Reduced Graphene Oxide Conformally Wrapped Silver Nanowire Networks for Flexible Transparent Heating and Electromagnetic Interference Shielding

Metal nanowire networks (MNNs) are promising as transparent electrode materials for a diverse range of optoelectronic devices and also work as active materials for electrical heating and electromagnetic interference (EMI) shielding applications. However, the relatively low performance and poor durab...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 14; no. 7; pp. 8754 - 8765
Main Authors Yang, Yang, Chen, Sai, Li, Wanli, Li, Peng, Ma, Jiangang, Li, Bingsheng, Zhao, Xiaoning, Ju, Zhongshi, Chang, Huicong, Xiao, Lin, Xu, Haiyang, Liu, Yichun
Format Journal Article
LanguageEnglish
Published American Chemical Society 28.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal nanowire networks (MNNs) are promising as transparent electrode materials for a diverse range of optoelectronic devices and also work as active materials for electrical heating and electromagnetic interference (EMI) shielding applications. However, the relatively low performance and poor durability of MNNs are limiting the practical application of the resulting devices. Here, we report a controllable approach to enhance the conductivity and the stability of MNNs with their transmittance remaining unchanged, in which reduced graphene oxide conformally wrapped silver nanowire networks (AgNW@rGO networks) are synthesized by selective electrodeposition of GO nanosheets on AgNWs followed by a pulsed laser irradiation treatment. Experimental characterizations and finite-difference time-domain simulations indicate that pulsed laser irradiation at a specific wavelength not only reduces the GO but also welds the AgNWs together through a surface plasmon resonance process. As a result, the AgNW@rGO networks exhibit low sheet resistance of 3.3 Ω/□, average transmittance of 91.1%, and good flexibility. Wrapping with rGO improves the maximum electrical heating temperature of the AgNW network transparent heaters due to the effective suppression of the oxidation and the migration of surface silver atoms. In addition, excellent EMI shielding effectiveness of up to 35.5 dB in the 8.2–12.4 GHz frequency range is obtained as a consequence of the combined effects of dual reflection, conduction loss, and multiple dielectric polarization relaxation processes.
AbstractList Metal nanowire networks (MNNs) are promising as transparent electrode materials for a diverse range of optoelectronic devices and also work as active materials for electrical heating and electromagnetic interference (EMI) shielding applications. However, the relatively low performance and poor durability of MNNs are limiting the practical application of the resulting devices. Here, we report a controllable approach to enhance the conductivity and the stability of MNNs with their transmittance remaining unchanged, in which reduced graphene oxide conformally wrapped silver nanowire networks (AgNW@rGO networks) are synthesized by selective electrodeposition of GO nanosheets on AgNWs followed by a pulsed laser irradiation treatment. Experimental characterizations and finite-difference time-domain simulations indicate that pulsed laser irradiation at a specific wavelength not only reduces the GO but also welds the AgNWs together through a surface plasmon resonance process. As a result, the AgNW@rGO networks exhibit low sheet resistance of 3.3 Ω/□, average transmittance of 91.1%, and good flexibility. Wrapping with rGO improves the maximum electrical heating temperature of the AgNW network transparent heaters due to the effective suppression of the oxidation and the migration of surface silver atoms. In addition, excellent EMI shielding effectiveness of up to 35.5 dB in the 8.2-12.4 GHz frequency range is obtained as a consequence of the combined effects of dual reflection, conduction loss, and multiple dielectric polarization relaxation processes.Metal nanowire networks (MNNs) are promising as transparent electrode materials for a diverse range of optoelectronic devices and also work as active materials for electrical heating and electromagnetic interference (EMI) shielding applications. However, the relatively low performance and poor durability of MNNs are limiting the practical application of the resulting devices. Here, we report a controllable approach to enhance the conductivity and the stability of MNNs with their transmittance remaining unchanged, in which reduced graphene oxide conformally wrapped silver nanowire networks (AgNW@rGO networks) are synthesized by selective electrodeposition of GO nanosheets on AgNWs followed by a pulsed laser irradiation treatment. Experimental characterizations and finite-difference time-domain simulations indicate that pulsed laser irradiation at a specific wavelength not only reduces the GO but also welds the AgNWs together through a surface plasmon resonance process. As a result, the AgNW@rGO networks exhibit low sheet resistance of 3.3 Ω/□, average transmittance of 91.1%, and good flexibility. Wrapping with rGO improves the maximum electrical heating temperature of the AgNW network transparent heaters due to the effective suppression of the oxidation and the migration of surface silver atoms. In addition, excellent EMI shielding effectiveness of up to 35.5 dB in the 8.2-12.4 GHz frequency range is obtained as a consequence of the combined effects of dual reflection, conduction loss, and multiple dielectric polarization relaxation processes.
Metal nanowire networks (MNNs) are promising as transparent electrode materials for a diverse range of optoelectronic devices and also work as active materials for electrical heating and electromagnetic interference (EMI) shielding applications. However, the relatively low performance and poor durability of MNNs are limiting the practical application of the resulting devices. Here, we report a controllable approach to enhance the conductivity and the stability of MNNs with their transmittance remaining unchanged, in which reduced graphene oxide conformally wrapped silver nanowire networks (AgNW@rGO networks) are synthesized by selective electrodeposition of GO nanosheets on AgNWs followed by a pulsed laser irradiation treatment. Experimental characterizations and finite-difference time-domain simulations indicate that pulsed laser irradiation at a specific wavelength not only reduces the GO but also welds the AgNWs together through a surface plasmon resonance process. As a result, the AgNW@rGO networks exhibit low sheet resistance of 3.3 Ω/□, average transmittance of 91.1%, and good flexibility. Wrapping with rGO improves the maximum electrical heating temperature of the AgNW network transparent heaters due to the effective suppression of the oxidation and the migration of surface silver atoms. In addition, excellent EMI shielding effectiveness of up to 35.5 dB in the 8.2–12.4 GHz frequency range is obtained as a consequence of the combined effects of dual reflection, conduction loss, and multiple dielectric polarization relaxation processes.
Author Chen, Sai
Li, Wanli
Liu, Yichun
Zhao, Xiaoning
Chang, Huicong
Li, Peng
Ma, Jiangang
Yang, Yang
Li, Bingsheng
Xiao, Lin
Xu, Haiyang
Ju, Zhongshi
AuthorAffiliation Qian Xuesen Laboratory of Space Technology
Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education
Center for Functional Sensor & Actuator and World Premier International Center for Materials Nanoarchitectonics
AuthorAffiliation_xml – name: Center for Functional Sensor & Actuator and World Premier International Center for Materials Nanoarchitectonics
– name: Qian Xuesen Laboratory of Space Technology
– name: Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education
Author_xml – sequence: 1
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
  organization: Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education
– sequence: 2
  givenname: Sai
  surname: Chen
  fullname: Chen, Sai
  organization: Qian Xuesen Laboratory of Space Technology
– sequence: 3
  givenname: Wanli
  surname: Li
  fullname: Li, Wanli
  organization: Center for Functional Sensor & Actuator and World Premier International Center for Materials Nanoarchitectonics
– sequence: 4
  givenname: Peng
  orcidid: 0000-0002-0933-2592
  surname: Li
  fullname: Li, Peng
  email: lip032@nenu.edu.cn
  organization: Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education
– sequence: 5
  givenname: Jiangang
  surname: Ma
  fullname: Ma, Jiangang
  email: majg@nenu.edu.cn
  organization: Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education
– sequence: 6
  givenname: Bingsheng
  surname: Li
  fullname: Li, Bingsheng
  organization: Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education
– sequence: 7
  givenname: Xiaoning
  orcidid: 0000-0002-0082-2288
  surname: Zhao
  fullname: Zhao, Xiaoning
  organization: Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education
– sequence: 8
  givenname: Zhongshi
  surname: Ju
  fullname: Ju, Zhongshi
  organization: Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education
– sequence: 9
  givenname: Huicong
  surname: Chang
  fullname: Chang, Huicong
  organization: Qian Xuesen Laboratory of Space Technology
– sequence: 10
  givenname: Lin
  surname: Xiao
  fullname: Xiao, Lin
  organization: Qian Xuesen Laboratory of Space Technology
– sequence: 11
  givenname: Haiyang
  surname: Xu
  fullname: Xu, Haiyang
  organization: Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education
– sequence: 12
  givenname: Yichun
  surname: Liu
  fullname: Liu, Yichun
  organization: Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education
BookMark eNp9kUFLAzEQhYMoaKtnrzkKUpts3OzuUYq1QmnBKnpbssmsRtNkTVK1v8K_bKTFg6CnGXjfm2Hm9dCudRYQOqbkjJKMDoUMVlh3RiRhjBU76IBWjA9IyR92f_qc7qNeCM-E5EVZ8AP0eQNqJUHhKy-6J7CA5x9aAR452zq_FMas8X2SuoQstHkDj2dpy7v2gGcQ351_CTiReGzgQzcG8K0XNnTCg414AiJq-4iFVfjSgIzeLcWjhaglvrYRfAuJk4AXTxqMSugh2muFCXC0rX10N768HU0G0_nV9ehiOhCs4HGQy4yCakBkbSl5I3PGW5Y1KoOGkAo4r3JZclIxxWlTqnPZcmgkKStV8ooyYH10spnbefe6ghDrpQ4SjBEW3CrU2TllVVUwXiY036DSuxA8tLXUMd3lbPRCm5qS-juAehtAvQ0g-Ya_fJ3XS-HX_zhON44k1M9u5W16wZ_0F52vn2E
CitedBy_id crossref_primary_10_3389_fenrg_2022_899771
crossref_primary_10_1002_adma_202412512
crossref_primary_10_1021_acsnano_0c08924
crossref_primary_10_1016_j_compscitech_2022_109281
crossref_primary_10_1021_acsaem_2c01140
crossref_primary_10_1021_acs_chemrev_3c00548
crossref_primary_10_1039_D2TC03821H
crossref_primary_10_1002_admi_202202393
crossref_primary_10_1002_admt_202201532
crossref_primary_10_1016_j_ceramint_2024_07_226
crossref_primary_10_1039_D2NH00313A
crossref_primary_10_3390_ma18010208
crossref_primary_10_1021_acsami_2c13035
crossref_primary_10_1002_app_50255
crossref_primary_10_1016_j_nanoen_2024_109408
crossref_primary_10_1016_j_cej_2023_147681
crossref_primary_10_1007_s12274_021_3718_z
crossref_primary_10_1016_j_icheatmasstransfer_2024_107675
crossref_primary_10_1007_s12274_022_4962_6
crossref_primary_10_1021_acsaelm_1c00258
crossref_primary_10_1016_j_apsusc_2023_156669
crossref_primary_10_1016_j_jallcom_2024_178058
crossref_primary_10_1007_s40820_022_00830_8
crossref_primary_10_1002_admi_202200019
crossref_primary_10_1007_s42114_022_00457_8
crossref_primary_10_1039_D1NR03944J
crossref_primary_10_1021_acsnano_1c01552
crossref_primary_10_1016_j_jmst_2022_06_031
crossref_primary_10_3390_ijms252413401
crossref_primary_10_1016_j_carbpol_2022_120132
crossref_primary_10_3390_polym13050738
crossref_primary_10_1364_OME_478830
crossref_primary_10_1016_j_matt_2021_02_022
crossref_primary_10_1021_acsnano_0c06971
crossref_primary_10_1016_j_recm_2022_12_001
crossref_primary_10_1021_acsnano_2c07111
crossref_primary_10_1016_j_cej_2021_133672
crossref_primary_10_1016_j_nanoen_2021_106700
crossref_primary_10_1007_s12274_021_3297_z
crossref_primary_10_1007_s40820_023_01295_z
crossref_primary_10_1016_j_cej_2023_145091
crossref_primary_10_1016_j_inoche_2023_111112
crossref_primary_10_1021_acsami_1c05327
crossref_primary_10_1002_adma_202211642
crossref_primary_10_1021_acsami_2c09153
crossref_primary_10_1016_j_cej_2023_146189
crossref_primary_10_1016_j_nantod_2025_102660
crossref_primary_10_1021_acsnano_2c00448
crossref_primary_10_1016_j_optmat_2022_112745
crossref_primary_10_1016_j_jiec_2024_07_032
crossref_primary_10_1021_acsami_3c07972
crossref_primary_10_1002_mame_202300344
crossref_primary_10_1080_10408436_2024_2379246
crossref_primary_10_1021_acsami_2c04931
crossref_primary_10_1364_OE_423369
crossref_primary_10_1016_j_cej_2021_130064
crossref_primary_10_1016_j_cej_2024_157751
crossref_primary_10_1021_acsami_2c21996
crossref_primary_10_1016_j_jallcom_2021_163176
crossref_primary_10_1038_s41570_022_00458_7
crossref_primary_10_1021_acsanm_2c00476
crossref_primary_10_1016_j_colsurfa_2024_134204
crossref_primary_10_1039_D3NR01130E
crossref_primary_10_1541_ieejfms_144_87
crossref_primary_10_1016_j_carbon_2023_02_061
crossref_primary_10_1007_s41127_023_00065_3
crossref_primary_10_1039_D0TC05783E
crossref_primary_10_1039_D4CS00080C
crossref_primary_10_1002_admt_202200027
crossref_primary_10_1021_acsanm_4c00462
crossref_primary_10_1007_s40684_023_00504_9
crossref_primary_10_1088_2631_7990_acdc66
crossref_primary_10_1016_j_apsusc_2022_154343
crossref_primary_10_1016_j_apsusc_2024_159554
crossref_primary_10_1016_j_apsusc_2024_160929
crossref_primary_10_1016_j_jpowsour_2021_229578
crossref_primary_10_1364_OL_421584
crossref_primary_10_1021_acsanm_3c05366
crossref_primary_10_1021_acsanm_3c02925
crossref_primary_10_1021_acsaelm_4c01610
crossref_primary_10_1021_acsami_3c14788
crossref_primary_10_1109_LPT_2022_3182863
crossref_primary_10_1016_j_solmat_2021_111323
crossref_primary_10_3390_nano11113047
crossref_primary_10_1002_sstr_202400208
crossref_primary_10_1002_lpor_202400550
crossref_primary_10_1002_smll_202412741
crossref_primary_10_1016_j_mtphys_2022_100728
crossref_primary_10_1039_D4TA02088J
crossref_primary_10_1002_aelm_202300856
crossref_primary_10_1016_j_jhazmat_2022_128882
crossref_primary_10_1016_j_carbon_2023_01_037
crossref_primary_10_1007_s12274_022_4781_9
crossref_primary_10_1007_s10854_021_05409_4
crossref_primary_10_1016_j_jallcom_2024_173693
crossref_primary_10_1016_j_mtphys_2024_101617
crossref_primary_10_1016_j_isci_2024_111543
crossref_primary_10_1016_j_mseb_2022_115640
crossref_primary_10_1021_acsanm_4c00074
crossref_primary_10_1002_adfm_202405016
crossref_primary_10_1016_j_est_2022_106355
crossref_primary_10_1016_j_jmst_2021_08_090
crossref_primary_10_1007_s12274_021_3796_y
crossref_primary_10_1007_s40820_024_01454_w
crossref_primary_10_1007_s12274_022_4757_9
crossref_primary_10_1016_j_materresbull_2024_112696
crossref_primary_10_1016_j_jallcom_2022_164360
crossref_primary_10_1016_j_energy_2024_131864
crossref_primary_10_1007_s40820_023_01043_3
crossref_primary_10_1007_s40194_021_01066_7
crossref_primary_10_1016_j_nexres_2025_100157
crossref_primary_10_1016_j_jmat_2022_05_008
crossref_primary_10_1016_j_cej_2023_148334
crossref_primary_10_1021_acsnano_3c07233
crossref_primary_10_1016_j_carbon_2021_04_091
crossref_primary_10_1016_j_matlet_2022_133031
crossref_primary_10_1021_acsami_1c20593
crossref_primary_10_1021_acsaelm_2c01109
crossref_primary_10_1016_j_colsurfa_2023_131545
crossref_primary_10_1021_acsanm_3c05384
crossref_primary_10_1021_acsami_4c16375
crossref_primary_10_1016_j_mser_2024_100823
crossref_primary_10_1016_j_jmst_2024_12_101
crossref_primary_10_1002_admt_202101687
crossref_primary_10_1039_D0TA09246K
crossref_primary_10_1016_j_compscitech_2024_110484
crossref_primary_10_1039_D2TC04819A
crossref_primary_10_1016_j_carbon_2023_02_012
crossref_primary_10_1039_D3TC00742A
crossref_primary_10_1021_acsami_1c00590
crossref_primary_10_1016_j_carbon_2023_118072
crossref_primary_10_1016_j_compositesa_2023_107818
crossref_primary_10_1002_sstr_202400486
crossref_primary_10_1016_j_tsf_2022_139178
crossref_primary_10_1016_j_arabjc_2020_102953
crossref_primary_10_1007_s10854_021_06096_x
crossref_primary_10_1016_j_compositesa_2023_107911
crossref_primary_10_1002_sstr_202000138
crossref_primary_10_1007_s42114_024_01202_z
crossref_primary_10_1016_j_carbon_2022_05_034
crossref_primary_10_1039_D0NR08640A
crossref_primary_10_3390_ma14092423
crossref_primary_10_1021_acsami_3c02088
crossref_primary_10_1007_s42114_023_00774_6
crossref_primary_10_1016_j_carbon_2025_120093
crossref_primary_10_1002_cey2_174
crossref_primary_10_1016_j_cej_2022_134598
crossref_primary_10_1016_j_heliyon_2024_e31118
crossref_primary_10_1007_s12274_021_4042_3
crossref_primary_10_1360_TB_2024_0929
crossref_primary_10_1039_D1NJ02518J
crossref_primary_10_3390_app13084846
crossref_primary_10_1016_j_cej_2020_127772
crossref_primary_10_1021_acsanm_4c01739
crossref_primary_10_1039_D1TA08106C
crossref_primary_10_1002_sdtp_14384
crossref_primary_10_1021_acs_chemrev_3c00139
crossref_primary_10_1088_2043_6262_ac5499
crossref_primary_10_1002_smsc_202100077
crossref_primary_10_1002_smtd_202100654
crossref_primary_10_1039_D2CE00911K
crossref_primary_10_1002_admi_202101089
crossref_primary_10_1007_s10570_022_04821_1
crossref_primary_10_1007_s42114_024_01097_w
crossref_primary_10_1016_j_coco_2024_102053
crossref_primary_10_1016_j_jmst_2024_04_015
crossref_primary_10_1021_acs_langmuir_1c02110
crossref_primary_10_1177_09673911221107292
crossref_primary_10_1016_j_isci_2022_104033
crossref_primary_10_1016_j_isci_2021_103284
crossref_primary_10_1007_s40820_023_01122_5
crossref_primary_10_1007_s42114_024_00957_9
crossref_primary_10_1016_j_cej_2023_144065
crossref_primary_10_1088_1361_6528_ad2d7c
Cites_doi 10.1021/acsnano.6b04493
10.1002/smll.201602581
10.1021/acsami.5b11026
10.1021/acsami.0c03587
10.1002/adma.201400463
10.1021/nl502647k
10.1038/nmat3238
10.1021/acsami.7b14626
10.1002/adfm.201300124
10.1016/j.compscitech.2019.02.022
10.1002/adfm.201705409
10.1021/acsnano.6b03626
10.1021/nl504889t
10.1016/j.apsusc.2018.08.060
10.1021/acsami.8b00492
10.1126/sciadv.aap9264
10.1002/aenm.201703658
10.1002/adma.201506364
10.1016/j.carbon.2014.09.044
10.1088/1361-6528/ab6d9d
10.1021/ja505741e
10.1016/0040-6090(88)90478-6
10.1002/adfm.201910225
10.1002/adfm.201503236
10.1002/adma.201600358
10.1002/adma.201703225
10.1002/adfm.201400972
10.1021/acssuschemeng.9b05824
10.1021/nl502755y
10.1088/1361-6528/aae0e0
10.1016/j.jcis.2020.01.111
10.1002/aenm.201700461
10.1021/acsami.8b07054
10.1002/adma.201101992
10.1021/acsami.9b00716
10.1021/nn300844g
10.1021/acsami.8b03079
10.1016/j.jallcom.2019.152480
10.1021/nn3060175
10.1021/acsnano.6b08172
10.1002/adma.201804690
10.1021/nl401179h
10.1002/smll.201800634
10.1016/j.apsusc.2019.04.052
10.1021/am505704e
10.1016/j.actamat.2017.09.068
10.1016/j.cej.2019.05.012
10.1038/am.2016.206
10.1016/j.cej.2020.124495
10.1021/acsnano.0c01312
10.1021/acsnano.5b07651
10.1021/am301913w
10.1021/la300720y
10.1021/acsnano.5b00053
10.1021/acsnano.7b01714
10.1038/am.2017.172
10.1039/C4TA03033H
10.1002/adma.201603473
10.1002/adfm.201803360
10.1021/acs.nanolett.5b04134
10.1016/j.cej.2020.124517
10.1002/adfm.201902922
10.1039/C5NR04930J
10.1002/smll.201402474
10.1021/acs.nanolett.6b02654
10.1016/j.saa.2008.03.032
10.1016/j.cap.2020.01.012
10.1021/acsami.9b17513
10.1039/C5TC03614C
10.1021/acsami.9b04169
10.1002/adma.201906769
10.1021/acsami.8b13329
10.1088/0022-3727/49/32/325103
10.1038/nnano.2010.132
10.1038/s41565-018-0226-8
10.1038/s41467-018-04906-1
10.1021/acs.nanolett.5b01531
10.1364/OE.27.024194
10.1021/nn504308n
10.1016/j.apsusc.2019.04.034
10.1016/0039-6028(92)90025-2
10.1038/s41528-019-0050-8
10.1364/OE.26.027545
10.1016/j.carbon.2014.09.076
10.1016/j.matdes.2015.09.142
10.1002/smll.201800534
10.1021/jacs.7b02884
10.1002/adma.201703238
10.1038/s41598-018-32045-6
10.1016/j.carbon.2016.12.092
ContentType Journal Article
DBID AAYXX
CITATION
7X8
DOI 10.1021/acsnano.0c03337
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 8765
ExternalDocumentID 10_1021_acsnano_0c03337
c478146521
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
7X8
ID FETCH-LOGICAL-a376t-5c21edbea2f8c6bc536f32bd2eb009e6695c86093d61b8d4cf6ebc089d86913e3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Jul 10 18:42:50 EDT 2025
Thu Apr 24 22:59:39 EDT 2025
Tue Jul 01 03:37:01 EDT 2025
Thu Aug 27 13:41:52 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords reduced graphene oxide
flexible transparent electrodes
electromagnetic interference shielding
silver nanowire networks
transparent heaters
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a376t-5c21edbea2f8c6bc536f32bd2eb009e6695c86093d61b8d4cf6ebc089d86913e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0082-2288
0000-0002-0933-2592
PQID 2413997368
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2413997368
crossref_citationtrail_10_1021_acsnano_0c03337
crossref_primary_10_1021_acsnano_0c03337
acs_journals_10_1021_acsnano_0c03337
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-28
PublicationDateYYYYMMDD 2020-07-28
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-28
  day: 28
PublicationDecade 2020
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref88/cit88
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref89/cit89
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref90/cit90
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref87/cit87
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref9/cit9
  doi: 10.1021/acsnano.6b04493
– ident: ref22/cit22
  doi: 10.1002/smll.201602581
– ident: ref6/cit6
  doi: 10.1021/acsami.5b11026
– ident: ref31/cit31
  doi: 10.1021/acsami.0c03587
– ident: ref15/cit15
  doi: 10.1002/adma.201400463
– ident: ref35/cit35
  doi: 10.1021/nl502647k
– ident: ref57/cit57
  doi: 10.1038/nmat3238
– ident: ref74/cit74
  doi: 10.1021/acsami.7b14626
– ident: ref14/cit14
  doi: 10.1002/adfm.201300124
– ident: ref61/cit61
  doi: 10.1016/j.compscitech.2019.02.022
– ident: ref12/cit12
  doi: 10.1002/adfm.201705409
– ident: ref21/cit21
  doi: 10.1021/acsnano.6b03626
– ident: ref43/cit43
  doi: 10.1021/nl504889t
– ident: ref49/cit49
  doi: 10.1016/j.apsusc.2018.08.060
– ident: ref4/cit4
  doi: 10.1021/acsami.8b00492
– ident: ref8/cit8
  doi: 10.1126/sciadv.aap9264
– ident: ref32/cit32
  doi: 10.1002/aenm.201703658
– ident: ref13/cit13
  doi: 10.1002/adma.201506364
– ident: ref51/cit51
  doi: 10.1016/j.carbon.2014.09.044
– ident: ref88/cit88
  doi: 10.1088/1361-6528/ab6d9d
– ident: ref48/cit48
  doi: 10.1021/ja505741e
– ident: ref58/cit58
  doi: 10.1016/0040-6090(88)90478-6
– ident: ref2/cit2
  doi: 10.1002/adfm.201910225
– ident: ref27/cit27
  doi: 10.1002/adfm.201503236
– ident: ref23/cit23
  doi: 10.1002/adma.201600358
– ident: ref1/cit1
  doi: 10.1002/adma.201703225
– ident: ref60/cit60
  doi: 10.1002/adfm.201400972
– ident: ref52/cit52
  doi: 10.1021/acssuschemeng.9b05824
– ident: ref66/cit66
  doi: 10.1021/nl502755y
– ident: ref54/cit54
  doi: 10.1088/1361-6528/aae0e0
– ident: ref70/cit70
  doi: 10.1016/j.jcis.2020.01.111
– ident: ref53/cit53
  doi: 10.1002/aenm.201700461
– ident: ref73/cit73
  doi: 10.1021/acsami.8b07054
– ident: ref26/cit26
  doi: 10.1002/adma.201101992
– ident: ref80/cit80
  doi: 10.1021/acsami.9b00716
– ident: ref25/cit25
  doi: 10.1021/nn300844g
– ident: ref67/cit67
  doi: 10.1021/acsami.8b03079
– ident: ref89/cit89
  doi: 10.1016/j.jallcom.2019.152480
– ident: ref30/cit30
  doi: 10.1021/nn3060175
– ident: ref3/cit3
  doi: 10.1021/acsnano.6b08172
– ident: ref7/cit7
  doi: 10.1002/adma.201804690
– ident: ref56/cit56
  doi: 10.1021/nl401179h
– ident: ref76/cit76
  doi: 10.1002/smll.201800634
– ident: ref33/cit33
  doi: 10.1016/j.apsusc.2019.04.052
– ident: ref65/cit65
  doi: 10.1021/am505704e
– ident: ref39/cit39
  doi: 10.1016/j.actamat.2017.09.068
– ident: ref90/cit90
  doi: 10.1016/j.cej.2019.05.012
– ident: ref20/cit20
  doi: 10.1038/am.2016.206
– ident: ref37/cit37
  doi: 10.1016/j.cej.2020.124495
– ident: ref72/cit72
  doi: 10.1021/acsnano.0c01312
– ident: ref47/cit47
  doi: 10.1021/acsnano.5b07651
– ident: ref29/cit29
  doi: 10.1021/am301913w
– ident: ref77/cit77
  doi: 10.1021/la300720y
– ident: ref46/cit46
  doi: 10.1021/acsnano.5b00053
– ident: ref10/cit10
  doi: 10.1021/acsnano.7b01714
– ident: ref68/cit68
  doi: 10.1038/am.2017.172
– ident: ref75/cit75
  doi: 10.1039/C4TA03033H
– ident: ref45/cit45
  doi: 10.1002/adma.201603473
– ident: ref82/cit82
  doi: 10.1002/adfm.201803360
– ident: ref5/cit5
  doi: 10.1021/acs.nanolett.5b04134
– ident: ref41/cit41
  doi: 10.1016/j.cej.2020.124517
– ident: ref18/cit18
  doi: 10.1002/adfm.201902922
– ident: ref36/cit36
  doi: 10.1039/C5NR04930J
– ident: ref16/cit16
  doi: 10.1002/smll.201402474
– ident: ref17/cit17
  doi: 10.1021/acs.nanolett.6b02654
– ident: ref50/cit50
  doi: 10.1016/j.saa.2008.03.032
– ident: ref81/cit81
  doi: 10.1016/j.cap.2020.01.012
– ident: ref87/cit87
  doi: 10.1021/acsami.9b17513
– ident: ref63/cit63
  doi: 10.1039/C5TC03614C
– ident: ref40/cit40
  doi: 10.1021/acsami.9b04169
– ident: ref71/cit71
  doi: 10.1002/adma.201906769
– ident: ref24/cit24
  doi: 10.1021/acsami.8b13329
– ident: ref55/cit55
  doi: 10.1088/0022-3727/49/32/325103
– ident: ref59/cit59
  doi: 10.1038/nnano.2010.132
– ident: ref34/cit34
  doi: 10.1038/s41565-018-0226-8
– ident: ref19/cit19
  doi: 10.1038/s41467-018-04906-1
– ident: ref28/cit28
  doi: 10.1021/acs.nanolett.5b01531
– ident: ref85/cit85
  doi: 10.1364/OE.27.024194
– ident: ref38/cit38
  doi: 10.1021/nn504308n
– ident: ref79/cit79
  doi: 10.1016/j.apsusc.2019.04.034
– ident: ref69/cit69
  doi: 10.1016/0039-6028(92)90025-2
– ident: ref78/cit78
  doi: 10.1038/s41528-019-0050-8
– ident: ref86/cit86
  doi: 10.1364/OE.26.027545
– ident: ref62/cit62
  doi: 10.1016/j.carbon.2014.09.076
– ident: ref84/cit84
  doi: 10.1016/j.matdes.2015.09.142
– ident: ref44/cit44
  doi: 10.1002/smll.201800534
– ident: ref42/cit42
  doi: 10.1021/jacs.7b02884
– ident: ref11/cit11
  doi: 10.1002/adma.201703238
– ident: ref64/cit64
  doi: 10.1038/s41598-018-32045-6
– ident: ref83/cit83
  doi: 10.1016/j.carbon.2016.12.092
SSID ssj0057876
Score 2.6526215
Snippet Metal nanowire networks (MNNs) are promising as transparent electrode materials for a diverse range of optoelectronic devices and also work as active materials...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8754
Title Reduced Graphene Oxide Conformally Wrapped Silver Nanowire Networks for Flexible Transparent Heating and Electromagnetic Interference Shielding
URI http://dx.doi.org/10.1021/acsnano.0c03337
https://www.proquest.com/docview/2413997368
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LT9wwEIAtHhc4lGfFo1RG4sAli2MnTnxEiO2qB5AKCG6RPbYRYvGiJiu1_In-5XqSLC0g1J7jRJYzHs94Zr4h5IAzMJ45mdhojCaZMyrRIIokA2Be2VzpLtviTI6usq83-c0fWPTrCD5PjzTUQYfJgAETQhTzZJHLskA_6_jkYqZ0Ue5kF0CODnK0Ip4pPm8-gMcQ1C-PoZdauD1ahitdUlbdEgkxo-R-MG3MAJ7e8hr_PetV8qE3MOlxJxFrZM6FdbL8F3Zwg_z6hrxWZ-kXpFVHZUfPf9xZR7H6D03Y8fgnvY6PHuOQiztMnaZRCU-QakzPurTxmsaRdIg0TTN2tEOkY11ZQ0dohYZbqoOlp12TnQd9G7BYkrb3j32FIcU23G3oa5NcDU8vT0ZJ35gh0VEfNUkOPHXWOM19CdJALqQX3FiOjYiUk1LlUEqmhJWpKW0GXjoDrFS2lAqvXT-ShTAJbotQzy0zmbaeF5BxJ5TXqfEWou-MLDu_TQ7iUlb9xqqrNmbO06pf36pf320ymP3OCnq4OfbYGL__wuHzC48d1-P9ofsz-aji3sOAig5uMq0rjEkqVQhZ7vzfNHfJEkd_nRUJLz-Rheb71O1Fo6Yxn1tx_g3FW_dE
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEN8gPigP4mdAEZeEB196bnfbbfeREM4D4YwCkbdmPwnx3CO2l4D_hP-yM23vBA2Jvra7m8l2dvY3nZnfELLNmTWBeZk4AKNJ5o1KtBVFklnLgnK50l22xViOTrODs_xsibB5LQwIUcNKdRvE_80ukL6DZ1HH6YBZJoQo7pH7AEU4uls7u8dz24vqJ7s4MvjJACYWZD5_LYC3ka1v30a3jXF7wwxXyaeFbG1iydfBrDED--MP2sb_Ef4xedTDTbrT6ccTsuTjU7Jyg4TwGfn5GdlbvaPvkbsaTB_9eHXhPMVaQAS0k8k1_QKvLmHI8QUmUlMwyVPkOKbjLom8pjCSDpFb00w87QjTscqsoSPEpPGc6ujoXtdy55s-j1g6Sdu_kX29IcWm3G0g7Dk5He6d7I6Svk1DosE6NUlueeqd8ZqH0kpjcyGD4MZxbEukvJQqt6VkSjiZmtJlNkhvLCuVK6XCn7AvyHKcRr9GaOCOmUy7wAubcS9U0KkJzoInjcx2YZ1sw1ZW_TGrqzaCztOq39-q3991Mph_1cr2VOfYcWNy94S3iwmXHcvH3UO35mpSwUnE8IqOfjqrK4xQKlUIWb78NzHfkAejk6PD6nB__OEVecjRk2dFwssNstx8n_nXAHcas9lq-C98e_-l
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fTxQxEG4EE4MPIioRRSkJD7zs2W13u9tHgpwnkNMAF3nb9CchnL2Lu5eo_wT_Mp3d3kUwJPC62zbd7nQ602_mG4R2KNHKEcsTE4zRJLNKJFKzIsm0Jk6YXMgu2mLIB6Ps8Dw_j0lhkAsTJlGHkeoWxIddPTUuMgykn8JzL_2kRzRhjBVL6CmAduBy7e2fzvUviCDvsOTgKweDYkHo898AcCLp-vaJdFsht6dMfxWNFvNrg0uuerNG9fTfO9SNj_2Al-hFNDvxXicna-iJ9a_Q83_ICF-j6xNgcbUGfwEO66AC8bffl8ZiyAkEw3Y8_oN_hFfT0OT0EgKqcVDNE-A6xsMumLzGoSXuA8emGlvcEadDtlmDB2Cb-gssvcEHXemdn_LCQwolbm8lY94hhuLcLSD2Bo36B2f7gySWa0hk0FJNkmuaWqOspK7UXOmccceoMhTKEwnLuch1yYlghqeqNJl23CpNSmFKLuAydh0t-4m3bxF21BCVSeNooTNqmXAyVc7o4FEDw53bQDthKau43eqqRdJpWsX1reL6bqDe_M9WOlKeQ-WN8f0ddhcdph3bx_1Nt-eiUoUdCTCL9HYyqytAKoUoGC_fPWyaW-jZ98_96vjr8Og9WqHg0JMioeUmWm5-zeyHYPU06mMr5DeeaQI3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+Graphene+Oxide+Conformally+Wrapped+Silver+Nanowire+Networks+for+Flexible+Transparent+Heating+and+Electromagnetic+Interference+Shielding&rft.jtitle=ACS+nano&rft.au=Yang%2C+Yang&rft.au=Chen%2C+Sai&rft.au=Li%2C+Wanli&rft.au=Li%2C+Peng&rft.date=2020-07-28&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=14&rft.issue=7&rft.spage=8754&rft_id=info:doi/10.1021%2Facsnano.0c03337&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon