Visualizing Spatial Evolution of Electron-Correlated Interface in Two-Dimensional Heterostructures
Microscopically visualizing the evolution of electronic structures at the interface between two electron-correlated domains shows fundamental importance in both material science and physics. Here, we report scanning tunneling microscopy and spectroscopy studies of the interfacial electronic structur...
Saved in:
Published in | ACS nano Vol. 15; no. 10; pp. 16589 - 16596 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
26.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microscopically visualizing the evolution of electronic structures at the interface between two electron-correlated domains shows fundamental importance in both material science and physics. Here, we report scanning tunneling microscopy and spectroscopy studies of the interfacial electronic structures evolution in a phase-engineered monolayer NbSe2 heterostructure. The H-NbSe2 metallic state penetrates the Mott insulating T-NbSe2 at the H/T phase interface, with a prominent 2D charge density wave (CDW) proximity effect. Moreover, an insulating Mott gap collapse with the disappearance of the upper Hubbard band is detected at the electronic phase transition region. Theoretical calculations reveal that such insulating Mott gap collapse can be attributed to the electron doping effect induced by the interface. Our findings promote a microscopical understanding of the interactions between different electron-correlated systems and provide an effective method for controlling the Mott insulating states with phase engineering. |
---|---|
AbstractList | Microscopically visualizing the evolution of electronic structures at the interface between two electron-correlated domains shows fundamental importance in both material science and physics. Here, we report scanning tunneling microscopy and spectroscopy studies of the interfacial electronic structures evolution in a phase-engineered monolayer NbSe2 heterostructure. The H-NbSe2 metallic state penetrates the Mott insulating T-NbSe2 at the H/T phase interface, with a prominent 2D charge density wave (CDW) proximity effect. Moreover, an insulating Mott gap collapse with the disappearance of the upper Hubbard band is detected at the electronic phase transition region. Theoretical calculations reveal that such insulating Mott gap collapse can be attributed to the electron doping effect induced by the interface. Our findings promote a microscopical understanding of the interactions between different electron-correlated systems and provide an effective method for controlling the Mott insulating states with phase engineering.Microscopically visualizing the evolution of electronic structures at the interface between two electron-correlated domains shows fundamental importance in both material science and physics. Here, we report scanning tunneling microscopy and spectroscopy studies of the interfacial electronic structures evolution in a phase-engineered monolayer NbSe2 heterostructure. The H-NbSe2 metallic state penetrates the Mott insulating T-NbSe2 at the H/T phase interface, with a prominent 2D charge density wave (CDW) proximity effect. Moreover, an insulating Mott gap collapse with the disappearance of the upper Hubbard band is detected at the electronic phase transition region. Theoretical calculations reveal that such insulating Mott gap collapse can be attributed to the electron doping effect induced by the interface. Our findings promote a microscopical understanding of the interactions between different electron-correlated systems and provide an effective method for controlling the Mott insulating states with phase engineering. Microscopically visualizing the evolution of electronic structures at the interface between two electron-correlated domains shows fundamental importance in both material science and physics. Here, we report scanning tunneling microscopy and spectroscopy studies of the interfacial electronic structures evolution in a phase-engineered monolayer NbSe2 heterostructure. The H-NbSe2 metallic state penetrates the Mott insulating T-NbSe2 at the H/T phase interface, with a prominent 2D charge density wave (CDW) proximity effect. Moreover, an insulating Mott gap collapse with the disappearance of the upper Hubbard band is detected at the electronic phase transition region. Theoretical calculations reveal that such insulating Mott gap collapse can be attributed to the electron doping effect induced by the interface. Our findings promote a microscopical understanding of the interactions between different electron-correlated systems and provide an effective method for controlling the Mott insulating states with phase engineering. |
Author | Huang, Zeping Wang, Yeliang Zhang, Quanzhen Zhang, Teng Jia, Liangguang Yuan, Peiwen Hou, Yanhui Yang, Huixia Wu, Xu Qiao, Jingsi Xu, Ziqiang Huang, Yuan Ji, Wei |
AuthorAffiliation | MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics |
AuthorAffiliation_xml | – name: Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics – name: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics |
Author_xml | – sequence: 1 givenname: Quanzhen orcidid: 0000-0003-3423-5863 surname: Zhang fullname: Zhang, Quanzhen organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics – sequence: 2 givenname: Yanhui surname: Hou fullname: Hou, Yanhui organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics – sequence: 3 givenname: Teng orcidid: 0000-0001-8739-7773 surname: Zhang fullname: Zhang, Teng organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics – sequence: 4 givenname: Ziqiang surname: Xu fullname: Xu, Ziqiang organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics – sequence: 5 givenname: Zeping surname: Huang fullname: Huang, Zeping organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics – sequence: 6 givenname: Peiwen surname: Yuan fullname: Yuan, Peiwen organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics – sequence: 7 givenname: Liangguang surname: Jia fullname: Jia, Liangguang organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics – sequence: 8 givenname: Huixia surname: Yang fullname: Yang, Huixia organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics – sequence: 9 givenname: Yuan surname: Huang fullname: Huang, Yuan organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics – sequence: 10 givenname: Wei orcidid: 0000-0001-5249-6624 surname: Ji fullname: Ji, Wei organization: Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics – sequence: 11 givenname: Jingsi orcidid: 0000-0001-6464-5500 surname: Qiao fullname: Qiao, Jingsi email: qiaojs@ruc.edu.cn organization: Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics – sequence: 12 givenname: Xu orcidid: 0000-0002-2252-322X surname: Wu fullname: Wu, Xu email: xuwu@bit.edu.cn organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics – sequence: 13 givenname: Yeliang orcidid: 0000-0002-8896-0748 surname: Wang fullname: Wang, Yeliang email: yeliang.wang@bit.edu.cn organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics |
BookMark | eNp9kEFLAzEQRoNUsK2eve5RkG2TZjfZPUqttlDwYBVvSzadSEqa1CSr6K83pcWDoKdM-L43DG-AetZZQOiS4BHBEzIWMlhh3YhIzCidnKA-qSnLccVeej9zSc7QIIQNxiWvOOuj9lmHThj9pe1r9rgTUQuTzd6d6aJ2NnMqmxmQ0TubT533YESEdbawEbwSEjJts9WHy2_1FmxIRKLnkEIXou9k7DyEc3SqhAlwcXyH6OlutprO8-XD_WJ6s8wF5SzmBbCKMCAtIXUrOSuKCgusgBayqBRuOTCFi_U6xYyuCWBVylKxklMl04fSIbo67N1599ZBiM1WBwnGCAuuC82k5DXldc15qo4PVZkODR5Us_N6K_xnQ3Czt9kcbTZHm4kofxFSR7F3FL3Q5h_u-sCloNm4zidD4c_2NzJvjmw |
CitedBy_id | crossref_primary_10_1021_acsnano_4c16830 crossref_primary_10_1021_acs_nanolett_4c01771 crossref_primary_10_1038_s41467_022_29548_2 crossref_primary_10_1007_s12274_022_5009_8 crossref_primary_10_1021_acs_jpclett_1c04138 crossref_primary_10_1021_acsnano_1c09249 crossref_primary_10_1021_acsnano_4c12092 crossref_primary_10_1063_5_0236906 crossref_primary_10_1088_1674_1056_acbaef crossref_primary_10_1021_acsnano_2c09467 crossref_primary_10_1021_acs_nanolett_1c04363 crossref_primary_10_1002_inf2_12501 crossref_primary_10_1088_1361_648X_acbf93 crossref_primary_10_1007_s11432_024_4033_8 crossref_primary_10_1016_j_mtelec_2023_100068 crossref_primary_10_1103_PhysRevB_110_075427 crossref_primary_10_1002_adfm_202302989 crossref_primary_10_1002_qute_202300087 crossref_primary_10_1021_acsaelm_2c00013 crossref_primary_10_7498_aps_71_20220052 crossref_primary_10_1021_acs_jpclett_2c02546 crossref_primary_10_1002_smtd_202500038 |
Cites_doi | 10.1038/s41565-017-0022-x 10.1038/nature02450 10.1038/nphys4302 10.1103/PhysRevB.86.195117 10.1038/nnano.2015.143 10.1103/RevModPhys.70.1039 10.1103/PhysRevLett.101.066802 10.1021/acs.chemmater.7b03061 10.1007/s12274-020-3188-8 10.1021/acsnano.8b08051 10.1038/s41567-019-0744-9 10.1088/0953-8984/22/2/022201 10.1038/s41570-020-0173-4 10.1103/PhysRevB.54.11169 10.1073/pnas.1907043116 10.1039/C5CS00151J 10.1021/acs.nanolett.8b00237 10.1038/s41467-020-15419-1 10.1038/nmat3648 10.1038/s41586-018-0129-8 10.1038/ncomms10349 10.1038/nphys3527 10.1021/acsnano.8b07379 10.1103/PhysRevB.82.081101 10.1038/s41586-021-03541-z 10.1038/s41586-019-1718-x 10.1038/s41467-021-22516-2 10.1038/s41467-020-14631-3 10.1103/PhysRevB.83.195131 10.1038/s41586-019-0957-1 10.1103/PhysRevB.81.125113 10.1103/PhysRevB.50.17953 10.1038/ncomms7313 10.1103/PhysRevB.59.1758 10.1038/s41586-019-1052-3 10.1126/science.1182541 10.1038/s41467-021-23418-z |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acsnano.1c06332 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 16596 |
ExternalDocumentID | 10_1021_acsnano_1c06332 b295718847 |
GroupedDBID | - 23M 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED F5P GGK GNL IH9 IHE JG K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV BAANH CITATION CUPRZ ED~ JG~ 7X8 |
ID | FETCH-LOGICAL-a376t-4e6816e1b119bc764480a0fe34c48f0b7e6f04dd11963d1e0f5c5f6573fce0f33 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 00:18:44 EDT 2025 Thu Apr 24 23:08:55 EDT 2025 Tue Jul 01 03:37:16 EDT 2025 Thu Oct 28 07:00:31 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | phase engineering Mott insulator transition metal dichalcogenides charge density wave scanning tunneling microscopy |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a376t-4e6816e1b119bc764480a0fe34c48f0b7e6f04dd11963d1e0f5c5f6573fce0f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3423-5863 0000-0002-8896-0748 0000-0001-5249-6624 0000-0001-8739-7773 0000-0001-6464-5500 0000-0002-2252-322X |
PQID | 2579379977 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2579379977 crossref_primary_10_1021_acsnano_1c06332 crossref_citationtrail_10_1021_acsnano_1c06332 acs_journals_10_1021_acsnano_1c06332 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-26 |
PublicationDateYYYYMMDD | 2021-10-26 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref16/cit16 ref29/cit29 Liu Z.-Y. (ref25/cit25) 2021 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 Liu M. (ref26/cit26) 2021 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref3/cit3 doi: 10.1038/s41565-017-0022-x – ident: ref19/cit19 doi: 10.1038/nature02450 – ident: ref18/cit18 doi: 10.1038/nphys4302 – ident: ref22/cit22 doi: 10.1103/PhysRevB.86.195117 – ident: ref30/cit30 doi: 10.1038/nnano.2015.143 – ident: ref15/cit15 doi: 10.1103/RevModPhys.70.1039 – ident: ref21/cit21 doi: 10.1103/PhysRevLett.101.066802 – ident: ref32/cit32 doi: 10.1021/acs.chemmater.7b03061 – ident: ref5/cit5 doi: 10.1007/s12274-020-3188-8 – ident: ref39/cit39 doi: 10.1021/acsnano.8b08051 – ident: ref16/cit16 doi: 10.1038/s41567-019-0744-9 – year: 2021 ident: ref25/cit25 publication-title: arXiv – ident: ref37/cit37 doi: 10.1088/0953-8984/22/2/022201 – ident: ref23/cit23 doi: 10.1038/s41570-020-0173-4 – ident: ref35/cit35 doi: 10.1103/PhysRevB.54.11169 – ident: ref13/cit13 doi: 10.1073/pnas.1907043116 – ident: ref24/cit24 doi: 10.1039/C5CS00151J – ident: ref31/cit31 doi: 10.1021/acs.nanolett.8b00237 – ident: ref7/cit7 doi: 10.1038/s41467-020-15419-1 – ident: ref12/cit12 doi: 10.1038/nmat3648 – ident: ref2/cit2 doi: 10.1038/s41586-018-0129-8 – ident: ref4/cit4 doi: 10.1038/ncomms10349 – ident: ref29/cit29 doi: 10.1038/nphys3527 – ident: ref27/cit27 doi: 10.1021/acsnano.8b07379 – ident: ref36/cit36 doi: 10.1103/PhysRevB.82.081101 – ident: ref6/cit6 doi: 10.1038/s41586-021-03541-z – ident: ref10/cit10 doi: 10.1038/s41586-019-1718-x – ident: ref11/cit11 doi: 10.1038/s41467-021-22516-2 – ident: ref14/cit14 doi: 10.1038/s41467-020-14631-3 – year: 2021 ident: ref26/cit26 publication-title: arXiv – ident: ref38/cit38 doi: 10.1103/PhysRevB.83.195131 – ident: ref8/cit8 doi: 10.1038/s41586-019-0957-1 – ident: ref20/cit20 doi: 10.1103/PhysRevB.81.125113 – ident: ref33/cit33 doi: 10.1103/PhysRevB.50.17953 – ident: ref28/cit28 doi: 10.1038/ncomms7313 – ident: ref34/cit34 doi: 10.1103/PhysRevB.59.1758 – ident: ref1/cit1 doi: 10.1038/s41586-019-1052-3 – ident: ref9/cit9 doi: 10.1126/science.1182541 – ident: ref17/cit17 doi: 10.1038/s41467-021-23418-z |
SSID | ssj0057876 |
Score | 2.4922075 |
Snippet | Microscopically visualizing the evolution of electronic structures at the interface between two electron-correlated domains shows fundamental importance in... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 16589 |
Title | Visualizing Spatial Evolution of Electron-Correlated Interface in Two-Dimensional Heterostructures |
URI | http://dx.doi.org/10.1021/acsnano.1c06332 https://www.proquest.com/docview/2579379977 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA8yL3rwW5xfRNjBS2aTpsl2lLkxBL24yW4lSRMYjlboprC_3pe2m84x9BhoQnh5H7_0vfweQo2CAyRRnCShUoRDSCNKSUvaQgI6BQfImX_v_PQs-kP-OIpG32TRvzP4jN4pk6cqzZrUQDQNwdtuMwEm7FFQ52XhdL3eiTKBDBdkQBFLFp-1BXwYMvlqGFr1wkVo6e2XRVl5wUjoK0remrOpbpr5Ol_j37s-QHsVwMT3pUYcoi2bHqHdH7SDx0i_jnP_lnIOI-x7EoMO4u5HpYQ4c7hbNcchHd-8YwJ4NMHFv0OnjMXjFA8-M_LgGwOUpB6476tqspKMdgY3-BM07HUHnT6pei0QBS5mSrgVLSos1ZS2tZH-1haowNmQG95ygZZWuIAnCfUWm1AbuMhETkQydAYGYXiKammW2jOEnQQQpJkODMBB3Qq0gnhgQ8MkEzaQso4aIJ24spU8LtLgjMaVyOJKZHXUXJxQbCq-ct82Y7J5wu1ywntJ1bH505vFkcdgTj5HolKbzfIYPBgAtjag4vP_bfMC7TBf5gLhjIlLVANB2yvAKVN9XWjoF1Iw5NA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5FD-rBt1ifETx4yZrsI2mPpVaqVkGs4m1JsgkUy66wrUJ_vZPdbbWKoMeETRgmk5kvO8k3CJ0WHCCJDEkSSElCCGlESmFIkwtAp-AAQ9-9d769493H8Po5eq4hOn0LA0LkMFNeJPE_2QXYOfSlMs08piGoBuB0FwGK-M6mW-2Hqe915sfLPDKckwFMzMh8fkzgopHO56PRvDMuIszlGrqfyVZcLHnxxiPl6ck32sb_CL-OViu4iVulfWygmkk30coXEsItpJ4GuXtZOYEWdhWKwSJx560ySZxZ3KlK5ZC2K-UxBHSa4OJPopXa4EGK--8ZuXBlAkqKD9x1d2yykpp2DOf5bfR42em3u6SqvEAkOJwRCQ1vMG6YYqyptHBnOCqpNUGow4alShhuaZgkzO3fhBlqIx1ZHonAamgEwQ5aSLPU7CJsBUAi5SuqARyqBlUSooMJtC98bqgQdXQK2omrnZPHRVLcZ3GlsrhSWR1504WKdcVe7opoDH8fcDYb8FoSd_z-6cl05WPYXC5jIlOTjfMY_BnAtyZg5L2_iXmMlrr9217cu7q72UfLvrsAA4HO5wdoAZRuDgHBjNRRYbQfKRLtMQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yQfTBb3F-RtiDL5lN2zXbo8yN-TUEN9lbSdIERGkH3RT8671rs-EHA31MaUJ6udz90sv9jpBawQGSyJAlgZQsBJfGpBSGtSIB6BQMYOhjvvN9P-oNw5tRY-SSwjAXBiaRw0h5EcTHXT1OrGMY4BfwPJVpVucaHGsAhncZg3ao15ftx5n9RRWMylgynJUBUMwJfX4NgB5J59890neDXHiZ7gYZzudXXC55qU8nqq4_flA3_vcDNsm6g530stSTLbJk0m2y9oWMcIeop-ccMyw_oEWxUjFoJu28OdWkmaUdVzKHtbGkxyug1IQWfxSt1IY-p3TwnrErLBdQUn3QHt61yUqK2imc63fJsNsZtHvMVWBgEgzPhIUmavLIcMV5S2mBZzlPetYEoQ6b1lPCRNYLk4TjPk648WxDNyysSWA1NIJgj1TSLDX7hFoB0Ej5ytMAElXTUxK8hAm0L_zIeEJUSQ2kE7sdlMdFcNznsRNZ7ERWJfXZYsXasZhjMY3XxR3O5x3GJYHH4lfPZqsfwybDyIlMTTbNY7BrAONagJUP_jbNU7LycNWN7677t4dk1cd7MODv_OiIVEDm5hiAzESdFHr7CdSv77Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualizing+Spatial+Evolution+of+Electron-Correlated+Interface+in+Two-Dimensional+Heterostructures&rft.jtitle=ACS+nano&rft.au=Zhang%2C+Quanzhen&rft.au=Hou%2C+Yanhui&rft.au=Zhang%2C+Teng&rft.au=Xu%2C+Ziqiang&rft.date=2021-10-26&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=15&rft.issue=10&rft.spage=16589&rft.epage=16596&rft_id=info:doi/10.1021%2Facsnano.1c06332&rft.externalDocID=b295718847 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |