Surface Patterning of Two-Dimensional Nanostructure-Embedded Photothermal Hydrogels for High-Yield Solar Steam Generation

Improving evaporation rate is extremely important to promote the application of solar steam generation in clean water production through seawater desalination. However, the theoretical evaporation rate limit of a normal two-dimensional (2D) photothermal evaporator is only about 1.46 kg m–2 h–1. Whil...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 15; no. 6; pp. 10366 - 10376
Main Authors Lu, Yi, Fan, Deqi, Wang, Yida, Xu, Haolan, Lu, Chunhua, Yang, Xiaofei
Format Journal Article
LanguageEnglish
Published American Chemical Society 22.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Improving evaporation rate is extremely important to promote the application of solar steam generation in clean water production through seawater desalination. However, the theoretical evaporation rate limit of a normal two-dimensional (2D) photothermal evaporator is only about 1.46 kg m–2 h–1. While 3D evaporators can break the limit, they require much more raw materials. In this work, an effective approach for achieving high-yield solar steam generation via the synergy of 2D nanostructure-embedded all-in-one hybrid hydrogel evaporator and surface patterning is reported. This improved surface-patterned evaporator is able to simultaneously lower the enthalpy of vaporization and induce the Marangoni effect near the evaporation surface, thus delivering a high evaporation rate of 3.62 kg m–2 h–1, which is more than twice the theoretical limit of the normal 2D photothermal evaporator. This hybrid hydrogel offers a cost-effective and energy-efficient pathway to mitigate clean water shortages.
AbstractList Improving evaporation rate is extremely important to promote the application of solar steam generation in clean water production through seawater desalination. However, the theoretical evaporation rate limit of a normal two-dimensional (2D) photothermal evaporator is only about 1.46 kg m–2 h–1. While 3D evaporators can break the limit, they require much more raw materials. In this work, an effective approach for achieving high-yield solar steam generation via the synergy of 2D nanostructure-embedded all-in-one hybrid hydrogel evaporator and surface patterning is reported. This improved surface-patterned evaporator is able to simultaneously lower the enthalpy of vaporization and induce the Marangoni effect near the evaporation surface, thus delivering a high evaporation rate of 3.62 kg m–2 h–1, which is more than twice the theoretical limit of the normal 2D photothermal evaporator. This hybrid hydrogel offers a cost-effective and energy-efficient pathway to mitigate clean water shortages.
Improving evaporation rate is extremely important to promote the application of solar steam generation in clean water production through seawater desalination. However, the theoretical evaporation rate limit of a normal two-dimensional (2D) photothermal evaporator is only about 1.46 kg m-2 h-1. While 3D evaporators can break the limit, they require much more raw materials. In this work, an effective approach for achieving high-yield solar steam generation via the synergy of 2D nanostructure-embedded all-in-one hybrid hydrogel evaporator and surface patterning is reported. This improved surface-patterned evaporator is able to simultaneously lower the enthalpy of vaporization and induce the Marangoni effect near the evaporation surface, thus delivering a high evaporation rate of 3.62 kg m-2 h-1, which is more than twice the theoretical limit of the normal 2D photothermal evaporator. This hybrid hydrogel offers a cost-effective and energy-efficient pathway to mitigate clean water shortages.Improving evaporation rate is extremely important to promote the application of solar steam generation in clean water production through seawater desalination. However, the theoretical evaporation rate limit of a normal two-dimensional (2D) photothermal evaporator is only about 1.46 kg m-2 h-1. While 3D evaporators can break the limit, they require much more raw materials. In this work, an effective approach for achieving high-yield solar steam generation via the synergy of 2D nanostructure-embedded all-in-one hybrid hydrogel evaporator and surface patterning is reported. This improved surface-patterned evaporator is able to simultaneously lower the enthalpy of vaporization and induce the Marangoni effect near the evaporation surface, thus delivering a high evaporation rate of 3.62 kg m-2 h-1, which is more than twice the theoretical limit of the normal 2D photothermal evaporator. This hybrid hydrogel offers a cost-effective and energy-efficient pathway to mitigate clean water shortages.
Author Lu, Yi
Wang, Yida
Xu, Haolan
Lu, Chunhua
Yang, Xiaofei
Fan, Deqi
AuthorAffiliation Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering
Future Industries Institute
AuthorAffiliation_xml – name: Future Industries Institute
– name: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science
– name: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Yi
  surname: Lu
  fullname: Lu, Yi
  organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science
– sequence: 2
  givenname: Deqi
  surname: Fan
  fullname: Fan, Deqi
  organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science
– sequence: 3
  givenname: Yida
  surname: Wang
  fullname: Wang, Yida
  organization: Future Industries Institute
– sequence: 4
  givenname: Haolan
  orcidid: 0000-0002-9126-1593
  surname: Xu
  fullname: Xu, Haolan
  organization: Future Industries Institute
– sequence: 5
  givenname: Chunhua
  surname: Lu
  fullname: Lu, Chunhua
  organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering
– sequence: 6
  givenname: Xiaofei
  orcidid: 0000-0003-1972-4562
  surname: Yang
  fullname: Yang, Xiaofei
  email: xiaofei.yang@njfu.edu.cn
  organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science
BookMark eNp9kMFLwzAUh4MouE3PXnMUpFvSrG12lDk3YehgE_RU0vRly2iTmaTI_nvrNjwIenoP3vf78fi66NxYAwjdUNKnJKYDIb0RxvapJHGS8TPUoSOWRoSnb-c_e0IvUdf7LSEtkqUdtF82TgkJeCFCAGe0WWOr8OrTRg-6BuO1NaLCz22zD66RoXEQTeoCyhJKvNjYYMMGXN0ys33p7Boqj5V1eKbXm-hdQ1Xipa2Ew8sAosZTMOBEaFuv0IUSlYfr0-yh18fJajyL5i_Tp_H9PBIsS0M0YowOSQYChCxGGePAJS3STBLOSmBAgKccRMpVXAwTFQMntBhKlXDCFUkY66HbY-_O2Y8GfMhr7SVUlTBgG5_HyZAkMc0OaHJEpbPeO1C51OHwbHBCVzkl-bfq_KQ6P6luc4NfuZ3TtXD7fxJ3x0R7yLe2ca1k_yf9BavXllo
CitedBy_id crossref_primary_10_1016_j_desal_2023_116680
crossref_primary_10_1016_j_jcis_2022_02_075
crossref_primary_10_1002_solr_202201014
crossref_primary_10_1016_j_applthermaleng_2024_124639
crossref_primary_10_1016_j_solmat_2022_112005
crossref_primary_10_1134_S0023158424601177
crossref_primary_10_1016_j_bioadv_2023_213500
crossref_primary_10_1002_solr_202201128
crossref_primary_10_1039_D2TA05666F
crossref_primary_10_1002_adma_202212100
crossref_primary_10_1002_adfm_202205790
crossref_primary_10_1002_smll_202201770
crossref_primary_10_1016_j_seppur_2021_120278
crossref_primary_10_1016_j_carbpol_2025_123385
crossref_primary_10_1039_D1TA08886F
crossref_primary_10_1002_adfm_202214045
crossref_primary_10_1021_acsami_4c17304
crossref_primary_10_1016_j_coco_2022_101348
crossref_primary_10_1002_adsu_202100430
crossref_primary_10_1002_adfm_202409257
crossref_primary_10_1016_j_cej_2022_135757
crossref_primary_10_1016_j_jclepro_2022_134683
crossref_primary_10_1109_LPT_2023_3330259
crossref_primary_10_1002_adfm_202306806
crossref_primary_10_1016_j_jclepro_2023_139956
crossref_primary_10_26599_NRE_2023_9120062
crossref_primary_10_1002_slct_202404061
crossref_primary_10_1016_j_desal_2022_116287
crossref_primary_10_1016_j_susmat_2022_e00500
crossref_primary_10_1002_adfm_202110636
crossref_primary_10_1002_ente_202101020
crossref_primary_10_1016_j_seppur_2022_120534
crossref_primary_10_1007_s10971_023_06128_4
crossref_primary_10_1016_j_ccr_2024_216017
crossref_primary_10_1016_j_seppur_2022_122741
crossref_primary_10_1021_acs_langmuir_4c00570
crossref_primary_10_1002_adfm_202209262
crossref_primary_10_1039_D2EN00103A
crossref_primary_10_1016_j_jcis_2023_05_105
crossref_primary_10_1016_j_mser_2023_100735
crossref_primary_10_1016_j_matt_2024_04_026
crossref_primary_10_1016_j_jcis_2022_12_016
crossref_primary_10_1021_acsapm_3c01202
crossref_primary_10_1016_j_mattod_2024_08_026
crossref_primary_10_1021_acsami_2c11399
crossref_primary_10_1007_s40820_025_01661_z
crossref_primary_10_1002_adfm_202208965
crossref_primary_10_1016_j_applthermaleng_2023_120770
crossref_primary_10_1063_5_0144886
crossref_primary_10_1002_sstr_202300008
crossref_primary_10_1021_acsapm_3c03066
crossref_primary_10_1002_sus2_231
crossref_primary_10_1016_j_cej_2023_146566
crossref_primary_10_1016_j_desal_2023_116572
crossref_primary_10_1002_adfm_202214828
crossref_primary_10_1002_solr_202100888
crossref_primary_10_1002_adfm_202415394
crossref_primary_10_1016_j_watres_2024_121707
crossref_primary_10_1016_j_nxmate_2024_100432
crossref_primary_10_1021_acs_est_3c09703
crossref_primary_10_1016_j_cej_2023_142409
crossref_primary_10_1016_j_cej_2021_134144
crossref_primary_10_1002_smll_202107156
crossref_primary_10_1016_j_cej_2024_149690
crossref_primary_10_1016_j_cej_2024_158715
crossref_primary_10_1016_j_cej_2024_157988
crossref_primary_10_1016_j_scib_2024_09_015
crossref_primary_10_1016_j_cej_2021_132765
crossref_primary_10_1021_acs_iecr_2c03170
crossref_primary_10_1016_j_cej_2023_146200
crossref_primary_10_1016_j_desal_2024_118488
crossref_primary_10_1002_admt_202401110
crossref_primary_10_1016_j_jhazmat_2021_127128
crossref_primary_10_1002_ange_202318628
crossref_primary_10_1021_accountsmr_4c00404
crossref_primary_10_1016_j_desal_2024_117292
crossref_primary_10_1021_acs_energyfuels_3c01887
crossref_primary_10_1021_acsaem_4c03384
crossref_primary_10_3390_polym15112449
crossref_primary_10_3390_polym15092108
crossref_primary_10_1016_j_cej_2022_138257
crossref_primary_10_1002_solr_202100917
crossref_primary_10_1038_s41586_023_06509_3
crossref_primary_10_1016_j_cej_2023_143281
crossref_primary_10_1016_j_mattod_2025_01_011
crossref_primary_10_1002_adfm_202503234
crossref_primary_10_1002_adhm_202101808
crossref_primary_10_1039_D2TA01264B
crossref_primary_10_1039_D3TA00032J
crossref_primary_10_1016_j_desal_2024_118155
crossref_primary_10_1016_j_cej_2023_145338
crossref_primary_10_1021_acsami_1c11802
crossref_primary_10_1002_eem2_12376
crossref_primary_10_1016_j_surfin_2024_105632
crossref_primary_10_1021_acs_est_3c02454
crossref_primary_10_1016_j_cej_2023_147519
crossref_primary_10_1126_sciadv_adk1113
crossref_primary_10_1016_j_cej_2023_142508
crossref_primary_10_1002_adfm_202215061
crossref_primary_10_1016_j_mtener_2023_101330
crossref_primary_10_1016_j_cej_2024_155423
crossref_primary_10_1016_j_scib_2021_09_018
crossref_primary_10_1002_adfm_202307533
crossref_primary_10_1002_adfm_202310942
crossref_primary_10_1021_acs_langmuir_1c03102
crossref_primary_10_1016_j_desal_2024_117613
crossref_primary_10_1021_acsestengg_4c00652
crossref_primary_10_1007_s10853_021_06420_0
crossref_primary_10_1016_j_scib_2022_07_004
crossref_primary_10_1016_j_desal_2024_117972
crossref_primary_10_1016_j_nanoen_2024_109434
crossref_primary_10_1002_adma_202402527
crossref_primary_10_1016_j_desal_2022_116060
crossref_primary_10_1016_j_seppur_2022_121335
crossref_primary_10_1021_acsaelm_2c00765
crossref_primary_10_1016_j_cej_2023_141763
crossref_primary_10_1002_smll_202303908
crossref_primary_10_1021_acsami_1c20769
crossref_primary_10_1016_j_jallcom_2023_169832
crossref_primary_10_1016_j_coco_2022_101438
crossref_primary_10_1016_j_surfin_2023_103509
crossref_primary_10_1016_j_polymer_2022_125177
crossref_primary_10_1016_j_solmat_2025_113406
crossref_primary_10_1016_j_cej_2022_135444
crossref_primary_10_1039_D4TA05074F
crossref_primary_10_1016_j_desal_2024_117506
crossref_primary_10_1016_j_cej_2021_132335
crossref_primary_10_1016_j_nanoen_2024_109307
crossref_primary_10_1002_adfm_202304936
crossref_primary_10_1016_j_jmst_2024_09_044
crossref_primary_10_1016_j_desal_2024_118173
crossref_primary_10_1021_acsaem_3c02894
crossref_primary_10_1002_adma_202406666
crossref_primary_10_1002_adma_202313090
crossref_primary_10_1016_j_cej_2023_141511
crossref_primary_10_1002_anie_202318628
crossref_primary_10_1016_j_cej_2024_158234
crossref_primary_10_3389_fbioe_2022_1066617
crossref_primary_10_1016_j_coco_2023_101746
crossref_primary_10_1039_D3CS00500C
crossref_primary_10_1007_s11706_024_0701_0
crossref_primary_10_1002_adma_202414045
crossref_primary_10_1021_acsami_3c18661
crossref_primary_10_1016_j_cej_2024_156859
crossref_primary_10_1016_j_seppur_2023_124456
crossref_primary_10_1016_j_cej_2023_145422
crossref_primary_10_1002_smll_202204898
crossref_primary_10_1021_acs_macromol_2c00092
crossref_primary_10_1039_D4TA00038B
crossref_primary_10_1016_j_seppur_2022_122684
crossref_primary_10_1016_j_cej_2023_141622
crossref_primary_10_1016_j_jcis_2024_04_081
crossref_primary_10_1021_acsenergylett_5c00038
crossref_primary_10_1016_j_cej_2025_160946
crossref_primary_10_1021_acsami_1c22215
crossref_primary_10_1016_j_seppur_2023_123490
crossref_primary_10_1002_adfm_202111794
crossref_primary_10_1002_smll_202302526
crossref_primary_10_1002_smll_202402482
crossref_primary_10_1002_aenm_202200087
crossref_primary_10_1039_D3NR06146A
crossref_primary_10_1088_1361_6463_ac79d9
crossref_primary_10_1016_j_desal_2023_116399
crossref_primary_10_1016_j_seppur_2023_124588
crossref_primary_10_1016_j_seppur_2024_127216
crossref_primary_10_1016_j_chemosphere_2022_137163
crossref_primary_10_1111_jfpe_14197
crossref_primary_10_1021_acs_chemrev_2c00048
crossref_primary_10_1021_acs_chemrev_3c00159
crossref_primary_10_1002_eom2_12144
crossref_primary_10_1007_s10853_023_09029_7
crossref_primary_10_1016_j_cej_2023_147158
crossref_primary_10_1002_advs_202204187
crossref_primary_10_1007_s12274_023_5488_2
crossref_primary_10_26599_NRE_2022_9120014
crossref_primary_10_1002_adma_202207262
crossref_primary_10_1016_j_jiec_2024_06_037
crossref_primary_10_1002_eom2_12147
crossref_primary_10_1002_smll_202403221
crossref_primary_10_1016_j_carbpol_2025_123302
crossref_primary_10_1016_j_cej_2022_140704
crossref_primary_10_3390_catal13030514
crossref_primary_10_1039_D1TA07498A
crossref_primary_10_1016_j_chemosphere_2022_137732
crossref_primary_10_1016_j_seppur_2024_128776
crossref_primary_10_1002_solr_202200202
crossref_primary_10_1021_acsami_2c12750
crossref_primary_10_1016_j_desal_2023_116707
crossref_primary_10_1007_s42765_024_00504_7
crossref_primary_10_1007_s40820_021_00748_7
crossref_primary_10_1016_j_cej_2025_160398
crossref_primary_10_1016_j_desal_2024_117416
crossref_primary_10_1007_s12274_023_5852_2
crossref_primary_10_1021_acsnano_4c16998
crossref_primary_10_1016_j_desal_2023_117034
crossref_primary_10_1002_adfm_202309470
crossref_primary_10_1021_acs_inorgchem_2c04000
crossref_primary_10_1002_smll_202407280
crossref_primary_10_1002_smll_202304483
crossref_primary_10_1016_j_seppur_2025_131660
crossref_primary_10_1016_j_jcis_2022_06_145
crossref_primary_10_1021_acsnano_1c10836
crossref_primary_10_1002_adsu_202400330
crossref_primary_10_1002_pol_20210688
crossref_primary_10_1021_acsami_3c11841
crossref_primary_10_1002_adfm_202302038
crossref_primary_10_1007_s10853_022_08055_1
crossref_primary_10_1016_j_cej_2024_156826
crossref_primary_10_1002_aenm_202302451
crossref_primary_10_1016_j_apcatb_2021_120820
crossref_primary_10_1007_s12598_021_01936_5
crossref_primary_10_1016_j_cej_2023_145752
crossref_primary_10_1039_D3EN00829K
crossref_primary_10_1016_j_cej_2023_141395
crossref_primary_10_1039_D1MA00894C
crossref_primary_10_1021_acsanm_4c03572
crossref_primary_10_1002_eem2_12353
crossref_primary_10_1016_j_seppur_2023_123729
crossref_primary_10_1016_j_coco_2021_100936
crossref_primary_10_1039_D3RE00205E
crossref_primary_10_1002_solr_202301015
crossref_primary_10_1021_acsami_2c08561
crossref_primary_10_3390_polym15122742
crossref_primary_10_1016_j_susmat_2024_e00925
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124506
crossref_primary_10_1002_adfm_202410729
crossref_primary_10_1007_s11356_024_33420_9
crossref_primary_10_1016_j_cej_2025_159471
crossref_primary_10_1016_j_jcis_2023_06_205
crossref_primary_10_1021_acsami_1c11636
crossref_primary_10_1002_smll_202312241
crossref_primary_10_1007_s12598_023_02430_w
crossref_primary_10_3390_gels10060371
crossref_primary_10_1016_j_mtcomm_2025_112086
crossref_primary_10_1007_s12598_022_01966_7
crossref_primary_10_1002_solr_202200483
crossref_primary_10_1039_D2TA08275F
crossref_primary_10_1007_s12274_023_6192_y
crossref_primary_10_1016_j_desal_2022_115943
crossref_primary_10_1016_j_desal_2023_116999
crossref_primary_10_1016_j_jcis_2023_07_014
crossref_primary_10_1016_j_colsurfa_2024_134027
crossref_primary_10_1021_acsami_4c13013
crossref_primary_10_1016_j_nanoen_2022_108115
crossref_primary_10_29026_oea_2023_220061
crossref_primary_10_1016_j_cej_2025_160220
crossref_primary_10_1021_acsanm_1c03112
crossref_primary_10_1016_j_nanoen_2023_108631
crossref_primary_10_1134_S1062873824709991
crossref_primary_10_1016_j_cej_2023_144761
crossref_primary_10_1002_adfm_202106978
crossref_primary_10_1016_j_jcis_2022_03_086
crossref_primary_10_1016_j_cej_2023_145976
crossref_primary_10_1039_D1TA09288J
crossref_primary_10_1016_j_desal_2024_117581
crossref_primary_10_1016_j_jece_2022_107690
crossref_primary_10_1016_j_greenca_2025_02_001
crossref_primary_10_1021_acsami_2c01757
crossref_primary_10_1021_acsami_4c23062
crossref_primary_10_1002_aenm_202204014
crossref_primary_10_1021_acsnano_2c06065
crossref_primary_10_1016_j_seppur_2023_123181
crossref_primary_10_1016_j_seppur_2024_127086
crossref_primary_10_1016_j_solener_2024_112507
crossref_primary_10_1016_j_cej_2025_160358
crossref_primary_10_1021_acsami_2c10530
crossref_primary_10_1016_j_nanoen_2022_107016
crossref_primary_10_1016_j_susmat_2024_e00941
crossref_primary_10_1016_j_mtcomm_2024_109992
crossref_primary_10_1021_acsenergylett_3c02218
crossref_primary_10_1002_smll_202400569
crossref_primary_10_1002_adfm_202503186
crossref_primary_10_1002_smll_202300915
crossref_primary_10_1039_D5MH00018A
crossref_primary_10_1016_j_carbpol_2024_122304
crossref_primary_10_1016_j_cej_2023_145605
crossref_primary_10_1002_adfm_202302351
crossref_primary_10_1016_j_cej_2024_152303
crossref_primary_10_1016_j_seppur_2024_128849
crossref_primary_10_3390_ma16041628
crossref_primary_10_1016_j_nantod_2023_102130
crossref_primary_10_1016_j_desal_2023_117064
crossref_primary_10_1039_D2TA08317E
crossref_primary_10_1016_j_eng_2023_03_015
crossref_primary_10_1016_j_gerr_2023_100011
crossref_primary_10_1039_D4MH00591K
crossref_primary_10_1016_j_desal_2023_117181
crossref_primary_10_1002_app_56068
crossref_primary_10_1021_acs_langmuir_2c01648
crossref_primary_10_1039_D2NR00525E
crossref_primary_10_1021_acs_nanolett_4c02742
crossref_primary_10_1039_D1TA06255G
crossref_primary_10_1016_j_watres_2023_120514
crossref_primary_10_1039_D2NR05159A
crossref_primary_10_1002_eom2_12168
crossref_primary_10_1016_j_cej_2024_156450
crossref_primary_10_1016_j_jcis_2021_10_035
crossref_primary_10_1021_acs_langmuir_3c00427
crossref_primary_10_1002_smll_202405587
crossref_primary_10_1016_j_cej_2025_159221
crossref_primary_10_1016_j_jclepro_2024_143960
crossref_primary_10_1002_adsu_202100263
crossref_primary_10_1016_j_carbon_2022_11_035
crossref_primary_10_1039_D1TA04991G
crossref_primary_10_1038_s43246_023_00398_9
crossref_primary_10_1039_D3CC00273J
crossref_primary_10_1002_cssc_202300644
crossref_primary_10_1016_j_desal_2023_116405
crossref_primary_10_1016_j_desal_2025_118627
crossref_primary_10_1002_ente_202301393
crossref_primary_10_1016_j_desal_2023_116886
Cites_doi 10.1016/j.joule.2020.02.014
10.1126/sciadv.aaw5484
10.1002/adma.202007012
10.1103/PhysRevE.98.052804
10.1016/j.scib.2019.08.022
10.1016/j.nanoen.2020.105477
10.1021/acsami.0c06836
10.1016/j.nanoen.2020.105682
10.1039/C9TA00212J
10.1103/PhysRevE.48.1051
10.1039/C9TA00176J
10.1103/PhysRevE.88.052314
10.1038/nnano.2016.300
10.1039/D0EE00399A
10.1016/j.apcatb.2021.120285
10.1002/adfm.202000712
10.1016/j.ijhydene.2020.09.243
10.1063/1.2789402
10.1007/s12274-020-2970-y
10.1021/acsnano.9b10066
10.1002/adma.202001544
10.1021/nn203844z
10.1063/1.865597
10.1021/acs.accounts.6b00617
10.1002/adfm.202004460
10.1016/j.surfrep.2018.09.001
10.1021/acsnano.8b06136
10.1080/07373930903221747
10.1021/acs.chemrev.0c00345
10.1038/s41467-020-14366-1
10.1002/adma.201604031
10.1063/1.869182
10.1002/adfm.202007110
10.1039/C8EE00567B
10.1038/s41578-020-0182-4
10.1016/j.scib.2020.04.036
10.1002/adfm.202007648
10.1007/s00231-020-02872-3
10.1038/s41565-018-0097-z
10.1002/adma.201808249
10.1021/acs.jpcc.0c01039
10.1021/acsami.0c00606
10.1016/j.nanoen.2020.105269
10.1038/s41467-020-15991-6
10.1021/acs.nanolett.9b00252
10.1002/aenm.201901687
10.1039/C8EE01146J
10.1021/acsnano.9b02301
10.1021/acsnano.6b08415
10.1002/solr.202000232
10.1002/adfm.201903255
10.1016/j.colsurfa.2017.01.048
10.1021/acs.chemmater.9b02115
10.1016/j.joule.2018.12.023
10.1002/adma.202004401
10.1038/s41560-018-0260-7
10.1021/acs.accounts.9b00455
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acsnano.1c02578
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 10376
ExternalDocumentID 10_1021_acsnano_1c02578
c918299172
GroupedDBID -
.K2
23M
3RI
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GGK
GNL
IH9
IHE
JG
JG~
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
BAANH
CITATION
CUPRZ
7X8
ID FETCH-LOGICAL-a376t-9331407eaeacb9738e8c1b67c083de3e0e868ea68f2b45f2e801b4cf5808f0533
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Jul 10 18:59:15 EDT 2025
Tue Jul 01 03:37:12 EDT 2025
Thu Apr 24 22:59:43 EDT 2025
Thu Jun 24 03:11:19 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords hybrid hydrogels
graphene
surface patterning
MXene
solar steam generation
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a376t-9331407eaeacb9738e8c1b67c083de3e0e868ea68f2b45f2e801b4cf5808f0533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9126-1593
0000-0003-1972-4562
PQID 2540521753
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2540521753
crossref_citationtrail_10_1021_acsnano_1c02578
crossref_primary_10_1021_acsnano_1c02578
acs_journals_10_1021_acsnano_1c02578
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
3RI
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-22
PublicationDateYYYYMMDD 2021-06-22
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-22
  day: 22
PublicationDecade 2020
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
Parparita E. (ref39/cit39) 2012; 9
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref14/cit14
  doi: 10.1016/j.joule.2020.02.014
– ident: ref35/cit35
  doi: 10.1126/sciadv.aaw5484
– ident: ref23/cit23
  doi: 10.1002/adma.202007012
– ident: ref25/cit25
  doi: 10.1103/PhysRevE.98.052804
– ident: ref6/cit6
  doi: 10.1016/j.scib.2019.08.022
– volume: 9
  start-page: 571
  year: 2012
  ident: ref39/cit39
  publication-title: Cell Chem. Technol.
– ident: ref50/cit50
  doi: 10.1016/j.nanoen.2020.105477
– ident: ref59/cit59
  doi: 10.1021/acsami.0c06836
– ident: ref16/cit16
  doi: 10.1016/j.nanoen.2020.105682
– ident: ref30/cit30
  doi: 10.1039/C9TA00212J
– ident: ref54/cit54
  doi: 10.1103/PhysRevE.48.1051
– ident: ref40/cit40
  doi: 10.1039/C9TA00176J
– ident: ref58/cit58
  doi: 10.1103/PhysRevE.88.052314
– ident: ref5/cit5
  doi: 10.1038/nnano.2016.300
– ident: ref22/cit22
  doi: 10.1039/D0EE00399A
– ident: ref60/cit60
  doi: 10.1016/j.apcatb.2021.120285
– ident: ref26/cit26
  doi: 10.1002/adfm.202000712
– ident: ref44/cit44
  doi: 10.1016/j.ijhydene.2020.09.243
– ident: ref51/cit51
  doi: 10.1063/1.2789402
– ident: ref47/cit47
  doi: 10.1007/s12274-020-2970-y
– ident: ref42/cit42
  doi: 10.1021/acsnano.9b10066
– ident: ref15/cit15
  doi: 10.1002/adma.202001544
– ident: ref48/cit48
  doi: 10.1021/nn203844z
– ident: ref52/cit52
  doi: 10.1063/1.865597
– ident: ref32/cit32
  doi: 10.1021/acs.accounts.6b00617
– ident: ref4/cit4
  doi: 10.1002/adfm.202004460
– ident: ref33/cit33
  doi: 10.1016/j.surfrep.2018.09.001
– ident: ref28/cit28
  doi: 10.1021/acsnano.8b06136
– ident: ref57/cit57
  doi: 10.1080/07373930903221747
– ident: ref18/cit18
  doi: 10.1021/acs.chemrev.0c00345
– ident: ref7/cit7
  doi: 10.1038/s41467-020-14366-1
– ident: ref21/cit21
  doi: 10.1002/adma.201604031
– ident: ref56/cit56
  doi: 10.1063/1.869182
– ident: ref13/cit13
  doi: 10.1002/adfm.202007110
– ident: ref17/cit17
  doi: 10.1039/C8EE00567B
– ident: ref24/cit24
  doi: 10.1038/s41578-020-0182-4
– ident: ref31/cit31
  doi: 10.1016/j.scib.2020.04.036
– ident: ref12/cit12
  doi: 10.1002/adfm.202007648
– ident: ref55/cit55
  doi: 10.1007/s00231-020-02872-3
– ident: ref19/cit19
  doi: 10.1038/s41565-018-0097-z
– ident: ref10/cit10
  doi: 10.1002/adma.201808249
– ident: ref34/cit34
  doi: 10.1021/acs.jpcc.0c01039
– ident: ref45/cit45
  doi: 10.1021/acsami.0c00606
– ident: ref49/cit49
  doi: 10.1016/j.nanoen.2020.105269
– ident: ref27/cit27
  doi: 10.1038/s41467-020-15991-6
– ident: ref37/cit37
  doi: 10.1021/acs.nanolett.9b00252
– ident: ref29/cit29
  doi: 10.1002/aenm.201901687
– ident: ref3/cit3
  doi: 10.1039/C8EE01146J
– ident: ref36/cit36
  doi: 10.1021/acsnano.9b02301
– ident: ref41/cit41
  doi: 10.1021/acsnano.6b08415
– ident: ref9/cit9
  doi: 10.1002/solr.202000232
– ident: ref38/cit38
  doi: 10.1021/acsnano.8b06136
– ident: ref8/cit8
  doi: 10.1002/adfm.201903255
– ident: ref53/cit53
  doi: 10.1016/j.colsurfa.2017.01.048
– ident: ref43/cit43
  doi: 10.1021/acs.chemmater.9b02115
– ident: ref1/cit1
  doi: 10.1016/j.joule.2018.12.023
– ident: ref11/cit11
  doi: 10.1002/adma.202004401
– ident: ref46/cit46
  doi: 10.1038/s41565-018-0097-z
– ident: ref2/cit2
  doi: 10.1038/s41560-018-0260-7
– ident: ref20/cit20
  doi: 10.1021/acs.accounts.9b00455
SSID ssj0057876
Score 2.7035382
Snippet Improving evaporation rate is extremely important to promote the application of solar steam generation in clean water production through seawater desalination....
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10366
Title Surface Patterning of Two-Dimensional Nanostructure-Embedded Photothermal Hydrogels for High-Yield Solar Steam Generation
URI http://dx.doi.org/10.1021/acsnano.1c02578
https://www.proquest.com/docview/2540521753
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1ZS8QwEICDx4s-eIs3EXzwJWubXumjeLAIirAK-lRyTBV0W9nuIvrrnWm7noi-JyUkkzk6k28Y23NWe8bTRjjfYYASJLnQiQVhgDrAgTSu7g14fhF3r8Ozm-jmAxb9PYMv_QNtq0IXZce3HonXJJuWsUoozjo86o2VLsld3CSQMUBGL-Kd4vPjA2SGbPXVDH3VwrVpOZ1virKqmkhIFSUPndHQdOzrT17j36teYHOtg8kPG4lYZBNQLLHZT9jBZfbSGw1ybYFf1nBN-jPCy5xfPZfimGD_DaiDo-ItG7zsaADipG8AlZTjl_flsH621ccx3Rc3KO_QvnJ0fjkVjYhbqonjPQqZOVUL93mDtiYJWGHXpydXR13RtmAQGjXPUKRBgBFYAhr1s0mTQIGyvokTi56bgwA8ULECHatcmjDKJaDBM6HNI-WpnJ75rrKpoixgjXFPWowNdWSN1qF1YapUGrmUgIWx1FG0zvZw07L2ClVZnR2XftbuZNbu5DrrjA8usy3GnLppPP4-Yf99wlND8Ph96O5YEjK8ZZQ60QWUoyqT5NhKoppu_G-Zm2xGUvWLFwspt9gUnhZso_syNDu14L4BHkzt5Q
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOPFvRB9RIPXDxNnFezrEqrRb6UNFupXKK_Ji0EmxSbXaFyq9nJskuFFQJrpFtjezxzDeZ8TcAu96ZwAbGSh96ClCirJQmcygtcgc4VNa3vQFPz9LhRfzpMrlcgWDxFoaEaGilpk3i_2IXCPfoW2WqehC6gLXsATwkKKI43No_GC1sL6tf2uWRKU4mMLEk8_lrAfZGrrnrje4a49bDHD2Dz0vZ2sKSr4P5zA7cjz9oG_9H-OfwtIebYr_TjxewgtVLePIbCeEruB3Np6VxKM5bqk3-TyLqUoy_1_IDU_93tB2CzHDdkc3OpygPJxbJZHlxfl3P2kdcExozvPXT-oq8rSAoLLiERH7hCjkx4gBacO3wRHRE16wPa3BxdDg-GMq-IYM0ZIdmMo8iiscyNGStbZ5FGrULbZo5wnEeIwxQpxpNqktl46RUSO7Pxq5MdKBLfvS7DqtVXeFrEIFyFCmaxFljYufjXOs88TnTF6bKJMkG7NKmFf2Faoo2V67Cot_Jot_JDRgszq9wPak599b4dv-E98sJNx2fx_1D3y0UoqA7x4kUU2E9bwrFMFcxx-nmv4m5A4-G49OT4uTj2fEWPFZcFxOkUqltWKWTwzcEbGb2bavLPwHzTvZG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT9tAEF4VkKr2oRwtgrbQReKBl03t9bV-RECUlkORQiR4svYYgwSxUZyogl_PjO1EUIQEr9buao85PTPfMLbrrPaMp41wvkMHJUhyoRMLwgB1gANpXN0b8PQs7g3DvxfRRVsURrUwuIkKV6rqID5x9Z3LW4QB_zd-L3RRdnzrEaUtsCUK2pHLtX8wmMlfIsG4iSWjr4wGxRzQ58UCpJFs9VwjPRfItZbpLrPhfH91cslNZzoxHfvwH3Tjew-wwr60Ziffb-hklX2AYo19fgJG-JXdD6bjXFvg_Rpyk_6X8DLn5_9KcUgtABr4Do7iuGxAZ6djEEcjAyi6HO9fl5O6mGuEY3r3blxeodblaBJzSiURl5QpxwfkSHPKIR7xBvCa6OIbG3aPzg96om3MIDTKo4lIgwD9sgQ0Sm2TJoECZX0TJxbtOQcBeKBiBTpWuTRhlEtANWhCm0fKUzkV_66zxaIsYINxT1r0GHVkjdahdWGqVBq5lGAMY6mjaJPt4qVlLWNVWR0zl37W3mTW3uQm68zeMLMtuDn12Lh9fcLefMJdg-vx-tCdGVFkyHsUUNEFlNMqk2TuSsI6_f62bf5iH_uH3ezkz9nxD_ZJUnqMFwspf7JFfDjYQvtmYrZrcn4E4xP4yQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Patterning+of+Two-Dimensional+Nanostructure-Embedded+Photothermal+Hydrogels+for+High-Yield+Solar+Steam+Generation&rft.jtitle=ACS+nano&rft.au=Lu%2C+Yi&rft.au=Fan%2C+Deqi&rft.au=Wang%2C+Yida&rft.au=Xu%2C+Haolan&rft.date=2021-06-22&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=15&rft.issue=6&rft.spage=10366&rft_id=info:doi/10.1021%2Facsnano.1c02578&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon