Phase Engineering of Iron–Cobalt Sulfides for Zn–Air and Na–Ion Batteries
Rechargeable batteries are promising platforms for sustainable development of energy conversion and storage technologies. Highly efficient multifunctional electrodes based on bimetallic sulfides for rechargeable batteries are extremely desirable but still challenging to tailor with controllable phas...
Saved in:
Published in | ACS nano Vol. 14; no. 8; pp. 10438 - 10451 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
25.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rechargeable batteries are promising platforms for sustainable development of energy conversion and storage technologies. Highly efficient multifunctional electrodes based on bimetallic sulfides for rechargeable batteries are extremely desirable but still challenging to tailor with controllable phase and structure. Here, we report a colloidal strategy to fabricate FeCo-based bimetallic sulfides on reduced graphene oxide (rGO), which are expected to display highly efficient oxygen electrocatalysis and sodium storage performances. Specifically, as-screened FeCo8S8 nanosheets (NSs) on rGO originating from suitable tailoring of the Co9S8 matrix with Fe at the atomic level exhibited a very low potential difference (0.77 V) at 10 mA cm–2 and negligible voltage loss after 200 cycles as an air electrode for Zn–air batteries. For Na–ion batteries, FeCo8S8 NS/rGO demonstrated a superior high-rate capability (188 mAh g–1 at 20 A g–1) with long-term cycling stability. The bifunctional electrocatalytic property and sodium storage performance are attributed to not only the synergistic effect of Fe/Co but also the optimized catalytic activity and ion transport ability by the in situ rGO hybrid. This work demonstrates the potential applications of FeCo-based bimetallic sulfides as efficient electrode materials for both rechargeable Zn–air and Na–ion batteries. |
---|---|
AbstractList | Rechargeable batteries are promising platforms for sustainable development of energy conversion and storage technologies. Highly efficient multifunctional electrodes based on bimetallic sulfides for rechargeable batteries are extremely desirable but still challenging to tailor with controllable phase and structure. Here, we report a colloidal strategy to fabricate FeCo-based bimetallic sulfides on reduced graphene oxide (rGO), which are expected to display highly efficient oxygen electrocatalysis and sodium storage performances. Specifically, as-screened FeCo8S8 nanosheets (NSs) on rGO originating from suitable tailoring of the Co9S8 matrix with Fe at the atomic level exhibited a very low potential difference (0.77 V) at 10 mA cm–2 and negligible voltage loss after 200 cycles as an air electrode for Zn–air batteries. For Na–ion batteries, FeCo8S8 NS/rGO demonstrated a superior high-rate capability (188 mAh g–1 at 20 A g–1) with long-term cycling stability. The bifunctional electrocatalytic property and sodium storage performance are attributed to not only the synergistic effect of Fe/Co but also the optimized catalytic activity and ion transport ability by the in situ rGO hybrid. This work demonstrates the potential applications of FeCo-based bimetallic sulfides as efficient electrode materials for both rechargeable Zn–air and Na–ion batteries. Rechargeable batteries are promising platforms for sustainable development of energy conversion and storage technologies. Highly efficient multifunctional electrodes based on bimetallic sulfides for rechargeable batteries are extremely desirable but still challenging to tailor with controllable phase and structure. Here, we report a colloidal strategy to fabricate FeCo-based bimetallic sulfides on reduced graphene oxide (rGO), which are expected to display highly efficient oxygen electrocatalysis and sodium storage performances. Specifically, as-screened FeCo8S8 nanosheets (NSs) on rGO originating from suitable tailoring of the Co9S8 matrix with Fe at the atomic level exhibited a very low potential difference (0.77 V) at 10 mA cm-2 and negligible voltage loss after 200 cycles as an air electrode for Zn-air batteries. For Na-ion batteries, FeCo8S8 NS/rGO demonstrated a superior high-rate capability (188 mAh g-1 at 20 A g-1) with long-term cycling stability. The bifunctional electrocatalytic property and sodium storage performance are attributed to not only the synergistic effect of Fe/Co but also the optimized catalytic activity and ion transport ability by the in situ rGO hybrid. This work demonstrates the potential applications of FeCo-based bimetallic sulfides as efficient electrode materials for both rechargeable Zn-air and Na-ion batteries.Rechargeable batteries are promising platforms for sustainable development of energy conversion and storage technologies. Highly efficient multifunctional electrodes based on bimetallic sulfides for rechargeable batteries are extremely desirable but still challenging to tailor with controllable phase and structure. Here, we report a colloidal strategy to fabricate FeCo-based bimetallic sulfides on reduced graphene oxide (rGO), which are expected to display highly efficient oxygen electrocatalysis and sodium storage performances. Specifically, as-screened FeCo8S8 nanosheets (NSs) on rGO originating from suitable tailoring of the Co9S8 matrix with Fe at the atomic level exhibited a very low potential difference (0.77 V) at 10 mA cm-2 and negligible voltage loss after 200 cycles as an air electrode for Zn-air batteries. For Na-ion batteries, FeCo8S8 NS/rGO demonstrated a superior high-rate capability (188 mAh g-1 at 20 A g-1) with long-term cycling stability. The bifunctional electrocatalytic property and sodium storage performance are attributed to not only the synergistic effect of Fe/Co but also the optimized catalytic activity and ion transport ability by the in situ rGO hybrid. This work demonstrates the potential applications of FeCo-based bimetallic sulfides as efficient electrode materials for both rechargeable Zn-air and Na-ion batteries. |
Author | Yang, Hai Zhang, Ying-Jie Chen, Jie-Jie Yu, Yan Jiang, Jun Pei, Dan-Ni Lu, Shu |
AuthorAffiliation | University of Science and Technology of China Dalian National Laboratory for Clean Energy (DNL) CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry Chinese Academy of Sciences (CAS) National Synchrotron Radiation Laboratory School of Metallurgy and Environment Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering University of Science & Technology of China |
AuthorAffiliation_xml | – name: University of Science and Technology of China – name: Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering – name: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry – name: Dalian National Laboratory for Clean Energy (DNL) – name: National Synchrotron Radiation Laboratory – name: Chinese Academy of Sciences (CAS) – name: University of Science & Technology of China – name: School of Metallurgy and Environment |
Author_xml | – sequence: 1 givenname: Shu surname: Lu fullname: Lu, Shu organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry – sequence: 2 givenname: Jun orcidid: 0000-0002-7770-1345 surname: Jiang fullname: Jiang, Jun organization: School of Metallurgy and Environment – sequence: 3 givenname: Hai surname: Yang fullname: Yang, Hai organization: University of Science and Technology of China – sequence: 4 givenname: Ying-Jie surname: Zhang fullname: Zhang, Ying-Jie organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry – sequence: 5 givenname: Dan-Ni surname: Pei fullname: Pei, Dan-Ni organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry – sequence: 6 givenname: Jie-Jie orcidid: 0000-0002-2539-8305 surname: Chen fullname: Chen, Jie-Jie email: chenjiej@ustc.edu.cn organization: University of Science & Technology of China – sequence: 7 givenname: Yan orcidid: 0000-0002-3685-7773 surname: Yu fullname: Yu, Yan email: yanyumse@ustc.edu.cn organization: Chinese Academy of Sciences (CAS) |
BookMark | eNp9kMtKAzEUhoNUsK2u3WYpyLTJZDKXZS1VC8UKKoibIdeaMk1qklm48x18Q5_EKS0uBF2dc_j_7yy-AehZZxUA5xiNMErxmIlgmXUjJFBGUHUE-rgieYLK_Ln3s1N8AgYhrBGiRVnkfbC8f2VBwZldGauUN3YFnYZz7-zXx-fUcdZE-NA22kgVoHYevuyCifGQWQnvWHfMnYVXLMaOVuEUHGvWBHV2mEPwdD17nN4mi-XNfDpZJIwUeUxKKnWRKVowrVWWaiwLionmoqI5JUKVkhKNOJdMSVJqikvJU854xSskJEnJEFzs_269e2tViPXGBKGahlnl2lCnWVoQRAjNu-p4XxXeheCVrrfebJh_rzGqd-rqg7r6oK4j6C9CmMiicTZ6Zpp_uMs91wX12rXedgr-bH8DbouJUg |
CitedBy_id | crossref_primary_10_1016_j_mtener_2022_100968 crossref_primary_10_1016_j_apsusc_2023_158975 crossref_primary_10_1016_j_jallcom_2022_168608 crossref_primary_10_1016_j_jallcom_2022_166864 crossref_primary_10_1016_j_electacta_2024_143767 crossref_primary_10_1016_j_ijhydene_2022_11_227 crossref_primary_10_1002_smtd_202401515 crossref_primary_10_1088_1361_6528_ad4b21 crossref_primary_10_1016_j_cej_2021_131784 crossref_primary_10_26599_NRE_2023_9120092 crossref_primary_10_1039_D4YA00551A crossref_primary_10_1016_j_jpowsour_2022_232519 crossref_primary_10_1016_j_jechem_2021_05_011 crossref_primary_10_3390_molecules29235721 crossref_primary_10_1021_acscatal_1c05190 crossref_primary_10_1002_smtd_202400475 crossref_primary_10_1016_j_ensm_2024_103880 crossref_primary_10_1039_D4TA06049K crossref_primary_10_1021_acs_est_3c05608 crossref_primary_10_1002_asia_202100700 crossref_primary_10_1021_acsami_2c00067 crossref_primary_10_1002_smsc_202300094 crossref_primary_10_1021_acsomega_2c06429 crossref_primary_10_1016_j_cej_2021_133274 crossref_primary_10_1039_D1TA00256B crossref_primary_10_1002_eem2_12409 crossref_primary_10_1016_j_jcis_2024_06_220 crossref_primary_10_1007_s42823_023_00550_y crossref_primary_10_1002_cey2_567 crossref_primary_10_1039_D2TA00164K crossref_primary_10_1016_j_ensm_2021_04_032 crossref_primary_10_1149_1945_7111_ad0a7b crossref_primary_10_1016_j_apsusc_2023_157106 crossref_primary_10_1002_cctc_202400555 crossref_primary_10_1016_j_cherd_2023_07_038 crossref_primary_10_1016_j_electacta_2022_141444 crossref_primary_10_1016_j_apcatb_2024_124988 crossref_primary_10_1021_acsami_3c16216 crossref_primary_10_1007_s11771_022_5149_8 crossref_primary_10_1002_aenm_202300739 crossref_primary_10_1002_adfm_202212160 crossref_primary_10_1016_j_fuel_2023_130256 crossref_primary_10_1016_j_colsurfa_2022_129181 crossref_primary_10_1002_er_7615 crossref_primary_10_1016_j_jmrt_2022_04_048 crossref_primary_10_1039_D3NJ03862A crossref_primary_10_1016_j_apsusc_2021_151911 crossref_primary_10_1016_j_jcis_2023_07_151 crossref_primary_10_1021_acs_langmuir_2c01882 crossref_primary_10_1039_D2TA03554E crossref_primary_10_1021_acsami_3c03501 crossref_primary_10_1002_cnl2_133 crossref_primary_10_1016_j_ensm_2021_10_040 crossref_primary_10_26599_NRE_2023_9120039 crossref_primary_10_1021_acssuschemeng_0c08328 crossref_primary_10_1021_acsami_4c10727 crossref_primary_10_1021_acscatal_1c01300 crossref_primary_10_1016_j_jcis_2022_06_094 crossref_primary_10_1039_D2TA06471E crossref_primary_10_1016_j_fuel_2023_127399 crossref_primary_10_1016_j_est_2025_115822 crossref_primary_10_1021_acsami_1c00579 crossref_primary_10_1039_D4CC01343C crossref_primary_10_1039_D4EY00014E crossref_primary_10_1002_adfm_202110572 crossref_primary_10_1039_D1NJ05062A crossref_primary_10_1016_j_cis_2023_102891 crossref_primary_10_1016_j_apsusc_2021_150757 |
Cites_doi | 10.1002/adma.201802745 10.1002/anie.201600750 10.1002/anie.201402710 10.1039/C8CS00297E 10.1021/ja511572q 10.1016/S0920-5861(03)00411-5 10.1002/cctc.201000397 10.1149/1.1394046 10.1002/smtd.201700231 10.1021/cs400727f 10.1002/aenm.201902312 10.1002/adfm.201601420 10.1021/acsami.8b07207 10.1039/c3ee00066d 10.1038/am.2016.132 10.1016/j.nanoen.2017.09.022 10.1016/j.electacta.2016.01.137 10.1039/C7NR06886G 10.1039/C6TA07962H 10.1002/aenm.201700544 10.1039/C6EE00054A 10.1038/nmat3087 10.1021/am507811a 10.1002/aenm.201600943 10.1021/acsami.6b11498 10.1002/adfm.201702116 10.1021/acsnano.7b07132 10.1016/j.carbon.2015.06.064 10.1002/advs.201900628 10.1021/acs.accounts.8b00266 10.1166/jnn.2017.13428 10.1007/s40820-018-0232-2 10.1021/acs.chemrev.5b00073 10.1039/C6DT00536E 10.1016/j.carbon.2012.01.033 10.1021/jacs.6b05046 10.1021/jp047349j 10.1039/C5EE02903A 10.1039/c3nr05835b 10.1039/C9TA14231B 10.1039/C4EE03869J 10.1016/j.nanoen.2015.11.030 10.1016/j.carbon.2020.02.040 10.1016/j.jpowsour.2015.05.117 10.1039/C8QI01144C 10.1016/j.nantod.2016.12.001 10.1016/j.apcatb.2019.01.082 10.1002/adma.201805230 10.1021/am507033x 10.1021/acsnano.9b08396 10.1021/acsami.9b07311 10.1002/adfm.201503907 10.1039/C6TA00173D 10.1021/jacs.7b07117 10.1016/j.nanoen.2016.12.008 10.1016/j.cej.2019.122695 10.1039/C6CS00776G 10.1021/acsami.7b10173 10.1038/s41570-020-0184-1 10.1002/adfm.201600674 10.1002/aenm.201902485 10.1021/jp210796e 10.1149/2.0081514jes 10.1016/j.mattod.2019.09.018 10.1039/C8TA10114K 10.1002/adma.201600964 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acsnano.0c04309 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 10451 |
ExternalDocumentID | 10_1021_acsnano_0c04309 d27245287 |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK 7X8 |
ID | FETCH-LOGICAL-a376t-85df74e57affe42f1d7513fbc95653ce8d53f0bbdaed38f518db2bab9b90cd323 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 09:51:01 EDT 2025 Tue Jul 01 03:37:02 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 Thu Aug 27 09:09:48 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | iron cobalt sulfides Zn−air battery alloying and support effect energy storage Na−ion battery |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a376t-85df74e57affe42f1d7513fbc95653ce8d53f0bbdaed38f518db2bab9b90cd323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2539-8305 0000-0002-3685-7773 0000-0002-7770-1345 |
PQID | 2427303356 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2427303356 crossref_primary_10_1021_acsnano_0c04309 crossref_citationtrail_10_1021_acsnano_0c04309 acs_journals_10_1021_acsnano_0c04309 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-25 |
PublicationDateYYYYMMDD | 2020-08-25 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref32/cit32 doi: 10.1002/adma.201802745 – ident: ref3/cit3 doi: 10.1002/anie.201600750 – ident: ref50/cit50 doi: 10.1002/anie.201402710 – ident: ref1/cit1 doi: 10.1039/C8CS00297E – ident: ref36/cit36 doi: 10.1021/ja511572q – ident: ref17/cit17 doi: 10.1016/S0920-5861(03)00411-5 – ident: ref57/cit57 doi: 10.1002/cctc.201000397 – ident: ref59/cit59 doi: 10.1149/1.1394046 – ident: ref4/cit4 doi: 10.1002/smtd.201700231 – ident: ref55/cit55 doi: 10.1021/cs400727f – ident: ref15/cit15 doi: 10.1002/aenm.201902312 – ident: ref60/cit60 doi: 10.1002/adfm.201601420 – ident: ref25/cit25 doi: 10.1021/acsami.8b07207 – ident: ref37/cit37 doi: 10.1039/c3ee00066d – ident: ref46/cit46 doi: 10.1038/am.2016.132 – ident: ref64/cit64 doi: 10.1016/j.nanoen.2017.09.022 – ident: ref43/cit43 doi: 10.1016/j.electacta.2016.01.137 – ident: ref66/cit66 doi: 10.1039/C7NR06886G – ident: ref45/cit45 doi: 10.1039/C6TA07962H – ident: ref14/cit14 doi: 10.1002/aenm.201700544 – ident: ref44/cit44 doi: 10.1039/C6EE00054A – ident: ref49/cit49 doi: 10.1038/nmat3087 – ident: ref35/cit35 doi: 10.1021/am507811a – ident: ref7/cit7 doi: 10.1002/aenm.201600943 – ident: ref16/cit16 doi: 10.1021/acsami.6b11498 – ident: ref30/cit30 doi: 10.1002/adfm.201702116 – ident: ref63/cit63 doi: 10.1021/acsnano.7b07132 – ident: ref61/cit61 doi: 10.1016/j.carbon.2015.06.064 – ident: ref27/cit27 doi: 10.1002/advs.201900628 – ident: ref11/cit11 doi: 10.1021/acs.accounts.8b00266 – ident: ref23/cit23 doi: 10.1166/jnn.2017.13428 – ident: ref29/cit29 doi: 10.1007/s40820-018-0232-2 – ident: ref54/cit54 doi: 10.1021/acs.chemrev.5b00073 – ident: ref42/cit42 doi: 10.1039/C6DT00536E – ident: ref34/cit34 doi: 10.1016/j.carbon.2012.01.033 – ident: ref48/cit48 doi: 10.1021/jacs.6b05046 – ident: ref56/cit56 doi: 10.1021/jp047349j – ident: ref47/cit47 doi: 10.1039/C5EE02903A – ident: ref51/cit51 doi: 10.1039/c3nr05835b – ident: ref12/cit12 doi: 10.1039/C9TA14231B – ident: ref53/cit53 doi: 10.1039/C4EE03869J – ident: ref52/cit52 doi: 10.1016/j.nanoen.2015.11.030 – ident: ref21/cit21 doi: 10.1016/j.carbon.2020.02.040 – ident: ref38/cit38 doi: 10.1016/j.jpowsour.2015.05.117 – ident: ref65/cit65 doi: 10.1039/C8QI01144C – ident: ref24/cit24 doi: 10.1016/j.nantod.2016.12.001 – ident: ref19/cit19 doi: 10.1016/j.apcatb.2019.01.082 – ident: ref8/cit8 doi: 10.1002/adma.201805230 – ident: ref41/cit41 doi: 10.1021/am507033x – ident: ref13/cit13 doi: 10.1021/acsnano.9b08396 – ident: ref18/cit18 doi: 10.1021/acsami.9b07311 – ident: ref39/cit39 doi: 10.1002/adfm.201503907 – ident: ref5/cit5 doi: 10.1039/C6TA00173D – ident: ref26/cit26 doi: 10.1021/jacs.7b07117 – ident: ref28/cit28 doi: 10.1016/j.nanoen.2016.12.008 – ident: ref22/cit22 doi: 10.1016/j.cej.2019.122695 – ident: ref6/cit6 doi: 10.1039/C6CS00776G – ident: ref31/cit31 doi: 10.1021/acsami.7b10173 – ident: ref20/cit20 doi: 10.1038/s41570-020-0184-1 – ident: ref40/cit40 doi: 10.1002/adfm.201600674 – ident: ref10/cit10 doi: 10.1002/aenm.201902485 – ident: ref58/cit58 doi: 10.1021/jp210796e – ident: ref2/cit2 doi: 10.1149/2.0081514jes – ident: ref9/cit9 doi: 10.1016/j.mattod.2019.09.018 – ident: ref33/cit33 doi: 10.1039/C8TA10114K – ident: ref62/cit62 doi: 10.1002/adma.201600964 |
SSID | ssj0057876 |
Score | 2.5737426 |
Snippet | Rechargeable batteries are promising platforms for sustainable development of energy conversion and storage technologies. Highly efficient multifunctional... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10438 |
Title | Phase Engineering of Iron–Cobalt Sulfides for Zn–Air and Na–Ion Batteries |
URI | http://dx.doi.org/10.1021/acsnano.0c04309 https://www.proquest.com/docview/2427303356 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA4uFz24izsRPHjp2DZNmh6HQXEEF1BBvJSsKEoq087Fk__Bf-gv8aXtjBuix6ZNSF_e9uWFLwjtZQIQtU0t2LdUQaIFDSRhSUCkYmlmE07rDf3TM3Z8nZzc0JsPsujvFfw4OhCqdMIVnVB5eqpsEk3HjKceZ3V7lyOn6_WONQVkAMiQRYxZfH4M4MOQKr-Goa9euA4tR_PNoayyZiT0J0oeOsNKdtTzT77Gv2e9gObaBBN3G41YRBPGLaHZT7SDy-j84g5iF_7UhguL-4PCvb289jxBSIUvh4_2XpsSQ1KLb_2L7v0AC6fxmYCHfuFwQ80JSHsFXR8dXvWOg_ZihUCAP6kCTrVNE0NTYa1JYhvplEbESgVgiRJluKbEhlJqYTThlkZcy1gKmcksVJrEZBVNucKZNYQ5h9-zTHKeAdaKiIgIIE4dcsOSlEV2He2BKPLWMMq8rnnHUd7KJ2_ls446o-XIVUtO7u_IePy9w_64w1PDy_H7p7uj9c3BdnxBRDhTDMsc0hNwcIRQtvG_aW6imdjj7RC8C91CU9VgaLYhKankTq2O70g43xU |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB5V5QAcSvkTLbQ1UpG4ZEniOHEOHFbbVrv9WZDaShWX4F-xauVUm6xQe-IdeAFehVfhSRhns9sWVIlLJY5x7Mgej2fm8zifATZzgYjaZhbXt1RBogULJE2TgEqVZrlNOGs29A-Gaf842T1hJwvwY_YvDHaiwi9VTRL_il0geodlTriyEyrPUpW3xyj3zMVXBGnV-8EWzuibON7ZPur1g_YegUDg8qkDzrTNEsMyYa1JYhvpjEXUSoXYgFFluGbUhlJqYTTllkVcy1gKmcs8VJp6agM08vewcuzhXbd3OLP1Xt3Tad4acTkGL3PyoL867L2fqm56v5vGv_FoO4_g51wWzUGW086klh11-QdN5P8srGVYasNp0p3q_2NYMO4JPLxGsvgUPnz8gp6aXCsjpSWDcel-ffve83QoNTmcnNmRNhXBEJ588i-6ozERTpOhwIdB6ciUiHRkqmdwfCcjeg6LrnTmBRDOUZw2lZzniCwjKiKK-FqH3KRJlkZ2BTZR9EVrBqqiyfDHUdHOR9HOxwp0ZlpQqJaK3d8IcnZ7g7fzBudTFpLbq76eqVWBlsKnf4Qz5aQqMBhDc04pS1f_rZsbcL9_dLBf7A-Gey_hQex3GkK0q-wVLNbjiVnDcKyW682KIPD5rrXqN_WcRXQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3datRAFD6UFkQvWusP_VE7QgVvsiaZTDK58GLZunStroVaKN7E-aVLy6RsspT2ynfwFXwVX6RP0jPZ7NIqBW8KXmaSCZMz5--bM_kGYDsXiKhtZtG-pQoSLVggaZoEVKo0y23CWbOg_3mY7h4mH4_Y0QL8mv0Lg4Oo8E1VU8T3Vn2mbcswEL3Ddidc2QmVZ6rK262Ue-biHIFa9X6wg7P6Jo77H772doP2LIFAoAnVAWfaZolhmbDWJLGNdMYiaqVCfMCoMlwzakMptTCacssirmUshcxlHipNPb0BOvolXyT0EK_bO5j5e6_y6bR2jdgcE5g5gdBfA_YRUFW3I-DtANBEtf4K_J7Lo9nMctKZ1LKjLv-givzfBfYYltu0mnSndrAKC8Y9gUc3yBafwpf9Y4zY5EYbKS0ZjEt39eNnz9Oi1ORgcmpH2lQEU3nyzd_ojsZEOE2GAi8GpSNTQtKRqZ7B4b180XNYdKUza0A4R3HaVHKeI8KMqIgo4mwdcpMmWRrZddhG0RetO6iKptIfR0U7H0U7H-vQmWlCoVpKdn8yyOndHd7OO5xN2UjufvT1TLUK9Bi-DCScKSdVgUkZunVKWbrxb8Pcggf7O_3i02C4twkPY7_gEKJ7ZS9gsR5PzEvMymr5qjEKAt_vW6muAZObR_c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Engineering+of+Iron%E2%80%93Cobalt+Sulfides+for+Zn%E2%80%93Air+and+Na%E2%80%93Ion+Batteries&rft.jtitle=ACS+nano&rft.au=Lu%2C+Shu&rft.au=Jiang%2C+Jun&rft.au=Yang%2C+Hai&rft.au=Zhang%2C+Ying-Jie&rft.date=2020-08-25&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=14&rft.issue=8&rft.spage=10438&rft.epage=10451&rft_id=info:doi/10.1021%2Facsnano.0c04309&rft.externalDocID=d27245287 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |