Phase Engineering of Iron–Cobalt Sulfides for Zn–Air and Na–Ion Batteries

Rechargeable batteries are promising platforms for sustainable development of energy conversion and storage technologies. Highly efficient multifunctional electrodes based on bimetallic sulfides for rechargeable batteries are extremely desirable but still challenging to tailor with controllable phas...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 14; no. 8; pp. 10438 - 10451
Main Authors Lu, Shu, Jiang, Jun, Yang, Hai, Zhang, Ying-Jie, Pei, Dan-Ni, Chen, Jie-Jie, Yu, Yan
Format Journal Article
LanguageEnglish
Published American Chemical Society 25.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rechargeable batteries are promising platforms for sustainable development of energy conversion and storage technologies. Highly efficient multifunctional electrodes based on bimetallic sulfides for rechargeable batteries are extremely desirable but still challenging to tailor with controllable phase and structure. Here, we report a colloidal strategy to fabricate FeCo-based bimetallic sulfides on reduced graphene oxide (rGO), which are expected to display highly efficient oxygen electrocatalysis and sodium storage performances. Specifically, as-screened FeCo8S8 nanosheets (NSs) on rGO originating from suitable tailoring of the Co9S8 matrix with Fe at the atomic level exhibited a very low potential difference (0.77 V) at 10 mA cm–2 and negligible voltage loss after 200 cycles as an air electrode for Zn–air batteries. For Na–ion batteries, FeCo8S8 NS/rGO demonstrated a superior high-rate capability (188 mAh g–1 at 20 A g–1) with long-term cycling stability. The bifunctional electrocatalytic property and sodium storage performance are attributed to not only the synergistic effect of Fe/Co but also the optimized catalytic activity and ion transport ability by the in situ rGO hybrid. This work demonstrates the potential applications of FeCo-based bimetallic sulfides as efficient electrode materials for both rechargeable Zn–air and Na–ion batteries.
AbstractList Rechargeable batteries are promising platforms for sustainable development of energy conversion and storage technologies. Highly efficient multifunctional electrodes based on bimetallic sulfides for rechargeable batteries are extremely desirable but still challenging to tailor with controllable phase and structure. Here, we report a colloidal strategy to fabricate FeCo-based bimetallic sulfides on reduced graphene oxide (rGO), which are expected to display highly efficient oxygen electrocatalysis and sodium storage performances. Specifically, as-screened FeCo8S8 nanosheets (NSs) on rGO originating from suitable tailoring of the Co9S8 matrix with Fe at the atomic level exhibited a very low potential difference (0.77 V) at 10 mA cm–2 and negligible voltage loss after 200 cycles as an air electrode for Zn–air batteries. For Na–ion batteries, FeCo8S8 NS/rGO demonstrated a superior high-rate capability (188 mAh g–1 at 20 A g–1) with long-term cycling stability. The bifunctional electrocatalytic property and sodium storage performance are attributed to not only the synergistic effect of Fe/Co but also the optimized catalytic activity and ion transport ability by the in situ rGO hybrid. This work demonstrates the potential applications of FeCo-based bimetallic sulfides as efficient electrode materials for both rechargeable Zn–air and Na–ion batteries.
Rechargeable batteries are promising platforms for sustainable development of energy conversion and storage technologies. Highly efficient multifunctional electrodes based on bimetallic sulfides for rechargeable batteries are extremely desirable but still challenging to tailor with controllable phase and structure. Here, we report a colloidal strategy to fabricate FeCo-based bimetallic sulfides on reduced graphene oxide (rGO), which are expected to display highly efficient oxygen electrocatalysis and sodium storage performances. Specifically, as-screened FeCo8S8 nanosheets (NSs) on rGO originating from suitable tailoring of the Co9S8 matrix with Fe at the atomic level exhibited a very low potential difference (0.77 V) at 10 mA cm-2 and negligible voltage loss after 200 cycles as an air electrode for Zn-air batteries. For Na-ion batteries, FeCo8S8 NS/rGO demonstrated a superior high-rate capability (188 mAh g-1 at 20 A g-1) with long-term cycling stability. The bifunctional electrocatalytic property and sodium storage performance are attributed to not only the synergistic effect of Fe/Co but also the optimized catalytic activity and ion transport ability by the in situ rGO hybrid. This work demonstrates the potential applications of FeCo-based bimetallic sulfides as efficient electrode materials for both rechargeable Zn-air and Na-ion batteries.Rechargeable batteries are promising platforms for sustainable development of energy conversion and storage technologies. Highly efficient multifunctional electrodes based on bimetallic sulfides for rechargeable batteries are extremely desirable but still challenging to tailor with controllable phase and structure. Here, we report a colloidal strategy to fabricate FeCo-based bimetallic sulfides on reduced graphene oxide (rGO), which are expected to display highly efficient oxygen electrocatalysis and sodium storage performances. Specifically, as-screened FeCo8S8 nanosheets (NSs) on rGO originating from suitable tailoring of the Co9S8 matrix with Fe at the atomic level exhibited a very low potential difference (0.77 V) at 10 mA cm-2 and negligible voltage loss after 200 cycles as an air electrode for Zn-air batteries. For Na-ion batteries, FeCo8S8 NS/rGO demonstrated a superior high-rate capability (188 mAh g-1 at 20 A g-1) with long-term cycling stability. The bifunctional electrocatalytic property and sodium storage performance are attributed to not only the synergistic effect of Fe/Co but also the optimized catalytic activity and ion transport ability by the in situ rGO hybrid. This work demonstrates the potential applications of FeCo-based bimetallic sulfides as efficient electrode materials for both rechargeable Zn-air and Na-ion batteries.
Author Yang, Hai
Zhang, Ying-Jie
Chen, Jie-Jie
Yu, Yan
Jiang, Jun
Pei, Dan-Ni
Lu, Shu
AuthorAffiliation University of Science and Technology of China
Dalian National Laboratory for Clean Energy (DNL)
CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry
Chinese Academy of Sciences (CAS)
National Synchrotron Radiation Laboratory
School of Metallurgy and Environment
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering
University of Science & Technology of China
AuthorAffiliation_xml – name: University of Science and Technology of China
– name: Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering
– name: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry
– name: Dalian National Laboratory for Clean Energy (DNL)
– name: National Synchrotron Radiation Laboratory
– name: Chinese Academy of Sciences (CAS)
– name: University of Science & Technology of China
– name: School of Metallurgy and Environment
Author_xml – sequence: 1
  givenname: Shu
  surname: Lu
  fullname: Lu, Shu
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry
– sequence: 2
  givenname: Jun
  orcidid: 0000-0002-7770-1345
  surname: Jiang
  fullname: Jiang, Jun
  organization: School of Metallurgy and Environment
– sequence: 3
  givenname: Hai
  surname: Yang
  fullname: Yang, Hai
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Ying-Jie
  surname: Zhang
  fullname: Zhang, Ying-Jie
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry
– sequence: 5
  givenname: Dan-Ni
  surname: Pei
  fullname: Pei, Dan-Ni
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry
– sequence: 6
  givenname: Jie-Jie
  orcidid: 0000-0002-2539-8305
  surname: Chen
  fullname: Chen, Jie-Jie
  email: chenjiej@ustc.edu.cn
  organization: University of Science & Technology of China
– sequence: 7
  givenname: Yan
  orcidid: 0000-0002-3685-7773
  surname: Yu
  fullname: Yu, Yan
  email: yanyumse@ustc.edu.cn
  organization: Chinese Academy of Sciences (CAS)
BookMark eNp9kMtKAzEUhoNUsK2u3WYpyLTJZDKXZS1VC8UKKoibIdeaMk1qklm48x18Q5_EKS0uBF2dc_j_7yy-AehZZxUA5xiNMErxmIlgmXUjJFBGUHUE-rgieYLK_Ln3s1N8AgYhrBGiRVnkfbC8f2VBwZldGauUN3YFnYZz7-zXx-fUcdZE-NA22kgVoHYevuyCifGQWQnvWHfMnYVXLMaOVuEUHGvWBHV2mEPwdD17nN4mi-XNfDpZJIwUeUxKKnWRKVowrVWWaiwLionmoqI5JUKVkhKNOJdMSVJqikvJU854xSskJEnJEFzs_269e2tViPXGBKGahlnl2lCnWVoQRAjNu-p4XxXeheCVrrfebJh_rzGqd-rqg7r6oK4j6C9CmMiicTZ6Zpp_uMs91wX12rXedgr-bH8DbouJUg
CitedBy_id crossref_primary_10_1016_j_mtener_2022_100968
crossref_primary_10_1016_j_apsusc_2023_158975
crossref_primary_10_1016_j_jallcom_2022_168608
crossref_primary_10_1016_j_jallcom_2022_166864
crossref_primary_10_1016_j_electacta_2024_143767
crossref_primary_10_1016_j_ijhydene_2022_11_227
crossref_primary_10_1002_smtd_202401515
crossref_primary_10_1088_1361_6528_ad4b21
crossref_primary_10_1016_j_cej_2021_131784
crossref_primary_10_26599_NRE_2023_9120092
crossref_primary_10_1039_D4YA00551A
crossref_primary_10_1016_j_jpowsour_2022_232519
crossref_primary_10_1016_j_jechem_2021_05_011
crossref_primary_10_3390_molecules29235721
crossref_primary_10_1021_acscatal_1c05190
crossref_primary_10_1002_smtd_202400475
crossref_primary_10_1016_j_ensm_2024_103880
crossref_primary_10_1039_D4TA06049K
crossref_primary_10_1021_acs_est_3c05608
crossref_primary_10_1002_asia_202100700
crossref_primary_10_1021_acsami_2c00067
crossref_primary_10_1002_smsc_202300094
crossref_primary_10_1021_acsomega_2c06429
crossref_primary_10_1016_j_cej_2021_133274
crossref_primary_10_1039_D1TA00256B
crossref_primary_10_1002_eem2_12409
crossref_primary_10_1016_j_jcis_2024_06_220
crossref_primary_10_1007_s42823_023_00550_y
crossref_primary_10_1002_cey2_567
crossref_primary_10_1039_D2TA00164K
crossref_primary_10_1016_j_ensm_2021_04_032
crossref_primary_10_1149_1945_7111_ad0a7b
crossref_primary_10_1016_j_apsusc_2023_157106
crossref_primary_10_1002_cctc_202400555
crossref_primary_10_1016_j_cherd_2023_07_038
crossref_primary_10_1016_j_electacta_2022_141444
crossref_primary_10_1016_j_apcatb_2024_124988
crossref_primary_10_1021_acsami_3c16216
crossref_primary_10_1007_s11771_022_5149_8
crossref_primary_10_1002_aenm_202300739
crossref_primary_10_1002_adfm_202212160
crossref_primary_10_1016_j_fuel_2023_130256
crossref_primary_10_1016_j_colsurfa_2022_129181
crossref_primary_10_1002_er_7615
crossref_primary_10_1016_j_jmrt_2022_04_048
crossref_primary_10_1039_D3NJ03862A
crossref_primary_10_1016_j_apsusc_2021_151911
crossref_primary_10_1016_j_jcis_2023_07_151
crossref_primary_10_1021_acs_langmuir_2c01882
crossref_primary_10_1039_D2TA03554E
crossref_primary_10_1021_acsami_3c03501
crossref_primary_10_1002_cnl2_133
crossref_primary_10_1016_j_ensm_2021_10_040
crossref_primary_10_26599_NRE_2023_9120039
crossref_primary_10_1021_acssuschemeng_0c08328
crossref_primary_10_1021_acsami_4c10727
crossref_primary_10_1021_acscatal_1c01300
crossref_primary_10_1016_j_jcis_2022_06_094
crossref_primary_10_1039_D2TA06471E
crossref_primary_10_1016_j_fuel_2023_127399
crossref_primary_10_1016_j_est_2025_115822
crossref_primary_10_1021_acsami_1c00579
crossref_primary_10_1039_D4CC01343C
crossref_primary_10_1039_D4EY00014E
crossref_primary_10_1002_adfm_202110572
crossref_primary_10_1039_D1NJ05062A
crossref_primary_10_1016_j_cis_2023_102891
crossref_primary_10_1016_j_apsusc_2021_150757
Cites_doi 10.1002/adma.201802745
10.1002/anie.201600750
10.1002/anie.201402710
10.1039/C8CS00297E
10.1021/ja511572q
10.1016/S0920-5861(03)00411-5
10.1002/cctc.201000397
10.1149/1.1394046
10.1002/smtd.201700231
10.1021/cs400727f
10.1002/aenm.201902312
10.1002/adfm.201601420
10.1021/acsami.8b07207
10.1039/c3ee00066d
10.1038/am.2016.132
10.1016/j.nanoen.2017.09.022
10.1016/j.electacta.2016.01.137
10.1039/C7NR06886G
10.1039/C6TA07962H
10.1002/aenm.201700544
10.1039/C6EE00054A
10.1038/nmat3087
10.1021/am507811a
10.1002/aenm.201600943
10.1021/acsami.6b11498
10.1002/adfm.201702116
10.1021/acsnano.7b07132
10.1016/j.carbon.2015.06.064
10.1002/advs.201900628
10.1021/acs.accounts.8b00266
10.1166/jnn.2017.13428
10.1007/s40820-018-0232-2
10.1021/acs.chemrev.5b00073
10.1039/C6DT00536E
10.1016/j.carbon.2012.01.033
10.1021/jacs.6b05046
10.1021/jp047349j
10.1039/C5EE02903A
10.1039/c3nr05835b
10.1039/C9TA14231B
10.1039/C4EE03869J
10.1016/j.nanoen.2015.11.030
10.1016/j.carbon.2020.02.040
10.1016/j.jpowsour.2015.05.117
10.1039/C8QI01144C
10.1016/j.nantod.2016.12.001
10.1016/j.apcatb.2019.01.082
10.1002/adma.201805230
10.1021/am507033x
10.1021/acsnano.9b08396
10.1021/acsami.9b07311
10.1002/adfm.201503907
10.1039/C6TA00173D
10.1021/jacs.7b07117
10.1016/j.nanoen.2016.12.008
10.1016/j.cej.2019.122695
10.1039/C6CS00776G
10.1021/acsami.7b10173
10.1038/s41570-020-0184-1
10.1002/adfm.201600674
10.1002/aenm.201902485
10.1021/jp210796e
10.1149/2.0081514jes
10.1016/j.mattod.2019.09.018
10.1039/C8TA10114K
10.1002/adma.201600964
ContentType Journal Article
DBID AAYXX
CITATION
7X8
DOI 10.1021/acsnano.0c04309
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 10451
ExternalDocumentID 10_1021_acsnano_0c04309
d27245287
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
7X8
ID FETCH-LOGICAL-a376t-85df74e57affe42f1d7513fbc95653ce8d53f0bbdaed38f518db2bab9b90cd323
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 09:51:01 EDT 2025
Tue Jul 01 03:37:02 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
Thu Aug 27 09:09:48 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords iron cobalt sulfides
Zn−air battery
alloying and support effect
energy storage
Na−ion battery
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a376t-85df74e57affe42f1d7513fbc95653ce8d53f0bbdaed38f518db2bab9b90cd323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2539-8305
0000-0002-3685-7773
0000-0002-7770-1345
PQID 2427303356
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2427303356
crossref_primary_10_1021_acsnano_0c04309
crossref_citationtrail_10_1021_acsnano_0c04309
acs_journals_10_1021_acsnano_0c04309
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-25
PublicationDateYYYYMMDD 2020-08-25
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-25
  day: 25
PublicationDecade 2020
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref32/cit32
  doi: 10.1002/adma.201802745
– ident: ref3/cit3
  doi: 10.1002/anie.201600750
– ident: ref50/cit50
  doi: 10.1002/anie.201402710
– ident: ref1/cit1
  doi: 10.1039/C8CS00297E
– ident: ref36/cit36
  doi: 10.1021/ja511572q
– ident: ref17/cit17
  doi: 10.1016/S0920-5861(03)00411-5
– ident: ref57/cit57
  doi: 10.1002/cctc.201000397
– ident: ref59/cit59
  doi: 10.1149/1.1394046
– ident: ref4/cit4
  doi: 10.1002/smtd.201700231
– ident: ref55/cit55
  doi: 10.1021/cs400727f
– ident: ref15/cit15
  doi: 10.1002/aenm.201902312
– ident: ref60/cit60
  doi: 10.1002/adfm.201601420
– ident: ref25/cit25
  doi: 10.1021/acsami.8b07207
– ident: ref37/cit37
  doi: 10.1039/c3ee00066d
– ident: ref46/cit46
  doi: 10.1038/am.2016.132
– ident: ref64/cit64
  doi: 10.1016/j.nanoen.2017.09.022
– ident: ref43/cit43
  doi: 10.1016/j.electacta.2016.01.137
– ident: ref66/cit66
  doi: 10.1039/C7NR06886G
– ident: ref45/cit45
  doi: 10.1039/C6TA07962H
– ident: ref14/cit14
  doi: 10.1002/aenm.201700544
– ident: ref44/cit44
  doi: 10.1039/C6EE00054A
– ident: ref49/cit49
  doi: 10.1038/nmat3087
– ident: ref35/cit35
  doi: 10.1021/am507811a
– ident: ref7/cit7
  doi: 10.1002/aenm.201600943
– ident: ref16/cit16
  doi: 10.1021/acsami.6b11498
– ident: ref30/cit30
  doi: 10.1002/adfm.201702116
– ident: ref63/cit63
  doi: 10.1021/acsnano.7b07132
– ident: ref61/cit61
  doi: 10.1016/j.carbon.2015.06.064
– ident: ref27/cit27
  doi: 10.1002/advs.201900628
– ident: ref11/cit11
  doi: 10.1021/acs.accounts.8b00266
– ident: ref23/cit23
  doi: 10.1166/jnn.2017.13428
– ident: ref29/cit29
  doi: 10.1007/s40820-018-0232-2
– ident: ref54/cit54
  doi: 10.1021/acs.chemrev.5b00073
– ident: ref42/cit42
  doi: 10.1039/C6DT00536E
– ident: ref34/cit34
  doi: 10.1016/j.carbon.2012.01.033
– ident: ref48/cit48
  doi: 10.1021/jacs.6b05046
– ident: ref56/cit56
  doi: 10.1021/jp047349j
– ident: ref47/cit47
  doi: 10.1039/C5EE02903A
– ident: ref51/cit51
  doi: 10.1039/c3nr05835b
– ident: ref12/cit12
  doi: 10.1039/C9TA14231B
– ident: ref53/cit53
  doi: 10.1039/C4EE03869J
– ident: ref52/cit52
  doi: 10.1016/j.nanoen.2015.11.030
– ident: ref21/cit21
  doi: 10.1016/j.carbon.2020.02.040
– ident: ref38/cit38
  doi: 10.1016/j.jpowsour.2015.05.117
– ident: ref65/cit65
  doi: 10.1039/C8QI01144C
– ident: ref24/cit24
  doi: 10.1016/j.nantod.2016.12.001
– ident: ref19/cit19
  doi: 10.1016/j.apcatb.2019.01.082
– ident: ref8/cit8
  doi: 10.1002/adma.201805230
– ident: ref41/cit41
  doi: 10.1021/am507033x
– ident: ref13/cit13
  doi: 10.1021/acsnano.9b08396
– ident: ref18/cit18
  doi: 10.1021/acsami.9b07311
– ident: ref39/cit39
  doi: 10.1002/adfm.201503907
– ident: ref5/cit5
  doi: 10.1039/C6TA00173D
– ident: ref26/cit26
  doi: 10.1021/jacs.7b07117
– ident: ref28/cit28
  doi: 10.1016/j.nanoen.2016.12.008
– ident: ref22/cit22
  doi: 10.1016/j.cej.2019.122695
– ident: ref6/cit6
  doi: 10.1039/C6CS00776G
– ident: ref31/cit31
  doi: 10.1021/acsami.7b10173
– ident: ref20/cit20
  doi: 10.1038/s41570-020-0184-1
– ident: ref40/cit40
  doi: 10.1002/adfm.201600674
– ident: ref10/cit10
  doi: 10.1002/aenm.201902485
– ident: ref58/cit58
  doi: 10.1021/jp210796e
– ident: ref2/cit2
  doi: 10.1149/2.0081514jes
– ident: ref9/cit9
  doi: 10.1016/j.mattod.2019.09.018
– ident: ref33/cit33
  doi: 10.1039/C8TA10114K
– ident: ref62/cit62
  doi: 10.1002/adma.201600964
SSID ssj0057876
Score 2.5737426
Snippet Rechargeable batteries are promising platforms for sustainable development of energy conversion and storage technologies. Highly efficient multifunctional...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10438
Title Phase Engineering of Iron–Cobalt Sulfides for Zn–Air and Na–Ion Batteries
URI http://dx.doi.org/10.1021/acsnano.0c04309
https://www.proquest.com/docview/2427303356
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA4uFz24izsRPHjp2DZNmh6HQXEEF1BBvJSsKEoq087Fk__Bf-gv8aXtjBuix6ZNSF_e9uWFLwjtZQIQtU0t2LdUQaIFDSRhSUCkYmlmE07rDf3TM3Z8nZzc0JsPsujvFfw4OhCqdMIVnVB5eqpsEk3HjKceZ3V7lyOn6_WONQVkAMiQRYxZfH4M4MOQKr-Goa9euA4tR_PNoayyZiT0J0oeOsNKdtTzT77Gv2e9gObaBBN3G41YRBPGLaHZT7SDy-j84g5iF_7UhguL-4PCvb289jxBSIUvh4_2XpsSQ1KLb_2L7v0AC6fxmYCHfuFwQ80JSHsFXR8dXvWOg_ZihUCAP6kCTrVNE0NTYa1JYhvplEbESgVgiRJluKbEhlJqYTThlkZcy1gKmcksVJrEZBVNucKZNYQ5h9-zTHKeAdaKiIgIIE4dcsOSlEV2He2BKPLWMMq8rnnHUd7KJ2_ls446o-XIVUtO7u_IePy9w_64w1PDy_H7p7uj9c3BdnxBRDhTDMsc0hNwcIRQtvG_aW6imdjj7RC8C91CU9VgaLYhKankTq2O70g43xU
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB5V5QAcSvkTLbQ1UpG4ZEniOHEOHFbbVrv9WZDaShWX4F-xauVUm6xQe-IdeAFehVfhSRhns9sWVIlLJY5x7Mgej2fm8zifATZzgYjaZhbXt1RBogULJE2TgEqVZrlNOGs29A-Gaf842T1hJwvwY_YvDHaiwi9VTRL_il0geodlTriyEyrPUpW3xyj3zMVXBGnV-8EWzuibON7ZPur1g_YegUDg8qkDzrTNEsMyYa1JYhvpjEXUSoXYgFFluGbUhlJqYTTllkVcy1gKmcs8VJp6agM08vewcuzhXbd3OLP1Xt3Tad4acTkGL3PyoL867L2fqm56v5vGv_FoO4_g51wWzUGW086klh11-QdN5P8srGVYasNp0p3q_2NYMO4JPLxGsvgUPnz8gp6aXCsjpSWDcel-ffve83QoNTmcnNmRNhXBEJ588i-6ozERTpOhwIdB6ciUiHRkqmdwfCcjeg6LrnTmBRDOUZw2lZzniCwjKiKK-FqH3KRJlkZ2BTZR9EVrBqqiyfDHUdHOR9HOxwp0ZlpQqJaK3d8IcnZ7g7fzBudTFpLbq76eqVWBlsKnf4Qz5aQqMBhDc04pS1f_rZsbcL9_dLBf7A-Gey_hQex3GkK0q-wVLNbjiVnDcKyW682KIPD5rrXqN_WcRXQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3datRAFD6UFkQvWusP_VE7QgVvsiaZTDK58GLZunStroVaKN7E-aVLy6RsspT2ynfwFXwVX6RP0jPZ7NIqBW8KXmaSCZMz5--bM_kGYDsXiKhtZtG-pQoSLVggaZoEVKo0y23CWbOg_3mY7h4mH4_Y0QL8mv0Lg4Oo8E1VU8T3Vn2mbcswEL3Ddidc2QmVZ6rK262Ue-biHIFa9X6wg7P6Jo77H772doP2LIFAoAnVAWfaZolhmbDWJLGNdMYiaqVCfMCoMlwzakMptTCacssirmUshcxlHipNPb0BOvolXyT0EK_bO5j5e6_y6bR2jdgcE5g5gdBfA_YRUFW3I-DtANBEtf4K_J7Lo9nMctKZ1LKjLv-givzfBfYYltu0mnSndrAKC8Y9gUc3yBafwpf9Y4zY5EYbKS0ZjEt39eNnz9Oi1ORgcmpH2lQEU3nyzd_ojsZEOE2GAi8GpSNTQtKRqZ7B4b180XNYdKUza0A4R3HaVHKeI8KMqIgo4mwdcpMmWRrZddhG0RetO6iKptIfR0U7H0U7H-vQmWlCoVpKdn8yyOndHd7OO5xN2UjufvT1TLUK9Bi-DCScKSdVgUkZunVKWbrxb8Pcggf7O_3i02C4twkPY7_gEKJ7ZS9gsR5PzEvMymr5qjEKAt_vW6muAZObR_c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Engineering+of+Iron%E2%80%93Cobalt+Sulfides+for+Zn%E2%80%93Air+and+Na%E2%80%93Ion+Batteries&rft.jtitle=ACS+nano&rft.au=Lu%2C+Shu&rft.au=Jiang%2C+Jun&rft.au=Yang%2C+Hai&rft.au=Zhang%2C+Ying-Jie&rft.date=2020-08-25&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=14&rft.issue=8&rft.spage=10438&rft.epage=10451&rft_id=info:doi/10.1021%2Facsnano.0c04309&rft.externalDocID=d27245287
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon