Zwitterionic Hydrogel with High Transparency, Ultrastretchability, and Remarkable Freezing Resistance for Wearable Strain Sensors

Multifunctional hydrogel with outstanding conductivity and mechanical flexibility has received enormous attention as wearable electronic devices. However, fabricating transparent, ultrastretchable, and biocompatible hydrogel with low-temperature stability still remains a tremendous challenge. In thi...

Full description

Saved in:
Bibliographic Details
Published inBiomacromolecules Vol. 22; no. 3; pp. 1220 - 1230
Main Authors Jiao, Qin, Cao, Lilong, Zhao, Zhijie, Zhang, Hong, Li, Junjie, Wei, Yuping
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multifunctional hydrogel with outstanding conductivity and mechanical flexibility has received enormous attention as wearable electronic devices. However, fabricating transparent, ultrastretchable, and biocompatible hydrogel with low-temperature stability still remains a tremendous challenge. In this study, an ultrastretchable, highly transparent, and antifreezing zwitterionic-based electronic sensor is developed by introducing zwitterionic proline (ZP) into gellan gum/polyacrylamide (GG/PAAm) double network (DN) hydrogel. The existence of ZP endows the hydrogel with remarkable frost resistance. The toughness and transparency of zwitterionic Ca-GG/PAAm-ZP DN hydrogel can be maintained down to −40 °C. Also, the zwitterionic hydrogel shows good biocompatibility and protein adsorption resistance. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor can accurately monitor human motions (such as speaking and various joint bendings) under a broad temperature range from −40 to 25 °C. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor will be of immense value in the field of wearable electronic devices, especially for extreme environment applications.
AbstractList Multifunctional hydrogel with outstanding conductivity and mechanical flexibility has received enormous attention as wearable electronic devices. However, fabricating transparent, ultrastretchable, and biocompatible hydrogel with low-temperature stability still remains a tremendous challenge. In this study, an ultrastretchable, highly transparent, and antifreezing zwitterionic-based electronic sensor is developed by introducing zwitterionic proline (ZP) into gellan gum/polyacrylamide (GG/PAAm) double network (DN) hydrogel. The existence of ZP endows the hydrogel with remarkable frost resistance. The toughness and transparency of zwitterionic Ca-GG/PAAm-ZP DN hydrogel can be maintained down to -40 °C. Also, the zwitterionic hydrogel shows good biocompatibility and protein adsorption resistance. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor can accurately monitor human motions (such as speaking and various joint bendings) under a broad temperature range from -40 to 25 °C. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor will be of immense value in the field of wearable electronic devices, especially for extreme environment applications.Multifunctional hydrogel with outstanding conductivity and mechanical flexibility has received enormous attention as wearable electronic devices. However, fabricating transparent, ultrastretchable, and biocompatible hydrogel with low-temperature stability still remains a tremendous challenge. In this study, an ultrastretchable, highly transparent, and antifreezing zwitterionic-based electronic sensor is developed by introducing zwitterionic proline (ZP) into gellan gum/polyacrylamide (GG/PAAm) double network (DN) hydrogel. The existence of ZP endows the hydrogel with remarkable frost resistance. The toughness and transparency of zwitterionic Ca-GG/PAAm-ZP DN hydrogel can be maintained down to -40 °C. Also, the zwitterionic hydrogel shows good biocompatibility and protein adsorption resistance. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor can accurately monitor human motions (such as speaking and various joint bendings) under a broad temperature range from -40 to 25 °C. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor will be of immense value in the field of wearable electronic devices, especially for extreme environment applications.
Multifunctional hydrogel with outstanding conductivity and mechanical flexibility has received enormous attention as wearable electronic devices. However, fabricating transparent, ultrastretchable, and biocompatible hydrogel with low-temperature stability still remains a tremendous challenge. In this study, an ultrastretchable, highly transparent, and antifreezing zwitterionic-based electronic sensor is developed by introducing zwitterionic proline (ZP) into gellan gum/polyacrylamide (GG/PAAm) double network (DN) hydrogel. The existence of ZP endows the hydrogel with remarkable frost resistance. The toughness and transparency of zwitterionic Ca-GG/PAAm-ZP DN hydrogel can be maintained down to −40 °C. Also, the zwitterionic hydrogel shows good biocompatibility and protein adsorption resistance. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor can accurately monitor human motions (such as speaking and various joint bendings) under a broad temperature range from −40 to 25 °C. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor will be of immense value in the field of wearable electronic devices, especially for extreme environment applications.
Multifunctional hydrogel with outstanding conductivity and mechanical flexibility has received enormous attention as wearable electronic devices. However, fabricating transparent, ultrastretchable, and biocompatible hydrogel with low-temperature stability still remains a tremendous challenge. In this study, an ultrastretchable, highly transparent, and antifreezing zwitterionic-based electronic sensor is developed by introducing zwitterionic proline (ZP) into gellan gum/polyacrylamide (GG/PAAm) double network (DN) hydrogel. The existence of ZP endows the hydrogel with remarkable frost resistance. The toughness and transparency of zwitterionic Ca-GG/PAAm-ZP DN hydrogel can be maintained down to -40 °C. Also, the zwitterionic hydrogel shows good biocompatibility and protein adsorption resistance. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor can accurately monitor human motions (such as speaking and various joint bendings) under a broad temperature range from -40 to 25 °C. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor will be of immense value in the field of wearable electronic devices, especially for extreme environment applications.
Author Jiao, Qin
Zhang, Hong
Li, Junjie
Zhao, Zhijie
Cao, Lilong
Wei, Yuping
AuthorAffiliation Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)
Department of Applied Chemistry, School of Engineering
School of Chemical Engineering and Technology
Department of Chemistry, School of Science
AuthorAffiliation_xml – name: Department of Applied Chemistry, School of Engineering
– name: Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)
– name: Department of Chemistry, School of Science
– name: School of Chemical Engineering and Technology
Author_xml – sequence: 1
  givenname: Qin
  surname: Jiao
  fullname: Jiao, Qin
  organization: Department of Chemistry, School of Science
– sequence: 2
  givenname: Lilong
  surname: Cao
  fullname: Cao, Lilong
  organization: Department of Chemistry, School of Science
– sequence: 3
  givenname: Zhijie
  surname: Zhao
  fullname: Zhao, Zhijie
  organization: Department of Chemistry, School of Science
– sequence: 4
  givenname: Hong
  orcidid: 0000-0002-6633-9264
  surname: Zhang
  fullname: Zhang, Hong
  organization: Department of Applied Chemistry, School of Engineering
– sequence: 5
  givenname: Junjie
  orcidid: 0000-0003-2152-6952
  surname: Li
  fullname: Li, Junjie
  email: li41308@tju.edu.cn
  organization: Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)
– sequence: 6
  givenname: Yuping
  orcidid: 0000-0002-5062-0449
  surname: Wei
  fullname: Wei, Yuping
  email: ypwei@tju.edu.cn
  organization: Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33586969$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtrGzEUhUVJaV79A1kELbvoOHrMaKRlCE1cCATyINCN0Gju2ErGkivJFHeXf145djZZhK4k7v3OgXvOIdrzwQNCJ5RMKGH0zNg06VxYGDshltCW1Z_QAW2YqGpB2N7rv6naVrX76DClJ0KI4nXzBe1z3kihhDpAL7_-uJwhuuCdxdN1H8MMRlyGczx1szm-j8anpYng7fo7fhhzNClHyHZuOje6XIbG9_gWFiY-m24EfBkB_jo_K7PkUjbeAh5CxI9g4itwVzycx3fgU4jpGH0ezJjg6-49Qg-XP-4vptX1zdXPi_PryvC2yZW1A7Etg3IEASUlJTUVwI3oh0GRduDcSto1ZqCMMtETwqFcL5hltaSyZ_wIfdv6LmP4vYKU9cIlC-NoPIRV0qxhNZNKtf-B1lIJQutGFvR0h666BfR6GV0JYq3fEi6A3AI2hpQiDNq6bHLJe5PCqCnRmzJ1KVNvy9S7MouUvZO-uX8ommxFm91TWEVfQv1I8A_7ibZP
CitedBy_id crossref_primary_10_3390_gels8120797
crossref_primary_10_1021_acsapm_1c01433
crossref_primary_10_1039_D3SM01503C
crossref_primary_10_1007_s42114_022_00465_8
crossref_primary_10_1016_j_polymer_2023_126248
crossref_primary_10_1016_j_mtcomm_2021_102757
crossref_primary_10_1021_acs_molpharmaceut_3c00633
crossref_primary_10_1016_j_reactfunctpolym_2022_105197
crossref_primary_10_1016_j_cej_2022_137405
crossref_primary_10_1021_acsapm_4c00221
crossref_primary_10_1021_acs_chemmater_1c02781
crossref_primary_10_1016_j_cej_2024_156608
crossref_primary_10_1016_j_jcis_2022_07_170
crossref_primary_10_1021_acsapm_3c01580
crossref_primary_10_1002_admt_202300867
crossref_primary_10_1016_j_bios_2023_115288
crossref_primary_10_1021_acsami_2c09556
crossref_primary_10_1007_s10570_023_05321_6
crossref_primary_10_1038_s41467_024_44949_1
crossref_primary_10_1039_D3QM00902E
crossref_primary_10_1016_j_colsurfa_2023_132272
crossref_primary_10_1039_D3TC01668D
crossref_primary_10_1016_j_carbpol_2025_123425
crossref_primary_10_1016_j_ensm_2021_07_026
crossref_primary_10_1016_j_eurpolymj_2023_112613
crossref_primary_10_1016_j_colsurfa_2022_130390
crossref_primary_10_1016_j_polymer_2023_126013
crossref_primary_10_1021_acsami_1c14671
crossref_primary_10_1016_j_ijbiomac_2024_138740
crossref_primary_10_1039_D1TA09769E
crossref_primary_10_1016_j_cej_2022_139314
crossref_primary_10_1134_S0965545X23700645
crossref_primary_10_1007_s12209_024_00424_y
crossref_primary_10_1016_j_cej_2023_147790
crossref_primary_10_1039_D3TA01627G
crossref_primary_10_1016_j_cis_2023_103000
crossref_primary_10_1016_j_cej_2021_134406
crossref_primary_10_1016_j_surfcoat_2024_130503
crossref_primary_10_1016_j_bios_2023_115893
crossref_primary_10_1016_j_jcis_2023_08_037
crossref_primary_10_1021_acsaem_4c01464
crossref_primary_10_1002_mame_202100724
crossref_primary_10_1021_acssuschemeng_2c05125
crossref_primary_10_1016_j_matchemphys_2023_128507
crossref_primary_10_1016_j_susmat_2024_e01049
crossref_primary_10_1039_D3TA02584E
crossref_primary_10_1016_j_jpowsour_2022_232015
crossref_primary_10_1016_j_compositesb_2021_109528
crossref_primary_10_1021_acsami_3c10477
crossref_primary_10_1039_D1TA06408H
crossref_primary_10_1002_app_55727
crossref_primary_10_1002_adfm_202407529
crossref_primary_10_1002_admt_202101382
crossref_primary_10_1039_D4MH01778A
crossref_primary_10_1016_j_cej_2024_148526
crossref_primary_10_1016_j_cej_2022_136580
crossref_primary_10_1016_j_eurpolymj_2021_110977
crossref_primary_10_1039_D2TC01104B
crossref_primary_10_1016_j_cej_2022_135018
crossref_primary_10_1016_j_cej_2024_153704
crossref_primary_10_1016_j_foodres_2024_115594
crossref_primary_10_1016_j_ijbiomac_2023_123573
crossref_primary_10_1016_j_colsurfb_2022_112914
crossref_primary_10_1002_pol_20210935
crossref_primary_10_1016_j_memsci_2022_120386
crossref_primary_10_1021_acsapm_3c02749
crossref_primary_10_1039_D3GC05109A
crossref_primary_10_1021_acs_biomac_1c01141
crossref_primary_10_1039_D2RA07990A
crossref_primary_10_1109_JSEN_2024_3503361
crossref_primary_10_1021_acssuschemeng_4c05363
crossref_primary_10_1002_marc_202200896
crossref_primary_10_1016_j_colsurfa_2022_130752
crossref_primary_10_1002_sus2_255
crossref_primary_10_3390_nano13010157
crossref_primary_10_1038_s41598_023_28228_5
crossref_primary_10_1016_j_compositesa_2024_108330
crossref_primary_10_1016_j_ijbiomac_2024_134337
crossref_primary_10_1007_s11051_021_05333_y
crossref_primary_10_1016_j_heliyon_2024_e25874
crossref_primary_10_1039_D1TA08093H
crossref_primary_10_1039_D3MH00629H
crossref_primary_10_1002_eom2_12506
crossref_primary_10_1016_j_colsurfa_2024_135641
crossref_primary_10_1016_j_jpowsour_2024_235898
crossref_primary_10_1016_j_colsurfa_2024_133346
crossref_primary_10_1021_acsami_3c10205
crossref_primary_10_1002_marc_202300418
crossref_primary_10_1021_acsapm_2c00479
crossref_primary_10_1002_adma_202412162
crossref_primary_10_1002_adfm_202104963
crossref_primary_10_1039_D4TB00425F
crossref_primary_10_1021_acs_chemmater_3c02234
crossref_primary_10_1016_j_cej_2023_148318
crossref_primary_10_1021_acsami_3c06443
crossref_primary_10_1016_j_mseb_2025_118175
crossref_primary_10_1021_acsami_4c12419
crossref_primary_10_1021_acsaelm_4c00156
crossref_primary_10_1002_smll_202407767
crossref_primary_10_1016_j_carbpol_2021_118872
crossref_primary_10_1016_j_cej_2025_159854
crossref_primary_10_1021_acs_macromol_3c00837
crossref_primary_10_1021_acsami_1c10717
crossref_primary_10_1016_j_polymertesting_2024_108607
crossref_primary_10_1016_j_sna_2024_115258
crossref_primary_10_1039_D1TA07273K
crossref_primary_10_20517_cs_2023_50
crossref_primary_10_1021_acs_biomac_1c01203
crossref_primary_10_1016_j_molliq_2022_119861
crossref_primary_10_1002_vnl_22041
crossref_primary_10_1002_smll_202201597
crossref_primary_10_1021_acsami_1c14139
crossref_primary_10_1007_s10008_023_05726_0
crossref_primary_10_1007_s12274_023_6365_8
crossref_primary_10_1016_j_jfutfo_2023_06_004
crossref_primary_10_1039_D4TA02505A
crossref_primary_10_1016_j_cej_2024_149493
crossref_primary_10_1016_j_cej_2024_155766
crossref_primary_10_1021_acsami_2c15203
crossref_primary_10_1021_acs_biomac_2c01044
crossref_primary_10_3390_nano11113126
crossref_primary_10_1039_D2TA07410A
crossref_primary_10_1002_marc_202200103
crossref_primary_10_1007_s10971_022_06031_4
crossref_primary_10_1016_j_compositesa_2022_106806
crossref_primary_10_1016_j_ijbiomac_2025_140571
Cites_doi 10.1016/j.cej.2018.07.187
10.1021/acsami.9b12504
10.1002/anie.201708614
10.1002/anie.201908985
10.1021/acs.chemmater.9b00259
10.1021/acsami.5b10811
10.1002/adma.200901407
10.1002/adma.201801541
10.1021/acsami.8b20755
10.1002/adfm.202005135
10.1002/adma.201404059
10.1021/acsapm.9b01200
10.1021/acsami.9b14040
10.1093/jxb/err460
10.1016/j.cej.2020.126431
10.1002/smll.201903784
10.1002/adma.201902343
10.1016/j.cej.2020.126559
10.1021/acsami.7b12189
10.1016/j.cej.2019.123912
10.1126/science.aaf8810
10.1016/j.cej.2019.121915
10.1039/C9TA11084D
10.1039/C6TB00302H
10.1021/acsami.9b22707
10.1039/C9TB02570G
10.1039/D0MH90071K
10.1039/C9TA13196E
10.1002/adma.201902062
10.1016/j.jcis.2020.08.008
10.1039/C9MH01688K
10.1016/j.cej.2019.122832
10.1038/ncomms15911
10.1021/acsami.0c14959
10.1021/acsami.8b10280
10.1021/acsami.9b21659
10.1016/j.mattod.2020.10.004
10.1021/bi400683y
10.1021/acssuschemeng.8b00193
10.1016/j.progpolymsci.2018.09.001
10.1002/anie.201803366
10.1021/acsami.7b04832
10.1021/acsami.0c06067
10.1021/acsami.9b05652
10.1038/s41467-019-13238-7
10.1002/adfm.201907986
10.1002/adhm.201900633
10.1021/acs.chemmater.9b02039
10.1002/adfm.201904507
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acs.biomac.0c01724
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1526-4602
EndPage 1230
ExternalDocumentID 33586969
10_1021_acs_biomac_0c01724
d214862505
Genre Journal Article
GroupedDBID -
02
23N
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
XKZ
---
-~X
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ZCA
~02
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a375t-ccf0c72e0000e98810416e3a6dff907f33c81b5af12126d003e52562c24818d23
IEDL.DBID ACS
ISSN 1525-7797
1526-4602
IngestDate Fri Jul 11 04:28:20 EDT 2025
Thu Jul 10 23:29:43 EDT 2025
Thu Jan 02 22:57:26 EST 2025
Tue Jul 01 04:08:11 EDT 2025
Thu Apr 24 23:02:13 EDT 2025
Thu Mar 11 09:54:40 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a375t-ccf0c72e0000e98810416e3a6dff907f33c81b5af12126d003e52562c24818d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6633-9264
0000-0003-2152-6952
0000-0002-5062-0449
PMID 33586969
PQID 2489601458
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2524289972
proquest_miscellaneous_2489601458
pubmed_primary_33586969
crossref_citationtrail_10_1021_acs_biomac_0c01724
crossref_primary_10_1021_acs_biomac_0c01724
acs_journals_10_1021_acs_biomac_0c01724
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-08
PublicationDateYYYYMMDD 2021-03-08
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biomacromolecules
PublicationTitleAlternate Biomacromolecules
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref48/cit48
  doi: 10.1016/j.cej.2018.07.187
– ident: ref20/cit20
  doi: 10.1021/acsami.9b12504
– ident: ref27/cit27
  doi: 10.1002/anie.201708614
– ident: ref4/cit4
  doi: 10.1002/anie.201908985
– ident: ref5/cit5
  doi: 10.1021/acs.chemmater.9b00259
– ident: ref34/cit34
  doi: 10.1021/acsami.5b10811
– ident: ref35/cit35
  doi: 10.1002/adma.200901407
– ident: ref28/cit28
  doi: 10.1002/adma.201801541
– ident: ref12/cit12
  doi: 10.1021/acsami.8b20755
– ident: ref3/cit3
  doi: 10.1002/adfm.202005135
– ident: ref41/cit41
  doi: 10.1002/adma.201404059
– ident: ref23/cit23
  doi: 10.1021/acsapm.9b01200
– ident: ref47/cit47
  doi: 10.1021/acsami.9b14040
– ident: ref37/cit37
  doi: 10.1093/jxb/err460
– ident: ref29/cit29
  doi: 10.1016/j.cej.2020.126431
– ident: ref31/cit31
  doi: 10.1002/smll.201903784
– ident: ref42/cit42
  doi: 10.1002/adma.201902343
– ident: ref26/cit26
  doi: 10.1016/j.cej.2020.126559
– ident: ref38/cit38
  doi: 10.1021/acsami.7b12189
– ident: ref49/cit49
  doi: 10.1016/j.cej.2019.123912
– ident: ref22/cit22
  doi: 10.1126/science.aaf8810
– ident: ref46/cit46
  doi: 10.1016/j.cej.2019.121915
– ident: ref16/cit16
  doi: 10.1039/C9TA11084D
– ident: ref33/cit33
  doi: 10.1039/C6TB00302H
– ident: ref1/cit1
  doi: 10.1021/acsami.9b22707
– ident: ref8/cit8
  doi: 10.1039/C9TB02570G
– ident: ref13/cit13
  doi: 10.1039/D0MH90071K
– ident: ref21/cit21
  doi: 10.1039/C9TA13196E
– ident: ref2/cit2
  doi: 10.1002/adma.201902062
– ident: ref43/cit43
  doi: 10.1016/j.jcis.2020.08.008
– ident: ref40/cit40
  doi: 10.1039/C9MH01688K
– ident: ref15/cit15
  doi: 10.1016/j.cej.2019.122832
– ident: ref24/cit24
  doi: 10.1038/ncomms15911
– ident: ref45/cit45
  doi: 10.1021/acsami.0c14959
– ident: ref9/cit9
  doi: 10.1021/acsami.8b10280
– ident: ref17/cit17
  doi: 10.1021/acsami.9b21659
– ident: ref14/cit14
  doi: 10.1016/j.mattod.2020.10.004
– ident: ref39/cit39
  doi: 10.1021/bi400683y
– ident: ref10/cit10
  doi: 10.1021/acssuschemeng.8b00193
– ident: ref7/cit7
  doi: 10.1016/j.progpolymsci.2018.09.001
– ident: ref25/cit25
  doi: 10.1002/anie.201803366
– ident: ref44/cit44
  doi: 10.1021/acsami.7b04832
– ident: ref30/cit30
  doi: 10.1021/acsami.0c06067
– ident: ref11/cit11
  doi: 10.1021/acsami.9b05652
– ident: ref32/cit32
  doi: 10.1038/s41467-019-13238-7
– ident: ref36/cit36
  doi: 10.1002/adfm.201907986
– ident: ref18/cit18
  doi: 10.1002/adhm.201900633
– ident: ref6/cit6
  doi: 10.1021/acs.chemmater.9b02039
– ident: ref19/cit19
  doi: 10.1002/adfm.201904507
SSID ssj0009345
Score 2.6386747
Snippet Multifunctional hydrogel with outstanding conductivity and mechanical flexibility has received enormous attention as wearable electronic devices. However,...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1220
SubjectTerms adsorption
biocompatibility
electronic sensing
frost resistance
gellan gum
humans
hydrogels
polyacrylamide
proline
temperature
zwitterions
Title Zwitterionic Hydrogel with High Transparency, Ultrastretchability, and Remarkable Freezing Resistance for Wearable Strain Sensors
URI http://dx.doi.org/10.1021/acs.biomac.0c01724
https://www.ncbi.nlm.nih.gov/pubmed/33586969
https://www.proquest.com/docview/2489601458
https://www.proquest.com/docview/2524289972
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED4BexgvjG0wOmDypEl7GCmNHTv2I6pWVZPgga4a2kvkOA6aKClKUk3wtn_OXZIyTYOKlzxYdqI727nv7PvuAD6lkcqlyERgUm0CtFA60Gg4A5HxyItYR7IhCp-eqfE0-nYhL9bg6IkbfB4eW1f1iYqOrx848liidXjBlY7J1ToZTv6m2BVNSWIq6IOY0cQdRebxd5AxctW_xugJhNlYmtErOF3yddoAk6v-ok777u7_9I3PEmIbtjrIyU7aNfIa1nzxBl4Ol5Xe3sKfn79_EamHjmYdG99m5fzSzxgd0TKKA2FtBnSijbnbIzad1aUljglOeJvlGxttkbFzf23LK-JisVHp_R1aRWyrCKHi0mIIj9kP3FhNh0lTm4JN0Iuel9UOTEdfvw_HQVeaIbAilnXgXD5wMfdk7rzRGp26UHlhVZbn6G7nQjjEw9LmIZpGleGvw-O0KO54hAgh42IXNop54feAGSOlVjZLFUIz67X1-Bg4NzDc-tSGPfiM2ku6rVUlza05DxNqbFWadCrtQbiczcR1Gc5JmNnKMV8exty0-T1W9v64XCQJzhHdrdjCzxdVgnKhLxhGUq_oIxEPaWIq9-Bdu8IevikEKsEo8_7Z0u7DJqf4GoqH0wewUZcLf4gAqU4_NPviHvlXDM4
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-CcRiXMT5XGMNISBwgo7Fj1z5OFVWBbQfaiolL5DgOQispSlKh7cZ_zntO2okJKrjkYPnr-SPv92z_3gN4kSWqkCIXkcm0iVBD6Uij4oxEzhMvBjqRgSh8cqrGs-T9mTzreNzEhcFO1FhTHS7xr7wLxG8ojRjp2ErfkeGS3IRbiEY4WVxHw8mVp10RIhNTXB-EjmbQMWX-XAfpJFf_rpP-AjSDwhndgem6q-GdyfnhsskO3eU1L47_Kcsu7HQAlB21K-Yu3PDlPdgeruK-3Yefn398JYoPHdQ6Nr7Iq8UXP2d0YMvoVQhr_aETicxdvGazeVNZYpzg9Lc-vzHRljn76L_Z6pyYWWxUeX-JOhLTasKruNAYgmX2CbdZyDAJkSrYBG3qRVU_gNno7XQ4jrpADZEVA9lEzhV9N-CelJ83WqOJFysvrMqLAo3vQgiH6FjaIkZFqXL8kXicHcUdTxAv5Fw8hK1yUfo9YMZIqZXNM4VAzXptPX76zvUNtz6zcQ9e4uil3Uar03CHzuOUEtshTbsh7UG8mtTUdf7OSZj5xjKv1mW-t94-NuZ-vlorKc4R3bTY0i-WdYpyoWUYJ1JvyCMRHWniLffgUbvQ1m0KgYNglHn8z9I-g-3x9OQ4PX53-uEJ3Ob08oZeyul92GqqpX-K0KnJDsJW-QU2ZxUv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BkIAXvj8KGxgJiQfIaOLYtR-njqp8TYhSUe0lcmxnmlbSKUmFtjf-8905aREIKsRLHix_-5z7ne3fHcDzPJWF4I5HOlc6Qg2lIoWKM-IuST0fqFQEovDHAzmepu9mYtYdXRAXBjtRY011uMSnXX3qis7DQPya0omVji31LRkv6WW4Qvd2ZHXtDSc_ve3yEJ2YYvsgfNSDji3z5zpIL9n6V730F7AZlM7oJszW3Q1vTU52l02-a89_8-T4H-O5BTc6IMr2Wsm5DZd8eQeuDVfx3-7Cj8Pvx0T1oQNby8Znrloc-Tmjg1tGr0NY6xedyGT27BWbzpvKEPMExaD1_Y2JpnTss_9mqhNiaLFR5f056kpMqwm3osAxBM3sK263kGESIlawCdrWi6q-B9PRmy_DcdQFbIgMH4gmsrbo20HiSQl6rRSaerH03EhXFGiEF5xbRMnCFDEqTOnwh-JxhWRikxRxg0v4fdgqF6V_CExrIZQ0LpcI2IxXxuOnb21fJ8bnJu7BC5y9rNtwdRbu0pM4o8R2SrNuSnsQrxY2s53fcxrMfGOZl-syp63Xj425n63kJcM1ohsXU_rFss5wXGghxqlQG_IIREmK-Ms9eNAK27pNznEStNSP_nm0T-Hqp_1R9uHtwfvHcD2hBzj0YE5tw1ZTLf0OIqgmfxJ2ywUPXhey
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zwitterionic+Hydrogel+with+High+Transparency%2C+Ultrastretchability%2C+and+Remarkable+Freezing+Resistance+for+Wearable+Strain+Sensors&rft.jtitle=Biomacromolecules&rft.au=Jiao%2C+Qin&rft.au=Cao%2C+Lilong&rft.au=Zhao%2C+Zhijie&rft.au=Zhang%2C+Hong&rft.date=2021-03-08&rft.issn=1526-4602&rft.eissn=1526-4602&rft.volume=22&rft.issue=3&rft.spage=1220&rft_id=info:doi/10.1021%2Facs.biomac.0c01724&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon