Surface Patterning of Two-Dimensional Nanostructure-Embedded Photothermal Hydrogels for High-Yield Solar Steam Generation
Improving evaporation rate is extremely important to promote the application of solar steam generation in clean water production through seawater desalination. However, the theoretical evaporation rate limit of a normal two-dimensional (2D) photothermal evaporator is only about 1.46 kg m–2 h–1. Whil...
Saved in:
Published in | ACS nano Vol. 15; no. 6; pp. 10366 - 10376 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
22.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Improving evaporation rate is extremely important to promote the application of solar steam generation in clean water production through seawater desalination. However, the theoretical evaporation rate limit of a normal two-dimensional (2D) photothermal evaporator is only about 1.46 kg m–2 h–1. While 3D evaporators can break the limit, they require much more raw materials. In this work, an effective approach for achieving high-yield solar steam generation via the synergy of 2D nanostructure-embedded all-in-one hybrid hydrogel evaporator and surface patterning is reported. This improved surface-patterned evaporator is able to simultaneously lower the enthalpy of vaporization and induce the Marangoni effect near the evaporation surface, thus delivering a high evaporation rate of 3.62 kg m–2 h–1, which is more than twice the theoretical limit of the normal 2D photothermal evaporator. This hybrid hydrogel offers a cost-effective and energy-efficient pathway to mitigate clean water shortages. |
---|---|
AbstractList | Improving evaporation rate is extremely important to promote the application of solar steam generation in clean water production through seawater desalination. However, the theoretical evaporation rate limit of a normal two-dimensional (2D) photothermal evaporator is only about 1.46 kg m–2 h–1. While 3D evaporators can break the limit, they require much more raw materials. In this work, an effective approach for achieving high-yield solar steam generation via the synergy of 2D nanostructure-embedded all-in-one hybrid hydrogel evaporator and surface patterning is reported. This improved surface-patterned evaporator is able to simultaneously lower the enthalpy of vaporization and induce the Marangoni effect near the evaporation surface, thus delivering a high evaporation rate of 3.62 kg m–2 h–1, which is more than twice the theoretical limit of the normal 2D photothermal evaporator. This hybrid hydrogel offers a cost-effective and energy-efficient pathway to mitigate clean water shortages. Improving evaporation rate is extremely important to promote the application of solar steam generation in clean water production through seawater desalination. However, the theoretical evaporation rate limit of a normal two-dimensional (2D) photothermal evaporator is only about 1.46 kg m-2 h-1. While 3D evaporators can break the limit, they require much more raw materials. In this work, an effective approach for achieving high-yield solar steam generation via the synergy of 2D nanostructure-embedded all-in-one hybrid hydrogel evaporator and surface patterning is reported. This improved surface-patterned evaporator is able to simultaneously lower the enthalpy of vaporization and induce the Marangoni effect near the evaporation surface, thus delivering a high evaporation rate of 3.62 kg m-2 h-1, which is more than twice the theoretical limit of the normal 2D photothermal evaporator. This hybrid hydrogel offers a cost-effective and energy-efficient pathway to mitigate clean water shortages.Improving evaporation rate is extremely important to promote the application of solar steam generation in clean water production through seawater desalination. However, the theoretical evaporation rate limit of a normal two-dimensional (2D) photothermal evaporator is only about 1.46 kg m-2 h-1. While 3D evaporators can break the limit, they require much more raw materials. In this work, an effective approach for achieving high-yield solar steam generation via the synergy of 2D nanostructure-embedded all-in-one hybrid hydrogel evaporator and surface patterning is reported. This improved surface-patterned evaporator is able to simultaneously lower the enthalpy of vaporization and induce the Marangoni effect near the evaporation surface, thus delivering a high evaporation rate of 3.62 kg m-2 h-1, which is more than twice the theoretical limit of the normal 2D photothermal evaporator. This hybrid hydrogel offers a cost-effective and energy-efficient pathway to mitigate clean water shortages. |
Author | Lu, Yi Wang, Yida Xu, Haolan Lu, Chunhua Yang, Xiaofei Fan, Deqi |
AuthorAffiliation | Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering Future Industries Institute |
AuthorAffiliation_xml | – name: Future Industries Institute – name: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science – name: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Yi surname: Lu fullname: Lu, Yi organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science – sequence: 2 givenname: Deqi surname: Fan fullname: Fan, Deqi organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science – sequence: 3 givenname: Yida surname: Wang fullname: Wang, Yida organization: Future Industries Institute – sequence: 4 givenname: Haolan orcidid: 0000-0002-9126-1593 surname: Xu fullname: Xu, Haolan organization: Future Industries Institute – sequence: 5 givenname: Chunhua surname: Lu fullname: Lu, Chunhua organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering – sequence: 6 givenname: Xiaofei orcidid: 0000-0003-1972-4562 surname: Yang fullname: Yang, Xiaofei email: xiaofei.yang@njfu.edu.cn organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science |
BookMark | eNp9kMFLwzAUh4MouE3PXnMUpFvSrG12lDk3YehgE_RU0vRly2iTmaTI_nvrNjwIenoP3vf78fi66NxYAwjdUNKnJKYDIb0RxvapJHGS8TPUoSOWRoSnb-c_e0IvUdf7LSEtkqUdtF82TgkJeCFCAGe0WWOr8OrTRg-6BuO1NaLCz22zD66RoXEQTeoCyhJKvNjYYMMGXN0ys33p7Boqj5V1eKbXm-hdQ1Xipa2Ew8sAosZTMOBEaFuv0IUSlYfr0-yh18fJajyL5i_Tp_H9PBIsS0M0YowOSQYChCxGGePAJS3STBLOSmBAgKccRMpVXAwTFQMntBhKlXDCFUkY66HbY-_O2Y8GfMhr7SVUlTBgG5_HyZAkMc0OaHJEpbPeO1C51OHwbHBCVzkl-bfq_KQ6P6luc4NfuZ3TtXD7fxJ3x0R7yLe2ca1k_yf9BavXllo |
CitedBy_id | crossref_primary_10_1016_j_desal_2023_116680 crossref_primary_10_1016_j_jcis_2022_02_075 crossref_primary_10_1002_solr_202201014 crossref_primary_10_1016_j_applthermaleng_2024_124639 crossref_primary_10_1016_j_solmat_2022_112005 crossref_primary_10_1134_S0023158424601177 crossref_primary_10_1016_j_bioadv_2023_213500 crossref_primary_10_1002_solr_202201128 crossref_primary_10_1039_D2TA05666F crossref_primary_10_1002_adma_202212100 crossref_primary_10_1002_adfm_202205790 crossref_primary_10_1002_smll_202201770 crossref_primary_10_1016_j_seppur_2021_120278 crossref_primary_10_1016_j_carbpol_2025_123385 crossref_primary_10_1039_D1TA08886F crossref_primary_10_1002_adfm_202214045 crossref_primary_10_1021_acsami_4c17304 crossref_primary_10_1016_j_coco_2022_101348 crossref_primary_10_1002_adsu_202100430 crossref_primary_10_1002_adfm_202409257 crossref_primary_10_1016_j_cej_2022_135757 crossref_primary_10_1016_j_jclepro_2022_134683 crossref_primary_10_1109_LPT_2023_3330259 crossref_primary_10_1002_adfm_202306806 crossref_primary_10_1016_j_jclepro_2023_139956 crossref_primary_10_26599_NRE_2023_9120062 crossref_primary_10_1002_slct_202404061 crossref_primary_10_1016_j_desal_2022_116287 crossref_primary_10_1016_j_susmat_2022_e00500 crossref_primary_10_1002_adfm_202110636 crossref_primary_10_1002_ente_202101020 crossref_primary_10_1016_j_seppur_2022_120534 crossref_primary_10_1007_s10971_023_06128_4 crossref_primary_10_1016_j_ccr_2024_216017 crossref_primary_10_1016_j_seppur_2022_122741 crossref_primary_10_1021_acs_langmuir_4c00570 crossref_primary_10_1002_adfm_202209262 crossref_primary_10_1039_D2EN00103A crossref_primary_10_1016_j_jcis_2023_05_105 crossref_primary_10_1016_j_mser_2023_100735 crossref_primary_10_1016_j_matt_2024_04_026 crossref_primary_10_1016_j_jcis_2022_12_016 crossref_primary_10_1021_acsapm_3c01202 crossref_primary_10_1016_j_mattod_2024_08_026 crossref_primary_10_1021_acsami_2c11399 crossref_primary_10_1007_s40820_025_01661_z crossref_primary_10_1002_adfm_202208965 crossref_primary_10_1016_j_applthermaleng_2023_120770 crossref_primary_10_1063_5_0144886 crossref_primary_10_1002_sstr_202300008 crossref_primary_10_1021_acsapm_3c03066 crossref_primary_10_1002_sus2_231 crossref_primary_10_1016_j_cej_2023_146566 crossref_primary_10_1016_j_desal_2023_116572 crossref_primary_10_1002_adfm_202214828 crossref_primary_10_1002_solr_202100888 crossref_primary_10_1002_adfm_202415394 crossref_primary_10_1016_j_watres_2024_121707 crossref_primary_10_1016_j_nxmate_2024_100432 crossref_primary_10_1021_acs_est_3c09703 crossref_primary_10_1016_j_cej_2023_142409 crossref_primary_10_1016_j_cej_2021_134144 crossref_primary_10_1002_smll_202107156 crossref_primary_10_1016_j_cej_2024_149690 crossref_primary_10_1016_j_cej_2024_158715 crossref_primary_10_1016_j_cej_2024_157988 crossref_primary_10_1016_j_scib_2024_09_015 crossref_primary_10_1016_j_cej_2021_132765 crossref_primary_10_1021_acs_iecr_2c03170 crossref_primary_10_1016_j_cej_2023_146200 crossref_primary_10_1016_j_desal_2024_118488 crossref_primary_10_1002_admt_202401110 crossref_primary_10_1016_j_jhazmat_2021_127128 crossref_primary_10_1002_ange_202318628 crossref_primary_10_1021_accountsmr_4c00404 crossref_primary_10_1016_j_desal_2024_117292 crossref_primary_10_1021_acs_energyfuels_3c01887 crossref_primary_10_1021_acsaem_4c03384 crossref_primary_10_3390_polym15112449 crossref_primary_10_3390_polym15092108 crossref_primary_10_1016_j_cej_2022_138257 crossref_primary_10_1002_solr_202100917 crossref_primary_10_1038_s41586_023_06509_3 crossref_primary_10_1016_j_cej_2023_143281 crossref_primary_10_1016_j_mattod_2025_01_011 crossref_primary_10_1002_adfm_202503234 crossref_primary_10_1002_adhm_202101808 crossref_primary_10_1039_D2TA01264B crossref_primary_10_1039_D3TA00032J crossref_primary_10_1016_j_desal_2024_118155 crossref_primary_10_1016_j_cej_2023_145338 crossref_primary_10_1021_acsami_1c11802 crossref_primary_10_1002_eem2_12376 crossref_primary_10_1016_j_surfin_2024_105632 crossref_primary_10_1021_acs_est_3c02454 crossref_primary_10_1016_j_cej_2023_147519 crossref_primary_10_1126_sciadv_adk1113 crossref_primary_10_1016_j_cej_2023_142508 crossref_primary_10_1002_adfm_202215061 crossref_primary_10_1016_j_mtener_2023_101330 crossref_primary_10_1016_j_cej_2024_155423 crossref_primary_10_1016_j_scib_2021_09_018 crossref_primary_10_1002_adfm_202307533 crossref_primary_10_1002_adfm_202310942 crossref_primary_10_1021_acs_langmuir_1c03102 crossref_primary_10_1016_j_desal_2024_117613 crossref_primary_10_1021_acsestengg_4c00652 crossref_primary_10_1007_s10853_021_06420_0 crossref_primary_10_1016_j_scib_2022_07_004 crossref_primary_10_1016_j_desal_2024_117972 crossref_primary_10_1016_j_nanoen_2024_109434 crossref_primary_10_1002_adma_202402527 crossref_primary_10_1016_j_desal_2022_116060 crossref_primary_10_1016_j_seppur_2022_121335 crossref_primary_10_1021_acsaelm_2c00765 crossref_primary_10_1016_j_cej_2023_141763 crossref_primary_10_1002_smll_202303908 crossref_primary_10_1021_acsami_1c20769 crossref_primary_10_1016_j_jallcom_2023_169832 crossref_primary_10_1016_j_coco_2022_101438 crossref_primary_10_1016_j_surfin_2023_103509 crossref_primary_10_1016_j_polymer_2022_125177 crossref_primary_10_1016_j_solmat_2025_113406 crossref_primary_10_1016_j_cej_2022_135444 crossref_primary_10_1039_D4TA05074F crossref_primary_10_1016_j_desal_2024_117506 crossref_primary_10_1016_j_cej_2021_132335 crossref_primary_10_1016_j_nanoen_2024_109307 crossref_primary_10_1002_adfm_202304936 crossref_primary_10_1016_j_jmst_2024_09_044 crossref_primary_10_1016_j_desal_2024_118173 crossref_primary_10_1021_acsaem_3c02894 crossref_primary_10_1002_adma_202406666 crossref_primary_10_1002_adma_202313090 crossref_primary_10_1016_j_cej_2023_141511 crossref_primary_10_1002_anie_202318628 crossref_primary_10_1016_j_cej_2024_158234 crossref_primary_10_3389_fbioe_2022_1066617 crossref_primary_10_1016_j_coco_2023_101746 crossref_primary_10_1039_D3CS00500C crossref_primary_10_1007_s11706_024_0701_0 crossref_primary_10_1002_adma_202414045 crossref_primary_10_1021_acsami_3c18661 crossref_primary_10_1016_j_cej_2024_156859 crossref_primary_10_1016_j_seppur_2023_124456 crossref_primary_10_1016_j_cej_2023_145422 crossref_primary_10_1002_smll_202204898 crossref_primary_10_1021_acs_macromol_2c00092 crossref_primary_10_1039_D4TA00038B crossref_primary_10_1016_j_seppur_2022_122684 crossref_primary_10_1016_j_cej_2023_141622 crossref_primary_10_1016_j_jcis_2024_04_081 crossref_primary_10_1021_acsenergylett_5c00038 crossref_primary_10_1016_j_cej_2025_160946 crossref_primary_10_1021_acsami_1c22215 crossref_primary_10_1016_j_seppur_2023_123490 crossref_primary_10_1002_adfm_202111794 crossref_primary_10_1002_smll_202302526 crossref_primary_10_1002_smll_202402482 crossref_primary_10_1002_aenm_202200087 crossref_primary_10_1039_D3NR06146A crossref_primary_10_1088_1361_6463_ac79d9 crossref_primary_10_1016_j_desal_2023_116399 crossref_primary_10_1016_j_seppur_2023_124588 crossref_primary_10_1016_j_seppur_2024_127216 crossref_primary_10_1016_j_chemosphere_2022_137163 crossref_primary_10_1111_jfpe_14197 crossref_primary_10_1021_acs_chemrev_2c00048 crossref_primary_10_1021_acs_chemrev_3c00159 crossref_primary_10_1002_eom2_12144 crossref_primary_10_1007_s10853_023_09029_7 crossref_primary_10_1016_j_cej_2023_147158 crossref_primary_10_1002_advs_202204187 crossref_primary_10_1007_s12274_023_5488_2 crossref_primary_10_26599_NRE_2022_9120014 crossref_primary_10_1002_adma_202207262 crossref_primary_10_1016_j_jiec_2024_06_037 crossref_primary_10_1002_eom2_12147 crossref_primary_10_1002_smll_202403221 crossref_primary_10_1016_j_carbpol_2025_123302 crossref_primary_10_1016_j_cej_2022_140704 crossref_primary_10_3390_catal13030514 crossref_primary_10_1039_D1TA07498A crossref_primary_10_1016_j_chemosphere_2022_137732 crossref_primary_10_1016_j_seppur_2024_128776 crossref_primary_10_1002_solr_202200202 crossref_primary_10_1021_acsami_2c12750 crossref_primary_10_1016_j_desal_2023_116707 crossref_primary_10_1007_s42765_024_00504_7 crossref_primary_10_1007_s40820_021_00748_7 crossref_primary_10_1016_j_cej_2025_160398 crossref_primary_10_1016_j_desal_2024_117416 crossref_primary_10_1007_s12274_023_5852_2 crossref_primary_10_1021_acsnano_4c16998 crossref_primary_10_1016_j_desal_2023_117034 crossref_primary_10_1002_adfm_202309470 crossref_primary_10_1021_acs_inorgchem_2c04000 crossref_primary_10_1002_smll_202407280 crossref_primary_10_1002_smll_202304483 crossref_primary_10_1016_j_seppur_2025_131660 crossref_primary_10_1016_j_jcis_2022_06_145 crossref_primary_10_1021_acsnano_1c10836 crossref_primary_10_1002_adsu_202400330 crossref_primary_10_1002_pol_20210688 crossref_primary_10_1021_acsami_3c11841 crossref_primary_10_1002_adfm_202302038 crossref_primary_10_1007_s10853_022_08055_1 crossref_primary_10_1016_j_cej_2024_156826 crossref_primary_10_1002_aenm_202302451 crossref_primary_10_1016_j_apcatb_2021_120820 crossref_primary_10_1007_s12598_021_01936_5 crossref_primary_10_1016_j_cej_2023_145752 crossref_primary_10_1039_D3EN00829K crossref_primary_10_1016_j_cej_2023_141395 crossref_primary_10_1039_D1MA00894C crossref_primary_10_1021_acsanm_4c03572 crossref_primary_10_1002_eem2_12353 crossref_primary_10_1016_j_seppur_2023_123729 crossref_primary_10_1016_j_coco_2021_100936 crossref_primary_10_1039_D3RE00205E crossref_primary_10_1002_solr_202301015 crossref_primary_10_1021_acsami_2c08561 crossref_primary_10_3390_polym15122742 crossref_primary_10_1016_j_susmat_2024_e00925 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124506 crossref_primary_10_1002_adfm_202410729 crossref_primary_10_1007_s11356_024_33420_9 crossref_primary_10_1016_j_cej_2025_159471 crossref_primary_10_1016_j_jcis_2023_06_205 crossref_primary_10_1021_acsami_1c11636 crossref_primary_10_1002_smll_202312241 crossref_primary_10_1007_s12598_023_02430_w crossref_primary_10_3390_gels10060371 crossref_primary_10_1016_j_mtcomm_2025_112086 crossref_primary_10_1007_s12598_022_01966_7 crossref_primary_10_1002_solr_202200483 crossref_primary_10_1039_D2TA08275F crossref_primary_10_1007_s12274_023_6192_y crossref_primary_10_1016_j_desal_2022_115943 crossref_primary_10_1016_j_desal_2023_116999 crossref_primary_10_1016_j_jcis_2023_07_014 crossref_primary_10_1016_j_colsurfa_2024_134027 crossref_primary_10_1021_acsami_4c13013 crossref_primary_10_1016_j_nanoen_2022_108115 crossref_primary_10_29026_oea_2023_220061 crossref_primary_10_1016_j_cej_2025_160220 crossref_primary_10_1021_acsanm_1c03112 crossref_primary_10_1016_j_nanoen_2023_108631 crossref_primary_10_1134_S1062873824709991 crossref_primary_10_1016_j_cej_2023_144761 crossref_primary_10_1002_adfm_202106978 crossref_primary_10_1016_j_jcis_2022_03_086 crossref_primary_10_1016_j_cej_2023_145976 crossref_primary_10_1039_D1TA09288J crossref_primary_10_1016_j_desal_2024_117581 crossref_primary_10_1016_j_jece_2022_107690 crossref_primary_10_1016_j_greenca_2025_02_001 crossref_primary_10_1021_acsami_2c01757 crossref_primary_10_1021_acsami_4c23062 crossref_primary_10_1002_aenm_202204014 crossref_primary_10_1021_acsnano_2c06065 crossref_primary_10_1016_j_seppur_2023_123181 crossref_primary_10_1016_j_seppur_2024_127086 crossref_primary_10_1016_j_solener_2024_112507 crossref_primary_10_1016_j_cej_2025_160358 crossref_primary_10_1021_acsami_2c10530 crossref_primary_10_1016_j_nanoen_2022_107016 crossref_primary_10_1016_j_susmat_2024_e00941 crossref_primary_10_1016_j_mtcomm_2024_109992 crossref_primary_10_1021_acsenergylett_3c02218 crossref_primary_10_1002_smll_202400569 crossref_primary_10_1002_adfm_202503186 crossref_primary_10_1002_smll_202300915 crossref_primary_10_1039_D5MH00018A crossref_primary_10_1016_j_carbpol_2024_122304 crossref_primary_10_1016_j_cej_2023_145605 crossref_primary_10_1002_adfm_202302351 crossref_primary_10_1016_j_cej_2024_152303 crossref_primary_10_1016_j_seppur_2024_128849 crossref_primary_10_3390_ma16041628 crossref_primary_10_1016_j_nantod_2023_102130 crossref_primary_10_1016_j_desal_2023_117064 crossref_primary_10_1039_D2TA08317E crossref_primary_10_1016_j_eng_2023_03_015 crossref_primary_10_1016_j_gerr_2023_100011 crossref_primary_10_1039_D4MH00591K crossref_primary_10_1016_j_desal_2023_117181 crossref_primary_10_1002_app_56068 crossref_primary_10_1021_acs_langmuir_2c01648 crossref_primary_10_1039_D2NR00525E crossref_primary_10_1021_acs_nanolett_4c02742 crossref_primary_10_1039_D1TA06255G crossref_primary_10_1016_j_watres_2023_120514 crossref_primary_10_1039_D2NR05159A crossref_primary_10_1002_eom2_12168 crossref_primary_10_1016_j_cej_2024_156450 crossref_primary_10_1016_j_jcis_2021_10_035 crossref_primary_10_1021_acs_langmuir_3c00427 crossref_primary_10_1002_smll_202405587 crossref_primary_10_1016_j_cej_2025_159221 crossref_primary_10_1016_j_jclepro_2024_143960 crossref_primary_10_1002_adsu_202100263 crossref_primary_10_1016_j_carbon_2022_11_035 crossref_primary_10_1039_D1TA04991G crossref_primary_10_1038_s43246_023_00398_9 crossref_primary_10_1039_D3CC00273J crossref_primary_10_1002_cssc_202300644 crossref_primary_10_1016_j_desal_2023_116405 crossref_primary_10_1016_j_desal_2025_118627 crossref_primary_10_1002_ente_202301393 crossref_primary_10_1016_j_desal_2023_116886 |
Cites_doi | 10.1016/j.joule.2020.02.014 10.1126/sciadv.aaw5484 10.1002/adma.202007012 10.1103/PhysRevE.98.052804 10.1016/j.scib.2019.08.022 10.1016/j.nanoen.2020.105477 10.1021/acsami.0c06836 10.1016/j.nanoen.2020.105682 10.1039/C9TA00212J 10.1103/PhysRevE.48.1051 10.1039/C9TA00176J 10.1103/PhysRevE.88.052314 10.1038/nnano.2016.300 10.1039/D0EE00399A 10.1016/j.apcatb.2021.120285 10.1002/adfm.202000712 10.1016/j.ijhydene.2020.09.243 10.1063/1.2789402 10.1007/s12274-020-2970-y 10.1021/acsnano.9b10066 10.1002/adma.202001544 10.1021/nn203844z 10.1063/1.865597 10.1021/acs.accounts.6b00617 10.1002/adfm.202004460 10.1016/j.surfrep.2018.09.001 10.1021/acsnano.8b06136 10.1080/07373930903221747 10.1021/acs.chemrev.0c00345 10.1038/s41467-020-14366-1 10.1002/adma.201604031 10.1063/1.869182 10.1002/adfm.202007110 10.1039/C8EE00567B 10.1038/s41578-020-0182-4 10.1016/j.scib.2020.04.036 10.1002/adfm.202007648 10.1007/s00231-020-02872-3 10.1038/s41565-018-0097-z 10.1002/adma.201808249 10.1021/acs.jpcc.0c01039 10.1021/acsami.0c00606 10.1016/j.nanoen.2020.105269 10.1038/s41467-020-15991-6 10.1021/acs.nanolett.9b00252 10.1002/aenm.201901687 10.1039/C8EE01146J 10.1021/acsnano.9b02301 10.1021/acsnano.6b08415 10.1002/solr.202000232 10.1002/adfm.201903255 10.1016/j.colsurfa.2017.01.048 10.1021/acs.chemmater.9b02115 10.1016/j.joule.2018.12.023 10.1002/adma.202004401 10.1038/s41560-018-0260-7 10.1021/acs.accounts.9b00455 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acsnano.1c02578 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 10376 |
ExternalDocumentID | 10_1021_acsnano_1c02578 c918299172 |
GroupedDBID | - .K2 23M 3RI 4.4 53G 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GGK GNL IH9 IHE JG JG~ K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV BAANH CITATION CUPRZ 7X8 |
ID | FETCH-LOGICAL-a376t-9331407eaeacb9738e8c1b67c083de3e0e868ea68f2b45f2e801b4cf5808f0533 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Jul 10 18:59:15 EDT 2025 Tue Jul 01 03:37:12 EDT 2025 Thu Apr 24 22:59:43 EDT 2025 Thu Jun 24 03:11:19 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | hybrid hydrogels graphene surface patterning MXene solar steam generation |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a376t-9331407eaeacb9738e8c1b67c083de3e0e868ea68f2b45f2e801b4cf5808f0533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9126-1593 0000-0003-1972-4562 |
PQID | 2540521753 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2540521753 crossref_citationtrail_10_1021_acsnano_1c02578 crossref_primary_10_1021_acsnano_1c02578 acs_journals_10_1021_acsnano_1c02578 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 3RI GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-22 |
PublicationDateYYYYMMDD | 2021-06-22 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 Parparita E. (ref39/cit39) 2012; 9 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref14/cit14 doi: 10.1016/j.joule.2020.02.014 – ident: ref35/cit35 doi: 10.1126/sciadv.aaw5484 – ident: ref23/cit23 doi: 10.1002/adma.202007012 – ident: ref25/cit25 doi: 10.1103/PhysRevE.98.052804 – ident: ref6/cit6 doi: 10.1016/j.scib.2019.08.022 – volume: 9 start-page: 571 year: 2012 ident: ref39/cit39 publication-title: Cell Chem. Technol. – ident: ref50/cit50 doi: 10.1016/j.nanoen.2020.105477 – ident: ref59/cit59 doi: 10.1021/acsami.0c06836 – ident: ref16/cit16 doi: 10.1016/j.nanoen.2020.105682 – ident: ref30/cit30 doi: 10.1039/C9TA00212J – ident: ref54/cit54 doi: 10.1103/PhysRevE.48.1051 – ident: ref40/cit40 doi: 10.1039/C9TA00176J – ident: ref58/cit58 doi: 10.1103/PhysRevE.88.052314 – ident: ref5/cit5 doi: 10.1038/nnano.2016.300 – ident: ref22/cit22 doi: 10.1039/D0EE00399A – ident: ref60/cit60 doi: 10.1016/j.apcatb.2021.120285 – ident: ref26/cit26 doi: 10.1002/adfm.202000712 – ident: ref44/cit44 doi: 10.1016/j.ijhydene.2020.09.243 – ident: ref51/cit51 doi: 10.1063/1.2789402 – ident: ref47/cit47 doi: 10.1007/s12274-020-2970-y – ident: ref42/cit42 doi: 10.1021/acsnano.9b10066 – ident: ref15/cit15 doi: 10.1002/adma.202001544 – ident: ref48/cit48 doi: 10.1021/nn203844z – ident: ref52/cit52 doi: 10.1063/1.865597 – ident: ref32/cit32 doi: 10.1021/acs.accounts.6b00617 – ident: ref4/cit4 doi: 10.1002/adfm.202004460 – ident: ref33/cit33 doi: 10.1016/j.surfrep.2018.09.001 – ident: ref28/cit28 doi: 10.1021/acsnano.8b06136 – ident: ref57/cit57 doi: 10.1080/07373930903221747 – ident: ref18/cit18 doi: 10.1021/acs.chemrev.0c00345 – ident: ref7/cit7 doi: 10.1038/s41467-020-14366-1 – ident: ref21/cit21 doi: 10.1002/adma.201604031 – ident: ref56/cit56 doi: 10.1063/1.869182 – ident: ref13/cit13 doi: 10.1002/adfm.202007110 – ident: ref17/cit17 doi: 10.1039/C8EE00567B – ident: ref24/cit24 doi: 10.1038/s41578-020-0182-4 – ident: ref31/cit31 doi: 10.1016/j.scib.2020.04.036 – ident: ref12/cit12 doi: 10.1002/adfm.202007648 – ident: ref55/cit55 doi: 10.1007/s00231-020-02872-3 – ident: ref19/cit19 doi: 10.1038/s41565-018-0097-z – ident: ref10/cit10 doi: 10.1002/adma.201808249 – ident: ref34/cit34 doi: 10.1021/acs.jpcc.0c01039 – ident: ref45/cit45 doi: 10.1021/acsami.0c00606 – ident: ref49/cit49 doi: 10.1016/j.nanoen.2020.105269 – ident: ref27/cit27 doi: 10.1038/s41467-020-15991-6 – ident: ref37/cit37 doi: 10.1021/acs.nanolett.9b00252 – ident: ref29/cit29 doi: 10.1002/aenm.201901687 – ident: ref3/cit3 doi: 10.1039/C8EE01146J – ident: ref36/cit36 doi: 10.1021/acsnano.9b02301 – ident: ref41/cit41 doi: 10.1021/acsnano.6b08415 – ident: ref9/cit9 doi: 10.1002/solr.202000232 – ident: ref38/cit38 doi: 10.1021/acsnano.8b06136 – ident: ref8/cit8 doi: 10.1002/adfm.201903255 – ident: ref53/cit53 doi: 10.1016/j.colsurfa.2017.01.048 – ident: ref43/cit43 doi: 10.1021/acs.chemmater.9b02115 – ident: ref1/cit1 doi: 10.1016/j.joule.2018.12.023 – ident: ref11/cit11 doi: 10.1002/adma.202004401 – ident: ref46/cit46 doi: 10.1038/s41565-018-0097-z – ident: ref2/cit2 doi: 10.1038/s41560-018-0260-7 – ident: ref20/cit20 doi: 10.1021/acs.accounts.9b00455 |
SSID | ssj0057876 |
Score | 2.7035382 |
Snippet | Improving evaporation rate is extremely important to promote the application of solar steam generation in clean water production through seawater desalination.... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10366 |
Title | Surface Patterning of Two-Dimensional Nanostructure-Embedded Photothermal Hydrogels for High-Yield Solar Steam Generation |
URI | http://dx.doi.org/10.1021/acsnano.1c02578 https://www.proquest.com/docview/2540521753 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1ZS8QwEICDx4s-eIs3EXzwJWubXumjeLAIirAK-lRyTBV0W9nuIvrrnWm7noi-JyUkkzk6k28Y23NWe8bTRjjfYYASJLnQiQVhgDrAgTSu7g14fhF3r8Ozm-jmAxb9PYMv_QNtq0IXZce3HonXJJuWsUoozjo86o2VLsld3CSQMUBGL-Kd4vPjA2SGbPXVDH3VwrVpOZ1virKqmkhIFSUPndHQdOzrT17j36teYHOtg8kPG4lYZBNQLLHZT9jBZfbSGw1ybYFf1nBN-jPCy5xfPZfimGD_DaiDo-ItG7zsaADipG8AlZTjl_flsH621ccx3Rc3KO_QvnJ0fjkVjYhbqonjPQqZOVUL93mDtiYJWGHXpydXR13RtmAQGjXPUKRBgBFYAhr1s0mTQIGyvokTi56bgwA8ULECHatcmjDKJaDBM6HNI-WpnJ75rrKpoixgjXFPWowNdWSN1qF1YapUGrmUgIWx1FG0zvZw07L2ClVZnR2XftbuZNbu5DrrjA8usy3GnLppPP4-Yf99wlND8Ph96O5YEjK8ZZQ60QWUoyqT5NhKoppu_G-Zm2xGUvWLFwspt9gUnhZso_syNDu14L4BHkzt5Q |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOPFvRB9RIPXDxNnFezrEqrRb6UNFupXKK_Ji0EmxSbXaFyq9nJskuFFQJrpFtjezxzDeZ8TcAu96ZwAbGSh96ClCirJQmcygtcgc4VNa3vQFPz9LhRfzpMrlcgWDxFoaEaGilpk3i_2IXCPfoW2WqehC6gLXsATwkKKI43No_GC1sL6tf2uWRKU4mMLEk8_lrAfZGrrnrje4a49bDHD2Dz0vZ2sKSr4P5zA7cjz9oG_9H-OfwtIebYr_TjxewgtVLePIbCeEruB3Np6VxKM5bqk3-TyLqUoy_1_IDU_93tB2CzHDdkc3OpygPJxbJZHlxfl3P2kdcExozvPXT-oq8rSAoLLiERH7hCjkx4gBacO3wRHRE16wPa3BxdDg-GMq-IYM0ZIdmMo8iiscyNGStbZ5FGrULbZo5wnEeIwxQpxpNqktl46RUSO7Pxq5MdKBLfvS7DqtVXeFrEIFyFCmaxFljYufjXOs88TnTF6bKJMkG7NKmFf2Faoo2V67Cot_Jot_JDRgszq9wPak599b4dv-E98sJNx2fx_1D3y0UoqA7x4kUU2E9bwrFMFcxx-nmv4m5A4-G49OT4uTj2fEWPFZcFxOkUqltWKWTwzcEbGb2bavLPwHzTvZG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT9tAEF4VkKr2oRwtgrbQReKBl03t9bV-RECUlkORQiR4svYYgwSxUZyogl_PjO1EUIQEr9buao85PTPfMLbrrPaMp41wvkMHJUhyoRMLwgB1gANpXN0b8PQs7g3DvxfRRVsURrUwuIkKV6rqID5x9Z3LW4QB_zd-L3RRdnzrEaUtsCUK2pHLtX8wmMlfIsG4iSWjr4wGxRzQ58UCpJFs9VwjPRfItZbpLrPhfH91cslNZzoxHfvwH3Tjew-wwr60Ziffb-hklX2AYo19fgJG-JXdD6bjXFvg_Rpyk_6X8DLn5_9KcUgtABr4Do7iuGxAZ6djEEcjAyi6HO9fl5O6mGuEY3r3blxeodblaBJzSiURl5QpxwfkSHPKIR7xBvCa6OIbG3aPzg96om3MIDTKo4lIgwD9sgQ0Sm2TJoECZX0TJxbtOQcBeKBiBTpWuTRhlEtANWhCm0fKUzkV_66zxaIsYINxT1r0GHVkjdahdWGqVBq5lGAMY6mjaJPt4qVlLWNVWR0zl37W3mTW3uQm68zeMLMtuDn12Lh9fcLefMJdg-vx-tCdGVFkyHsUUNEFlNMqk2TuSsI6_f62bf5iH_uH3ezkz9nxD_ZJUnqMFwspf7JFfDjYQvtmYrZrcn4E4xP4yQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Patterning+of+Two-Dimensional+Nanostructure-Embedded+Photothermal+Hydrogels+for+High-Yield+Solar+Steam+Generation&rft.jtitle=ACS+nano&rft.au=Lu%2C+Yi&rft.au=Fan%2C+Deqi&rft.au=Wang%2C+Yida&rft.au=Xu%2C+Haolan&rft.date=2021-06-22&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=15&rft.issue=6&rft.spage=10366&rft_id=info:doi/10.1021%2Facsnano.1c02578&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |