Photoresponsive Drug/Gene Delivery Systems

Light as an external stimulus can be precisely manipulated in terms of irradiation time, site, wavelength, and density. As such, photoresponsive drug/gene delivery systems have been increasingly pursued and utilized for the spatiotemporal control of drug/gene delivery to enhance their therapeutic ef...

Full description

Saved in:
Bibliographic Details
Published inBiomacromolecules Vol. 19; no. 6; pp. 1840 - 1857
Main Authors Zhou, Yang, Ye, Huan, Chen, Yongbing, Zhu, Rongying, Yin, Lichen
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.06.2018
Subjects
Online AccessGet full text
ISSN1525-7797
1526-4602
1526-4602
DOI10.1021/acs.biomac.8b00422

Cover

Loading…
Abstract Light as an external stimulus can be precisely manipulated in terms of irradiation time, site, wavelength, and density. As such, photoresponsive drug/gene delivery systems have been increasingly pursued and utilized for the spatiotemporal control of drug/gene delivery to enhance their therapeutic efficacy and safety. In this review, we summarized the recent research progress on photoresponsive drug/gene delivery, and two major categories of delivery systems were discussed. The first category is the direct responsive systems that experience photoreactions on the vehicle or drug themselves, and different materials as well as chemical structures responsive to UV, visible, and NIR light are summarized. The second category is the indirect responsive systems that require a light-generated mediator signal, such as heat, ROS, hypoxia, and gas molecules, to cascadingly trigger the structural transformation. The future outlook and challenges are also discussed at the end.
AbstractList Light as an external stimulus can be precisely manipulated in terms of irradiation time, site, wavelength, and density. As such, photoresponsive drug/gene delivery systems have been increasingly pursued and utilized for the spatiotemporal control of drug/gene delivery to enhance their therapeutic efficacy and safety. In this review, we summarized the recent research progress on photoresponsive drug/gene delivery, and two major categories of delivery systems were discussed. The first category is the direct responsive systems that experience photoreactions on the vehicle or drug themselves, and different materials as well as chemical structures responsive to UV, visible, and NIR light are summarized. The second category is the indirect responsive systems that require a light-generated mediator signal, such as heat, ROS, hypoxia, and gas molecules, to cascadingly trigger the structural transformation. The future outlook and challenges are also discussed at the end.
Light as an external stimulus can be precisely manipulated in terms of irradiation time, site, wavelength, and density. As such, photoresponsive drug/gene delivery systems have been increasingly pursued and utilized for the spatiotemporal control of drug/gene delivery to enhance their therapeutic efficacy and safety. In this review, we summarized the recent research progress on photoresponsive drug/gene delivery, and two major categories of delivery systems were discussed. The first category is the direct responsive systems that experience photoreactions on the vehicle or drug themselves, and different materials as well as chemical structures responsive to UV, visible, and NIR light are summarized. The second category is the indirect responsive systems that require a light-generated mediator signal, such as heat, ROS, hypoxia, and gas molecules, to cascadingly trigger the structural transformation. The future outlook and challenges are also discussed at the end.Light as an external stimulus can be precisely manipulated in terms of irradiation time, site, wavelength, and density. As such, photoresponsive drug/gene delivery systems have been increasingly pursued and utilized for the spatiotemporal control of drug/gene delivery to enhance their therapeutic efficacy and safety. In this review, we summarized the recent research progress on photoresponsive drug/gene delivery, and two major categories of delivery systems were discussed. The first category is the direct responsive systems that experience photoreactions on the vehicle or drug themselves, and different materials as well as chemical structures responsive to UV, visible, and NIR light are summarized. The second category is the indirect responsive systems that require a light-generated mediator signal, such as heat, ROS, hypoxia, and gas molecules, to cascadingly trigger the structural transformation. The future outlook and challenges are also discussed at the end.
Author Chen, Yongbing
Zhu, Rongying
Ye, Huan
Zhou, Yang
Yin, Lichen
AuthorAffiliation Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology
The Second Affiliated Hospital of Soochow University
Soochow University
Department of Cardiothoracic Surgery
AuthorAffiliation_xml – name: Soochow University
– name: Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology
– name: The Second Affiliated Hospital of Soochow University
– name: Department of Cardiothoracic Surgery
Author_xml – sequence: 1
  givenname: Yang
  surname: Zhou
  fullname: Zhou, Yang
  organization: Soochow University
– sequence: 2
  givenname: Huan
  surname: Ye
  fullname: Ye, Huan
  organization: Soochow University
– sequence: 3
  givenname: Yongbing
  surname: Chen
  fullname: Chen, Yongbing
  organization: The Second Affiliated Hospital of Soochow University
– sequence: 4
  givenname: Rongying
  surname: Zhu
  fullname: Zhu, Rongying
  organization: The Second Affiliated Hospital of Soochow University
– sequence: 5
  givenname: Lichen
  orcidid: 0000-0002-4573-0555
  surname: Yin
  fullname: Yin, Lichen
  email: lcyin@suda.edu.cn
  organization: Soochow University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29701952$$D View this record in MEDLINE/PubMed
BookMark eNqFkM9LwzAUgINM3A_9BzzIjiJ0S16bpD3K1CkMFNRzSNJEO9pmJq2w_97OTg8e5imPvO97h2-MBrWrDULnBM8IBjKXOsxU4SqpZ6nCOAE4QiNCgUUJwzD4nmnEecaHaBzCGmOcxQk9QUPIOCYZhRG6enp3jfMmbFwdik8zvfHt23xp6m4yZffht9PnbWhMFU7RsZVlMGf7d4Je725fFvfR6nH5sLheRTLmtIny3CZG5nGuaAbEEog1TywwqxVwlhvF00xZnWeaKAbUyswwRhVW2krGwcQTdNnf3Xj30ZrQiKoI2pSlrI1rgwCCSQwpZcn_KI4hwWnKcYde7NFWVSYXG19U0m_FT4oOgB7Q3oXgjf1FCBa73qLrLfreYt-7k9I_ki4a2RSubrwsysPqrFd3u7Vrfd1FPSR8ATdEl7U
CitedBy_id crossref_primary_10_1021_acsomega_9b02923
crossref_primary_10_1021_acs_jmedchem_2c01262
crossref_primary_10_1016_j_biotechadv_2021_107711
crossref_primary_10_1021_acsami_8b16363
crossref_primary_10_3390_ijms25189779
crossref_primary_10_1021_acs_biomac_8b00830
crossref_primary_10_1039_C9CC06673J
crossref_primary_10_1007_s12274_020_2913_7
crossref_primary_10_1016_j_jconrel_2022_12_036
crossref_primary_10_1021_accountsmr_2c00147
crossref_primary_10_1021_acsnano_3c01333
crossref_primary_10_1002_adfm_202314278
crossref_primary_10_1002_anie_201914434
crossref_primary_10_1002_pi_5997
crossref_primary_10_3390_ijms22147637
crossref_primary_10_3390_polym13223920
crossref_primary_10_3390_molecules29133131
crossref_primary_10_1039_D2NH00070A
crossref_primary_10_1039_D0BM00631A
crossref_primary_10_2174_0929867328666210806113949
crossref_primary_10_1016_j_nano_2022_102535
crossref_primary_10_1021_acs_biomac_8b01138
crossref_primary_10_1021_acscentsci_0c01151
crossref_primary_10_3389_fphar_2022_909408
crossref_primary_10_1002_adhm_202402690
crossref_primary_10_1016_j_dyepig_2023_111245
crossref_primary_10_1021_acs_biomac_1c01073
crossref_primary_10_1002_anie_201911398
crossref_primary_10_1002_mco2_163
crossref_primary_10_1016_j_cej_2021_128545
crossref_primary_10_1021_acs_biomac_9b01123
crossref_primary_10_1039_D3TB03004K
crossref_primary_10_3390_polym14235134
crossref_primary_10_1002_adma_202312530
crossref_primary_10_1016_j_jconrel_2022_10_046
crossref_primary_10_4103_bbrj_bbrj_265_21
crossref_primary_10_1021_acs_biomac_4c01508
crossref_primary_10_3390_pharmaceutics15102448
crossref_primary_10_1038_s41570_021_00326_w
crossref_primary_10_1002_ange_201911398
crossref_primary_10_1063_1_5099128
crossref_primary_10_1016_j_apsb_2024_08_033
crossref_primary_10_1016_j_eurpolymj_2020_109561
crossref_primary_10_1039_C9TB01071H
crossref_primary_10_1016_j_eurpolymj_2025_113849
crossref_primary_10_1021_acs_biomac_9b00963
crossref_primary_10_1021_acs_chemrev_0c00663
crossref_primary_10_1002_adfm_202416359
crossref_primary_10_1039_D4TC01353K
crossref_primary_10_1002_anbr_202000078
crossref_primary_10_1002_pol_20230028
crossref_primary_10_1016_j_colsurfa_2024_135669
crossref_primary_10_1002_adom_201900215
crossref_primary_10_3390_gels10010061
crossref_primary_10_1002_adma_201906890
crossref_primary_10_1021_acs_biomac_2c00018
crossref_primary_10_1002_adma_202007290
crossref_primary_10_1021_acsabm_2c00208
crossref_primary_10_1016_j_addr_2021_113891
crossref_primary_10_1016_j_optmat_2018_10_050
crossref_primary_10_3390_pharmaceutics12090827
crossref_primary_10_1016_j_jddst_2024_106139
crossref_primary_10_1002_smtd_202400510
crossref_primary_10_1039_D4SC04837G
crossref_primary_10_1016_j_jsps_2020_01_004
crossref_primary_10_1080_10717544_2025_2476140
crossref_primary_10_1038_s41428_023_00865_7
crossref_primary_10_1016_j_ccr_2023_215594
crossref_primary_10_1007_s10853_022_07529_6
crossref_primary_10_1021_acs_chemrev_0c00997
crossref_primary_10_1039_D3TB02693K
crossref_primary_10_1080_1539445X_2022_2028831
crossref_primary_10_1016_j_jconrel_2022_03_041
crossref_primary_10_1021_acsabm_0c01644
crossref_primary_10_1016_j_bioactmat_2020_12_001
crossref_primary_10_1021_acsami_3c14760
crossref_primary_10_3390_pharmaceutics17010098
crossref_primary_10_1002_ange_201914434
crossref_primary_10_1007_s12668_024_01582_y
crossref_primary_10_1016_j_ccr_2024_215921
crossref_primary_10_1039_C9MH01300H
crossref_primary_10_1002_smll_201903060
crossref_primary_10_1111_php_13570
crossref_primary_10_1016_j_niox_2024_02_003
crossref_primary_10_1039_D2SM01507B
crossref_primary_10_1039_D4OB01603C
crossref_primary_10_1016_j_apsb_2023_04_005
crossref_primary_10_1016_j_ijpharm_2020_120081
crossref_primary_10_2174_0113852728307241240430055059
crossref_primary_10_1039_C8TB01566J
crossref_primary_10_1002_EXP_20210099
crossref_primary_10_1039_D4CP02243B
crossref_primary_10_1021_acsapm_2c00228
crossref_primary_10_1039_D0TB01675F
crossref_primary_10_1039_D3CE01033C
crossref_primary_10_1080_15583724_2024_2427184
crossref_primary_10_1039_D0QM00268B
crossref_primary_10_3390_ijms21093358
crossref_primary_10_1016_j_colsurfb_2019_110393
crossref_primary_10_1039_D0CP00077A
crossref_primary_10_1016_j_envres_2024_118560
crossref_primary_10_1002_adom_201900252
crossref_primary_10_1016_j_addr_2022_114554
crossref_primary_10_1021_acs_joc_3c00010
crossref_primary_10_3762_bjoc_15_188
crossref_primary_10_1021_acs_langmuir_9b02005
Cites_doi 10.1016/j.actbio.2017.08.010
10.1016/j.cis.2016.09.003
10.1039/C5BM00328H
10.1039/C7PY00914C
10.1021/acsami.5b01165
10.1039/C4CC08580A
10.1016/j.jacc.2009.07.068
10.1021/ja4013497
10.1021/jacs.6b04773
10.1002/anie.201006193
10.1016/j.jconrel.2015.09.030
10.1016/j.bios.2016.06.089
10.1021/acs.biomac.6b01774
10.1021/acs.biomac.5b00185
10.1021/acsnano.7b08219
10.1126/science.1169494
10.1021/bm501258s
10.1002/adma.201605357
10.1021/nn201171r
10.7150/thno.15433
10.1039/C7BM00270J
10.1007/s12274-014-0620-y
10.1002/adma.201502669
10.1021/bm3010325
10.1002/adfm.201600827
10.7150/thno.14101
10.1021/am401059k
10.1016/j.addr.2011.03.005
10.1039/C6CC05734A
10.1002/adfm.201702592
10.1002/marc.201700220
10.1021/acs.nanolett.5b03440
10.1016/j.addr.2013.12.010
10.1039/C4TC00653D
10.1002/adfm.201600722
10.1039/C6CC09959A
10.1039/C6CC08123A
10.1021/jacs.7b03153
10.1021/bm401670t
10.1039/c0cc04424e
10.1021/acsami.7b07468
10.1039/C7NR05050J
10.1021/acsnano.6b05858
10.1039/c2jm00045h
10.1016/j.biomaterials.2016.03.040
10.1039/C3BM60297D
10.1039/C6NR01543C
10.1039/C3PY00533J
10.1021/acsami.7b17323
10.1021/acs.biomac.7b00693
10.1021/jacs.6b10952
10.1039/C7BM00256D
10.1038/srep37009
10.1021/bm300151m
10.1021/acsnano.5b07817
10.1021/bm400169d
10.1021/ja0523035
10.1002/adma.201002072
10.1002/marc.201300863
10.1021/acs.macromol.7b02637
10.1016/j.jconrel.2017.03.359
10.1002/anie.201503640
10.1039/C5NR01075F
10.1002/adfm.201403079
10.1039/C6BM00262E
10.1002/anie.201308174
10.1021/ja0521019
10.1002/adma.201505869
10.1021/acs.biomac.5b01372
10.1093/carcin/bgv173
10.1016/j.redox.2013.06.002
10.1016/j.nano.2017.02.014
10.1007/s13346-015-0260-0
10.1038/natrevmats.2017.20
10.1039/C6PY00449K
10.1002/anie.201711354
10.1016/j.biomaterials.2017.11.044
10.1039/C7BM00348J
10.1039/b700686a
10.1039/C7BM00392G
10.1016/j.actbio.2010.02.014
10.1021/nn304474j
10.2147/IJN.S130861
10.1039/C6TB02944B
10.1039/C5TB00398A
10.1039/C7SC01692A
10.1002/anie.201611783
10.1021/acs.biomac.5b00950
10.1039/c2py20375h
10.1021/mp800270t
10.1039/C5SC03583J
10.7150/thno.17602
10.1021/ja211888a
10.1073/pnas.1315336110
10.1158/1078-0432.CCR-04-2482
10.1002/adfm.201703674
10.1002/smll.201501575
10.18632/oncotarget.10310
10.1002/jbm.a.34107
10.1021/acsnano.6b06670
10.1039/C5DT01418B
10.1002/adfm.201500737
10.1038/nmat3776
10.1016/j.biomaterials.2014.03.005
10.1038/ncomms4545
10.1021/acsmacrolett.6b00715
10.1039/C3PY01234D
10.1021/acsami.5b05763
10.1002/anie.200900255
10.1039/C7NR07677K
10.1002/anie.201500478
10.1021/ja068452k
10.1002/adfm.201404484
10.1016/j.ijpharm.2017.07.014
10.1002/anie.201310211
10.1002/adma.201204455
10.1021/acs.chemmater.7b04751
10.1039/C5CC05172J
10.1016/j.jinorgbio.2016.01.024
10.1002/med.21433
10.1002/adfm.201501524
10.1039/C7TA06077G
10.1002/pola.24853
10.1002/adma.201101295
10.1021/acsami.7b03711
10.1016/j.freeradbiomed.2017.12.017
10.1016/j.jconrel.2017.08.013
10.1021/nn203293t
10.1073/pnas.1322651111
10.1021/ja209793b
10.1016/j.biomaterials.2017.12.003
10.1021/ma060142z
10.1039/C6PY02016J
10.1016/j.biomaterials.2016.08.022
10.1002/anie.201302820
10.1021/am503039f
10.1021/acsami.7b05502
10.1002/anie.201402189
10.1039/C6BM00011H
10.1016/j.biomaterials.2018.04.020
10.1039/C5CC08391E
10.1021/acsami.7b15896
10.1039/C7CP06885A
10.1039/C7BM00798A
10.1016/j.biomaterials.2017.04.032
10.1039/C7PY00946A
10.1021/bm300646q
10.1016/j.tem.2017.11.005
10.1016/j.colsurfb.2016.07.028
10.1039/C7TB01712J
10.1002/adfm.201706710
10.1021/nl903411s
10.1002/smll.201601137
10.1002/anie.201308816
10.1002/adfm.201302133
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acs.biomac.8b00422
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1526-4602
EndPage 1857
ExternalDocumentID 29701952
10_1021_acs_biomac_8b00422
c217914675
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID -
02
23N
53G
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
RSW
TN5
UI2
VF5
VG9
W1F
X
XKZ
---
-~X
4.4
5VS
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a375t-ddf4ead3db5921f123c74f26fcb276deb789bfcd9c1b625fa9e665b0bcfa672e3
IEDL.DBID ACS
ISSN 1525-7797
1526-4602
IngestDate Fri Jul 11 06:01:44 EDT 2025
Fri Jul 11 10:10:09 EDT 2025
Thu Apr 03 06:58:39 EDT 2025
Tue Jul 01 04:07:57 EDT 2025
Thu Apr 24 23:11:48 EDT 2025
Thu Aug 27 13:42:22 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a375t-ddf4ead3db5921f123c74f26fcb276deb789bfcd9c1b625fa9e665b0bcfa672e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4573-0555
PMID 29701952
PQID 2032408870
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_2101328564
proquest_miscellaneous_2032408870
pubmed_primary_29701952
crossref_primary_10_1021_acs_biomac_8b00422
crossref_citationtrail_10_1021_acs_biomac_8b00422
acs_journals_10_1021_acs_biomac_8b00422
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-11
PublicationDateYYYYMMDD 2018-06-11
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biomacromolecules
PublicationTitleAlternate Biomacromolecules
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref128/cit128
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref18/cit18
ref136/cit136
ref137/cit137
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref28/cit28
ref132/cit132
ref91/cit91
ref148/cit148
ref55/cit55
ref144/cit144
ref12/cit12
ref66/cit66
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref140/cit140
ref129/cit129
ref44/cit44
ref70/cit70
ref98/cit98
ref125/cit125
ref9/cit9
ref152/cit152
ref153/cit153
ref154/cit154
ref27/cit27
ref150/cit150
ref63/cit63
ref151/cit151
ref56/cit56
ref92/cit92
ref155/cit155
ref156/cit156
ref157/cit157
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref147/cit147
ref143/cit143
ref53/cit53
ref145/cit145
ref21/cit21
ref149/cit149
ref46/cit46
ref49/cit49
ref75/cit75
Berg K. (ref102/cit102) 1999; 59
ref24/cit24
ref141/cit141
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref138/cit138
ref79/cit79
ref139/cit139
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref134/cit134
ref135/cit135
ref40/cit40
ref68/cit68
ref94/cit94
ref130/cit130
ref131/cit131
ref146/cit146
ref26/cit26
ref142/cit142
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref127/cit127
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – ident: ref73/cit73
  doi: 10.1016/j.actbio.2017.08.010
– ident: ref17/cit17
  doi: 10.1016/j.cis.2016.09.003
– ident: ref142/cit142
  doi: 10.1039/C5BM00328H
– ident: ref20/cit20
  doi: 10.1039/C7PY00914C
– ident: ref49/cit49
  doi: 10.1021/acsami.5b01165
– ident: ref149/cit149
  doi: 10.1039/C4CC08580A
– ident: ref124/cit124
  doi: 10.1016/j.jacc.2009.07.068
– ident: ref84/cit84
  doi: 10.1021/ja4013497
– ident: ref143/cit143
  doi: 10.1021/jacs.6b04773
– ident: ref31/cit31
  doi: 10.1002/anie.201006193
– ident: ref45/cit45
  doi: 10.1016/j.jconrel.2015.09.030
– ident: ref46/cit46
  doi: 10.1016/j.bios.2016.06.089
– ident: ref12/cit12
  doi: 10.1021/acs.biomac.6b01774
– ident: ref11/cit11
  doi: 10.1021/acs.biomac.5b00185
– ident: ref113/cit113
  doi: 10.1021/acsnano.7b08219
– ident: ref32/cit32
  doi: 10.1126/science.1169494
– ident: ref64/cit64
  doi: 10.1021/bm501258s
– ident: ref104/cit104
  doi: 10.1002/adma.201605357
– ident: ref150/cit150
  doi: 10.1021/nn201171r
– ident: ref109/cit109
  doi: 10.7150/thno.15433
– ident: ref154/cit154
  doi: 10.1039/C7BM00270J
– ident: ref65/cit65
  doi: 10.1007/s12274-014-0620-y
– ident: ref86/cit86
  doi: 10.1002/adma.201502669
– ident: ref58/cit58
  doi: 10.1021/bm3010325
– ident: ref133/cit133
  doi: 10.1002/adfm.201600827
– ident: ref111/cit111
  doi: 10.7150/thno.14101
– ident: ref42/cit42
  doi: 10.1021/am401059k
– ident: ref66/cit66
  doi: 10.1016/j.addr.2011.03.005
– ident: ref87/cit87
  doi: 10.1039/C6CC05734A
– ident: ref100/cit100
  doi: 10.1002/adfm.201702592
– ident: ref21/cit21
  doi: 10.1002/marc.201700220
– ident: ref72/cit72
  doi: 10.1021/acs.nanolett.5b03440
– ident: ref2/cit2
  doi: 10.1016/j.addr.2013.12.010
– ident: ref22/cit22
  doi: 10.1039/C4TC00653D
– ident: ref96/cit96
  doi: 10.1002/adfm.201600722
– ident: ref139/cit139
  doi: 10.1039/C6CC09959A
– ident: ref78/cit78
  doi: 10.1039/C6CC08123A
– ident: ref16/cit16
  doi: 10.1021/jacs.7b03153
– ident: ref25/cit25
  doi: 10.1021/bm401670t
– ident: ref52/cit52
  doi: 10.1039/c0cc04424e
– volume: 59
  start-page: 1180
  year: 1999
  ident: ref102/cit102
  publication-title: Cancer Res.
– ident: ref146/cit146
  doi: 10.1021/acsami.7b07468
– ident: ref97/cit97
  doi: 10.1039/C7NR05050J
– ident: ref18/cit18
  doi: 10.1021/acs.biomac.6b01774
– ident: ref131/cit131
  doi: 10.1021/acsnano.6b05858
– ident: ref55/cit55
  doi: 10.1039/c2jm00045h
– ident: ref136/cit136
  doi: 10.1016/j.biomaterials.2016.03.040
– ident: ref81/cit81
  doi: 10.1039/C3BM60297D
– ident: ref88/cit88
  doi: 10.1039/C6NR01543C
– ident: ref56/cit56
  doi: 10.1039/C3PY00533J
– ident: ref119/cit119
  doi: 10.1021/acsami.7b17323
– ident: ref54/cit54
  doi: 10.1021/acs.biomac.7b00693
– ident: ref137/cit137
  doi: 10.1021/jacs.6b10952
– ident: ref155/cit155
  doi: 10.1039/C7BM00256D
– ident: ref89/cit89
  doi: 10.1038/srep37009
– ident: ref44/cit44
  doi: 10.1021/bm300151m
– ident: ref70/cit70
  doi: 10.1021/acsnano.5b07817
– ident: ref33/cit33
  doi: 10.1021/bm400169d
– ident: ref57/cit57
  doi: 10.1021/ja0523035
– ident: ref9/cit9
  doi: 10.1002/adma.201002072
– ident: ref37/cit37
  doi: 10.1002/marc.201300863
– ident: ref153/cit153
  doi: 10.1021/acs.macromol.7b02637
– ident: ref99/cit99
  doi: 10.1016/j.jconrel.2017.03.359
– ident: ref108/cit108
  doi: 10.1002/anie.201503640
– ident: ref1/cit1
  doi: 10.1039/C5NR01075F
– ident: ref79/cit79
  doi: 10.1002/adfm.201403079
– ident: ref157/cit157
  doi: 10.1039/C6BM00262E
– ident: ref3/cit3
  doi: 10.1002/anie.201308174
– ident: ref39/cit39
  doi: 10.1021/ja0521019
– ident: ref115/cit115
  doi: 10.1002/adma.201505869
– ident: ref38/cit38
  doi: 10.1021/acs.biomac.5b01372
– ident: ref40/cit40
  doi: 10.1093/carcin/bgv173
– ident: ref127/cit127
  doi: 10.1016/j.redox.2013.06.002
– ident: ref82/cit82
  doi: 10.1016/j.nano.2017.02.014
– ident: ref145/cit145
  doi: 10.1007/s13346-015-0260-0
– ident: ref8/cit8
  doi: 10.1038/natrevmats.2017.20
– ident: ref95/cit95
  doi: 10.1039/C6PY00449K
– ident: ref14/cit14
  doi: 10.1002/anie.201711354
– ident: ref125/cit125
  doi: 10.1016/j.biomaterials.2017.11.044
– ident: ref147/cit147
  doi: 10.1039/C7BM00348J
– ident: ref151/cit151
  doi: 10.1039/b700686a
– ident: ref7/cit7
  doi: 10.1039/C7BM00392G
– ident: ref41/cit41
  doi: 10.1016/j.actbio.2010.02.014
– ident: ref134/cit134
  doi: 10.1021/nn304474j
– ident: ref135/cit135
  doi: 10.2147/IJN.S130861
– ident: ref43/cit43
  doi: 10.1039/C6TB02944B
– ident: ref53/cit53
  doi: 10.1039/C5TB00398A
– ident: ref130/cit130
  doi: 10.1039/C7SC01692A
– ident: ref122/cit122
  doi: 10.1002/anie.201611783
– ident: ref10/cit10
  doi: 10.1021/acs.biomac.5b00950
– ident: ref19/cit19
  doi: 10.1039/c2py20375h
– ident: ref91/cit91
  doi: 10.1021/mp800270t
– ident: ref107/cit107
  doi: 10.1039/C5SC03583J
– ident: ref92/cit92
  doi: 10.7150/thno.17602
– ident: ref27/cit27
  doi: 10.1021/ja211888a
– ident: ref28/cit28
  doi: 10.1073/pnas.1315336110
– ident: ref69/cit69
  doi: 10.1158/1078-0432.CCR-04-2482
– ident: ref110/cit110
  doi: 10.1002/adfm.201703674
– ident: ref59/cit59
  doi: 10.1002/smll.201501575
– ident: ref120/cit120
  doi: 10.18632/oncotarget.10310
– ident: ref50/cit50
  doi: 10.1002/jbm.a.34107
– ident: ref76/cit76
  doi: 10.1021/acsnano.6b06670
– ident: ref126/cit126
  doi: 10.1039/C5DT01418B
– ident: ref105/cit105
  doi: 10.1002/adfm.201500737
– ident: ref4/cit4
  doi: 10.1038/nmat3776
– ident: ref29/cit29
  doi: 10.1016/j.biomaterials.2014.03.005
– ident: ref106/cit106
  doi: 10.1038/ncomms4545
– ident: ref34/cit34
  doi: 10.1021/acsmacrolett.6b00715
– ident: ref152/cit152
  doi: 10.1039/C3PY01234D
– ident: ref141/cit141
  doi: 10.1021/acsami.5b05763
– ident: ref62/cit62
  doi: 10.1002/anie.200900255
– ident: ref117/cit117
  doi: 10.1039/C7NR07677K
– ident: ref118/cit118
  doi: 10.1002/anie.201500478
– ident: ref15/cit15
  doi: 10.1021/ja068452k
– ident: ref144/cit144
  doi: 10.1002/adfm.201404484
– ident: ref80/cit80
  doi: 10.1016/j.ijpharm.2017.07.014
– ident: ref23/cit23
  doi: 10.1002/anie.201310211
– ident: ref116/cit116
  doi: 10.1002/adma.201204455
– ident: ref98/cit98
  doi: 10.1021/acs.chemmater.7b04751
– ident: ref48/cit48
  doi: 10.1039/C5CC05172J
– ident: ref121/cit121
  doi: 10.1016/j.jinorgbio.2016.01.024
– ident: ref128/cit128
  doi: 10.1002/med.21433
– ident: ref77/cit77
  doi: 10.1002/adfm.201501524
– ident: ref75/cit75
  doi: 10.1039/C7TA06077G
– ident: ref5/cit5
  doi: 10.1002/pola.24853
– ident: ref83/cit83
  doi: 10.1002/adma.201101295
– ident: ref67/cit67
  doi: 10.1021/acsami.7b03711
– ident: ref123/cit123
  doi: 10.1016/j.freeradbiomed.2017.12.017
– ident: ref26/cit26
  doi: 10.1016/j.jconrel.2017.08.013
– ident: ref85/cit85
  doi: 10.1021/nn203293t
– ident: ref68/cit68
  doi: 10.1073/pnas.1322651111
– ident: ref60/cit60
  doi: 10.1021/ja209793b
– ident: ref94/cit94
  doi: 10.1016/j.biomaterials.2017.12.003
– ident: ref35/cit35
  doi: 10.1021/ma060142z
– ident: ref138/cit138
  doi: 10.1039/C6PY02016J
– ident: ref6/cit6
  doi: 10.1016/j.biomaterials.2016.08.022
– ident: ref36/cit36
  doi: 10.1002/anie.201302820
– ident: ref61/cit61
  doi: 10.1021/am503039f
– ident: ref71/cit71
  doi: 10.1021/acsami.7b05502
– ident: ref112/cit112
  doi: 10.1002/anie.201402189
– ident: ref140/cit140
  doi: 10.1039/C6BM00011H
– ident: ref148/cit148
  doi: 10.1016/j.biomaterials.2018.04.020
– ident: ref74/cit74
  doi: 10.1039/C5CC08391E
– ident: ref103/cit103
  doi: 10.1021/acsami.7b15896
– ident: ref132/cit132
  doi: 10.1039/C7CP06885A
– ident: ref156/cit156
  doi: 10.1039/C7BM00798A
– ident: ref101/cit101
  doi: 10.1016/j.biomaterials.2017.04.032
– ident: ref51/cit51
  doi: 10.1039/C7PY00946A
– ident: ref30/cit30
  doi: 10.1021/bm300646q
– ident: ref129/cit129
  doi: 10.1016/j.tem.2017.11.005
– ident: ref24/cit24
  doi: 10.1016/j.colsurfb.2016.07.028
– ident: ref90/cit90
  doi: 10.1039/C7TB01712J
– ident: ref114/cit114
  doi: 10.1002/adfm.201706710
– ident: ref13/cit13
  doi: 10.1021/nl903411s
– ident: ref93/cit93
  doi: 10.1002/smll.201601137
– ident: ref47/cit47
  doi: 10.1002/anie.201308816
– ident: ref63/cit63
  doi: 10.1002/adfm.201302133
SSID ssj0009345
Score 2.56388
SecondaryResourceType review_article
Snippet Light as an external stimulus can be precisely manipulated in terms of irradiation time, site, wavelength, and density. As such, photoresponsive drug/gene...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1840
SubjectTerms Animals
Azo Compounds - chemistry
Cell Hypoxia
chemical structure
Drug Carriers - chemistry
Drug Delivery Systems - instrumentation
Drug Delivery Systems - methods
drugs
Gases
gene transfer
Gene Transfer Techniques
heat
Hot Temperature
Humans
hypoxia
irradiation
Light
Nanostructures - chemistry
photochemical reactions
Photochemistry - methods
Polymers - chemistry
Reactive Oxygen Species - metabolism
therapeutics
Ultraviolet Rays
wavelengths
Title Photoresponsive Drug/Gene Delivery Systems
URI http://dx.doi.org/10.1021/acs.biomac.8b00422
https://www.ncbi.nlm.nih.gov/pubmed/29701952
https://www.proquest.com/docview/2032408870
https://www.proquest.com/docview/2101328564
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5DH_TF-2XeqCAIarcmTdr0UTbHECaCDvZWmpuCo5O1FfTXm7TpRHRjryUXTnKS86XnnO8AcMGltkFCQJeTKHEx8bCrYQR1PYY12saUEWV-DQwegv4Q34_IqAFu5njwEWwnPGuZVHQ9PC11TF-4qyjQp9gAoc7TD8WuX5YkNgV9NGaMQpsi8_8Yxhjx7LcxmoMwS0vT2wSDOl-nCjB5axU5a_Gvv_SNSwmxBTYs5HRuKx3ZBg2Z7oC1Tl3pbRdcPb5O9NPbRst-SKc7LV7ahpDa6cqxCdz4dCyz-R4Y9u6eO33X1lBwEz8kuSuEwlpZfMFIhKDSdoqHWKFAcYbCQEgW0ogpLiIOmd4clUQyCAjzGFdJECLp74OVdJLKQ-CEnGMsoaLIVxgLnwr9GIGKQEEFVL7fBJdazNiegSwu3dsIxuZjJXtsZW8CWC97zC0VuamIMV7Y53rW570i4ljY-rzezVgvpnGCJKmcFFlsKsZjc7V6C9pA44GiJMBNcFCpwmxOFBkCe4KOlpb2GKxrlEVNfBmEJ2AlnxbyVCOZnJ2VCvwN_dHtzg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEA6iD_rifdRzBUFQ1jbZZDf7WKpSTwQr-LZsLgWlFbcV9Nc7s01bFC36GnJNMpv5sjP5hpA9bcEGGUNDLdI85KLGQ4ARMqwpDmibSyUc_hq4uo6bd_z8Xtz7d9z4FgYmUUBPRenEH7EL0CqW4Yt0GEWWqgbn7hSgEYZqXW_cjph2ozIzMeb1AeiYJv6lzM99oE3SxVeb9AvQLA3O6RxpDadaxpk8HfW66kh_fGNx_Kcs82TWA9Cg3teYBTJh24tkujHI-7ZEDm4eO3AR97GzbzY4fu09VJGeOji2zxjG8R54nvNlcnd60mo0Q59RIcyjRHRDYxwH1YmMEimjDqyWTrhjsdOKJbGxKpGpctqkmirYKpenNo6Fqint8jhhNlohk-1O266RINGac0udZJHj3ETSwNWEOkGNNNRFUYXsg5iZ_yKKrHR2M5phYV_2zMteIXSw-pn2xOSYH-N5bJvDYZuXPi3H2Nq7g03NYDHRJZK3badXZJg_nuNBWxtTh6I_SoqYV8hqXyOGY7IU6ewFW_-ztDtkutm6uswuz64vNsgM4C-JkWeUbpLJ7mvPbgHG6artUqc_Ae_X9i8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS8MwEA8yQf3i-zGfFQRB6ba0SZt-lM3hG0EH-1aal4JjE7sJ-td712UTRYf4NaRJrrnkfsldfkfIgTJgg7SmvuJJ5jNeYz7ACOHXJAO0zYTkFq8Grm-isxa7aPO2u7rAtzAwiBxaygsnPq7qZ20dwwCtYjm-SoeeRKFusPdOo98OVfukfvfJthsW2Ykxtw_AxyR2r2V-bgPtksq_2qVfwGZhdJoLpD0ebhFr8lQZ9GVFvX9jcvyHPItk3gFR72SoOUtkynSXyWx9lP9thRzdPvbgQO5iaF-N13gZPFSRptprmA6Gc7x5ju98lbSap_f1M99lVvCzMOZ9X2vLQIVCLXkSUAvWS8XMBpFVMogjbWQsEmmVThSVMGU2S0wUcVmTymZRHJhwjZS6va7ZIF6sFGOGWhGEljEdCg1HFGo51UJTG4Zlcghipm5l5Gnh9A5oioVD2VMne5nQ0QykyhGUY56MzsRvjsffPA_pOSbW3h9NbAo_E10jWdf0BnmKeeQZbri1CXUo-qUEj1iZrA-1YtxnkCCtPQ82_yztHpm5bTTTq_Obyy0yBzBMYAAapduk1H8ZmB2AOn25W6j1B_A--LI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoresponsive+Drug%2FGene+Delivery+Systems&rft.jtitle=Biomacromolecules&rft.au=Zhou%2C+Yang&rft.au=Ye%2C+Huan&rft.au=Chen%2C+Yongbing&rft.au=Zhu%2C+Rongying&rft.date=2018-06-11&rft.issn=1525-7797&rft.eissn=1526-4602&rft.volume=19&rft.issue=6&rft.spage=1840&rft.epage=1857&rft_id=info:doi/10.1021%2Facs.biomac.8b00422&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_biomac_8b00422
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon