Enhancement of the Aggregation-Induced Emission by Hydrogen Bond for Visualizing Hypochlorous Acid in an Inflammation Model and a Hepatocellular Carcinoma Model
As an important reactive oxygen species, hypochlorous acid (HClO) is produced in various physiological processes. The abnormal rise of the HClO level is associated with a large number of inflammatory diseases. In this work, we develop a simple, aqueous-soluble aggregration-induced emission (AIE) pro...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 92; no. 3; pp. 2830 - 2838 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
04.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As an important reactive oxygen species, hypochlorous acid (HClO) is produced in various physiological processes. The abnormal rise of the HClO level is associated with a large number of inflammatory diseases. In this work, we develop a simple, aqueous-soluble aggregration-induced emission (AIE) probe for sensing HClO with significant aggregation-induced fluorescence (>1000 times). Two probes, CH3O–TPE–Py+–N+ (COTN) and OH–TPE–Py+–N+ (HOTN) (TPE, tetraphenylethylene), are synthesized for sensing HClO by the cleavage of the Py+–N+ group; the reaction products are CH3O–TPE–CHO (COT) and OH–TPE–CHO (HOT), respectively. The hydrophobicity of the probes is changed with the increased aggregation-induced emission. During the process, HOTN shows significantly better response than COTN. The slightly different chemical structures of COTN and HOTN result in a significant response to HClO. The theoretical calculation data support the theory that the hydrogen bond contributes to the excellent sensitivity for HClO. On the basis of the good response to HClO in vitro, HOTN is used to image inflammation and hepatocellular carcinoma in vivo because these diseases always produce high HClO levels. |
---|---|
AbstractList | As an important reactive oxygen species, hypochlorous acid (HClO) is produced in various physiological processes. The abnormal rise of the HClO level is associated with a large number of inflammatory diseases. In this work, we develop a simple, aqueous-soluble aggregration-induced emission (AIE) probe for sensing HClO with significant aggregation-induced fluorescence (>1000 times). Two probes, CH
O-TPE-Py
-N
(COTN) and OH-TPE-Py
-N
(HOTN) (TPE, tetraphenylethylene), are synthesized for sensing HClO by the cleavage of the Py
-N
group; the reaction products are CH
O-TPE-CHO (COT) and OH-TPE-CHO (HOT), respectively. The hydrophobicity of the probes is changed with the increased aggregation-induced emission. During the process, HOTN shows significantly better response than COTN. The slightly different chemical structures of COTN and HOTN result in a significant response to HClO. The theoretical calculation data support the theory that the hydrogen bond contributes to the excellent sensitivity for HClO. On the basis of the good response to HClO in vitro, HOTN is used to image inflammation and hepatocellular carcinoma in vivo because these diseases always produce high HClO levels. As an important reactive oxygen species, hypochlorous acid (HClO) is produced in various physiological processes. The abnormal rise of the HClO level is associated with a large number of inflammatory diseases. In this work, we develop a simple, aqueous-soluble aggregration-induced emission (AIE) probe for sensing HClO with significant aggregation-induced fluorescence (>1000 times). Two probes, CH3O–TPE–Py+–N+ (COTN) and OH–TPE–Py+–N+ (HOTN) (TPE, tetraphenylethylene), are synthesized for sensing HClO by the cleavage of the Py+–N+ group; the reaction products are CH3O–TPE–CHO (COT) and OH–TPE–CHO (HOT), respectively. The hydrophobicity of the probes is changed with the increased aggregation-induced emission. During the process, HOTN shows significantly better response than COTN. The slightly different chemical structures of COTN and HOTN result in a significant response to HClO. The theoretical calculation data support the theory that the hydrogen bond contributes to the excellent sensitivity for HClO. On the basis of the good response to HClO in vitro, HOTN is used to image inflammation and hepatocellular carcinoma in vivo because these diseases always produce high HClO levels. |
Author | Chen, Yuzhi Wang, Xuefei Han, Xiaomin Wang, Zhuo Ma, Yufan |
AuthorAffiliation | State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering School of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering – name: School of Chemistry and Chemical Engineering |
Author_xml | – sequence: 1 givenname: Xiaomin surname: Han fullname: Han, Xiaomin organization: State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering – sequence: 2 givenname: Yufan surname: Ma fullname: Ma, Yufan organization: State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering – sequence: 3 givenname: Yuzhi surname: Chen fullname: Chen, Yuzhi organization: State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering – sequence: 4 givenname: Xuefei surname: Wang fullname: Wang, Xuefei email: wangxf@ucas.ac.cn organization: School of Chemistry and Chemical Engineering – sequence: 5 givenname: Zhuo orcidid: 0000-0002-2858-7646 surname: Wang fullname: Wang, Zhuo email: wangzhuo77@mail.buct.edu.cn organization: State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31913021$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu2zAQRYkiQeKk-YOiINC1XD5EPZau4dYGUmTTdiuM-JAZUKRLSgvna_qpZWIny6wIDM89A8y9QRc-eI3QJ0qWlDD6FWRaggcn93pctj0RvKw_oAUVjBRV07ALtCCE8ILVhFyjm5QeCaGU0OoKXXPaUp4lC_Rv4_fgpR61n3AweNprvBqGqAeYbPDFzqtZaoU3o00pD3B_xNujimHQHn8LXmETIv5j0wzOPlk_5N9DkHsXYpgTXkmrsPUYPN5542AcX7T4Z1Da5anCgLf6AFOQ2rnZQcRriNL6MMIJ-oguDbik787vLfr9ffNrvS3uH37s1qv7AnhdTUXLm7YinLJeGNIoyQUIaVhfyYbLxkgmKRPQV2DKijRMl1RRU2vZKk4bQ2t-i76cvIcY_s46Td1jmGO-b-oYF0y0VUlFpsoTJWNIKWrTHaIdIR47SrrnWrpcS_daS3euJcc-n-VzP2r1FnrtIQPkBDzH3xa_6_wPMmagVw |
CitedBy_id | crossref_primary_10_1007_s10895_022_03094_y crossref_primary_10_1002_INMD_20230024 crossref_primary_10_1039_D3TB02759G crossref_primary_10_1016_j_ccr_2023_215407 crossref_primary_10_1186_s40824_023_00359_w crossref_primary_10_1039_D2CS00172A crossref_primary_10_1002_idm2_12130 crossref_primary_10_1039_D1TB00712B crossref_primary_10_3390_molecules25092089 crossref_primary_10_1016_j_dyepig_2023_111679 crossref_primary_10_1021_acs_analchem_2c03781 crossref_primary_10_1021_acs_analchem_4c00008 crossref_primary_10_1021_acsami_3c17723 crossref_primary_10_1016_j_snb_2023_133648 crossref_primary_10_1002_chem_202200263 crossref_primary_10_1016_j_saa_2020_119326 crossref_primary_10_1002_asia_202200091 crossref_primary_10_1016_j_dyepig_2021_109758 crossref_primary_10_1016_j_trac_2023_117252 crossref_primary_10_1016_j_saa_2023_122546 crossref_primary_10_1039_D0QM00995D crossref_primary_10_1039_D0CS01183E crossref_primary_10_1021_acs_analchem_1c04286 crossref_primary_10_1007_s10895_022_03103_0 crossref_primary_10_1039_D2TB00021K crossref_primary_10_1021_acs_analchem_1c02025 crossref_primary_10_1002_adhm_202100945 crossref_primary_10_1002_asia_202400305 crossref_primary_10_1016_j_snb_2023_134041 crossref_primary_10_12677_HJCET_2022_123029 crossref_primary_10_1016_j_dyepig_2024_112132 crossref_primary_10_1016_j_dyepig_2022_110965 crossref_primary_10_1021_acs_analchem_0c05040 crossref_primary_10_1016_j_saa_2023_123272 crossref_primary_10_1063_5_0211845 crossref_primary_10_1021_acs_analchem_1c05184 crossref_primary_10_1016_j_snb_2020_128532 crossref_primary_10_1021_acs_analchem_4c01845 crossref_primary_10_1016_j_dyepig_2023_111565 crossref_primary_10_1155_2022_8995440 crossref_primary_10_1016_j_molstruc_2024_138985 crossref_primary_10_1080_10408347_2022_2080495 crossref_primary_10_1016_j_aca_2022_340559 crossref_primary_10_1021_acs_analchem_1c04611 crossref_primary_10_1039_D3AY00820G crossref_primary_10_1002_agt2_550 crossref_primary_10_1002_adhm_202200242 |
Cites_doi | 10.1021/acs.accounts.9b00307 10.1016/j.biomaterials.2019.119280 10.1006/abio.1996.0162 10.1038/nature05877 10.1039/C8SC03226B 10.1002/adfm.201903733 10.1016/j.biomaterials.2019.119543 10.1021/ja111470n 10.1002/med.21595 10.1021/acsnano.8b09776 10.1002/advs.201800397 10.1021/jacs.7b10150 10.1021/acs.analchem.7b04885 10.1021/jacs.7b06273 10.1016/j.immuni.2019.06.025 10.1002/anie.201711188 10.1002/adma.201870214 10.1038/nri3073 10.1039/C8SC05805A 10.1016/j.canlet.2016.03.042 10.1021/acs.analchem.8b01106 10.1016/j.chempr.2017.05.010 10.1038/nrc3611 10.1021/jacs.9b06196 10.1002/adma.201800403 10.1002/smll.201902352 10.1016/j.jhep.2011.01.006 10.1021/acs.analchem.8b05116 10.1021/acs.analchem.9b03832 10.1039/C8CC01917G 10.1002/ijch.201800035 10.1126/sciadv.aat2953 10.1002/asia.201300451 10.1021/acs.analchem.8b00547 10.1002/smll.201804839 10.1016/j.trac.2017.11.015 10.1021/acsami.7b14446 10.1021/acs.analchem.8b02195 10.1002/adfm.201700493 10.1021/acs.analchem.9b00224 10.1021/jacs.6b10508 10.1021/j100884a007 10.1039/C7SC02608K 10.1021/acs.analchem.8b04726 10.1002/adfm.201901791 10.1039/C7SC04963C 10.1021/acsami.9b02228 10.1039/C7SC02888A 10.1021/acs.analchem.9b02691 10.1002/anie.201909706 10.1021/jacs.5b12848 10.1038/nchembio.85 10.1002/adfm.201901226 10.1002/adma.201801065 |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Feb 4, 2020 |
Copyright_xml | – notice: Copyright American Chemical Society Feb 4, 2020 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 |
DOI | 10.1021/acs.analchem.9b05347 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 2838 |
ExternalDocumentID | 10_1021_acs_analchem_9b05347 31913021 a834900786 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 1AW 23M 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ F20 F5P GNL IH9 IHE JG JG~ K2 P2P PQEST PQQKQ ROL RXW TAE TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 4.4 53G 6J9 AAHBH ABHFT ABHMW ABJNI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CGR CUPRZ CUY CVF ECM EIF GGK KZ1 LMP NPM XSW ZCA ~02 AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 |
ID | FETCH-LOGICAL-a376t-938960312b5f08dc35a5cf2b6c83c8fc2c125ab6af46082e41d1f7ec9d318f173 |
IEDL.DBID | ACS |
ISSN | 0003-2700 |
IngestDate | Thu Oct 10 23:04:09 EDT 2024 Fri Aug 23 03:01:19 EDT 2024 Sat Sep 28 08:33:50 EDT 2024 Thu Aug 27 22:10:49 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a376t-938960312b5f08dc35a5cf2b6c83c8fc2c125ab6af46082e41d1f7ec9d318f173 |
ORCID | 0000-0002-2858-7646 |
PMID | 31913021 |
PQID | 2352596415 |
PQPubID | 45400 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2352596415 crossref_primary_10_1021_acs_analchem_9b05347 pubmed_primary_31913021 acs_journals_10_1021_acs_analchem_9b05347 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 20200204 2020-02-04 |
PublicationDateYYYYMMDD | 2020-02-04 |
PublicationDate_xml | – month: 02 year: 2020 text: 20200204 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref24/cit24 doi: 10.1021/acs.accounts.9b00307 – ident: ref13/cit13 doi: 10.1016/j.biomaterials.2019.119280 – ident: ref53/cit53 doi: 10.1006/abio.1996.0162 – ident: ref4/cit4 doi: 10.1038/nature05877 – ident: ref22/cit22 doi: 10.1039/C8SC03226B – ident: ref39/cit39 doi: 10.1002/adfm.201903733 – ident: ref11/cit11 doi: 10.1016/j.biomaterials.2019.119543 – ident: ref5/cit5 doi: 10.1021/ja111470n – ident: ref34/cit34 doi: 10.1002/med.21595 – ident: ref45/cit45 doi: 10.1021/acsnano.8b09776 – ident: ref16/cit16 doi: 10.1002/advs.201800397 – ident: ref38/cit38 doi: 10.1021/jacs.7b10150 – ident: ref12/cit12 doi: 10.1021/acs.analchem.7b04885 – ident: ref48/cit48 doi: 10.1021/jacs.7b06273 – ident: ref9/cit9 doi: 10.1016/j.immuni.2019.06.025 – ident: ref19/cit19 doi: 10.1002/anie.201711188 – ident: ref50/cit50 doi: 10.1002/adma.201870214 – ident: ref7/cit7 doi: 10.1038/nri3073 – ident: ref29/cit29 doi: 10.1039/C8SC05805A – ident: ref10/cit10 doi: 10.1016/j.canlet.2016.03.042 – ident: ref20/cit20 doi: 10.1021/acs.analchem.8b01106 – ident: ref32/cit32 doi: 10.1016/j.chempr.2017.05.010 – ident: ref8/cit8 doi: 10.1038/nrc3611 – ident: ref30/cit30 doi: 10.1021/jacs.9b06196 – ident: ref27/cit27 doi: 10.1002/adma.201800403 – ident: ref36/cit36 doi: 10.1002/smll.201902352 – ident: ref2/cit2 doi: 10.1016/j.jhep.2011.01.006 – ident: ref21/cit21 doi: 10.1021/acs.analchem.8b05116 – ident: ref37/cit37 doi: 10.1021/acs.analchem.9b03832 – ident: ref41/cit41 doi: 10.1039/C8CC01917G – ident: ref43/cit43 doi: 10.1002/ijch.201800035 – ident: ref3/cit3 doi: 10.1126/sciadv.aat2953 – ident: ref31/cit31 doi: 10.1002/asia.201300451 – ident: ref42/cit42 doi: 10.1021/acs.analchem.8b00547 – ident: ref46/cit46 doi: 10.1002/smll.201804839 – ident: ref47/cit47 doi: 10.1016/j.trac.2017.11.015 – ident: ref40/cit40 doi: 10.1021/acsami.7b14446 – ident: ref18/cit18 doi: 10.1021/acs.analchem.8b02195 – ident: ref15/cit15 doi: 10.1002/adfm.201700493 – ident: ref14/cit14 doi: 10.1021/acs.analchem.9b00224 – ident: ref6/cit6 doi: 10.1021/jacs.6b10508 – ident: ref51/cit51 doi: 10.1021/j100884a007 – ident: ref52/cit52 doi: 10.1039/C7SC02608K – ident: ref17/cit17 doi: 10.1021/acs.analchem.8b04726 – ident: ref35/cit35 doi: 10.1002/adfm.201901791 – ident: ref49/cit49 doi: 10.1039/C7SC04963C – ident: ref33/cit33 doi: 10.1021/acsami.9b02228 – ident: ref54/cit54 doi: 10.1039/C7SC02888A – ident: ref26/cit26 doi: 10.1021/acs.analchem.9b02691 – ident: ref28/cit28 doi: 10.1002/anie.201909706 – ident: ref23/cit23 doi: 10.1021/jacs.5b12848 – ident: ref1/cit1 doi: 10.1038/nchembio.85 – ident: ref44/cit44 doi: 10.1002/adfm.201901226 – ident: ref25/cit25 doi: 10.1002/adma.201801065 |
SSID | ssj0011016 |
Score | 2.5655665 |
Snippet | As an important reactive oxygen species, hypochlorous acid (HClO) is produced in various physiological processes. The abnormal rise of the HClO level is... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2830 |
SubjectTerms | Agglomeration Animals Carcinoma, Hepatocellular - chemically induced Carcinoma, Hepatocellular - diagnostic imaging Chemistry Disease Models, Animal Emission Female Fluorescence Fluorescent Dyes - chemical synthesis Fluorescent Dyes - chemistry HeLa Cells Hepatocellular carcinoma Humans Hydrogen Bonding Hydrogen bonds Hydrophobicity Hypochlorous acid Hypochlorous Acid - analysis Inflammation - chemically induced Inflammation - diagnostic imaging Inflammatory diseases Lipopolysaccharides Liver cancer Liver Neoplasms - chemically induced Liver Neoplasms - diagnostic imaging Mice Mice, Inbred Strains Models, Molecular Molecular Structure Optical Imaging Organic chemistry Probes RAW 264.7 Cells Reaction products Reactive oxygen species |
Title | Enhancement of the Aggregation-Induced Emission by Hydrogen Bond for Visualizing Hypochlorous Acid in an Inflammation Model and a Hepatocellular Carcinoma Model |
URI | http://dx.doi.org/10.1021/acs.analchem.9b05347 https://www.ncbi.nlm.nih.gov/pubmed/31913021 https://www.proquest.com/docview/2352596415 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lc9MwENZAOQAHHuUVKMweuHBQiBTZkY-ZTDqBGeAAZXrzSCupzdDandg5tL-Gn8puHLc8pgNcZVu2tGvtt1rtfkK8HtmYQiwyqfUoSYM-SW9TkMrlaJDsJxacjfzhY744MO8Ps8MrR_H3CL5Wbx02Q0eTSmM4HRaelMZMbopbejIqmKphOvt8GTVgT7RnyOOAap8qd00vbJCw-dUgXYMyN9Zm_7741OfsdIdMvg3XrR_ixZ8lHP9xIA_EvS3whGmnKQ_FjVjtituznu9tV9z9qTThI_F9Xh2zQvDmIdQJCCfC9Iic86ONKCVTfmAMMKfHecMN_DkszsOqJoUE5ioGQsPwddlw0uYFdUlXz2o8PqlX9bqBKS4DLCtwFbyrEmlll0EJTM12Qq0BHCzIUrY1Rxb4qCzMmPWoqk9dd9NjcbA__zJbyC2bg3S0iLWyIGjElNbaZ2lkA44zl2HSPkc7RptQI2Et53OXTE64JBoVVJpELAItO0lNxk_ETlVX8ZkAr3CsM28t6mAy5awySRUW8yyLztkwEG9ossvt39iUm0C7ViU39hIotxIYCNmLvzzrCnz85f69XkeuXqC5qGyRExgaiKed3lx2RmscB4fV8__4qBfijma_nk-Hmz2x067W8SWBn9a_2mj8D5i1ApE |
link.rule.ids | 315,783,787,2774,27090,27938,27939,57072,57122 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKORQOPAqFhQI-cOHgZe2NE-e4Wm2VQtsLbdVbZI_jdkWbVJvsof01_FRmks0WkCrUq5NM_Bh7Pns88zH2eWSK4ItUC6VGQUTggnAmeCFtDBGg_YSUopEPj-LsJPp2ps82mO5jYbASNUqqWyf-XXYB-ZXKLPYtNuVqmDrUnSh5xB7rZJQQccFk-mPtPKANaU-UR37VPmLuHilkl6D-2y7dAzZbo7P3nJ2uq9veNfk5XDZuCLf_ZHJ8cHtesGcrGMonnd68ZBtFuc22pj372zZ7-keiwlfs16y8IPWgo0ReBY6okU_Ocat-3g6sIAIQKDyf4ed0_MbdDc9u_KJC9eTEXMwRG_PTeU0hnLcoEp9eV3BxWS2qZc0nMPd8XnJb8v0yoI528ZSciNousdRzyzO0m01Ffga6OMunxIFUVle2e-k1O9mbHU8zseJ2EBaXtEakCJSI4Fo5HUbGw1hbDUG5GMwYTAAFiLysi22IYkQpRSS9DEkBqcdFKMhkvMM2y6os3jLuJIyVdsaA8pGW1sgoyNRArHVhrfED9gU7O1_NzTpv3e5K5lTYj0C-GoEBE70W5Ndduo__vL_bq8rdDxSlmE1jhEYD9qZTn7UwXPHIVSzfPaBSn9hWdnx4kB_sH31_z54o2vHTvfFol202i2XxAWFR4z62k-A3xVEK-g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELagSDwOPAq0gQI-cOHgNHbWG-8xColSHhUSFFVcVvZ43Ua0u1F2c2h_DT-VmX2EglQhuHp3Z_0Yez57PPMx9npgsuCzRAulBkFE4IJwJnghbQwRoP2EhKKRPx7G86Po3bE-vkL1hZUoUVJZO_FpVi99aDMMyH0qt9i_2JzzfuJQf6LRTXZLj6Qi8oLx5PPGgUCb0o4sj3yrXdTcNVLINkH5u226BnDWhmf2gH3bVLm-b_K9v65cHy7_yOb4X216yO63cJSPG_15xG5k-Ta7M-lY4LbZvSsJCx-zH9P8lNSEjhR5ETiiRz4-wS37ST3AgohAIPN8ip_TMRx3F3x-4VcFqiknBmOOGJl_XZQUynmJIvHpsoDTs2JVrEs-hoXni5zbnB_kAXW1iavkRNh2hqWeWz5H-1kV5G-gC7R8QlxIeXFum5eesKPZ9MtkLlqOB2FxaatEgoCJiK6V02FgPAy11RCUi8EMwQRQgAjMutiGKEa0kkXSyzDKIPG4GAU5Gj5lW3mRZ7uMOwlDpZ0xoHykpTUyCjIxEGudWWt8j73Bzk7bOVqmtftdyZQKuxFI2xHoMdFpQrps0n785f29Tl1-_UBRqtkkRojUYzuNCm2E4cpHLmP57B8q9Yrd_vR2ln44OHz_nN1VtPGn6-PRHtuqVuvsBaKjyr2s58FPMxINdA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+the+Aggregation-Induced+Emission+by+Hydrogen+Bond+for+Visualizing+Hypochlorous+Acid+in+an+Inflammation+Model+and+a+Hepatocellular+Carcinoma+Model&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Han%2C+Xiaomin&rft.au=Ma%2C+Yufan&rft.au=Chen%2C+Yuzhi&rft.au=Wang%2C+Xuefei&rft.date=2020-02-04&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=92&rft.issue=3&rft.spage=2830&rft_id=info:doi/10.1021%2Facs.analchem.9b05347&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |