Visualizing Spatial Evolution of Electron-Correlated Interface in Two-Dimensional Heterostructures

Microscopically visualizing the evolution of electronic structures at the interface between two electron-correlated domains shows fundamental importance in both material science and physics. Here, we report scanning tunneling microscopy and spectroscopy studies of the interfacial electronic structur...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 15; no. 10; pp. 16589 - 16596
Main Authors Zhang, Quanzhen, Hou, Yanhui, Zhang, Teng, Xu, Ziqiang, Huang, Zeping, Yuan, Peiwen, Jia, Liangguang, Yang, Huixia, Huang, Yuan, Ji, Wei, Qiao, Jingsi, Wu, Xu, Wang, Yeliang
Format Journal Article
LanguageEnglish
Published American Chemical Society 26.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microscopically visualizing the evolution of electronic structures at the interface between two electron-correlated domains shows fundamental importance in both material science and physics. Here, we report scanning tunneling microscopy and spectroscopy studies of the interfacial electronic structures evolution in a phase-engineered monolayer NbSe2 heterostructure. The H-NbSe2 metallic state penetrates the Mott insulating T-NbSe2 at the H/T phase interface, with a prominent 2D charge density wave (CDW) proximity effect. Moreover, an insulating Mott gap collapse with the disappearance of the upper Hubbard band is detected at the electronic phase transition region. Theoretical calculations reveal that such insulating Mott gap collapse can be attributed to the electron doping effect induced by the interface. Our findings promote a microscopical understanding of the interactions between different electron-correlated systems and provide an effective method for controlling the Mott insulating states with phase engineering.
AbstractList Microscopically visualizing the evolution of electronic structures at the interface between two electron-correlated domains shows fundamental importance in both material science and physics. Here, we report scanning tunneling microscopy and spectroscopy studies of the interfacial electronic structures evolution in a phase-engineered monolayer NbSe2 heterostructure. The H-NbSe2 metallic state penetrates the Mott insulating T-NbSe2 at the H/T phase interface, with a prominent 2D charge density wave (CDW) proximity effect. Moreover, an insulating Mott gap collapse with the disappearance of the upper Hubbard band is detected at the electronic phase transition region. Theoretical calculations reveal that such insulating Mott gap collapse can be attributed to the electron doping effect induced by the interface. Our findings promote a microscopical understanding of the interactions between different electron-correlated systems and provide an effective method for controlling the Mott insulating states with phase engineering.Microscopically visualizing the evolution of electronic structures at the interface between two electron-correlated domains shows fundamental importance in both material science and physics. Here, we report scanning tunneling microscopy and spectroscopy studies of the interfacial electronic structures evolution in a phase-engineered monolayer NbSe2 heterostructure. The H-NbSe2 metallic state penetrates the Mott insulating T-NbSe2 at the H/T phase interface, with a prominent 2D charge density wave (CDW) proximity effect. Moreover, an insulating Mott gap collapse with the disappearance of the upper Hubbard band is detected at the electronic phase transition region. Theoretical calculations reveal that such insulating Mott gap collapse can be attributed to the electron doping effect induced by the interface. Our findings promote a microscopical understanding of the interactions between different electron-correlated systems and provide an effective method for controlling the Mott insulating states with phase engineering.
Microscopically visualizing the evolution of electronic structures at the interface between two electron-correlated domains shows fundamental importance in both material science and physics. Here, we report scanning tunneling microscopy and spectroscopy studies of the interfacial electronic structures evolution in a phase-engineered monolayer NbSe2 heterostructure. The H-NbSe2 metallic state penetrates the Mott insulating T-NbSe2 at the H/T phase interface, with a prominent 2D charge density wave (CDW) proximity effect. Moreover, an insulating Mott gap collapse with the disappearance of the upper Hubbard band is detected at the electronic phase transition region. Theoretical calculations reveal that such insulating Mott gap collapse can be attributed to the electron doping effect induced by the interface. Our findings promote a microscopical understanding of the interactions between different electron-correlated systems and provide an effective method for controlling the Mott insulating states with phase engineering.
Author Huang, Zeping
Wang, Yeliang
Zhang, Quanzhen
Zhang, Teng
Jia, Liangguang
Yuan, Peiwen
Hou, Yanhui
Yang, Huixia
Wu, Xu
Qiao, Jingsi
Xu, Ziqiang
Huang, Yuan
Ji, Wei
AuthorAffiliation MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics
Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics
AuthorAffiliation_xml – name: Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics
– name: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics
Author_xml – sequence: 1
  givenname: Quanzhen
  orcidid: 0000-0003-3423-5863
  surname: Zhang
  fullname: Zhang, Quanzhen
  organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics
– sequence: 2
  givenname: Yanhui
  surname: Hou
  fullname: Hou, Yanhui
  organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics
– sequence: 3
  givenname: Teng
  orcidid: 0000-0001-8739-7773
  surname: Zhang
  fullname: Zhang, Teng
  organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics
– sequence: 4
  givenname: Ziqiang
  surname: Xu
  fullname: Xu, Ziqiang
  organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics
– sequence: 5
  givenname: Zeping
  surname: Huang
  fullname: Huang, Zeping
  organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics
– sequence: 6
  givenname: Peiwen
  surname: Yuan
  fullname: Yuan, Peiwen
  organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics
– sequence: 7
  givenname: Liangguang
  surname: Jia
  fullname: Jia, Liangguang
  organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics
– sequence: 8
  givenname: Huixia
  surname: Yang
  fullname: Yang, Huixia
  organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics
– sequence: 9
  givenname: Yuan
  surname: Huang
  fullname: Huang, Yuan
  organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics
– sequence: 10
  givenname: Wei
  orcidid: 0000-0001-5249-6624
  surname: Ji
  fullname: Ji, Wei
  organization: Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics
– sequence: 11
  givenname: Jingsi
  orcidid: 0000-0001-6464-5500
  surname: Qiao
  fullname: Qiao, Jingsi
  email: qiaojs@ruc.edu.cn
  organization: Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics
– sequence: 12
  givenname: Xu
  orcidid: 0000-0002-2252-322X
  surname: Wu
  fullname: Wu, Xu
  email: xuwu@bit.edu.cn
  organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics
– sequence: 13
  givenname: Yeliang
  orcidid: 0000-0002-8896-0748
  surname: Wang
  fullname: Wang, Yeliang
  email: yeliang.wang@bit.edu.cn
  organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics
BookMark eNp9kEFLAzEQRoNUsK2eve5RkG2TZjfZPUqttlDwYBVvSzadSEqa1CSr6K83pcWDoKdM-L43DG-AetZZQOiS4BHBEzIWMlhh3YhIzCidnKA-qSnLccVeej9zSc7QIIQNxiWvOOuj9lmHThj9pe1r9rgTUQuTzd6d6aJ2NnMqmxmQ0TubT533YESEdbawEbwSEjJts9WHy2_1FmxIRKLnkEIXou9k7DyEc3SqhAlwcXyH6OlutprO8-XD_WJ6s8wF5SzmBbCKMCAtIXUrOSuKCgusgBayqBRuOTCFi_U6xYyuCWBVylKxklMl04fSIbo67N1599ZBiM1WBwnGCAuuC82k5DXldc15qo4PVZkODR5Us_N6K_xnQ3Czt9kcbTZHm4kofxFSR7F3FL3Q5h_u-sCloNm4zidD4c_2NzJvjmw
CitedBy_id crossref_primary_10_1021_acsnano_4c16830
crossref_primary_10_1021_acs_nanolett_4c01771
crossref_primary_10_1038_s41467_022_29548_2
crossref_primary_10_1007_s12274_022_5009_8
crossref_primary_10_1021_acs_jpclett_1c04138
crossref_primary_10_1021_acsnano_1c09249
crossref_primary_10_1021_acsnano_4c12092
crossref_primary_10_1063_5_0236906
crossref_primary_10_1088_1674_1056_acbaef
crossref_primary_10_1021_acsnano_2c09467
crossref_primary_10_1021_acs_nanolett_1c04363
crossref_primary_10_1002_inf2_12501
crossref_primary_10_1088_1361_648X_acbf93
crossref_primary_10_1007_s11432_024_4033_8
crossref_primary_10_1016_j_mtelec_2023_100068
crossref_primary_10_1103_PhysRevB_110_075427
crossref_primary_10_1002_adfm_202302989
crossref_primary_10_1002_qute_202300087
crossref_primary_10_1021_acsaelm_2c00013
crossref_primary_10_7498_aps_71_20220052
crossref_primary_10_1021_acs_jpclett_2c02546
crossref_primary_10_1002_smtd_202500038
Cites_doi 10.1038/s41565-017-0022-x
10.1038/nature02450
10.1038/nphys4302
10.1103/PhysRevB.86.195117
10.1038/nnano.2015.143
10.1103/RevModPhys.70.1039
10.1103/PhysRevLett.101.066802
10.1021/acs.chemmater.7b03061
10.1007/s12274-020-3188-8
10.1021/acsnano.8b08051
10.1038/s41567-019-0744-9
10.1088/0953-8984/22/2/022201
10.1038/s41570-020-0173-4
10.1103/PhysRevB.54.11169
10.1073/pnas.1907043116
10.1039/C5CS00151J
10.1021/acs.nanolett.8b00237
10.1038/s41467-020-15419-1
10.1038/nmat3648
10.1038/s41586-018-0129-8
10.1038/ncomms10349
10.1038/nphys3527
10.1021/acsnano.8b07379
10.1103/PhysRevB.82.081101
10.1038/s41586-021-03541-z
10.1038/s41586-019-1718-x
10.1038/s41467-021-22516-2
10.1038/s41467-020-14631-3
10.1103/PhysRevB.83.195131
10.1038/s41586-019-0957-1
10.1103/PhysRevB.81.125113
10.1103/PhysRevB.50.17953
10.1038/ncomms7313
10.1103/PhysRevB.59.1758
10.1038/s41586-019-1052-3
10.1126/science.1182541
10.1038/s41467-021-23418-z
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acsnano.1c06332
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 16596
ExternalDocumentID 10_1021_acsnano_1c06332
b295718847
GroupedDBID -
23M
4.4
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
BAANH
CITATION
CUPRZ
ED~
JG~
7X8
ID FETCH-LOGICAL-a376t-4e6816e1b119bc764480a0fe34c48f0b7e6f04dd11963d1e0f5c5f6573fce0f33
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 00:18:44 EDT 2025
Thu Apr 24 23:08:55 EDT 2025
Tue Jul 01 03:37:16 EDT 2025
Thu Oct 28 07:00:31 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords phase engineering
Mott insulator
transition metal dichalcogenides
charge density wave
scanning tunneling microscopy
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a376t-4e6816e1b119bc764480a0fe34c48f0b7e6f04dd11963d1e0f5c5f6573fce0f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3423-5863
0000-0002-8896-0748
0000-0001-5249-6624
0000-0001-8739-7773
0000-0001-6464-5500
0000-0002-2252-322X
PQID 2579379977
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2579379977
crossref_primary_10_1021_acsnano_1c06332
crossref_citationtrail_10_1021_acsnano_1c06332
acs_journals_10_1021_acsnano_1c06332
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-26
PublicationDateYYYYMMDD 2021-10-26
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-26
  day: 26
PublicationDecade 2020
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref16/cit16
ref29/cit29
Liu Z.-Y. (ref25/cit25) 2021
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
Liu M. (ref26/cit26) 2021
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref3/cit3
  doi: 10.1038/s41565-017-0022-x
– ident: ref19/cit19
  doi: 10.1038/nature02450
– ident: ref18/cit18
  doi: 10.1038/nphys4302
– ident: ref22/cit22
  doi: 10.1103/PhysRevB.86.195117
– ident: ref30/cit30
  doi: 10.1038/nnano.2015.143
– ident: ref15/cit15
  doi: 10.1103/RevModPhys.70.1039
– ident: ref21/cit21
  doi: 10.1103/PhysRevLett.101.066802
– ident: ref32/cit32
  doi: 10.1021/acs.chemmater.7b03061
– ident: ref5/cit5
  doi: 10.1007/s12274-020-3188-8
– ident: ref39/cit39
  doi: 10.1021/acsnano.8b08051
– ident: ref16/cit16
  doi: 10.1038/s41567-019-0744-9
– year: 2021
  ident: ref25/cit25
  publication-title: arXiv
– ident: ref37/cit37
  doi: 10.1088/0953-8984/22/2/022201
– ident: ref23/cit23
  doi: 10.1038/s41570-020-0173-4
– ident: ref35/cit35
  doi: 10.1103/PhysRevB.54.11169
– ident: ref13/cit13
  doi: 10.1073/pnas.1907043116
– ident: ref24/cit24
  doi: 10.1039/C5CS00151J
– ident: ref31/cit31
  doi: 10.1021/acs.nanolett.8b00237
– ident: ref7/cit7
  doi: 10.1038/s41467-020-15419-1
– ident: ref12/cit12
  doi: 10.1038/nmat3648
– ident: ref2/cit2
  doi: 10.1038/s41586-018-0129-8
– ident: ref4/cit4
  doi: 10.1038/ncomms10349
– ident: ref29/cit29
  doi: 10.1038/nphys3527
– ident: ref27/cit27
  doi: 10.1021/acsnano.8b07379
– ident: ref36/cit36
  doi: 10.1103/PhysRevB.82.081101
– ident: ref6/cit6
  doi: 10.1038/s41586-021-03541-z
– ident: ref10/cit10
  doi: 10.1038/s41586-019-1718-x
– ident: ref11/cit11
  doi: 10.1038/s41467-021-22516-2
– ident: ref14/cit14
  doi: 10.1038/s41467-020-14631-3
– year: 2021
  ident: ref26/cit26
  publication-title: arXiv
– ident: ref38/cit38
  doi: 10.1103/PhysRevB.83.195131
– ident: ref8/cit8
  doi: 10.1038/s41586-019-0957-1
– ident: ref20/cit20
  doi: 10.1103/PhysRevB.81.125113
– ident: ref33/cit33
  doi: 10.1103/PhysRevB.50.17953
– ident: ref28/cit28
  doi: 10.1038/ncomms7313
– ident: ref34/cit34
  doi: 10.1103/PhysRevB.59.1758
– ident: ref1/cit1
  doi: 10.1038/s41586-019-1052-3
– ident: ref9/cit9
  doi: 10.1126/science.1182541
– ident: ref17/cit17
  doi: 10.1038/s41467-021-23418-z
SSID ssj0057876
Score 2.4922075
Snippet Microscopically visualizing the evolution of electronic structures at the interface between two electron-correlated domains shows fundamental importance in...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16589
Title Visualizing Spatial Evolution of Electron-Correlated Interface in Two-Dimensional Heterostructures
URI http://dx.doi.org/10.1021/acsnano.1c06332
https://www.proquest.com/docview/2579379977
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA8yL3rwW5xfRNjBS2aTpsl2lLkxBL24yW4lSRMYjlboprC_3pe2m84x9BhoQnh5H7_0vfweQo2CAyRRnCShUoRDSCNKSUvaQgI6BQfImX_v_PQs-kP-OIpG32TRvzP4jN4pk6cqzZrUQDQNwdtuMwEm7FFQ52XhdL3eiTKBDBdkQBFLFp-1BXwYMvlqGFr1wkVo6e2XRVl5wUjoK0remrOpbpr5Ol_j37s-QHsVwMT3pUYcoi2bHqHdH7SDx0i_jnP_lnIOI-x7EoMO4u5HpYQ4c7hbNcchHd-8YwJ4NMHFv0OnjMXjFA8-M_LgGwOUpB6476tqspKMdgY3-BM07HUHnT6pei0QBS5mSrgVLSos1ZS2tZH-1haowNmQG95ygZZWuIAnCfUWm1AbuMhETkQydAYGYXiKammW2jOEnQQQpJkODMBB3Qq0gnhgQ8MkEzaQso4aIJ24spU8LtLgjMaVyOJKZHXUXJxQbCq-ct82Y7J5wu1ywntJ1bH505vFkcdgTj5HolKbzfIYPBgAtjag4vP_bfMC7TBf5gLhjIlLVANB2yvAKVN9XWjoF1Iw5NA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5FD-rBt1ifETx4yZrsI2mPpVaqVkGs4m1JsgkUy66wrUJ_vZPdbbWKoMeETRgmk5kvO8k3CJ0WHCCJDEkSSElCCGlESmFIkwtAp-AAQ9-9d769493H8Po5eq4hOn0LA0LkMFNeJPE_2QXYOfSlMs08piGoBuB0FwGK-M6mW-2Hqe915sfLPDKckwFMzMh8fkzgopHO56PRvDMuIszlGrqfyVZcLHnxxiPl6ck32sb_CL-OViu4iVulfWygmkk30coXEsItpJ4GuXtZOYEWdhWKwSJx560ySZxZ3KlK5ZC2K-UxBHSa4OJPopXa4EGK--8ZuXBlAkqKD9x1d2yykpp2DOf5bfR42em3u6SqvEAkOJwRCQ1vMG6YYqyptHBnOCqpNUGow4alShhuaZgkzO3fhBlqIx1ZHonAamgEwQ5aSLPU7CJsBUAi5SuqARyqBlUSooMJtC98bqgQdXQK2omrnZPHRVLcZ3GlsrhSWR1504WKdcVe7opoDH8fcDYb8FoSd_z-6cl05WPYXC5jIlOTjfMY_BnAtyZg5L2_iXmMlrr9217cu7q72UfLvrsAA4HO5wdoAZRuDgHBjNRRYbQfKRLtMQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yQfTBb3F-RtiDL5lN2zXbo8yN-TUEN9lbSdIERGkH3RT8671rs-EHA31MaUJ6udz90sv9jpBawQGSyJAlgZQsBJfGpBSGtSIB6BQMYOhjvvN9P-oNw5tRY-SSwjAXBiaRw0h5EcTHXT1OrGMY4BfwPJVpVucaHGsAhncZg3ao15ftx5n9RRWMylgynJUBUMwJfX4NgB5J59890neDXHiZ7gYZzudXXC55qU8nqq4_flA3_vcDNsm6g530stSTLbJk0m2y9oWMcIeop-ccMyw_oEWxUjFoJu28OdWkmaUdVzKHtbGkxyug1IQWfxSt1IY-p3TwnrErLBdQUn3QHt61yUqK2imc63fJsNsZtHvMVWBgEgzPhIUmavLIcMV5S2mBZzlPetYEoQ6b1lPCRNYLk4TjPk648WxDNyysSWA1NIJgj1TSLDX7hFoB0Ej5ytMAElXTUxK8hAm0L_zIeEJUSQ2kE7sdlMdFcNznsRNZ7ERWJfXZYsXasZhjMY3XxR3O5x3GJYHH4lfPZqsfwybDyIlMTTbNY7BrAONagJUP_jbNU7LycNWN7677t4dk1cd7MODv_OiIVEDm5hiAzESdFHr7CdSv77Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualizing+Spatial+Evolution+of+Electron-Correlated+Interface+in+Two-Dimensional+Heterostructures&rft.jtitle=ACS+nano&rft.au=Zhang%2C+Quanzhen&rft.au=Hou%2C+Yanhui&rft.au=Zhang%2C+Teng&rft.au=Xu%2C+Ziqiang&rft.date=2021-10-26&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=15&rft.issue=10&rft.spage=16589&rft.epage=16596&rft_id=info:doi/10.1021%2Facsnano.1c06332&rft.externalDocID=b295718847
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon