Reduced Graphene Oxide Conformally Wrapped Silver Nanowire Networks for Flexible Transparent Heating and Electromagnetic Interference Shielding
Metal nanowire networks (MNNs) are promising as transparent electrode materials for a diverse range of optoelectronic devices and also work as active materials for electrical heating and electromagnetic interference (EMI) shielding applications. However, the relatively low performance and poor durab...
Saved in:
Published in | ACS nano Vol. 14; no. 7; pp. 8754 - 8765 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
28.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal nanowire networks (MNNs) are promising as transparent electrode materials for a diverse range of optoelectronic devices and also work as active materials for electrical heating and electromagnetic interference (EMI) shielding applications. However, the relatively low performance and poor durability of MNNs are limiting the practical application of the resulting devices. Here, we report a controllable approach to enhance the conductivity and the stability of MNNs with their transmittance remaining unchanged, in which reduced graphene oxide conformally wrapped silver nanowire networks (AgNW@rGO networks) are synthesized by selective electrodeposition of GO nanosheets on AgNWs followed by a pulsed laser irradiation treatment. Experimental characterizations and finite-difference time-domain simulations indicate that pulsed laser irradiation at a specific wavelength not only reduces the GO but also welds the AgNWs together through a surface plasmon resonance process. As a result, the AgNW@rGO networks exhibit low sheet resistance of 3.3 Ω/□, average transmittance of 91.1%, and good flexibility. Wrapping with rGO improves the maximum electrical heating temperature of the AgNW network transparent heaters due to the effective suppression of the oxidation and the migration of surface silver atoms. In addition, excellent EMI shielding effectiveness of up to 35.5 dB in the 8.2–12.4 GHz frequency range is obtained as a consequence of the combined effects of dual reflection, conduction loss, and multiple dielectric polarization relaxation processes. |
---|---|
AbstractList | Metal nanowire networks (MNNs) are promising as transparent electrode materials for a diverse range of optoelectronic devices and also work as active materials for electrical heating and electromagnetic interference (EMI) shielding applications. However, the relatively low performance and poor durability of MNNs are limiting the practical application of the resulting devices. Here, we report a controllable approach to enhance the conductivity and the stability of MNNs with their transmittance remaining unchanged, in which reduced graphene oxide conformally wrapped silver nanowire networks (AgNW@rGO networks) are synthesized by selective electrodeposition of GO nanosheets on AgNWs followed by a pulsed laser irradiation treatment. Experimental characterizations and finite-difference time-domain simulations indicate that pulsed laser irradiation at a specific wavelength not only reduces the GO but also welds the AgNWs together through a surface plasmon resonance process. As a result, the AgNW@rGO networks exhibit low sheet resistance of 3.3 Ω/□, average transmittance of 91.1%, and good flexibility. Wrapping with rGO improves the maximum electrical heating temperature of the AgNW network transparent heaters due to the effective suppression of the oxidation and the migration of surface silver atoms. In addition, excellent EMI shielding effectiveness of up to 35.5 dB in the 8.2-12.4 GHz frequency range is obtained as a consequence of the combined effects of dual reflection, conduction loss, and multiple dielectric polarization relaxation processes.Metal nanowire networks (MNNs) are promising as transparent electrode materials for a diverse range of optoelectronic devices and also work as active materials for electrical heating and electromagnetic interference (EMI) shielding applications. However, the relatively low performance and poor durability of MNNs are limiting the practical application of the resulting devices. Here, we report a controllable approach to enhance the conductivity and the stability of MNNs with their transmittance remaining unchanged, in which reduced graphene oxide conformally wrapped silver nanowire networks (AgNW@rGO networks) are synthesized by selective electrodeposition of GO nanosheets on AgNWs followed by a pulsed laser irradiation treatment. Experimental characterizations and finite-difference time-domain simulations indicate that pulsed laser irradiation at a specific wavelength not only reduces the GO but also welds the AgNWs together through a surface plasmon resonance process. As a result, the AgNW@rGO networks exhibit low sheet resistance of 3.3 Ω/□, average transmittance of 91.1%, and good flexibility. Wrapping with rGO improves the maximum electrical heating temperature of the AgNW network transparent heaters due to the effective suppression of the oxidation and the migration of surface silver atoms. In addition, excellent EMI shielding effectiveness of up to 35.5 dB in the 8.2-12.4 GHz frequency range is obtained as a consequence of the combined effects of dual reflection, conduction loss, and multiple dielectric polarization relaxation processes. Metal nanowire networks (MNNs) are promising as transparent electrode materials for a diverse range of optoelectronic devices and also work as active materials for electrical heating and electromagnetic interference (EMI) shielding applications. However, the relatively low performance and poor durability of MNNs are limiting the practical application of the resulting devices. Here, we report a controllable approach to enhance the conductivity and the stability of MNNs with their transmittance remaining unchanged, in which reduced graphene oxide conformally wrapped silver nanowire networks (AgNW@rGO networks) are synthesized by selective electrodeposition of GO nanosheets on AgNWs followed by a pulsed laser irradiation treatment. Experimental characterizations and finite-difference time-domain simulations indicate that pulsed laser irradiation at a specific wavelength not only reduces the GO but also welds the AgNWs together through a surface plasmon resonance process. As a result, the AgNW@rGO networks exhibit low sheet resistance of 3.3 Ω/□, average transmittance of 91.1%, and good flexibility. Wrapping with rGO improves the maximum electrical heating temperature of the AgNW network transparent heaters due to the effective suppression of the oxidation and the migration of surface silver atoms. In addition, excellent EMI shielding effectiveness of up to 35.5 dB in the 8.2–12.4 GHz frequency range is obtained as a consequence of the combined effects of dual reflection, conduction loss, and multiple dielectric polarization relaxation processes. |
Author | Chen, Sai Li, Wanli Liu, Yichun Zhao, Xiaoning Chang, Huicong Li, Peng Ma, Jiangang Yang, Yang Li, Bingsheng Xiao, Lin Xu, Haiyang Ju, Zhongshi |
AuthorAffiliation | Qian Xuesen Laboratory of Space Technology Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education Center for Functional Sensor & Actuator and World Premier International Center for Materials Nanoarchitectonics |
AuthorAffiliation_xml | – name: Center for Functional Sensor & Actuator and World Premier International Center for Materials Nanoarchitectonics – name: Qian Xuesen Laboratory of Space Technology – name: Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education |
Author_xml | – sequence: 1 givenname: Yang surname: Yang fullname: Yang, Yang organization: Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education – sequence: 2 givenname: Sai surname: Chen fullname: Chen, Sai organization: Qian Xuesen Laboratory of Space Technology – sequence: 3 givenname: Wanli surname: Li fullname: Li, Wanli organization: Center for Functional Sensor & Actuator and World Premier International Center for Materials Nanoarchitectonics – sequence: 4 givenname: Peng orcidid: 0000-0002-0933-2592 surname: Li fullname: Li, Peng email: lip032@nenu.edu.cn organization: Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education – sequence: 5 givenname: Jiangang surname: Ma fullname: Ma, Jiangang email: majg@nenu.edu.cn organization: Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education – sequence: 6 givenname: Bingsheng surname: Li fullname: Li, Bingsheng organization: Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education – sequence: 7 givenname: Xiaoning orcidid: 0000-0002-0082-2288 surname: Zhao fullname: Zhao, Xiaoning organization: Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education – sequence: 8 givenname: Zhongshi surname: Ju fullname: Ju, Zhongshi organization: Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education – sequence: 9 givenname: Huicong surname: Chang fullname: Chang, Huicong organization: Qian Xuesen Laboratory of Space Technology – sequence: 10 givenname: Lin surname: Xiao fullname: Xiao, Lin organization: Qian Xuesen Laboratory of Space Technology – sequence: 11 givenname: Haiyang surname: Xu fullname: Xu, Haiyang organization: Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education – sequence: 12 givenname: Yichun surname: Liu fullname: Liu, Yichun organization: Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education |
BookMark | eNp9kUFLAzEQhYMoaKtnrzkKUpts3OzuUYq1QmnBKnpbssmsRtNkTVK1v8K_bKTFg6CnGXjfm2Hm9dCudRYQOqbkjJKMDoUMVlh3RiRhjBU76IBWjA9IyR92f_qc7qNeCM-E5EVZ8AP0eQNqJUHhKy-6J7CA5x9aAR452zq_FMas8X2SuoQstHkDj2dpy7v2gGcQ351_CTiReGzgQzcG8K0XNnTCg414AiJq-4iFVfjSgIzeLcWjhaglvrYRfAuJk4AXTxqMSugh2muFCXC0rX10N768HU0G0_nV9ehiOhCs4HGQy4yCakBkbSl5I3PGW5Y1KoOGkAo4r3JZclIxxWlTqnPZcmgkKStV8ooyYH10spnbefe6ghDrpQ4SjBEW3CrU2TllVVUwXiY036DSuxA8tLXUMd3lbPRCm5qS-juAehtAvQ0g-Ya_fJ3XS-HX_zhON44k1M9u5W16wZ_0F52vn2E |
CitedBy_id | crossref_primary_10_3389_fenrg_2022_899771 crossref_primary_10_1002_adma_202412512 crossref_primary_10_1021_acsnano_0c08924 crossref_primary_10_1016_j_compscitech_2022_109281 crossref_primary_10_1021_acsaem_2c01140 crossref_primary_10_1021_acs_chemrev_3c00548 crossref_primary_10_1039_D2TC03821H crossref_primary_10_1002_admi_202202393 crossref_primary_10_1002_admt_202201532 crossref_primary_10_1016_j_ceramint_2024_07_226 crossref_primary_10_1039_D2NH00313A crossref_primary_10_3390_ma18010208 crossref_primary_10_1021_acsami_2c13035 crossref_primary_10_1002_app_50255 crossref_primary_10_1016_j_nanoen_2024_109408 crossref_primary_10_1016_j_cej_2023_147681 crossref_primary_10_1007_s12274_021_3718_z crossref_primary_10_1016_j_icheatmasstransfer_2024_107675 crossref_primary_10_1007_s12274_022_4962_6 crossref_primary_10_1021_acsaelm_1c00258 crossref_primary_10_1016_j_apsusc_2023_156669 crossref_primary_10_1016_j_jallcom_2024_178058 crossref_primary_10_1007_s40820_022_00830_8 crossref_primary_10_1002_admi_202200019 crossref_primary_10_1007_s42114_022_00457_8 crossref_primary_10_1039_D1NR03944J crossref_primary_10_1021_acsnano_1c01552 crossref_primary_10_1016_j_jmst_2022_06_031 crossref_primary_10_3390_ijms252413401 crossref_primary_10_1016_j_carbpol_2022_120132 crossref_primary_10_3390_polym13050738 crossref_primary_10_1364_OME_478830 crossref_primary_10_1016_j_matt_2021_02_022 crossref_primary_10_1021_acsnano_0c06971 crossref_primary_10_1016_j_recm_2022_12_001 crossref_primary_10_1021_acsnano_2c07111 crossref_primary_10_1016_j_cej_2021_133672 crossref_primary_10_1016_j_nanoen_2021_106700 crossref_primary_10_1007_s12274_021_3297_z crossref_primary_10_1007_s40820_023_01295_z crossref_primary_10_1016_j_cej_2023_145091 crossref_primary_10_1016_j_inoche_2023_111112 crossref_primary_10_1021_acsami_1c05327 crossref_primary_10_1002_adma_202211642 crossref_primary_10_1021_acsami_2c09153 crossref_primary_10_1016_j_cej_2023_146189 crossref_primary_10_1016_j_nantod_2025_102660 crossref_primary_10_1021_acsnano_2c00448 crossref_primary_10_1016_j_optmat_2022_112745 crossref_primary_10_1016_j_jiec_2024_07_032 crossref_primary_10_1021_acsami_3c07972 crossref_primary_10_1002_mame_202300344 crossref_primary_10_1080_10408436_2024_2379246 crossref_primary_10_1021_acsami_2c04931 crossref_primary_10_1364_OE_423369 crossref_primary_10_1016_j_cej_2021_130064 crossref_primary_10_1016_j_cej_2024_157751 crossref_primary_10_1021_acsami_2c21996 crossref_primary_10_1016_j_jallcom_2021_163176 crossref_primary_10_1038_s41570_022_00458_7 crossref_primary_10_1021_acsanm_2c00476 crossref_primary_10_1016_j_colsurfa_2024_134204 crossref_primary_10_1039_D3NR01130E crossref_primary_10_1541_ieejfms_144_87 crossref_primary_10_1016_j_carbon_2023_02_061 crossref_primary_10_1007_s41127_023_00065_3 crossref_primary_10_1039_D0TC05783E crossref_primary_10_1039_D4CS00080C crossref_primary_10_1002_admt_202200027 crossref_primary_10_1021_acsanm_4c00462 crossref_primary_10_1007_s40684_023_00504_9 crossref_primary_10_1088_2631_7990_acdc66 crossref_primary_10_1016_j_apsusc_2022_154343 crossref_primary_10_1016_j_apsusc_2024_159554 crossref_primary_10_1016_j_apsusc_2024_160929 crossref_primary_10_1016_j_jpowsour_2021_229578 crossref_primary_10_1364_OL_421584 crossref_primary_10_1021_acsanm_3c05366 crossref_primary_10_1021_acsanm_3c02925 crossref_primary_10_1021_acsaelm_4c01610 crossref_primary_10_1021_acsami_3c14788 crossref_primary_10_1109_LPT_2022_3182863 crossref_primary_10_1016_j_solmat_2021_111323 crossref_primary_10_3390_nano11113047 crossref_primary_10_1002_sstr_202400208 crossref_primary_10_1002_lpor_202400550 crossref_primary_10_1002_smll_202412741 crossref_primary_10_1016_j_mtphys_2022_100728 crossref_primary_10_1039_D4TA02088J crossref_primary_10_1002_aelm_202300856 crossref_primary_10_1016_j_jhazmat_2022_128882 crossref_primary_10_1016_j_carbon_2023_01_037 crossref_primary_10_1007_s12274_022_4781_9 crossref_primary_10_1007_s10854_021_05409_4 crossref_primary_10_1016_j_jallcom_2024_173693 crossref_primary_10_1016_j_mtphys_2024_101617 crossref_primary_10_1016_j_isci_2024_111543 crossref_primary_10_1016_j_mseb_2022_115640 crossref_primary_10_1021_acsanm_4c00074 crossref_primary_10_1002_adfm_202405016 crossref_primary_10_1016_j_est_2022_106355 crossref_primary_10_1016_j_jmst_2021_08_090 crossref_primary_10_1007_s12274_021_3796_y crossref_primary_10_1007_s40820_024_01454_w crossref_primary_10_1007_s12274_022_4757_9 crossref_primary_10_1016_j_materresbull_2024_112696 crossref_primary_10_1016_j_jallcom_2022_164360 crossref_primary_10_1016_j_energy_2024_131864 crossref_primary_10_1007_s40820_023_01043_3 crossref_primary_10_1007_s40194_021_01066_7 crossref_primary_10_1016_j_nexres_2025_100157 crossref_primary_10_1016_j_jmat_2022_05_008 crossref_primary_10_1016_j_cej_2023_148334 crossref_primary_10_1021_acsnano_3c07233 crossref_primary_10_1016_j_carbon_2021_04_091 crossref_primary_10_1016_j_matlet_2022_133031 crossref_primary_10_1021_acsami_1c20593 crossref_primary_10_1021_acsaelm_2c01109 crossref_primary_10_1016_j_colsurfa_2023_131545 crossref_primary_10_1021_acsanm_3c05384 crossref_primary_10_1021_acsami_4c16375 crossref_primary_10_1016_j_mser_2024_100823 crossref_primary_10_1016_j_jmst_2024_12_101 crossref_primary_10_1002_admt_202101687 crossref_primary_10_1039_D0TA09246K crossref_primary_10_1016_j_compscitech_2024_110484 crossref_primary_10_1039_D2TC04819A crossref_primary_10_1016_j_carbon_2023_02_012 crossref_primary_10_1039_D3TC00742A crossref_primary_10_1021_acsami_1c00590 crossref_primary_10_1016_j_carbon_2023_118072 crossref_primary_10_1016_j_compositesa_2023_107818 crossref_primary_10_1002_sstr_202400486 crossref_primary_10_1016_j_tsf_2022_139178 crossref_primary_10_1016_j_arabjc_2020_102953 crossref_primary_10_1007_s10854_021_06096_x crossref_primary_10_1016_j_compositesa_2023_107911 crossref_primary_10_1002_sstr_202000138 crossref_primary_10_1007_s42114_024_01202_z crossref_primary_10_1016_j_carbon_2022_05_034 crossref_primary_10_1039_D0NR08640A crossref_primary_10_3390_ma14092423 crossref_primary_10_1021_acsami_3c02088 crossref_primary_10_1007_s42114_023_00774_6 crossref_primary_10_1016_j_carbon_2025_120093 crossref_primary_10_1002_cey2_174 crossref_primary_10_1016_j_cej_2022_134598 crossref_primary_10_1016_j_heliyon_2024_e31118 crossref_primary_10_1007_s12274_021_4042_3 crossref_primary_10_1360_TB_2024_0929 crossref_primary_10_1039_D1NJ02518J crossref_primary_10_3390_app13084846 crossref_primary_10_1016_j_cej_2020_127772 crossref_primary_10_1021_acsanm_4c01739 crossref_primary_10_1039_D1TA08106C crossref_primary_10_1002_sdtp_14384 crossref_primary_10_1021_acs_chemrev_3c00139 crossref_primary_10_1088_2043_6262_ac5499 crossref_primary_10_1002_smsc_202100077 crossref_primary_10_1002_smtd_202100654 crossref_primary_10_1039_D2CE00911K crossref_primary_10_1002_admi_202101089 crossref_primary_10_1007_s10570_022_04821_1 crossref_primary_10_1007_s42114_024_01097_w crossref_primary_10_1016_j_coco_2024_102053 crossref_primary_10_1016_j_jmst_2024_04_015 crossref_primary_10_1021_acs_langmuir_1c02110 crossref_primary_10_1177_09673911221107292 crossref_primary_10_1016_j_isci_2022_104033 crossref_primary_10_1016_j_isci_2021_103284 crossref_primary_10_1007_s40820_023_01122_5 crossref_primary_10_1007_s42114_024_00957_9 crossref_primary_10_1016_j_cej_2023_144065 crossref_primary_10_1088_1361_6528_ad2d7c |
Cites_doi | 10.1021/acsnano.6b04493 10.1002/smll.201602581 10.1021/acsami.5b11026 10.1021/acsami.0c03587 10.1002/adma.201400463 10.1021/nl502647k 10.1038/nmat3238 10.1021/acsami.7b14626 10.1002/adfm.201300124 10.1016/j.compscitech.2019.02.022 10.1002/adfm.201705409 10.1021/acsnano.6b03626 10.1021/nl504889t 10.1016/j.apsusc.2018.08.060 10.1021/acsami.8b00492 10.1126/sciadv.aap9264 10.1002/aenm.201703658 10.1002/adma.201506364 10.1016/j.carbon.2014.09.044 10.1088/1361-6528/ab6d9d 10.1021/ja505741e 10.1016/0040-6090(88)90478-6 10.1002/adfm.201910225 10.1002/adfm.201503236 10.1002/adma.201600358 10.1002/adma.201703225 10.1002/adfm.201400972 10.1021/acssuschemeng.9b05824 10.1021/nl502755y 10.1088/1361-6528/aae0e0 10.1016/j.jcis.2020.01.111 10.1002/aenm.201700461 10.1021/acsami.8b07054 10.1002/adma.201101992 10.1021/acsami.9b00716 10.1021/nn300844g 10.1021/acsami.8b03079 10.1016/j.jallcom.2019.152480 10.1021/nn3060175 10.1021/acsnano.6b08172 10.1002/adma.201804690 10.1021/nl401179h 10.1002/smll.201800634 10.1016/j.apsusc.2019.04.052 10.1021/am505704e 10.1016/j.actamat.2017.09.068 10.1016/j.cej.2019.05.012 10.1038/am.2016.206 10.1016/j.cej.2020.124495 10.1021/acsnano.0c01312 10.1021/acsnano.5b07651 10.1021/am301913w 10.1021/la300720y 10.1021/acsnano.5b00053 10.1021/acsnano.7b01714 10.1038/am.2017.172 10.1039/C4TA03033H 10.1002/adma.201603473 10.1002/adfm.201803360 10.1021/acs.nanolett.5b04134 10.1016/j.cej.2020.124517 10.1002/adfm.201902922 10.1039/C5NR04930J 10.1002/smll.201402474 10.1021/acs.nanolett.6b02654 10.1016/j.saa.2008.03.032 10.1016/j.cap.2020.01.012 10.1021/acsami.9b17513 10.1039/C5TC03614C 10.1021/acsami.9b04169 10.1002/adma.201906769 10.1021/acsami.8b13329 10.1088/0022-3727/49/32/325103 10.1038/nnano.2010.132 10.1038/s41565-018-0226-8 10.1038/s41467-018-04906-1 10.1021/acs.nanolett.5b01531 10.1364/OE.27.024194 10.1021/nn504308n 10.1016/j.apsusc.2019.04.034 10.1016/0039-6028(92)90025-2 10.1038/s41528-019-0050-8 10.1364/OE.26.027545 10.1016/j.carbon.2014.09.076 10.1016/j.matdes.2015.09.142 10.1002/smll.201800534 10.1021/jacs.7b02884 10.1002/adma.201703238 10.1038/s41598-018-32045-6 10.1016/j.carbon.2016.12.092 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acsnano.0c03337 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 8765 |
ExternalDocumentID | 10_1021_acsnano_0c03337 c478146521 |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK 7X8 |
ID | FETCH-LOGICAL-a376t-5c21edbea2f8c6bc536f32bd2eb009e6695c86093d61b8d4cf6ebc089d86913e3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Jul 10 18:42:50 EDT 2025 Thu Apr 24 22:59:39 EDT 2025 Tue Jul 01 03:37:01 EDT 2025 Thu Aug 27 13:41:52 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | reduced graphene oxide flexible transparent electrodes electromagnetic interference shielding silver nanowire networks transparent heaters |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a376t-5c21edbea2f8c6bc536f32bd2eb009e6695c86093d61b8d4cf6ebc089d86913e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0082-2288 0000-0002-0933-2592 |
PQID | 2413997368 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2413997368 crossref_citationtrail_10_1021_acsnano_0c03337 crossref_primary_10_1021_acsnano_0c03337 acs_journals_10_1021_acsnano_0c03337 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-28 |
PublicationDateYYYYMMDD | 2020-07-28 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref88/cit88 ref17/cit17 ref82/cit82 ref10/cit10 ref35/cit35 ref89/cit89 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref90/cit90 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref83/cit83 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref87/cit87 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref9/cit9 doi: 10.1021/acsnano.6b04493 – ident: ref22/cit22 doi: 10.1002/smll.201602581 – ident: ref6/cit6 doi: 10.1021/acsami.5b11026 – ident: ref31/cit31 doi: 10.1021/acsami.0c03587 – ident: ref15/cit15 doi: 10.1002/adma.201400463 – ident: ref35/cit35 doi: 10.1021/nl502647k – ident: ref57/cit57 doi: 10.1038/nmat3238 – ident: ref74/cit74 doi: 10.1021/acsami.7b14626 – ident: ref14/cit14 doi: 10.1002/adfm.201300124 – ident: ref61/cit61 doi: 10.1016/j.compscitech.2019.02.022 – ident: ref12/cit12 doi: 10.1002/adfm.201705409 – ident: ref21/cit21 doi: 10.1021/acsnano.6b03626 – ident: ref43/cit43 doi: 10.1021/nl504889t – ident: ref49/cit49 doi: 10.1016/j.apsusc.2018.08.060 – ident: ref4/cit4 doi: 10.1021/acsami.8b00492 – ident: ref8/cit8 doi: 10.1126/sciadv.aap9264 – ident: ref32/cit32 doi: 10.1002/aenm.201703658 – ident: ref13/cit13 doi: 10.1002/adma.201506364 – ident: ref51/cit51 doi: 10.1016/j.carbon.2014.09.044 – ident: ref88/cit88 doi: 10.1088/1361-6528/ab6d9d – ident: ref48/cit48 doi: 10.1021/ja505741e – ident: ref58/cit58 doi: 10.1016/0040-6090(88)90478-6 – ident: ref2/cit2 doi: 10.1002/adfm.201910225 – ident: ref27/cit27 doi: 10.1002/adfm.201503236 – ident: ref23/cit23 doi: 10.1002/adma.201600358 – ident: ref1/cit1 doi: 10.1002/adma.201703225 – ident: ref60/cit60 doi: 10.1002/adfm.201400972 – ident: ref52/cit52 doi: 10.1021/acssuschemeng.9b05824 – ident: ref66/cit66 doi: 10.1021/nl502755y – ident: ref54/cit54 doi: 10.1088/1361-6528/aae0e0 – ident: ref70/cit70 doi: 10.1016/j.jcis.2020.01.111 – ident: ref53/cit53 doi: 10.1002/aenm.201700461 – ident: ref73/cit73 doi: 10.1021/acsami.8b07054 – ident: ref26/cit26 doi: 10.1002/adma.201101992 – ident: ref80/cit80 doi: 10.1021/acsami.9b00716 – ident: ref25/cit25 doi: 10.1021/nn300844g – ident: ref67/cit67 doi: 10.1021/acsami.8b03079 – ident: ref89/cit89 doi: 10.1016/j.jallcom.2019.152480 – ident: ref30/cit30 doi: 10.1021/nn3060175 – ident: ref3/cit3 doi: 10.1021/acsnano.6b08172 – ident: ref7/cit7 doi: 10.1002/adma.201804690 – ident: ref56/cit56 doi: 10.1021/nl401179h – ident: ref76/cit76 doi: 10.1002/smll.201800634 – ident: ref33/cit33 doi: 10.1016/j.apsusc.2019.04.052 – ident: ref65/cit65 doi: 10.1021/am505704e – ident: ref39/cit39 doi: 10.1016/j.actamat.2017.09.068 – ident: ref90/cit90 doi: 10.1016/j.cej.2019.05.012 – ident: ref20/cit20 doi: 10.1038/am.2016.206 – ident: ref37/cit37 doi: 10.1016/j.cej.2020.124495 – ident: ref72/cit72 doi: 10.1021/acsnano.0c01312 – ident: ref47/cit47 doi: 10.1021/acsnano.5b07651 – ident: ref29/cit29 doi: 10.1021/am301913w – ident: ref77/cit77 doi: 10.1021/la300720y – ident: ref46/cit46 doi: 10.1021/acsnano.5b00053 – ident: ref10/cit10 doi: 10.1021/acsnano.7b01714 – ident: ref68/cit68 doi: 10.1038/am.2017.172 – ident: ref75/cit75 doi: 10.1039/C4TA03033H – ident: ref45/cit45 doi: 10.1002/adma.201603473 – ident: ref82/cit82 doi: 10.1002/adfm.201803360 – ident: ref5/cit5 doi: 10.1021/acs.nanolett.5b04134 – ident: ref41/cit41 doi: 10.1016/j.cej.2020.124517 – ident: ref18/cit18 doi: 10.1002/adfm.201902922 – ident: ref36/cit36 doi: 10.1039/C5NR04930J – ident: ref16/cit16 doi: 10.1002/smll.201402474 – ident: ref17/cit17 doi: 10.1021/acs.nanolett.6b02654 – ident: ref50/cit50 doi: 10.1016/j.saa.2008.03.032 – ident: ref81/cit81 doi: 10.1016/j.cap.2020.01.012 – ident: ref87/cit87 doi: 10.1021/acsami.9b17513 – ident: ref63/cit63 doi: 10.1039/C5TC03614C – ident: ref40/cit40 doi: 10.1021/acsami.9b04169 – ident: ref71/cit71 doi: 10.1002/adma.201906769 – ident: ref24/cit24 doi: 10.1021/acsami.8b13329 – ident: ref55/cit55 doi: 10.1088/0022-3727/49/32/325103 – ident: ref59/cit59 doi: 10.1038/nnano.2010.132 – ident: ref34/cit34 doi: 10.1038/s41565-018-0226-8 – ident: ref19/cit19 doi: 10.1038/s41467-018-04906-1 – ident: ref28/cit28 doi: 10.1021/acs.nanolett.5b01531 – ident: ref85/cit85 doi: 10.1364/OE.27.024194 – ident: ref38/cit38 doi: 10.1021/nn504308n – ident: ref79/cit79 doi: 10.1016/j.apsusc.2019.04.034 – ident: ref69/cit69 doi: 10.1016/0039-6028(92)90025-2 – ident: ref78/cit78 doi: 10.1038/s41528-019-0050-8 – ident: ref86/cit86 doi: 10.1364/OE.26.027545 – ident: ref62/cit62 doi: 10.1016/j.carbon.2014.09.076 – ident: ref84/cit84 doi: 10.1016/j.matdes.2015.09.142 – ident: ref44/cit44 doi: 10.1002/smll.201800534 – ident: ref42/cit42 doi: 10.1021/jacs.7b02884 – ident: ref11/cit11 doi: 10.1002/adma.201703238 – ident: ref64/cit64 doi: 10.1038/s41598-018-32045-6 – ident: ref83/cit83 doi: 10.1016/j.carbon.2016.12.092 |
SSID | ssj0057876 |
Score | 2.6526215 |
Snippet | Metal nanowire networks (MNNs) are promising as transparent electrode materials for a diverse range of optoelectronic devices and also work as active materials... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8754 |
Title | Reduced Graphene Oxide Conformally Wrapped Silver Nanowire Networks for Flexible Transparent Heating and Electromagnetic Interference Shielding |
URI | http://dx.doi.org/10.1021/acsnano.0c03337 https://www.proquest.com/docview/2413997368 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LT9wwEIAtHhc4lGfFo1RG4sAli2MnTnxEiO2qB5AKCG6RPbYRYvGiJiu1_In-5XqSLC0g1J7jRJYzHs94Zr4h5IAzMJ45mdhojCaZMyrRIIokA2Be2VzpLtviTI6usq83-c0fWPTrCD5PjzTUQYfJgAETQhTzZJHLskA_6_jkYqZ0Ue5kF0CODnK0Ip4pPm8-gMcQ1C-PoZdauD1ahitdUlbdEgkxo-R-MG3MAJ7e8hr_PetV8qE3MOlxJxFrZM6FdbL8F3Zwg_z6hrxWZ-kXpFVHZUfPf9xZR7H6D03Y8fgnvY6PHuOQiztMnaZRCU-QakzPurTxmsaRdIg0TTN2tEOkY11ZQ0dohYZbqoOlp12TnQd9G7BYkrb3j32FIcU23G3oa5NcDU8vT0ZJ35gh0VEfNUkOPHXWOM19CdJALqQX3FiOjYiUk1LlUEqmhJWpKW0GXjoDrFS2lAqvXT-ShTAJbotQzy0zmbaeF5BxJ5TXqfEWou-MLDu_TQ7iUlb9xqqrNmbO06pf36pf320ymP3OCnq4OfbYGL__wuHzC48d1-P9ofsz-aji3sOAig5uMq0rjEkqVQhZ7vzfNHfJEkd_nRUJLz-Rheb71O1Fo6Yxn1tx_g3FW_dE |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEN8gPigP4mdAEZeEB196bnfbbfeREM4D4YwCkbdmPwnx3CO2l4D_hP-yM23vBA2Jvra7m8l2dvY3nZnfELLNmTWBeZk4AKNJ5o1KtBVFklnLgnK50l22xViOTrODs_xsibB5LQwIUcNKdRvE_80ukL6DZ1HH6YBZJoQo7pH7AEU4uls7u8dz24vqJ7s4MvjJACYWZD5_LYC3ka1v30a3jXF7wwxXyaeFbG1iydfBrDED--MP2sb_Ef4xedTDTbrT6ccTsuTjU7Jyg4TwGfn5GdlbvaPvkbsaTB_9eHXhPMVaQAS0k8k1_QKvLmHI8QUmUlMwyVPkOKbjLom8pjCSDpFb00w87QjTscqsoSPEpPGc6ujoXtdy55s-j1g6Sdu_kX29IcWm3G0g7Dk5He6d7I6Svk1DosE6NUlueeqd8ZqH0kpjcyGD4MZxbEukvJQqt6VkSjiZmtJlNkhvLCuVK6XCn7AvyHKcRr9GaOCOmUy7wAubcS9U0KkJzoInjcx2YZ1sw1ZW_TGrqzaCztOq39-q3991Mph_1cr2VOfYcWNy94S3iwmXHcvH3UO35mpSwUnE8IqOfjqrK4xQKlUIWb78NzHfkAejk6PD6nB__OEVecjRk2dFwssNstx8n_nXAHcas9lq-C98e_-l |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fTxQxEG4EE4MPIioRRSkJD7zs2W13u9tHgpwnkNMAF3nb9CchnL2Lu5eo_wT_Mp3d3kUwJPC62zbd7nQ602_mG4R2KNHKEcsTE4zRJLNKJFKzIsm0Jk6YXMgu2mLIB6Ps8Dw_j0lhkAsTJlGHkeoWxIddPTUuMgykn8JzL_2kRzRhjBVL6CmAduBy7e2fzvUviCDvsOTgKweDYkHo898AcCLp-vaJdFsht6dMfxWNFvNrg0uuerNG9fTfO9SNj_2Al-hFNDvxXicna-iJ9a_Q83_ICF-j6xNgcbUGfwEO66AC8bffl8ZiyAkEw3Y8_oN_hFfT0OT0EgKqcVDNE-A6xsMumLzGoSXuA8emGlvcEadDtlmDB2Cb-gssvcEHXemdn_LCQwolbm8lY94hhuLcLSD2Bo36B2f7gySWa0hk0FJNkmuaWqOspK7UXOmccceoMhTKEwnLuch1yYlghqeqNJl23CpNSmFKLuAydh0t-4m3bxF21BCVSeNooTNqmXAyVc7o4FEDw53bQDthKau43eqqRdJpWsX1reL6bqDe_M9WOlKeQ-WN8f0ddhcdph3bx_1Nt-eiUoUdCTCL9HYyqytAKoUoGC_fPWyaW-jZ98_96vjr8Og9WqHg0JMioeUmWm5-zeyHYPU06mMr5DeeaQI3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+Graphene+Oxide+Conformally+Wrapped+Silver+Nanowire+Networks+for+Flexible+Transparent+Heating+and+Electromagnetic+Interference+Shielding&rft.jtitle=ACS+nano&rft.au=Yang%2C+Yang&rft.au=Chen%2C+Sai&rft.au=Li%2C+Wanli&rft.au=Li%2C+Peng&rft.date=2020-07-28&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=14&rft.issue=7&rft.spage=8754&rft_id=info:doi/10.1021%2Facsnano.0c03337&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |