Learning Shapelets for Improving Single-Molecule Nanopore Sensing

The nanopore technique employs a nanoscale cavity to electrochemically confine individual molecules, achieving ultrasensitive single-molecule analysis based on evaluating the amplitude and duration of the ionic current. However, each nanopore sensing interface has its own intrinsic sensing ability,...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 91; no. 15; pp. 10033 - 10039
Main Authors Wei, Zi-Xuan, Ying, Yi-Lun, Li, Meng-Yin, Yang, Jie, Zhou, Jia-Le, Wang, Hui-Feng, Yan, Bing-Yong, Long, Yi-Tao
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 06.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The nanopore technique employs a nanoscale cavity to electrochemically confine individual molecules, achieving ultrasensitive single-molecule analysis based on evaluating the amplitude and duration of the ionic current. However, each nanopore sensing interface has its own intrinsic sensing ability, which does not always efficiently generate distinctive blockade currents for multiple analytes. Therefore, analytes that differ at only a single site often exhibit similar blockade currents or durations in nanopore experiments, which often produces serious overlap in the resulting statistical graphs. To improve the sensing ability of nanopores, herein we propose a novel shapelet-based machine learning approach to discriminate mixed analytes that exhibit nearly identical blockade current amplitudes and durations. DNA oligomers with a single-nucleotide difference, 5′-AAAA-3′ and 5′-GAAA-3′, are employed as model analytes that are difficult to identify in aerolysin nanopores at 100 mV. First, a set of the most informative and discriminative segments are learned from the time-series data set of blockade current signals using the learning time-series shapelets (LTS) algorithm. Then, the shapelet-transformed representation of the signals is obtained by calculating the minimum distance between the shapelets and the original signals. A simple logistic classifier is used to identify the two types of DNA oligomers in accordance with the corresponding shapelet-transformed representation. Finally, an evaluation is performed on the validation data set to show that our approach can achieve a high F 1 score of 0.933. In comparison with the conventional statistical methods for the analysis of duration and residual current, the shapelet-transformed representation provides clearly discriminated distributions for multiple analytes. Taking advantage of the robust LTS algorithm, one could anticipate the real-time analysis of nanopore events for the direct identification and quantification of multiple biomolecules in a complex real sample (e.g., serum) without labels and time-consuming mutagenesis.
AbstractList The nanopore technique employs a nanoscale cavity to electrochemically confine individual molecules, achieving ultrasensitive single-molecule analysis based on evaluating the amplitude and duration of the ionic current. However, each nanopore sensing interface has its own intrinsic sensing ability, which does not always efficiently generate distinctive blockade currents for multiple analytes. Therefore, analytes that differ at only a single site often exhibit similar blockade currents or durations in nanopore experiments, which often produces serious overlap in the resulting statistical graphs. To improve the sensing ability of nanopores, herein we propose a novel shapelet-based machine learning approach to discriminate mixed analytes that exhibit nearly identical blockade current amplitudes and durations. DNA oligomers with a single-nucleotide difference, 5'-AAAA-3' and 5'-GAAA-3', are employed as model analytes that are difficult to identify in aerolysin nanopores at 100 mV. First, a set of the most informative and discriminative segments are learned from the time-series data set of blockade current signals using the learning time-series shapelets (LTS) algorithm. Then, the shapelet-transformed representation of the signals is obtained by calculating the minimum distance between the shapelets and the original signals. A simple logistic classifier is used to identify the two types of DNA oligomers in accordance with the corresponding shapelet-transformed representation. Finally, an evaluation is performed on the validation data set to show that our approach can achieve a high score of 0.933. In comparison with the conventional statistical methods for the analysis of duration and residual current, the shapelet-transformed representation provides clearly discriminated distributions for multiple analytes. Taking advantage of the robust LTS algorithm, one could anticipate the real-time analysis of nanopore events for the direct identification and quantification of multiple biomolecules in a complex real sample (e.g., serum) without labels and time-consuming mutagenesis.
The nanopore technique employs a nanoscale cavity to electrochemically confine individual molecules, achieving ultrasensitive single-molecule analysis based on evaluating the amplitude and duration of the ionic current. However, each nanopore sensing interface has its own intrinsic sensing ability, which does not always efficiently generate distinctive blockade currents for multiple analytes. Therefore, analytes that differ at only a single site often exhibit similar blockade currents or durations in nanopore experiments, which often produces serious overlap in the resulting statistical graphs. To improve the sensing ability of nanopores, herein we propose a novel shapelet-based machine learning approach to discriminate mixed analytes that exhibit nearly identical blockade current amplitudes and durations. DNA oligomers with a single-nucleotide difference, 5′-AAAA-3′ and 5′-GAAA-3′, are employed as model analytes that are difficult to identify in aerolysin nanopores at 100 mV. First, a set of the most informative and discriminative segments are learned from the time-series data set of blockade current signals using the learning time-series shapelets (LTS) algorithm. Then, the shapelet-transformed representation of the signals is obtained by calculating the minimum distance between the shapelets and the original signals. A simple logistic classifier is used to identify the two types of DNA oligomers in accordance with the corresponding shapelet-transformed representation. Finally, an evaluation is performed on the validation data set to show that our approach can achieve a high F 1 score of 0.933. In comparison with the conventional statistical methods for the analysis of duration and residual current, the shapelet-transformed representation provides clearly discriminated distributions for multiple analytes. Taking advantage of the robust LTS algorithm, one could anticipate the real-time analysis of nanopore events for the direct identification and quantification of multiple biomolecules in a complex real sample (e.g., serum) without labels and time-consuming mutagenesis.
The nanopore technique employs a nanoscale cavity to electrochemically confine individual molecules, achieving ultrasensitive single-molecule analysis based on evaluating the amplitude and duration of the ionic current. However, each nanopore sensing interface has its own intrinsic sensing ability, which does not always efficiently generate distinctive blockade currents for multiple analytes. Therefore, analytes that differ at only a single site often exhibit similar blockade currents or durations in nanopore experiments, which often produces serious overlap in the resulting statistical graphs. To improve the sensing ability of nanopores, herein we propose a novel shapelet-based machine learning approach to discriminate mixed analytes that exhibit nearly identical blockade current amplitudes and durations. DNA oligomers with a single-nucleotide difference, 5′-AAAA-3′ and 5′-GAAA-3′, are employed as model analytes that are difficult to identify in aerolysin nanopores at 100 mV. First, a set of the most informative and discriminative segments are learned from the time-series data set of blockade current signals using the learning time-series shapelets (LTS) algorithm. Then, the shapelet-transformed representation of the signals is obtained by calculating the minimum distance between the shapelets and the original signals. A simple logistic classifier is used to identify the two types of DNA oligomers in accordance with the corresponding shapelet-transformed representation. Finally, an evaluation is performed on the validation data set to show that our approach can achieve a high F1 score of 0.933. In comparison with the conventional statistical methods for the analysis of duration and residual current, the shapelet-transformed representation provides clearly discriminated distributions for multiple analytes. Taking advantage of the robust LTS algorithm, one could anticipate the real-time analysis of nanopore events for the direct identification and quantification of multiple biomolecules in a complex real sample (e.g., serum) without labels and time-consuming mutagenesis.
Author Long, Yi-Tao
Wang, Hui-Feng
Yan, Bing-Yong
Yang, Jie
Wei, Zi-Xuan
Ying, Yi-Lun
Zhou, Jia-Le
Li, Meng-Yin
AuthorAffiliation School of Information and Engineering
School of Chemistry and Molecule Engineering
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering
Nanjing University
AuthorAffiliation_xml – name: School of Chemistry and Molecule Engineering
– name: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering
– name: Nanjing University
– name: School of Information and Engineering
Author_xml – sequence: 1
  givenname: Zi-Xuan
  surname: Wei
  fullname: Wei, Zi-Xuan
  organization: School of Information and Engineering
– sequence: 2
  givenname: Yi-Lun
  orcidid: 0000-0001-6217-256X
  surname: Ying
  fullname: Ying, Yi-Lun
  email: yilunying@ecust.edu.cn
  organization: Nanjing University
– sequence: 3
  givenname: Meng-Yin
  surname: Li
  fullname: Li, Meng-Yin
  organization: School of Chemistry and Molecule Engineering
– sequence: 4
  givenname: Jie
  surname: Yang
  fullname: Yang, Jie
  organization: School of Chemistry and Molecule Engineering
– sequence: 5
  givenname: Jia-Le
  surname: Zhou
  fullname: Zhou, Jia-Le
  organization: School of Information and Engineering
– sequence: 6
  givenname: Hui-Feng
  surname: Wang
  fullname: Wang, Hui-Feng
  email: whuifeng@ecust.edu.cn
  organization: School of Information and Engineering
– sequence: 7
  givenname: Bing-Yong
  surname: Yan
  fullname: Yan, Bing-Yong
  organization: School of Information and Engineering
– sequence: 8
  givenname: Yi-Tao
  orcidid: 0000-0003-2571-7457
  surname: Long
  fullname: Long, Yi-Tao
  organization: Nanjing University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31083925$$D View this record in MEDLINE/PubMed
BookMark eNp9kElPwzAQhS0Eogv8A4QicU4Z2_GSY1WxVCpwKJwtJ7FpqyQOdoPEv8ely5HLjDTz3pvRN0LnrWsNQjcYJhgIvtdlmOhW1-XKNJO8ACxzfoaGmBFIuZTkHA0BgKZEAAzQKIQNAMaA-SUaUAyS5oQN0XRhtG_X7WeyXOnO1GYbEut8Mm86777_5rHUJn1xtSn72iSvunWd8yZZmjbE3RW6sLoO5vrQx-jj8eF99pwu3p7ms-ki1VTwbSqYqEhGGHBKKwElM5QYXOY5tkJIEv_nBZFEYy7zCktrKyxsBqzgnFngmI7R3T43PvbVm7BVG9f7CCAoQoSIRzLOoirbq0rvQvDGqs6vG-1_FAa146YiN3Xkpg7cou32EN4XjalOpiOoKIC9YGc_Hf438xffqXyJ
CitedBy_id crossref_primary_10_1021_acsnano_2c01017
crossref_primary_10_1038_s41578_020_0229_6
crossref_primary_10_3389_fnano_2021_628861
crossref_primary_10_1016_j_coelec_2020_100675
crossref_primary_10_1021_acsami_9b19544
crossref_primary_10_3390_bios12121152
crossref_primary_10_1021_acsnano_3c05628
crossref_primary_10_1002_ange_202203769
crossref_primary_10_1021_acsnano_0c03215
crossref_primary_10_1021_acscentsci_2c01256
crossref_primary_10_1021_acs_analchem_2c05105
crossref_primary_10_1021_acssensors_1c01618
crossref_primary_10_12677_AAC_2022_122015
crossref_primary_10_1002_smll_202205680
crossref_primary_10_1002_cjoc_202100079
crossref_primary_10_1002_smtd_202100191
crossref_primary_10_1021_acs_jpcb_2c06245
crossref_primary_10_1002_asia_202201144
crossref_primary_10_1039_D1FD00055A
crossref_primary_10_1002_anie_202203769
crossref_primary_10_1007_s11427_020_1752_1
crossref_primary_10_1063_5_0049078
crossref_primary_10_1149_1945_7111_ad3a17
crossref_primary_10_1002_ange_202316551
crossref_primary_10_1109_JSEN_2020_3032451
crossref_primary_10_1038_s41596_021_00574_6
crossref_primary_10_1039_D1RA02364K
crossref_primary_10_1002_anie_202316551
crossref_primary_10_1021_acsnano_3c08433
crossref_primary_10_1021_acsabm_1c00587
Cites_doi 10.1021/ja4053398
10.1002/elps.201200136
10.1039/C6NR09135K
10.1021/nn405761y
10.1038/nbt.3622
10.1145/2339530.2339579
10.1073/pnas.93.24.13770
10.1021/ja3043646
10.2183/pjab.86.920
10.1021/bi0604835
10.1021/acssensors.8b00021
10.1021/la803556p
10.1073/pnas.0807514106
10.1021/ja1073245
10.1016/j.tree.2014.04.003
10.1039/C8FD00023A
10.1021/acs.analchem.6b03725
10.1021/ac4020929
10.1038/s41598-017-18364-0
10.1038/nature13768
10.1021/acsnano.5b02096
10.1109/ICDM.2016.0179
10.1038/nnano.2009.259
10.1021/ac5028758
10.1021/acs.accounts.7b00143
10.1145/1557019.1557122
10.1145/2623330.2623613
10.1021/acs.nanolett.8b04388
10.1039/C4AN00706A
10.1073/pnas.97.3.1079
10.1093/gigascience/giy037
10.1007/s11426-017-9082-5
10.1002/celc.201800288
10.1021/am5056596
10.1016/j.procs.2018.03.025
10.1007/s10618-017-0519-9
ContentType Journal Article
Copyright Copyright American Chemical Society Aug 6, 2019
Copyright_xml – notice: Copyright American Chemical Society Aug 6, 2019
DBID NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1021/acs.analchem.9b01896
DatabaseName PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle PubMed
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Statistics
EISSN 1520-6882
EndPage 10039
ExternalDocumentID 10_1021_acs_analchem_9b01896
31083925
c010704338
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
1AW
23M
53G
53T
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
XFK
YZZ
---
-DZ
-~X
.DC
4.4
6J9
AAHBH
ABHFT
ABHMW
ABJNI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
AGXLV
AHGAQ
CUPRZ
GGK
KZ1
LMP
NPM
XSW
ZCA
~02
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-a376t-757d24250633d70c5e32e1c991f7782b016b282a1689d18ffd17f405b665f0613
IEDL.DBID ACS
ISSN 0003-2700
IngestDate Thu Oct 10 17:47:34 EDT 2024
Fri Aug 23 03:01:14 EDT 2024
Sat Sep 28 08:30:49 EDT 2024
Thu Aug 27 13:44:01 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a376t-757d24250633d70c5e32e1c991f7782b016b282a1689d18ffd17f405b665f0613
ORCID 0000-0001-6217-256X
0000-0003-2571-7457
PMID 31083925
PQID 2277376465
PQPubID 45400
PageCount 7
ParticipantIDs proquest_journals_2277376465
crossref_primary_10_1021_acs_analchem_9b01896
pubmed_primary_31083925
acs_journals_10_1021_acs_analchem_9b01896
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20190806
2019-08-06
PublicationDateYYYYMMDD 2019-08-06
PublicationDate_xml – month: 08
  year: 2019
  text: 20190806
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref18/cit18
  doi: 10.1021/ja4053398
– ident: ref3/cit3
  doi: 10.1002/elps.201200136
– ident: ref8/cit8
  doi: 10.1039/C6NR09135K
– ident: ref13/cit13
  doi: 10.1021/nn405761y
– ident: ref22/cit22
  doi: 10.1038/nbt.3622
– ident: ref35/cit35
  doi: 10.1145/2339530.2339579
– ident: ref1/cit1
  doi: 10.1073/pnas.93.24.13770
– ident: ref19/cit19
  doi: 10.1021/ja3043646
– ident: ref4/cit4
– ident: ref20/cit20
  doi: 10.2183/pjab.86.920
– ident: ref23/cit23
  doi: 10.1021/bi0604835
– ident: ref36/cit36
– ident: ref30/cit30
  doi: 10.1021/acssensors.8b00021
– ident: ref15/cit15
  doi: 10.1021/la803556p
– ident: ref16/cit16
  doi: 10.1073/pnas.0807514106
– ident: ref25/cit25
  doi: 10.1021/ja1073245
– ident: ref5/cit5
  doi: 10.1016/j.tree.2014.04.003
– ident: ref11/cit11
  doi: 10.1039/C8FD00023A
– ident: ref12/cit12
  doi: 10.1021/acs.analchem.6b03725
– ident: ref27/cit27
  doi: 10.1021/ac4020929
– ident: ref34/cit34
– ident: ref7/cit7
  doi: 10.1038/s41598-017-18364-0
– ident: ref21/cit21
  doi: 10.1038/nature13768
– ident: ref39/cit39
– ident: ref28/cit28
  doi: 10.1021/acsnano.5b02096
– ident: ref40/cit40
  doi: 10.1109/ICDM.2016.0179
– ident: ref17/cit17
  doi: 10.1038/nnano.2009.259
– ident: ref14/cit14
  doi: 10.1021/ac5028758
– ident: ref10/cit10
  doi: 10.1021/acs.accounts.7b00143
– ident: ref31/cit31
  doi: 10.1145/1557019.1557122
– ident: ref32/cit32
  doi: 10.1145/2623330.2623613
– ident: ref37/cit37
  doi: 10.1021/acs.nanolett.8b04388
– ident: ref6/cit6
  doi: 10.1039/C4AN00706A
– ident: ref2/cit2
  doi: 10.1073/pnas.97.3.1079
– ident: ref29/cit29
  doi: 10.1093/gigascience/giy037
– ident: ref9/cit9
  doi: 10.1007/s11426-017-9082-5
– ident: ref24/cit24
  doi: 10.1002/celc.201800288
– ident: ref26/cit26
  doi: 10.1021/am5056596
– ident: ref33/cit33
  doi: 10.1016/j.procs.2018.03.025
– ident: ref38/cit38
– ident: ref41/cit41
  doi: 10.1007/s10618-017-0519-9
SSID ssj0011016
Score 2.4965997
Snippet The nanopore technique employs a nanoscale cavity to electrochemically confine individual molecules, achieving ultrasensitive single-molecule analysis based on...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 10033
SubjectTerms Algorithms
Amplitudes
Biomolecules
Chemistry
Datasets
Deoxyribonucleic acid
Detection
DNA
Learning algorithms
Machine learning
Mutagenesis
Nucleotides
Oligomers
Porosity
Representations
Statistical methods
Statistics
Time series
Title Learning Shapelets for Improving Single-Molecule Nanopore Sensing
URI http://dx.doi.org/10.1021/acs.analchem.9b01896
https://www.ncbi.nlm.nih.gov/pubmed/31083925
https://www.proquest.com/docview/2277376465
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIBPUAZg4FFehYI8sDAkxHnYyVhVVBVSYQiVukVJbBcJSBFJF3495zxaHqqAJUMUO_bZsb_Lne8ALiVSRRBr7YSJGBUUyzcSJalBfYRx5dCElWerRndsOHZvJ95kqSh-t-Db9DpOczNGoWIfXswgsbAWtg4bNrcCnaqh1w8XVgOtiTYZ8rRBtTkqt6IWvSGl-dcNaQVllrvNYBfumzM7lZPJkzkvEjN9_xnC8Y8d2YOdGjxJr5op-7AmszZs9pt8b23Y_hSa8AB6deDVKQkftYuULHKCfEsWPyFIiJdnaYyq_LqS4Do9Q5iXJNQ-8dn0EMaDm4f-0KjTLRgxrjKFwT0utAKC0OIIbqWedGxJUwRIxZEjsMEsQQUtpswPBPWVEpQr5L2EMU9pLDiCVjbL5AkQJmTqu8LxAiZdQR0fC3s8Vr5iTBfrwBVKI6o_lzwqLeE2jfTNRkRRLaIOGM34RK9VBI5fnu82g7h8gW1zjp10mdeB42pgF5Uh4GpK9E7_0agz2EJyCkpPQNaFVvE2l-dIJ0VyUU7JDynD3Y0
link.rule.ids 315,783,787,2774,27090,27938,27939,57072,57122
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIBPpQyFgUd5FQpkYGFIiZPaTsaqoirQdkmLukV52EUCWkTShV_POa8CUoW6ZLBi53x24u9y9h3AjUCqcHxlnbDIRwPFsPVACqITG2FcWiRg6dmq4Yj1J-3HKZ1WgBZnYVCIGFuKUyf-KroAuVNlPuoWu_LecgIDG2NbsE25wVXigk7XLZ0HyiAtEuUpv2pxYm5NK2pdCuPf69Ia2EwXnd4-PJfipntNXlvLJGiFX38iOW7cnwPYyzFU62Tz5hAqYl6HWrfI_laH3R-BCo-gk4dhnWnui9owJZJYQ9rVyl8SmouXN6EPs2y7QsOv9gLRXmiu2iE_nx3DpHc_7vb1PPmC7uM3J9E55ZEyRxBhrIgbIRWWKUiIOCk5UgUKzAI013zCbCcitpQR4RLpL2CMSgUJJ1CdL-biDDQWidBuRxZ1mGhHxLKxMuW-tCVjqloDblEbXv7yxF7qFzeJpwoLFXm5ihqgF8PkfWTxOP65v1mM5eoBpsk5drLNaANOs_EtG0PcVcxIzzcQ6hpq_fFw4A0eRk8XsINM5aR7BFkTqsnnUlwityTBVTpLvwF9yOX2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgSDwOPMZrMKAHLhw6lnZJ2uM0mMZjE1KZNHGp2iYZErBNtLvw63G6tgykCcGlh6hxbef1uXZsgHOJqMINtHXCRIAGSt0xQyWJSRwE48omIUvvVnV7rNNv3A7oYK7UFzIRI6U4deLrVT0RKsswQC51e4D6RXHeam5YR4JsGVYoJ5YuXtBseYUDQRulebE87VvNb80toKLPpij-fjYtAJzpwdPegqeC5TTe5KU2TcJa9PEjm-O_ZNqGzQyOGs3Z_NmBJTkqw1orrwJXho25hIW70MzSsQ4N71kHTskkNhD1GsWvCcPDx6s0u7Oqu9LA3XuMEF8ano6UHw33oN--fmx1zKwIgxng3pOYnHKhzRKEMrbg9YhK25IkQlipOKILZJiFaLYFhDmuII5SgnCFKDBkjCoNFvahNBqP5CEYTMjIaQibukw2BLEd7Ex5oBzFmO5WgQvUhp8tothP_eMW8XVjriI_U1EFzHyo_MksL8cv71fz8fz6gGVxjkI2GK3AwWyMC2IIezV2pEd_YOoMVh-u2v79Te_uGNYRWrlpqCCrQil5n8oThC9JeJpO1E_4vuhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Shapelets+for+Improving+Single-Molecule+Nanopore+Sensing&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Wei%2C+Zi-Xuan&rft.au=Ying%2C+Yi-Lun&rft.au=Li%2C+Meng-Yin&rft.au=Yang%2C+Jie&rft.date=2019-08-06&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=91&rft.issue=15&rft.spage=10033&rft.epage=10039&rft_id=info:doi/10.1021%2Facs.analchem.9b01896&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_analchem_9b01896
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon