Photoresponsive Drug/Gene Delivery Systems
Light as an external stimulus can be precisely manipulated in terms of irradiation time, site, wavelength, and density. As such, photoresponsive drug/gene delivery systems have been increasingly pursued and utilized for the spatiotemporal control of drug/gene delivery to enhance their therapeutic ef...
Saved in:
Published in | Biomacromolecules Vol. 19; no. 6; pp. 1840 - 1857 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.06.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1525-7797 1526-4602 1526-4602 |
DOI | 10.1021/acs.biomac.8b00422 |
Cover
Loading…
Abstract | Light as an external stimulus can be precisely manipulated in terms of irradiation time, site, wavelength, and density. As such, photoresponsive drug/gene delivery systems have been increasingly pursued and utilized for the spatiotemporal control of drug/gene delivery to enhance their therapeutic efficacy and safety. In this review, we summarized the recent research progress on photoresponsive drug/gene delivery, and two major categories of delivery systems were discussed. The first category is the direct responsive systems that experience photoreactions on the vehicle or drug themselves, and different materials as well as chemical structures responsive to UV, visible, and NIR light are summarized. The second category is the indirect responsive systems that require a light-generated mediator signal, such as heat, ROS, hypoxia, and gas molecules, to cascadingly trigger the structural transformation. The future outlook and challenges are also discussed at the end. |
---|---|
AbstractList | Light as an external stimulus can be precisely manipulated in terms of irradiation time, site, wavelength, and density. As such, photoresponsive drug/gene delivery systems have been increasingly pursued and utilized for the spatiotemporal control of drug/gene delivery to enhance their therapeutic efficacy and safety. In this review, we summarized the recent research progress on photoresponsive drug/gene delivery, and two major categories of delivery systems were discussed. The first category is the direct responsive systems that experience photoreactions on the vehicle or drug themselves, and different materials as well as chemical structures responsive to UV, visible, and NIR light are summarized. The second category is the indirect responsive systems that require a light-generated mediator signal, such as heat, ROS, hypoxia, and gas molecules, to cascadingly trigger the structural transformation. The future outlook and challenges are also discussed at the end. Light as an external stimulus can be precisely manipulated in terms of irradiation time, site, wavelength, and density. As such, photoresponsive drug/gene delivery systems have been increasingly pursued and utilized for the spatiotemporal control of drug/gene delivery to enhance their therapeutic efficacy and safety. In this review, we summarized the recent research progress on photoresponsive drug/gene delivery, and two major categories of delivery systems were discussed. The first category is the direct responsive systems that experience photoreactions on the vehicle or drug themselves, and different materials as well as chemical structures responsive to UV, visible, and NIR light are summarized. The second category is the indirect responsive systems that require a light-generated mediator signal, such as heat, ROS, hypoxia, and gas molecules, to cascadingly trigger the structural transformation. The future outlook and challenges are also discussed at the end.Light as an external stimulus can be precisely manipulated in terms of irradiation time, site, wavelength, and density. As such, photoresponsive drug/gene delivery systems have been increasingly pursued and utilized for the spatiotemporal control of drug/gene delivery to enhance their therapeutic efficacy and safety. In this review, we summarized the recent research progress on photoresponsive drug/gene delivery, and two major categories of delivery systems were discussed. The first category is the direct responsive systems that experience photoreactions on the vehicle or drug themselves, and different materials as well as chemical structures responsive to UV, visible, and NIR light are summarized. The second category is the indirect responsive systems that require a light-generated mediator signal, such as heat, ROS, hypoxia, and gas molecules, to cascadingly trigger the structural transformation. The future outlook and challenges are also discussed at the end. |
Author | Chen, Yongbing Zhu, Rongying Ye, Huan Zhou, Yang Yin, Lichen |
AuthorAffiliation | Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology The Second Affiliated Hospital of Soochow University Soochow University Department of Cardiothoracic Surgery |
AuthorAffiliation_xml | – name: Soochow University – name: Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology – name: The Second Affiliated Hospital of Soochow University – name: Department of Cardiothoracic Surgery |
Author_xml | – sequence: 1 givenname: Yang surname: Zhou fullname: Zhou, Yang organization: Soochow University – sequence: 2 givenname: Huan surname: Ye fullname: Ye, Huan organization: Soochow University – sequence: 3 givenname: Yongbing surname: Chen fullname: Chen, Yongbing organization: The Second Affiliated Hospital of Soochow University – sequence: 4 givenname: Rongying surname: Zhu fullname: Zhu, Rongying organization: The Second Affiliated Hospital of Soochow University – sequence: 5 givenname: Lichen orcidid: 0000-0002-4573-0555 surname: Yin fullname: Yin, Lichen email: lcyin@suda.edu.cn organization: Soochow University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29701952$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkM9LwzAUgINM3A_9BzzIjiJ0S16bpD3K1CkMFNRzSNJEO9pmJq2w_97OTg8e5imPvO97h2-MBrWrDULnBM8IBjKXOsxU4SqpZ6nCOAE4QiNCgUUJwzD4nmnEecaHaBzCGmOcxQk9QUPIOCYZhRG6enp3jfMmbFwdik8zvfHt23xp6m4yZffht9PnbWhMFU7RsZVlMGf7d4Je725fFvfR6nH5sLheRTLmtIny3CZG5nGuaAbEEog1TywwqxVwlhvF00xZnWeaKAbUyswwRhVW2krGwcQTdNnf3Xj30ZrQiKoI2pSlrI1rgwCCSQwpZcn_KI4hwWnKcYde7NFWVSYXG19U0m_FT4oOgB7Q3oXgjf1FCBa73qLrLfreYt-7k9I_ki4a2RSubrwsysPqrFd3u7Vrfd1FPSR8ATdEl7U |
CitedBy_id | crossref_primary_10_1021_acsomega_9b02923 crossref_primary_10_1021_acs_jmedchem_2c01262 crossref_primary_10_1016_j_biotechadv_2021_107711 crossref_primary_10_1021_acsami_8b16363 crossref_primary_10_3390_ijms25189779 crossref_primary_10_1021_acs_biomac_8b00830 crossref_primary_10_1039_C9CC06673J crossref_primary_10_1007_s12274_020_2913_7 crossref_primary_10_1016_j_jconrel_2022_12_036 crossref_primary_10_1021_accountsmr_2c00147 crossref_primary_10_1021_acsnano_3c01333 crossref_primary_10_1002_adfm_202314278 crossref_primary_10_1002_anie_201914434 crossref_primary_10_1002_pi_5997 crossref_primary_10_3390_ijms22147637 crossref_primary_10_3390_polym13223920 crossref_primary_10_3390_molecules29133131 crossref_primary_10_1039_D2NH00070A crossref_primary_10_1039_D0BM00631A crossref_primary_10_2174_0929867328666210806113949 crossref_primary_10_1016_j_nano_2022_102535 crossref_primary_10_1021_acs_biomac_8b01138 crossref_primary_10_1021_acscentsci_0c01151 crossref_primary_10_3389_fphar_2022_909408 crossref_primary_10_1002_adhm_202402690 crossref_primary_10_1016_j_dyepig_2023_111245 crossref_primary_10_1021_acs_biomac_1c01073 crossref_primary_10_1002_anie_201911398 crossref_primary_10_1002_mco2_163 crossref_primary_10_1016_j_cej_2021_128545 crossref_primary_10_1021_acs_biomac_9b01123 crossref_primary_10_1039_D3TB03004K crossref_primary_10_3390_polym14235134 crossref_primary_10_1002_adma_202312530 crossref_primary_10_1016_j_jconrel_2022_10_046 crossref_primary_10_4103_bbrj_bbrj_265_21 crossref_primary_10_1021_acs_biomac_4c01508 crossref_primary_10_3390_pharmaceutics15102448 crossref_primary_10_1038_s41570_021_00326_w crossref_primary_10_1002_ange_201911398 crossref_primary_10_1063_1_5099128 crossref_primary_10_1016_j_apsb_2024_08_033 crossref_primary_10_1016_j_eurpolymj_2020_109561 crossref_primary_10_1039_C9TB01071H crossref_primary_10_1016_j_eurpolymj_2025_113849 crossref_primary_10_1021_acs_biomac_9b00963 crossref_primary_10_1021_acs_chemrev_0c00663 crossref_primary_10_1002_adfm_202416359 crossref_primary_10_1039_D4TC01353K crossref_primary_10_1002_anbr_202000078 crossref_primary_10_1002_pol_20230028 crossref_primary_10_1016_j_colsurfa_2024_135669 crossref_primary_10_1002_adom_201900215 crossref_primary_10_3390_gels10010061 crossref_primary_10_1002_adma_201906890 crossref_primary_10_1021_acs_biomac_2c00018 crossref_primary_10_1002_adma_202007290 crossref_primary_10_1021_acsabm_2c00208 crossref_primary_10_1016_j_addr_2021_113891 crossref_primary_10_1016_j_optmat_2018_10_050 crossref_primary_10_3390_pharmaceutics12090827 crossref_primary_10_1016_j_jddst_2024_106139 crossref_primary_10_1002_smtd_202400510 crossref_primary_10_1039_D4SC04837G crossref_primary_10_1016_j_jsps_2020_01_004 crossref_primary_10_1080_10717544_2025_2476140 crossref_primary_10_1038_s41428_023_00865_7 crossref_primary_10_1016_j_ccr_2023_215594 crossref_primary_10_1007_s10853_022_07529_6 crossref_primary_10_1021_acs_chemrev_0c00997 crossref_primary_10_1039_D3TB02693K crossref_primary_10_1080_1539445X_2022_2028831 crossref_primary_10_1016_j_jconrel_2022_03_041 crossref_primary_10_1021_acsabm_0c01644 crossref_primary_10_1016_j_bioactmat_2020_12_001 crossref_primary_10_1021_acsami_3c14760 crossref_primary_10_3390_pharmaceutics17010098 crossref_primary_10_1002_ange_201914434 crossref_primary_10_1007_s12668_024_01582_y crossref_primary_10_1016_j_ccr_2024_215921 crossref_primary_10_1039_C9MH01300H crossref_primary_10_1002_smll_201903060 crossref_primary_10_1111_php_13570 crossref_primary_10_1016_j_niox_2024_02_003 crossref_primary_10_1039_D2SM01507B crossref_primary_10_1039_D4OB01603C crossref_primary_10_1016_j_apsb_2023_04_005 crossref_primary_10_1016_j_ijpharm_2020_120081 crossref_primary_10_2174_0113852728307241240430055059 crossref_primary_10_1039_C8TB01566J crossref_primary_10_1002_EXP_20210099 crossref_primary_10_1039_D4CP02243B crossref_primary_10_1021_acsapm_2c00228 crossref_primary_10_1039_D0TB01675F crossref_primary_10_1039_D3CE01033C crossref_primary_10_1080_15583724_2024_2427184 crossref_primary_10_1039_D0QM00268B crossref_primary_10_3390_ijms21093358 crossref_primary_10_1016_j_colsurfb_2019_110393 crossref_primary_10_1039_D0CP00077A crossref_primary_10_1016_j_envres_2024_118560 crossref_primary_10_1002_adom_201900252 crossref_primary_10_1016_j_addr_2022_114554 crossref_primary_10_1021_acs_joc_3c00010 crossref_primary_10_3762_bjoc_15_188 crossref_primary_10_1021_acs_langmuir_9b02005 |
Cites_doi | 10.1016/j.actbio.2017.08.010 10.1016/j.cis.2016.09.003 10.1039/C5BM00328H 10.1039/C7PY00914C 10.1021/acsami.5b01165 10.1039/C4CC08580A 10.1016/j.jacc.2009.07.068 10.1021/ja4013497 10.1021/jacs.6b04773 10.1002/anie.201006193 10.1016/j.jconrel.2015.09.030 10.1016/j.bios.2016.06.089 10.1021/acs.biomac.6b01774 10.1021/acs.biomac.5b00185 10.1021/acsnano.7b08219 10.1126/science.1169494 10.1021/bm501258s 10.1002/adma.201605357 10.1021/nn201171r 10.7150/thno.15433 10.1039/C7BM00270J 10.1007/s12274-014-0620-y 10.1002/adma.201502669 10.1021/bm3010325 10.1002/adfm.201600827 10.7150/thno.14101 10.1021/am401059k 10.1016/j.addr.2011.03.005 10.1039/C6CC05734A 10.1002/adfm.201702592 10.1002/marc.201700220 10.1021/acs.nanolett.5b03440 10.1016/j.addr.2013.12.010 10.1039/C4TC00653D 10.1002/adfm.201600722 10.1039/C6CC09959A 10.1039/C6CC08123A 10.1021/jacs.7b03153 10.1021/bm401670t 10.1039/c0cc04424e 10.1021/acsami.7b07468 10.1039/C7NR05050J 10.1021/acsnano.6b05858 10.1039/c2jm00045h 10.1016/j.biomaterials.2016.03.040 10.1039/C3BM60297D 10.1039/C6NR01543C 10.1039/C3PY00533J 10.1021/acsami.7b17323 10.1021/acs.biomac.7b00693 10.1021/jacs.6b10952 10.1039/C7BM00256D 10.1038/srep37009 10.1021/bm300151m 10.1021/acsnano.5b07817 10.1021/bm400169d 10.1021/ja0523035 10.1002/adma.201002072 10.1002/marc.201300863 10.1021/acs.macromol.7b02637 10.1016/j.jconrel.2017.03.359 10.1002/anie.201503640 10.1039/C5NR01075F 10.1002/adfm.201403079 10.1039/C6BM00262E 10.1002/anie.201308174 10.1021/ja0521019 10.1002/adma.201505869 10.1021/acs.biomac.5b01372 10.1093/carcin/bgv173 10.1016/j.redox.2013.06.002 10.1016/j.nano.2017.02.014 10.1007/s13346-015-0260-0 10.1038/natrevmats.2017.20 10.1039/C6PY00449K 10.1002/anie.201711354 10.1016/j.biomaterials.2017.11.044 10.1039/C7BM00348J 10.1039/b700686a 10.1039/C7BM00392G 10.1016/j.actbio.2010.02.014 10.1021/nn304474j 10.2147/IJN.S130861 10.1039/C6TB02944B 10.1039/C5TB00398A 10.1039/C7SC01692A 10.1002/anie.201611783 10.1021/acs.biomac.5b00950 10.1039/c2py20375h 10.1021/mp800270t 10.1039/C5SC03583J 10.7150/thno.17602 10.1021/ja211888a 10.1073/pnas.1315336110 10.1158/1078-0432.CCR-04-2482 10.1002/adfm.201703674 10.1002/smll.201501575 10.18632/oncotarget.10310 10.1002/jbm.a.34107 10.1021/acsnano.6b06670 10.1039/C5DT01418B 10.1002/adfm.201500737 10.1038/nmat3776 10.1016/j.biomaterials.2014.03.005 10.1038/ncomms4545 10.1021/acsmacrolett.6b00715 10.1039/C3PY01234D 10.1021/acsami.5b05763 10.1002/anie.200900255 10.1039/C7NR07677K 10.1002/anie.201500478 10.1021/ja068452k 10.1002/adfm.201404484 10.1016/j.ijpharm.2017.07.014 10.1002/anie.201310211 10.1002/adma.201204455 10.1021/acs.chemmater.7b04751 10.1039/C5CC05172J 10.1016/j.jinorgbio.2016.01.024 10.1002/med.21433 10.1002/adfm.201501524 10.1039/C7TA06077G 10.1002/pola.24853 10.1002/adma.201101295 10.1021/acsami.7b03711 10.1016/j.freeradbiomed.2017.12.017 10.1016/j.jconrel.2017.08.013 10.1021/nn203293t 10.1073/pnas.1322651111 10.1021/ja209793b 10.1016/j.biomaterials.2017.12.003 10.1021/ma060142z 10.1039/C6PY02016J 10.1016/j.biomaterials.2016.08.022 10.1002/anie.201302820 10.1021/am503039f 10.1021/acsami.7b05502 10.1002/anie.201402189 10.1039/C6BM00011H 10.1016/j.biomaterials.2018.04.020 10.1039/C5CC08391E 10.1021/acsami.7b15896 10.1039/C7CP06885A 10.1039/C7BM00798A 10.1016/j.biomaterials.2017.04.032 10.1039/C7PY00946A 10.1021/bm300646q 10.1016/j.tem.2017.11.005 10.1016/j.colsurfb.2016.07.028 10.1039/C7TB01712J 10.1002/adfm.201706710 10.1021/nl903411s 10.1002/smll.201601137 10.1002/anie.201308816 10.1002/adfm.201302133 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.biomac.8b00422 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1526-4602 |
EndPage | 1857 |
ExternalDocumentID | 29701952 10_1021_acs_biomac_8b00422 c217914675 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | - 02 23N 53G 55A 5GY 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL RSW TN5 UI2 VF5 VG9 W1F X XKZ --- -~X 4.4 5VS AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK ZCA ~02 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a375t-ddf4ead3db5921f123c74f26fcb276deb789bfcd9c1b625fa9e665b0bcfa672e3 |
IEDL.DBID | ACS |
ISSN | 1525-7797 1526-4602 |
IngestDate | Fri Jul 11 06:01:44 EDT 2025 Fri Jul 11 10:10:09 EDT 2025 Thu Apr 03 06:58:39 EDT 2025 Tue Jul 01 04:07:57 EDT 2025 Thu Apr 24 23:11:48 EDT 2025 Thu Aug 27 13:42:22 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a375t-ddf4ead3db5921f123c74f26fcb276deb789bfcd9c1b625fa9e665b0bcfa672e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4573-0555 |
PMID | 29701952 |
PQID | 2032408870 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2101328564 proquest_miscellaneous_2032408870 pubmed_primary_29701952 crossref_primary_10_1021_acs_biomac_8b00422 crossref_citationtrail_10_1021_acs_biomac_8b00422 acs_journals_10_1021_acs_biomac_8b00422 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-11 |
PublicationDateYYYYMMDD | 2018-06-11 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biomacromolecules |
PublicationTitleAlternate | Biomacromolecules |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 ref136/cit136 ref137/cit137 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref28/cit28 ref132/cit132 ref91/cit91 ref148/cit148 ref55/cit55 ref144/cit144 ref12/cit12 ref66/cit66 ref22/cit22 ref121/cit121 ref33/cit33 ref87/cit87 ref106/cit106 ref140/cit140 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref152/cit152 ref153/cit153 ref154/cit154 ref27/cit27 ref150/cit150 ref63/cit63 ref151/cit151 ref56/cit56 ref92/cit92 ref155/cit155 ref156/cit156 ref157/cit157 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref147/cit147 ref143/cit143 ref53/cit53 ref145/cit145 ref21/cit21 ref149/cit149 ref46/cit46 ref49/cit49 ref75/cit75 Berg K. (ref102/cit102) 1999; 59 ref24/cit24 ref141/cit141 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref138/cit138 ref79/cit79 ref139/cit139 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref134/cit134 ref135/cit135 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref131/cit131 ref146/cit146 ref26/cit26 ref142/cit142 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 ref123/cit123 ref7/cit7 |
References_xml | – ident: ref73/cit73 doi: 10.1016/j.actbio.2017.08.010 – ident: ref17/cit17 doi: 10.1016/j.cis.2016.09.003 – ident: ref142/cit142 doi: 10.1039/C5BM00328H – ident: ref20/cit20 doi: 10.1039/C7PY00914C – ident: ref49/cit49 doi: 10.1021/acsami.5b01165 – ident: ref149/cit149 doi: 10.1039/C4CC08580A – ident: ref124/cit124 doi: 10.1016/j.jacc.2009.07.068 – ident: ref84/cit84 doi: 10.1021/ja4013497 – ident: ref143/cit143 doi: 10.1021/jacs.6b04773 – ident: ref31/cit31 doi: 10.1002/anie.201006193 – ident: ref45/cit45 doi: 10.1016/j.jconrel.2015.09.030 – ident: ref46/cit46 doi: 10.1016/j.bios.2016.06.089 – ident: ref12/cit12 doi: 10.1021/acs.biomac.6b01774 – ident: ref11/cit11 doi: 10.1021/acs.biomac.5b00185 – ident: ref113/cit113 doi: 10.1021/acsnano.7b08219 – ident: ref32/cit32 doi: 10.1126/science.1169494 – ident: ref64/cit64 doi: 10.1021/bm501258s – ident: ref104/cit104 doi: 10.1002/adma.201605357 – ident: ref150/cit150 doi: 10.1021/nn201171r – ident: ref109/cit109 doi: 10.7150/thno.15433 – ident: ref154/cit154 doi: 10.1039/C7BM00270J – ident: ref65/cit65 doi: 10.1007/s12274-014-0620-y – ident: ref86/cit86 doi: 10.1002/adma.201502669 – ident: ref58/cit58 doi: 10.1021/bm3010325 – ident: ref133/cit133 doi: 10.1002/adfm.201600827 – ident: ref111/cit111 doi: 10.7150/thno.14101 – ident: ref42/cit42 doi: 10.1021/am401059k – ident: ref66/cit66 doi: 10.1016/j.addr.2011.03.005 – ident: ref87/cit87 doi: 10.1039/C6CC05734A – ident: ref100/cit100 doi: 10.1002/adfm.201702592 – ident: ref21/cit21 doi: 10.1002/marc.201700220 – ident: ref72/cit72 doi: 10.1021/acs.nanolett.5b03440 – ident: ref2/cit2 doi: 10.1016/j.addr.2013.12.010 – ident: ref22/cit22 doi: 10.1039/C4TC00653D – ident: ref96/cit96 doi: 10.1002/adfm.201600722 – ident: ref139/cit139 doi: 10.1039/C6CC09959A – ident: ref78/cit78 doi: 10.1039/C6CC08123A – ident: ref16/cit16 doi: 10.1021/jacs.7b03153 – ident: ref25/cit25 doi: 10.1021/bm401670t – ident: ref52/cit52 doi: 10.1039/c0cc04424e – volume: 59 start-page: 1180 year: 1999 ident: ref102/cit102 publication-title: Cancer Res. – ident: ref146/cit146 doi: 10.1021/acsami.7b07468 – ident: ref97/cit97 doi: 10.1039/C7NR05050J – ident: ref18/cit18 doi: 10.1021/acs.biomac.6b01774 – ident: ref131/cit131 doi: 10.1021/acsnano.6b05858 – ident: ref55/cit55 doi: 10.1039/c2jm00045h – ident: ref136/cit136 doi: 10.1016/j.biomaterials.2016.03.040 – ident: ref81/cit81 doi: 10.1039/C3BM60297D – ident: ref88/cit88 doi: 10.1039/C6NR01543C – ident: ref56/cit56 doi: 10.1039/C3PY00533J – ident: ref119/cit119 doi: 10.1021/acsami.7b17323 – ident: ref54/cit54 doi: 10.1021/acs.biomac.7b00693 – ident: ref137/cit137 doi: 10.1021/jacs.6b10952 – ident: ref155/cit155 doi: 10.1039/C7BM00256D – ident: ref89/cit89 doi: 10.1038/srep37009 – ident: ref44/cit44 doi: 10.1021/bm300151m – ident: ref70/cit70 doi: 10.1021/acsnano.5b07817 – ident: ref33/cit33 doi: 10.1021/bm400169d – ident: ref57/cit57 doi: 10.1021/ja0523035 – ident: ref9/cit9 doi: 10.1002/adma.201002072 – ident: ref37/cit37 doi: 10.1002/marc.201300863 – ident: ref153/cit153 doi: 10.1021/acs.macromol.7b02637 – ident: ref99/cit99 doi: 10.1016/j.jconrel.2017.03.359 – ident: ref108/cit108 doi: 10.1002/anie.201503640 – ident: ref1/cit1 doi: 10.1039/C5NR01075F – ident: ref79/cit79 doi: 10.1002/adfm.201403079 – ident: ref157/cit157 doi: 10.1039/C6BM00262E – ident: ref3/cit3 doi: 10.1002/anie.201308174 – ident: ref39/cit39 doi: 10.1021/ja0521019 – ident: ref115/cit115 doi: 10.1002/adma.201505869 – ident: ref38/cit38 doi: 10.1021/acs.biomac.5b01372 – ident: ref40/cit40 doi: 10.1093/carcin/bgv173 – ident: ref127/cit127 doi: 10.1016/j.redox.2013.06.002 – ident: ref82/cit82 doi: 10.1016/j.nano.2017.02.014 – ident: ref145/cit145 doi: 10.1007/s13346-015-0260-0 – ident: ref8/cit8 doi: 10.1038/natrevmats.2017.20 – ident: ref95/cit95 doi: 10.1039/C6PY00449K – ident: ref14/cit14 doi: 10.1002/anie.201711354 – ident: ref125/cit125 doi: 10.1016/j.biomaterials.2017.11.044 – ident: ref147/cit147 doi: 10.1039/C7BM00348J – ident: ref151/cit151 doi: 10.1039/b700686a – ident: ref7/cit7 doi: 10.1039/C7BM00392G – ident: ref41/cit41 doi: 10.1016/j.actbio.2010.02.014 – ident: ref134/cit134 doi: 10.1021/nn304474j – ident: ref135/cit135 doi: 10.2147/IJN.S130861 – ident: ref43/cit43 doi: 10.1039/C6TB02944B – ident: ref53/cit53 doi: 10.1039/C5TB00398A – ident: ref130/cit130 doi: 10.1039/C7SC01692A – ident: ref122/cit122 doi: 10.1002/anie.201611783 – ident: ref10/cit10 doi: 10.1021/acs.biomac.5b00950 – ident: ref19/cit19 doi: 10.1039/c2py20375h – ident: ref91/cit91 doi: 10.1021/mp800270t – ident: ref107/cit107 doi: 10.1039/C5SC03583J – ident: ref92/cit92 doi: 10.7150/thno.17602 – ident: ref27/cit27 doi: 10.1021/ja211888a – ident: ref28/cit28 doi: 10.1073/pnas.1315336110 – ident: ref69/cit69 doi: 10.1158/1078-0432.CCR-04-2482 – ident: ref110/cit110 doi: 10.1002/adfm.201703674 – ident: ref59/cit59 doi: 10.1002/smll.201501575 – ident: ref120/cit120 doi: 10.18632/oncotarget.10310 – ident: ref50/cit50 doi: 10.1002/jbm.a.34107 – ident: ref76/cit76 doi: 10.1021/acsnano.6b06670 – ident: ref126/cit126 doi: 10.1039/C5DT01418B – ident: ref105/cit105 doi: 10.1002/adfm.201500737 – ident: ref4/cit4 doi: 10.1038/nmat3776 – ident: ref29/cit29 doi: 10.1016/j.biomaterials.2014.03.005 – ident: ref106/cit106 doi: 10.1038/ncomms4545 – ident: ref34/cit34 doi: 10.1021/acsmacrolett.6b00715 – ident: ref152/cit152 doi: 10.1039/C3PY01234D – ident: ref141/cit141 doi: 10.1021/acsami.5b05763 – ident: ref62/cit62 doi: 10.1002/anie.200900255 – ident: ref117/cit117 doi: 10.1039/C7NR07677K – ident: ref118/cit118 doi: 10.1002/anie.201500478 – ident: ref15/cit15 doi: 10.1021/ja068452k – ident: ref144/cit144 doi: 10.1002/adfm.201404484 – ident: ref80/cit80 doi: 10.1016/j.ijpharm.2017.07.014 – ident: ref23/cit23 doi: 10.1002/anie.201310211 – ident: ref116/cit116 doi: 10.1002/adma.201204455 – ident: ref98/cit98 doi: 10.1021/acs.chemmater.7b04751 – ident: ref48/cit48 doi: 10.1039/C5CC05172J – ident: ref121/cit121 doi: 10.1016/j.jinorgbio.2016.01.024 – ident: ref128/cit128 doi: 10.1002/med.21433 – ident: ref77/cit77 doi: 10.1002/adfm.201501524 – ident: ref75/cit75 doi: 10.1039/C7TA06077G – ident: ref5/cit5 doi: 10.1002/pola.24853 – ident: ref83/cit83 doi: 10.1002/adma.201101295 – ident: ref67/cit67 doi: 10.1021/acsami.7b03711 – ident: ref123/cit123 doi: 10.1016/j.freeradbiomed.2017.12.017 – ident: ref26/cit26 doi: 10.1016/j.jconrel.2017.08.013 – ident: ref85/cit85 doi: 10.1021/nn203293t – ident: ref68/cit68 doi: 10.1073/pnas.1322651111 – ident: ref60/cit60 doi: 10.1021/ja209793b – ident: ref94/cit94 doi: 10.1016/j.biomaterials.2017.12.003 – ident: ref35/cit35 doi: 10.1021/ma060142z – ident: ref138/cit138 doi: 10.1039/C6PY02016J – ident: ref6/cit6 doi: 10.1016/j.biomaterials.2016.08.022 – ident: ref36/cit36 doi: 10.1002/anie.201302820 – ident: ref61/cit61 doi: 10.1021/am503039f – ident: ref71/cit71 doi: 10.1021/acsami.7b05502 – ident: ref112/cit112 doi: 10.1002/anie.201402189 – ident: ref140/cit140 doi: 10.1039/C6BM00011H – ident: ref148/cit148 doi: 10.1016/j.biomaterials.2018.04.020 – ident: ref74/cit74 doi: 10.1039/C5CC08391E – ident: ref103/cit103 doi: 10.1021/acsami.7b15896 – ident: ref132/cit132 doi: 10.1039/C7CP06885A – ident: ref156/cit156 doi: 10.1039/C7BM00798A – ident: ref101/cit101 doi: 10.1016/j.biomaterials.2017.04.032 – ident: ref51/cit51 doi: 10.1039/C7PY00946A – ident: ref30/cit30 doi: 10.1021/bm300646q – ident: ref129/cit129 doi: 10.1016/j.tem.2017.11.005 – ident: ref24/cit24 doi: 10.1016/j.colsurfb.2016.07.028 – ident: ref90/cit90 doi: 10.1039/C7TB01712J – ident: ref114/cit114 doi: 10.1002/adfm.201706710 – ident: ref13/cit13 doi: 10.1021/nl903411s – ident: ref93/cit93 doi: 10.1002/smll.201601137 – ident: ref47/cit47 doi: 10.1002/anie.201308816 – ident: ref63/cit63 doi: 10.1002/adfm.201302133 |
SSID | ssj0009345 |
Score | 2.56388 |
SecondaryResourceType | review_article |
Snippet | Light as an external stimulus can be precisely manipulated in terms of irradiation time, site, wavelength, and density. As such, photoresponsive drug/gene... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1840 |
SubjectTerms | Animals Azo Compounds - chemistry Cell Hypoxia chemical structure Drug Carriers - chemistry Drug Delivery Systems - instrumentation Drug Delivery Systems - methods drugs Gases gene transfer Gene Transfer Techniques heat Hot Temperature Humans hypoxia irradiation Light Nanostructures - chemistry photochemical reactions Photochemistry - methods Polymers - chemistry Reactive Oxygen Species - metabolism therapeutics Ultraviolet Rays wavelengths |
Title | Photoresponsive Drug/Gene Delivery Systems |
URI | http://dx.doi.org/10.1021/acs.biomac.8b00422 https://www.ncbi.nlm.nih.gov/pubmed/29701952 https://www.proquest.com/docview/2032408870 https://www.proquest.com/docview/2101328564 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5DH_TF-2XeqCAIarcmTdr0UTbHECaCDvZWmpuCo5O1FfTXm7TpRHRjryUXTnKS86XnnO8AcMGltkFCQJeTKHEx8bCrYQR1PYY12saUEWV-DQwegv4Q34_IqAFu5njwEWwnPGuZVHQ9PC11TF-4qyjQp9gAoc7TD8WuX5YkNgV9NGaMQpsi8_8Yxhjx7LcxmoMwS0vT2wSDOl-nCjB5axU5a_Gvv_SNSwmxBTYs5HRuKx3ZBg2Z7oC1Tl3pbRdcPb5O9NPbRst-SKc7LV7ahpDa6cqxCdz4dCyz-R4Y9u6eO33X1lBwEz8kuSuEwlpZfMFIhKDSdoqHWKFAcYbCQEgW0ogpLiIOmd4clUQyCAjzGFdJECLp74OVdJLKQ-CEnGMsoaLIVxgLnwr9GIGKQEEFVL7fBJdazNiegSwu3dsIxuZjJXtsZW8CWC97zC0VuamIMV7Y53rW570i4ljY-rzezVgvpnGCJKmcFFlsKsZjc7V6C9pA44GiJMBNcFCpwmxOFBkCe4KOlpb2GKxrlEVNfBmEJ2AlnxbyVCOZnJ2VCvwN_dHtzg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEA6iD_rifdRzBUFQ1jbZZDf7WKpSTwQr-LZsLgWlFbcV9Nc7s01bFC36GnJNMpv5sjP5hpA9bcEGGUNDLdI85KLGQ4ARMqwpDmibSyUc_hq4uo6bd_z8Xtz7d9z4FgYmUUBPRenEH7EL0CqW4Yt0GEWWqgbn7hSgEYZqXW_cjph2ozIzMeb1AeiYJv6lzM99oE3SxVeb9AvQLA3O6RxpDadaxpk8HfW66kh_fGNx_Kcs82TWA9Cg3teYBTJh24tkujHI-7ZEDm4eO3AR97GzbzY4fu09VJGeOji2zxjG8R54nvNlcnd60mo0Q59RIcyjRHRDYxwH1YmMEimjDqyWTrhjsdOKJbGxKpGpctqkmirYKpenNo6Fqint8jhhNlohk-1O266RINGac0udZJHj3ETSwNWEOkGNNNRFUYXsg5iZ_yKKrHR2M5phYV_2zMteIXSw-pn2xOSYH-N5bJvDYZuXPi3H2Nq7g03NYDHRJZK3badXZJg_nuNBWxtTh6I_SoqYV8hqXyOGY7IU6ewFW_-ztDtkutm6uswuz64vNsgM4C-JkWeUbpLJ7mvPbgHG6artUqc_Ae_X9i8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS8MwEA8yQf3i-zGfFQRB6ba0SZt-lM3hG0EH-1aal4JjE7sJ-td712UTRYf4NaRJrrnkfsldfkfIgTJgg7SmvuJJ5jNeYz7ACOHXJAO0zYTkFq8Grm-isxa7aPO2u7rAtzAwiBxaygsnPq7qZ20dwwCtYjm-SoeeRKFusPdOo98OVfukfvfJthsW2Ykxtw_AxyR2r2V-bgPtksq_2qVfwGZhdJoLpD0ebhFr8lQZ9GVFvX9jcvyHPItk3gFR72SoOUtkynSXyWx9lP9thRzdPvbgQO5iaF-N13gZPFSRptprmA6Gc7x5ju98lbSap_f1M99lVvCzMOZ9X2vLQIVCLXkSUAvWS8XMBpFVMogjbWQsEmmVThSVMGU2S0wUcVmTymZRHJhwjZS6va7ZIF6sFGOGWhGEljEdCg1HFGo51UJTG4Zlcghipm5l5Gnh9A5oioVD2VMne5nQ0QykyhGUY56MzsRvjsffPA_pOSbW3h9NbAo_E10jWdf0BnmKeeQZbri1CXUo-qUEj1iZrA-1YtxnkCCtPQ82_yztHpm5bTTTq_Obyy0yBzBMYAAapduk1H8ZmB2AOn25W6j1B_A--LI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoresponsive+Drug%2FGene+Delivery+Systems&rft.jtitle=Biomacromolecules&rft.au=Zhou%2C+Yang&rft.au=Ye%2C+Huan&rft.au=Chen%2C+Yongbing&rft.au=Zhu%2C+Rongying&rft.date=2018-06-11&rft.issn=1525-7797&rft.eissn=1526-4602&rft.volume=19&rft.issue=6&rft.spage=1840&rft.epage=1857&rft_id=info:doi/10.1021%2Facs.biomac.8b00422&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_biomac_8b00422 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon |