration of its utility, we explore different strategies for expressing several different LPMOs in Escherichia coli, Bacillus subtilis, and Komagataella phaffii.Environmentally friendly sources of energy and chemicals are essential constituents of a sustainable society. An important step toward this goal is the utilization of biomass to supply building blocks for future biorefineries. Lytic polysaccharide monooxygenases (LPMOs) are enzymes that play a critical role in breaking the chemical bonds in the most abundant polymers found in recalcitrant biomass, such as cellulose and chitin. To use them in industrial processes they need to be produced in high titers in cell factories. Predicting optimal strategies for producing LPMOs is often nontrivial, and methods allowing for screening several strategies simultaneously are therefore needed. Here, we present a standardized platform for cloning LPMOs. The platform allows users to combine gene fragments with 14 different expression vectors in a simple 15 min reaction, thus enabling rapid exploration of several gene contexts, hosts, and expression strategies in parallel. The open-source LyGo platform is accompanied by easy-to-follow online protocols for both cloning and expression. As a demonstration of its utility, we explore different strategies for expressing several different LPMOs in Escherichia coli, Bacillus subtilis, and Komagataella phaffii.
Author Rennig, Maja
Ipsen, Johan Ø
Bertelsen, Andreas B
Hernández-Rollán, Cristina
Johansen, Katja S
Daley, Daniel O
Falkenberg, Kristoffer B
Brander, Søren
Nørholm, Morten H. H
AuthorAffiliation The Novo Nordisk Foundation Center for Biosustainability
Center for Biomembrane Research, Department of Biochemistry and Biophysics
Mycropt ApS
Department of Geosciences and Natural Resource Management
Department of Plant and Environmental Sciences
AuthorAffiliation_xml – name: The Novo Nordisk Foundation Center for Biosustainability
– name: Department of Geosciences and Natural Resource Management
– name: Center for Biomembrane Research, Department of Biochemistry and Biophysics
– name: Department of Plant and Environmental Sciences
– name: Mycropt ApS
Author_xml – sequence: 1
  givenname: Cristina
  surname: Hernández-Rollán
  fullname: Hernández-Rollán, Cristina
  organization: The Novo Nordisk Foundation Center for Biosustainability
– sequence: 2
  givenname: Kristoffer B
  surname: Falkenberg
  fullname: Falkenberg, Kristoffer B
  organization: The Novo Nordisk Foundation Center for Biosustainability
– sequence: 3
  givenname: Maja
  surname: Rennig
  fullname: Rennig, Maja
  organization: Mycropt ApS
– sequence: 4
  givenname: Andreas B
  surname: Bertelsen
  fullname: Bertelsen, Andreas B
  organization: The Novo Nordisk Foundation Center for Biosustainability
– sequence: 5
  givenname: Johan Ø
  surname: Ipsen
  fullname: Ipsen, Johan Ø
  organization: Department of Plant and Environmental Sciences
– sequence: 6
  givenname: Søren
  surname: Brander
  fullname: Brander, Søren
  organization: Department of Geosciences and Natural Resource Management
– sequence: 7
  givenname: Daniel O
  orcidid: 0000-0002-6425-5059
  surname: Daley
  fullname: Daley, Daniel O
  organization: Center for Biomembrane Research, Department of Biochemistry and Biophysics
– sequence: 8
  givenname: Katja S
  surname: Johansen
  fullname: Johansen, Katja S
  organization: Department of Geosciences and Natural Resource Management
– sequence: 9
  givenname: Morten H. H
  orcidid: 0000-0002-7871-5191
  surname: Nørholm
  fullname: Nørholm, Morten H. H
  email: morno@biosustain.dtu.dk
  organization: Mycropt ApS
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33797234$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-196365$$DView record from Swedish Publication Index
BookMark eNp9kU1PGzEQhi0E4iPlB_RS-dgDS_0Re7O9RdACUhARLb1aXu84Ndp4gr2rdv89ixJQ1QOXmZHmeV9p5j0h-xEjEPKRs3POBP9iXc5DrAOec8cYk9M9ciy45oViWu7_Mx-R05wfR4QpJZWcHZIjKcuqFHJ6TB4WwxV-pXO6bG3nMa3pWOi93YSG_nAJIIa4oujpYuiCo0tsh2yd-21TaIDeYkT8O6wg2gx0mbDpXRcwfiAH3rYZTnd9Qh6-f_t5cV0s7q5uLuaLwspSd0XlKgDPyik4kH7GGchGWM-EhwqEms68LkEqpWuhnFCVV7piTeWZlE6IupQTcrb1zX9g09dmk8LapsGgDeYy_JobTCuTe8MrLbUa8c9bfJPwqYfcmXXIDtrWRsA-G6HYTJVaj_4T8mmH9vUamjfn18-NQLkFXMKcE3jjQmdfju-SDa3hzLzEZN5iMruYRiX_T_lq_p6m2GrGlXnEPsXxre_wz-gHp34
CitedBy_id crossref_primary_10_1007_s12195_024_00819_w
crossref_primary_10_3389_fmicb_2023_1128470
crossref_primary_10_1111_nph_17676
crossref_primary_10_3390_fermentation9080754
crossref_primary_10_3390_biom11121890
crossref_primary_10_3390_biom12020194
crossref_primary_10_1021_acssynbio_1c00130
crossref_primary_10_1038_s41587_024_02418_6
crossref_primary_10_1002_1873_3468_14092
crossref_primary_10_1038_s41467_023_39875_7
crossref_primary_10_1107_S2052252522007175
crossref_primary_10_1107_S2053230X22011335
Cites_doi 10.1007/978-1-61779-433-9_17
10.3389/fmicb.2018.01080
10.1016/j.biotechadv.2020.107583
10.1016/j.febslet.2014.07.036
10.1074/jbc.RA119.009223
10.1126/science.1192231
10.1093/protein/gzg114
10.1021/bi100009p
10.1186/s13068-019-1624-3
10.1186/s13068-017-0925-7
10.1186/1475-2859-12-24
10.1371/journal.pone.0003647
10.1186/1754-6834-5-79
10.1038/nbt1029
10.1016/0378-1119(84)90099-4
10.1128/JB.171.5.2435-2442.1989
10.1016/j.jinorgbio.2019.03.007
10.1002/pro.3451
10.2144/96212pf01
10.1007/s11274-018-2531-7
10.1073/pnas.81.15.4642
10.1186/s13068-015-0376-y
10.1186/1471-2091-11-47
10.1016/0022-2836(91)90856-2
10.1016/j.febslet.2004.12.087
10.1128/MCB.5.12.3376
10.1186/1475-2859-8-29
10.1016/j.jmb.2006.07.034
10.1186/1475-2859-12-3
10.1186/s12864-015-1624-z
10.1016/0092-8674(82)90298-7
10.1002/yea.3388
10.1186/s12934-018-0894-y
10.1186/1754-1611-7-29
10.1039/C6DT02793H
10.1186/s12934-016-0474-y
10.1073/pnas.1105776108
10.1074/jbc.M117.817130
10.1111/febs.13191
10.1080/10826068.2018.1466152
10.1002/pro.689
10.1042/BST20170549
10.1038/s41598-016-0028-x
10.1096/fasebj.2020.34.s1.05939
10.1002/cbic.201200045
10.1038/nchembio.2558
10.1074/jbc.M114.602227
10.1186/s12934-018-0901-3
10.1038/s41598-017-14329-5
10.1385/MB:16:1:23
10.1073/pnas.1402771111
10.1016/j.jbiotec.2018.10.004
10.1016/j.jmb.2008.08.016
10.1021/acssynbio.9b00062
10.1016/j.sbi.2016.12.012
10.1007/s00253-014-6116-6
10.1093/emboj/17.19.5543
10.1021/acs.inorgchem.5b00031
10.1038/srep40262
10.1002/pro.3668
10.1038/nchembio.2029
10.1186/1754-1611-2-5
10.1099/mic.0.000958
10.1016/j.carres.2017.02.003
10.1016/j.enzmictec.2016.08.014
10.1186/1475-2859-11-56
10.1186/s12934-020-01339-8
10.1186/s13568-017-0470-6
10.1016/j.gene.2013.01.062
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
ADTPV
AOWAS
DG7
DOI 10.1021/acssynbio.1c00034
DatabaseName CrossRef
PubMed
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Stockholms universitet
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2161-5063
EndPage 906
ExternalDocumentID oai_DiVA_org_su_196365
33797234
10_1021_acssynbio_1c00034
b699972000
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 53G
55A
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
ACSAX
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
GNL
IH9
JG
JG~
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ADTPV
AOWAS
DG7
EJD
ID FETCH-LOGICAL-a376t-9c9eef074ece3f810e3d2af02fe9e2548f67e3556b25c259f5690d9f033c22b73
IEDL.DBID ACS
ISSN 2161-5063
IngestDate Thu Aug 21 07:00:31 EDT 2025
Fri Jul 11 09:54:59 EDT 2025
Wed Feb 19 02:28:46 EST 2025
Tue Jul 01 02:19:36 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Tue Apr 20 10:00:20 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords expression vector
lytic polysaccharide monooxygenase
LPMO
cloning
protein production
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a376t-9c9eef074ece3f810e3d2af02fe9e2548f67e3556b25c259f5690d9f033c22b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6425-5059
0000-0002-7871-5191
PMID 33797234
PQID 2508576603
PQPubID 23479
PageCount 10
ParticipantIDs swepub_primary_oai_DiVA_org_su_196365
proquest_miscellaneous_2508576603
pubmed_primary_33797234
crossref_citationtrail_10_1021_acssynbio_1c00034
crossref_primary_10_1021_acssynbio_1c00034
acs_journals_10_1021_acssynbio_1c00034
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ABFRP
ACS
AEESW
AFEFF
ABMVS
ABUCX
ACSAX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-16
PublicationDateYYYYMMDD 2021-04-16
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS synthetic biology
PublicationTitleAlternate ACS Synth. Biol
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref3/cit3
ref27/cit27
Guiziou S. (ref45/cit45) 2016; 44
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
Dell W. B. O. (ref54/cit54) 2017; 73
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
Lobstein J. (ref22/cit22) 2012; 11
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
Popp P. F. (ref44/cit44) 2017; 7
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
Froger A. (ref15/cit15) 2007
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
Kattla J. J. (ref75/cit75) 2011; 3
ref70/cit70
ref7/cit7
References_xml – ident: ref50/cit50
  doi: 10.1007/978-1-61779-433-9_17
– volume: 44
  start-page: 7495
  issue: 15
  year: 2016
  ident: ref45/cit45
  publication-title: Nucleic Acids Res.
– ident: ref64/cit64
  doi: 10.3389/fmicb.2018.01080
– ident: ref10/cit10
  doi: 10.1016/j.biotechadv.2020.107583
– ident: ref9/cit9
  doi: 10.1016/j.febslet.2014.07.036
– ident: ref20/cit20
  doi: 10.1074/jbc.RA119.009223
– volume: 73
  start-page: 70
  issue: 2
  year: 2017
  ident: ref54/cit54
  publication-title: Acta Crystallographica Section F: Structural Biology Communications
– ident: ref1/cit1
  doi: 10.1126/science.1192231
– ident: ref30/cit30
  doi: 10.1093/protein/gzg114
– ident: ref2/cit2
  doi: 10.1021/bi100009p
– ident: ref55/cit55
  doi: 10.1186/s13068-019-1624-3
– ident: ref16/cit16
  doi: 10.1186/s13068-017-0925-7
– ident: ref71/cit71
  doi: 10.1186/1475-2859-12-24
– ident: ref12/cit12
  doi: 10.1371/journal.pone.0003647
– ident: ref53/cit53
  doi: 10.1186/1754-6834-5-79
– ident: ref61/cit61
  doi: 10.1038/nbt1029
– ident: ref41/cit41
  doi: 10.1016/0378-1119(84)90099-4
– ident: ref39/cit39
  doi: 10.1128/JB.171.5.2435-2442.1989
– ident: ref25/cit25
  doi: 10.1016/j.jinorgbio.2019.03.007
– ident: ref74/cit74
  doi: 10.1002/pro.3451
– ident: ref14/cit14
  doi: 10.2144/96212pf01
– ident: ref38/cit38
  doi: 10.1007/s11274-018-2531-7
– ident: ref73/cit73
  doi: 10.1073/pnas.81.15.4642
– ident: ref7/cit7
  doi: 10.1186/s13068-015-0376-y
– ident: ref46/cit46
  doi: 10.1186/1471-2091-11-47
– ident: ref28/cit28
  doi: 10.1016/0022-2836(91)90856-2
– ident: ref32/cit32
  doi: 10.1016/j.febslet.2004.12.087
– ident: ref58/cit58
  doi: 10.1128/MCB.5.12.3376
– volume: 3
  volume-title: Comprehensive Biotechnology
  year: 2011
  ident: ref75/cit75
– ident: ref49/cit49
  doi: 10.1186/1475-2859-8-29
– ident: ref47/cit47
  doi: 10.1016/j.jmb.2006.07.034
– ident: ref36/cit36
  doi: 10.1186/1475-2859-12-3
– ident: ref8/cit8
  doi: 10.1186/s12864-015-1624-z
– ident: ref57/cit57
  doi: 10.1016/0092-8674(82)90298-7
– ident: ref59/cit59
  doi: 10.1002/yea.3388
– ident: ref29/cit29
  doi: 10.1186/s12934-018-0894-y
– ident: ref42/cit42
  doi: 10.1186/1754-1611-7-29
– ident: ref70/cit70
  doi: 10.1039/C6DT02793H
– ident: ref35/cit35
  doi: 10.1186/s12934-016-0474-y
– ident: ref3/cit3
  doi: 10.1073/pnas.1105776108
– ident: ref23/cit23
  doi: 10.1074/jbc.M117.817130
– ident: ref43/cit43
– ident: ref69/cit69
  doi: 10.1111/febs.13191
– ident: ref60/cit60
  doi: 10.1080/10826068.2018.1466152
– ident: ref67/cit67
  doi: 10.1002/pro.689
– ident: ref37/cit37
– ident: ref66/cit66
  doi: 10.1042/BST20170549
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: ref44/cit44
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-016-0028-x
– ident: ref63/cit63
  doi: 10.1096/fasebj.2020.34.s1.05939
– ident: ref21/cit21
  doi: 10.1002/cbic.201200045
– ident: ref56/cit56
  doi: 10.1038/nchembio.2558
– ident: ref6/cit6
  doi: 10.1074/jbc.M114.602227
– ident: ref26/cit26
  doi: 10.1186/s12934-018-0901-3
– ident: ref40/cit40
  doi: 10.1038/s41598-017-14329-5
– ident: ref52/cit52
  doi: 10.1385/MB:16:1:23
– ident: ref17/cit17
  doi: 10.1073/pnas.1402771111
– ident: ref33/cit33
  doi: 10.1016/j.jbiotec.2018.10.004
– ident: ref4/cit4
  doi: 10.1016/j.jmb.2008.08.016
– ident: ref34/cit34
  doi: 10.1021/acssynbio.9b00062
– ident: ref13/cit13
  doi: 10.1016/j.sbi.2016.12.012
– ident: ref68/cit68
  doi: 10.1007/s00253-014-6116-6
– ident: ref65/cit65
  doi: 10.1093/emboj/17.19.5543
– ident: ref24/cit24
  doi: 10.1021/acs.inorgchem.5b00031
– ident: ref5/cit5
  doi: 10.1038/srep40262
– ident: ref62/cit62
  doi: 10.1002/pro.3668
– ident: ref19/cit19
  doi: 10.1038/nchembio.2029
– ident: ref48/cit48
  doi: 10.1186/1754-1611-2-5
– ident: ref51/cit51
  doi: 10.1099/mic.0.000958
– ident: ref11/cit11
  doi: 10.1016/j.carres.2017.02.003
– ident: ref18/cit18
  doi: 10.1016/j.enzmictec.2016.08.014
– volume: 11
  start-page: 56
  year: 2012
  ident: ref22/cit22
  publication-title: Microbial Cell Factories
  doi: 10.1186/1475-2859-11-56
– ident: ref31/cit31
  doi: 10.1186/s12934-020-01339-8
– start-page: 253
  issue: 6
  year: 2007
  ident: ref15/cit15
  publication-title: J.Visual. Exper.: JoVE
– ident: ref27/cit27
  doi: 10.1186/s13568-017-0470-6
– ident: ref72/cit72
  doi: 10.1016/j.gene.2013.01.062
SSID ssj0000553538
Score 2.3006856
Snippet Environmentally friendly sources of energy and chemicals are essential constituents of a sustainable society. An important step toward this goal is the...
SourceID swepub
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 897
SubjectTerms cloning
expression vector
LPMO
lytic polysaccharide monooxygenase
protein production
Title LyGo: A Platform for Rapid Screening of Lytic Polysaccharide Monooxygenase Production
URI http://dx.doi.org/10.1021/acssynbio.1c00034
https://www.ncbi.nlm.nih.gov/pubmed/33797234
https://www.proquest.com/docview/2508576603
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-196365
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKucAByntpqYxUOCBlSfxK0tuq9CFUqhVlUW-W7YylFaukItnD8usZJ9mUtqjqJZfYVuwZz3yTsb8hZM8WwoF0EMUFZ5HwVkbWmTxSIpBQgjS5CLeRv52pk5n4eiEvrni2b2bwWfLZuLpelXZejRPX0qk8IA-ZytJAlD85OB9-qMRSctlWrmaIYiKJvnedxfzfKMEbufq6N7oFMW_wh7Y-5-hpd5m7bqkKw1GTX-NlY8fuz20ix_tMZ4s86bEnnXTK8oxsQPmcPP6HkfAFmZ2ujqt9OqHThWkCnqX4oN_N5byg5y6c0cFmtPL0dIWD0Gm1WNXGhatb8wIoGogKPxV1En0jnXZksij4l2R2dPjj4CTqKy9EBg1OE-UuB_CILsAB91kSAy-Y8THzkAOGlJlXKSBSUZZJhwGUlxhkF7mPOXeM2ZS_IptlVcIbQkXGM58zyHyRCoU2zQorjExAGG6cz0fkIy6J7ndOrdukOEv0sE66X6cRidei0q7nLw9lNBZ3dfk0dLnsyDvuavx-LX-NWyzkTUwJ1bLWiBIzDMtUzEfkdacYw3Ccp6FuG_b-0GnK8Cbwdn-Z_5xolL6ulzqYOiXf3ne62-QRC8dnAq2k2iGbze8lvEP809jdVu__Av3NAfM
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELb6OFAOlFdheRQjAQekbBM_sklvqz5YYFutaLfqzbKdsbRilVQke1h-PeMkG9qCKrjkkMQj2xnPfBN7viHkncmEBWkhCDPOAuGMDIzVaRALT0IJUqfCZyOfnMajqfhyKS_XCFvlwmAnSpRU1pv4v9kFoj28Vy5zMyv6ka1ZVdbJJoIR5vnyhwdn3X-VUEou6wLWDMFMINEFrzYz_ybFOyVb3nRKfyDNWzSites53m7SAetO1ydOvvcXlenbn7f4HP9vVA_JgxaJ0mGjOo_IGuSPyf1r_IRPyHS8_FTs0yGdzHXl0S3FC_2mr2YZPbP-xA6-RgtHx0sUQifFfFlq6xO5ZhlQNBcF9hg1FD0lnTTUsqgGT8n0-Oj8YBS0dRgCjeanClKbAjjEGmCBuyQKgWdMu5A5SAEDzMTFA0DcEhsmLYZTTmLInaUu5NwyZgZ8h2zkRQ7PCRUJT1zKIHHZQMRo4YwwQssIhObaurRHPuCUqHYdlareImeR6uZJtfPUI-Hqiynbspn7ohrzu5p87JpcNVQed738dqUGChec30XRORSLUiFmTDBIi0PeI88a_ejEcT7wVdyw9ftGYbonnsX7cHYxVKgBqlwob_hi-eJfh_uG3Budn4zV-PPp15dki_mDNZ5wMn5FNqofC3iNyKgyu_VS-AURuApU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLa2IaHxwG1cytVIwANSSuJbE96qjTKgTNVGYW-W7RxLFVVSkfSh_HqOkzSCgSZ4yUMSW7ZzLt_Jsb9DyHObCwfSQRTnnEXCWxlZZ7JIiUBCCdJkIpxG_nSijufiw7k83yFqexYGB1FhT1WTxA9avcp9xzCQvMb71aawi3KYuIZZZZdcCWm7wJk_Pjzr_63EUnLZFLFmCGgiiW54m9D8Wy_BMbnqd8f0B9q8QCXauJ_JDfK1H3iz6-TbcF3boftxgdPx_2d2k1zvECkdtyJ0i-xAcZtc-4Wn8IDMp5t35Rs6prOlqQPKpXihp2a1yOmZCzt38DVaejrdYCd0Vi43lXHhQNciB4pmo8RRo6Six6SzlmIWxeEOmU_efj48jrp6DJFBM1RHmcsAPGIOcMB9msTAc2Z8zDxkgIFm6tUIEL8oy6TDsMpLDL3zzMecO8bsiN8le0VZwH1CRcpTnzFIfT4SCi2dFVYYmYAw3DifDchLXBLd6VOlm1Q5S3S_TrpbpwGJt19Nu47VPBTXWF7W5FXfZNVSelz28rOtKGhUvJBNMQWU60ojdkwxWFMxH5B7rYz03XE-CtXcsPWLVmj6J4HN-2jxZaxRCnS11sEAKvngX6f7lFydHU309P3Jx4dkn4X9NYF3Uj0ie_X3NTxGgFTbJ402_ASf5wzX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LyGo%3A+A+Platform+for+Rapid+Screening+of+Lytic+Polysaccharide+Monooxygenase+Production&rft.jtitle=ACS+synthetic+biology&rft.au=Hern%C3%A1ndez-Roll%C3%A1n%2C+Cristina&rft.au=Falkenberg%2C+Kristoffer+B&rft.au=Rennig%2C+Maja&rft.au=Bertelsen%2C+Andreas+B&rft.date=2021-04-16&rft.eissn=2161-5063&rft.volume=10&rft.issue=4&rft.spage=897&rft_id=info:doi/10.1021%2Facssynbio.1c00034&rft_id=info%3Apmid%2F33797234&rft.externalDocID=33797234
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-5063&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-5063&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-5063&client=summon