Zwitterionic Hydrogel with High Transparency, Ultrastretchability, and Remarkable Freezing Resistance for Wearable Strain Sensors
Multifunctional hydrogel with outstanding conductivity and mechanical flexibility has received enormous attention as wearable electronic devices. However, fabricating transparent, ultrastretchable, and biocompatible hydrogel with low-temperature stability still remains a tremendous challenge. In thi...
Saved in:
Published in | Biomacromolecules Vol. 22; no. 3; pp. 1220 - 1230 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
08.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multifunctional hydrogel with outstanding conductivity and mechanical flexibility has received enormous attention as wearable electronic devices. However, fabricating transparent, ultrastretchable, and biocompatible hydrogel with low-temperature stability still remains a tremendous challenge. In this study, an ultrastretchable, highly transparent, and antifreezing zwitterionic-based electronic sensor is developed by introducing zwitterionic proline (ZP) into gellan gum/polyacrylamide (GG/PAAm) double network (DN) hydrogel. The existence of ZP endows the hydrogel with remarkable frost resistance. The toughness and transparency of zwitterionic Ca-GG/PAAm-ZP DN hydrogel can be maintained down to −40 °C. Also, the zwitterionic hydrogel shows good biocompatibility and protein adsorption resistance. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor can accurately monitor human motions (such as speaking and various joint bendings) under a broad temperature range from −40 to 25 °C. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor will be of immense value in the field of wearable electronic devices, especially for extreme environment applications. |
---|---|
AbstractList | Multifunctional hydrogel with outstanding conductivity and mechanical flexibility has received enormous attention as wearable electronic devices. However, fabricating transparent, ultrastretchable, and biocompatible hydrogel with low-temperature stability still remains a tremendous challenge. In this study, an ultrastretchable, highly transparent, and antifreezing zwitterionic-based electronic sensor is developed by introducing zwitterionic proline (ZP) into gellan gum/polyacrylamide (GG/PAAm) double network (DN) hydrogel. The existence of ZP endows the hydrogel with remarkable frost resistance. The toughness and transparency of zwitterionic Ca-GG/PAAm-ZP DN hydrogel can be maintained down to -40 °C. Also, the zwitterionic hydrogel shows good biocompatibility and protein adsorption resistance. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor can accurately monitor human motions (such as speaking and various joint bendings) under a broad temperature range from -40 to 25 °C. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor will be of immense value in the field of wearable electronic devices, especially for extreme environment applications.Multifunctional hydrogel with outstanding conductivity and mechanical flexibility has received enormous attention as wearable electronic devices. However, fabricating transparent, ultrastretchable, and biocompatible hydrogel with low-temperature stability still remains a tremendous challenge. In this study, an ultrastretchable, highly transparent, and antifreezing zwitterionic-based electronic sensor is developed by introducing zwitterionic proline (ZP) into gellan gum/polyacrylamide (GG/PAAm) double network (DN) hydrogel. The existence of ZP endows the hydrogel with remarkable frost resistance. The toughness and transparency of zwitterionic Ca-GG/PAAm-ZP DN hydrogel can be maintained down to -40 °C. Also, the zwitterionic hydrogel shows good biocompatibility and protein adsorption resistance. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor can accurately monitor human motions (such as speaking and various joint bendings) under a broad temperature range from -40 to 25 °C. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor will be of immense value in the field of wearable electronic devices, especially for extreme environment applications. Multifunctional hydrogel with outstanding conductivity and mechanical flexibility has received enormous attention as wearable electronic devices. However, fabricating transparent, ultrastretchable, and biocompatible hydrogel with low-temperature stability still remains a tremendous challenge. In this study, an ultrastretchable, highly transparent, and antifreezing zwitterionic-based electronic sensor is developed by introducing zwitterionic proline (ZP) into gellan gum/polyacrylamide (GG/PAAm) double network (DN) hydrogel. The existence of ZP endows the hydrogel with remarkable frost resistance. The toughness and transparency of zwitterionic Ca-GG/PAAm-ZP DN hydrogel can be maintained down to −40 °C. Also, the zwitterionic hydrogel shows good biocompatibility and protein adsorption resistance. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor can accurately monitor human motions (such as speaking and various joint bendings) under a broad temperature range from −40 to 25 °C. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor will be of immense value in the field of wearable electronic devices, especially for extreme environment applications. Multifunctional hydrogel with outstanding conductivity and mechanical flexibility has received enormous attention as wearable electronic devices. However, fabricating transparent, ultrastretchable, and biocompatible hydrogel with low-temperature stability still remains a tremendous challenge. In this study, an ultrastretchable, highly transparent, and antifreezing zwitterionic-based electronic sensor is developed by introducing zwitterionic proline (ZP) into gellan gum/polyacrylamide (GG/PAAm) double network (DN) hydrogel. The existence of ZP endows the hydrogel with remarkable frost resistance. The toughness and transparency of zwitterionic Ca-GG/PAAm-ZP DN hydrogel can be maintained down to -40 °C. Also, the zwitterionic hydrogel shows good biocompatibility and protein adsorption resistance. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor can accurately monitor human motions (such as speaking and various joint bendings) under a broad temperature range from -40 to 25 °C. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor will be of immense value in the field of wearable electronic devices, especially for extreme environment applications. |
Author | Jiao, Qin Zhang, Hong Li, Junjie Zhao, Zhijie Cao, Lilong Wei, Yuping |
AuthorAffiliation | Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education) Department of Applied Chemistry, School of Engineering School of Chemical Engineering and Technology Department of Chemistry, School of Science |
AuthorAffiliation_xml | – name: Department of Applied Chemistry, School of Engineering – name: Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education) – name: Department of Chemistry, School of Science – name: School of Chemical Engineering and Technology |
Author_xml | – sequence: 1 givenname: Qin surname: Jiao fullname: Jiao, Qin organization: Department of Chemistry, School of Science – sequence: 2 givenname: Lilong surname: Cao fullname: Cao, Lilong organization: Department of Chemistry, School of Science – sequence: 3 givenname: Zhijie surname: Zhao fullname: Zhao, Zhijie organization: Department of Chemistry, School of Science – sequence: 4 givenname: Hong orcidid: 0000-0002-6633-9264 surname: Zhang fullname: Zhang, Hong organization: Department of Applied Chemistry, School of Engineering – sequence: 5 givenname: Junjie orcidid: 0000-0003-2152-6952 surname: Li fullname: Li, Junjie email: li41308@tju.edu.cn organization: Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education) – sequence: 6 givenname: Yuping orcidid: 0000-0002-5062-0449 surname: Wei fullname: Wei, Yuping email: ypwei@tju.edu.cn organization: Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33586969$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtrGzEUhUVJaV79A1kELbvoOHrMaKRlCE1cCATyINCN0Gju2ErGkivJFHeXf145djZZhK4k7v3OgXvOIdrzwQNCJ5RMKGH0zNg06VxYGDshltCW1Z_QAW2YqGpB2N7rv6naVrX76DClJ0KI4nXzBe1z3kihhDpAL7_-uJwhuuCdxdN1H8MMRlyGczx1szm-j8anpYng7fo7fhhzNClHyHZuOje6XIbG9_gWFiY-m24EfBkB_jo_K7PkUjbeAh5CxI9g4itwVzycx3fgU4jpGH0ezJjg6-49Qg-XP-4vptX1zdXPi_PryvC2yZW1A7Etg3IEASUlJTUVwI3oh0GRduDcSto1ZqCMMtETwqFcL5hltaSyZ_wIfdv6LmP4vYKU9cIlC-NoPIRV0qxhNZNKtf-B1lIJQutGFvR0h666BfR6GV0JYq3fEi6A3AI2hpQiDNq6bHLJe5PCqCnRmzJ1KVNvy9S7MouUvZO-uX8ommxFm91TWEVfQv1I8A_7ibZP |
CitedBy_id | crossref_primary_10_3390_gels8120797 crossref_primary_10_1021_acsapm_1c01433 crossref_primary_10_1039_D3SM01503C crossref_primary_10_1007_s42114_022_00465_8 crossref_primary_10_1016_j_polymer_2023_126248 crossref_primary_10_1016_j_mtcomm_2021_102757 crossref_primary_10_1021_acs_molpharmaceut_3c00633 crossref_primary_10_1016_j_reactfunctpolym_2022_105197 crossref_primary_10_1016_j_cej_2022_137405 crossref_primary_10_1021_acsapm_4c00221 crossref_primary_10_1021_acs_chemmater_1c02781 crossref_primary_10_1016_j_cej_2024_156608 crossref_primary_10_1016_j_jcis_2022_07_170 crossref_primary_10_1021_acsapm_3c01580 crossref_primary_10_1002_admt_202300867 crossref_primary_10_1016_j_bios_2023_115288 crossref_primary_10_1021_acsami_2c09556 crossref_primary_10_1007_s10570_023_05321_6 crossref_primary_10_1038_s41467_024_44949_1 crossref_primary_10_1039_D3QM00902E crossref_primary_10_1016_j_colsurfa_2023_132272 crossref_primary_10_1039_D3TC01668D crossref_primary_10_1016_j_carbpol_2025_123425 crossref_primary_10_1016_j_ensm_2021_07_026 crossref_primary_10_1016_j_eurpolymj_2023_112613 crossref_primary_10_1016_j_colsurfa_2022_130390 crossref_primary_10_1016_j_polymer_2023_126013 crossref_primary_10_1021_acsami_1c14671 crossref_primary_10_1016_j_ijbiomac_2024_138740 crossref_primary_10_1039_D1TA09769E crossref_primary_10_1016_j_cej_2022_139314 crossref_primary_10_1134_S0965545X23700645 crossref_primary_10_1007_s12209_024_00424_y crossref_primary_10_1016_j_cej_2023_147790 crossref_primary_10_1039_D3TA01627G crossref_primary_10_1016_j_cis_2023_103000 crossref_primary_10_1016_j_cej_2021_134406 crossref_primary_10_1016_j_surfcoat_2024_130503 crossref_primary_10_1016_j_bios_2023_115893 crossref_primary_10_1016_j_jcis_2023_08_037 crossref_primary_10_1021_acsaem_4c01464 crossref_primary_10_1002_mame_202100724 crossref_primary_10_1021_acssuschemeng_2c05125 crossref_primary_10_1016_j_matchemphys_2023_128507 crossref_primary_10_1016_j_susmat_2024_e01049 crossref_primary_10_1039_D3TA02584E crossref_primary_10_1016_j_jpowsour_2022_232015 crossref_primary_10_1016_j_compositesb_2021_109528 crossref_primary_10_1021_acsami_3c10477 crossref_primary_10_1039_D1TA06408H crossref_primary_10_1002_app_55727 crossref_primary_10_1002_adfm_202407529 crossref_primary_10_1002_admt_202101382 crossref_primary_10_1039_D4MH01778A crossref_primary_10_1016_j_cej_2024_148526 crossref_primary_10_1016_j_cej_2022_136580 crossref_primary_10_1016_j_eurpolymj_2021_110977 crossref_primary_10_1039_D2TC01104B crossref_primary_10_1016_j_cej_2022_135018 crossref_primary_10_1016_j_cej_2024_153704 crossref_primary_10_1016_j_foodres_2024_115594 crossref_primary_10_1016_j_ijbiomac_2023_123573 crossref_primary_10_1016_j_colsurfb_2022_112914 crossref_primary_10_1002_pol_20210935 crossref_primary_10_1016_j_memsci_2022_120386 crossref_primary_10_1021_acsapm_3c02749 crossref_primary_10_1039_D3GC05109A crossref_primary_10_1021_acs_biomac_1c01141 crossref_primary_10_1039_D2RA07990A crossref_primary_10_1109_JSEN_2024_3503361 crossref_primary_10_1021_acssuschemeng_4c05363 crossref_primary_10_1002_marc_202200896 crossref_primary_10_1016_j_colsurfa_2022_130752 crossref_primary_10_1002_sus2_255 crossref_primary_10_3390_nano13010157 crossref_primary_10_1038_s41598_023_28228_5 crossref_primary_10_1016_j_compositesa_2024_108330 crossref_primary_10_1016_j_ijbiomac_2024_134337 crossref_primary_10_1007_s11051_021_05333_y crossref_primary_10_1016_j_heliyon_2024_e25874 crossref_primary_10_1039_D1TA08093H crossref_primary_10_1039_D3MH00629H crossref_primary_10_1002_eom2_12506 crossref_primary_10_1016_j_colsurfa_2024_135641 crossref_primary_10_1016_j_jpowsour_2024_235898 crossref_primary_10_1016_j_colsurfa_2024_133346 crossref_primary_10_1021_acsami_3c10205 crossref_primary_10_1002_marc_202300418 crossref_primary_10_1021_acsapm_2c00479 crossref_primary_10_1002_adma_202412162 crossref_primary_10_1002_adfm_202104963 crossref_primary_10_1039_D4TB00425F crossref_primary_10_1021_acs_chemmater_3c02234 crossref_primary_10_1016_j_cej_2023_148318 crossref_primary_10_1021_acsami_3c06443 crossref_primary_10_1016_j_mseb_2025_118175 crossref_primary_10_1021_acsami_4c12419 crossref_primary_10_1021_acsaelm_4c00156 crossref_primary_10_1002_smll_202407767 crossref_primary_10_1016_j_carbpol_2021_118872 crossref_primary_10_1016_j_cej_2025_159854 crossref_primary_10_1021_acs_macromol_3c00837 crossref_primary_10_1021_acsami_1c10717 crossref_primary_10_1016_j_polymertesting_2024_108607 crossref_primary_10_1016_j_sna_2024_115258 crossref_primary_10_1039_D1TA07273K crossref_primary_10_20517_cs_2023_50 crossref_primary_10_1021_acs_biomac_1c01203 crossref_primary_10_1016_j_molliq_2022_119861 crossref_primary_10_1002_vnl_22041 crossref_primary_10_1002_smll_202201597 crossref_primary_10_1021_acsami_1c14139 crossref_primary_10_1007_s10008_023_05726_0 crossref_primary_10_1007_s12274_023_6365_8 crossref_primary_10_1016_j_jfutfo_2023_06_004 crossref_primary_10_1039_D4TA02505A crossref_primary_10_1016_j_cej_2024_149493 crossref_primary_10_1016_j_cej_2024_155766 crossref_primary_10_1021_acsami_2c15203 crossref_primary_10_1021_acs_biomac_2c01044 crossref_primary_10_3390_nano11113126 crossref_primary_10_1039_D2TA07410A crossref_primary_10_1002_marc_202200103 crossref_primary_10_1007_s10971_022_06031_4 crossref_primary_10_1016_j_compositesa_2022_106806 crossref_primary_10_1016_j_ijbiomac_2025_140571 |
Cites_doi | 10.1016/j.cej.2018.07.187 10.1021/acsami.9b12504 10.1002/anie.201708614 10.1002/anie.201908985 10.1021/acs.chemmater.9b00259 10.1021/acsami.5b10811 10.1002/adma.200901407 10.1002/adma.201801541 10.1021/acsami.8b20755 10.1002/adfm.202005135 10.1002/adma.201404059 10.1021/acsapm.9b01200 10.1021/acsami.9b14040 10.1093/jxb/err460 10.1016/j.cej.2020.126431 10.1002/smll.201903784 10.1002/adma.201902343 10.1016/j.cej.2020.126559 10.1021/acsami.7b12189 10.1016/j.cej.2019.123912 10.1126/science.aaf8810 10.1016/j.cej.2019.121915 10.1039/C9TA11084D 10.1039/C6TB00302H 10.1021/acsami.9b22707 10.1039/C9TB02570G 10.1039/D0MH90071K 10.1039/C9TA13196E 10.1002/adma.201902062 10.1016/j.jcis.2020.08.008 10.1039/C9MH01688K 10.1016/j.cej.2019.122832 10.1038/ncomms15911 10.1021/acsami.0c14959 10.1021/acsami.8b10280 10.1021/acsami.9b21659 10.1016/j.mattod.2020.10.004 10.1021/bi400683y 10.1021/acssuschemeng.8b00193 10.1016/j.progpolymsci.2018.09.001 10.1002/anie.201803366 10.1021/acsami.7b04832 10.1021/acsami.0c06067 10.1021/acsami.9b05652 10.1038/s41467-019-13238-7 10.1002/adfm.201907986 10.1002/adhm.201900633 10.1021/acs.chemmater.9b02039 10.1002/adfm.201904507 |
ContentType | Journal Article |
Copyright | 2021 American Chemical
Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.biomac.0c01724 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1526-4602 |
EndPage | 1230 |
ExternalDocumentID | 33586969 10_1021_acs_biomac_0c01724 d214862505 |
Genre | Journal Article |
GroupedDBID | - 02 23N 4.4 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ F5P GNL IH9 JG JG~ P2P RNS ROL TN5 UI2 VF5 VG9 W1F X XKZ --- -~X 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK ZCA ~02 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a375t-ccf0c72e0000e98810416e3a6dff907f33c81b5af12126d003e52562c24818d23 |
IEDL.DBID | ACS |
ISSN | 1525-7797 1526-4602 |
IngestDate | Fri Jul 11 04:28:20 EDT 2025 Thu Jul 10 23:29:43 EDT 2025 Thu Jan 02 22:57:26 EST 2025 Tue Jul 01 04:08:11 EDT 2025 Thu Apr 24 23:02:13 EDT 2025 Thu Mar 11 09:54:40 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a375t-ccf0c72e0000e98810416e3a6dff907f33c81b5af12126d003e52562c24818d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6633-9264 0000-0003-2152-6952 0000-0002-5062-0449 |
PMID | 33586969 |
PQID | 2489601458 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2524289972 proquest_miscellaneous_2489601458 pubmed_primary_33586969 crossref_citationtrail_10_1021_acs_biomac_0c01724 crossref_primary_10_1021_acs_biomac_0c01724 acs_journals_10_1021_acs_biomac_0c01724 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-08 |
PublicationDateYYYYMMDD | 2021-03-08 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biomacromolecules |
PublicationTitleAlternate | Biomacromolecules |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref48/cit48 doi: 10.1016/j.cej.2018.07.187 – ident: ref20/cit20 doi: 10.1021/acsami.9b12504 – ident: ref27/cit27 doi: 10.1002/anie.201708614 – ident: ref4/cit4 doi: 10.1002/anie.201908985 – ident: ref5/cit5 doi: 10.1021/acs.chemmater.9b00259 – ident: ref34/cit34 doi: 10.1021/acsami.5b10811 – ident: ref35/cit35 doi: 10.1002/adma.200901407 – ident: ref28/cit28 doi: 10.1002/adma.201801541 – ident: ref12/cit12 doi: 10.1021/acsami.8b20755 – ident: ref3/cit3 doi: 10.1002/adfm.202005135 – ident: ref41/cit41 doi: 10.1002/adma.201404059 – ident: ref23/cit23 doi: 10.1021/acsapm.9b01200 – ident: ref47/cit47 doi: 10.1021/acsami.9b14040 – ident: ref37/cit37 doi: 10.1093/jxb/err460 – ident: ref29/cit29 doi: 10.1016/j.cej.2020.126431 – ident: ref31/cit31 doi: 10.1002/smll.201903784 – ident: ref42/cit42 doi: 10.1002/adma.201902343 – ident: ref26/cit26 doi: 10.1016/j.cej.2020.126559 – ident: ref38/cit38 doi: 10.1021/acsami.7b12189 – ident: ref49/cit49 doi: 10.1016/j.cej.2019.123912 – ident: ref22/cit22 doi: 10.1126/science.aaf8810 – ident: ref46/cit46 doi: 10.1016/j.cej.2019.121915 – ident: ref16/cit16 doi: 10.1039/C9TA11084D – ident: ref33/cit33 doi: 10.1039/C6TB00302H – ident: ref1/cit1 doi: 10.1021/acsami.9b22707 – ident: ref8/cit8 doi: 10.1039/C9TB02570G – ident: ref13/cit13 doi: 10.1039/D0MH90071K – ident: ref21/cit21 doi: 10.1039/C9TA13196E – ident: ref2/cit2 doi: 10.1002/adma.201902062 – ident: ref43/cit43 doi: 10.1016/j.jcis.2020.08.008 – ident: ref40/cit40 doi: 10.1039/C9MH01688K – ident: ref15/cit15 doi: 10.1016/j.cej.2019.122832 – ident: ref24/cit24 doi: 10.1038/ncomms15911 – ident: ref45/cit45 doi: 10.1021/acsami.0c14959 – ident: ref9/cit9 doi: 10.1021/acsami.8b10280 – ident: ref17/cit17 doi: 10.1021/acsami.9b21659 – ident: ref14/cit14 doi: 10.1016/j.mattod.2020.10.004 – ident: ref39/cit39 doi: 10.1021/bi400683y – ident: ref10/cit10 doi: 10.1021/acssuschemeng.8b00193 – ident: ref7/cit7 doi: 10.1016/j.progpolymsci.2018.09.001 – ident: ref25/cit25 doi: 10.1002/anie.201803366 – ident: ref44/cit44 doi: 10.1021/acsami.7b04832 – ident: ref30/cit30 doi: 10.1021/acsami.0c06067 – ident: ref11/cit11 doi: 10.1021/acsami.9b05652 – ident: ref32/cit32 doi: 10.1038/s41467-019-13238-7 – ident: ref36/cit36 doi: 10.1002/adfm.201907986 – ident: ref18/cit18 doi: 10.1002/adhm.201900633 – ident: ref6/cit6 doi: 10.1021/acs.chemmater.9b02039 – ident: ref19/cit19 doi: 10.1002/adfm.201904507 |
SSID | ssj0009345 |
Score | 2.6386747 |
Snippet | Multifunctional hydrogel with outstanding conductivity and mechanical flexibility has received enormous attention as wearable electronic devices. However,... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1220 |
SubjectTerms | adsorption biocompatibility electronic sensing frost resistance gellan gum humans hydrogels polyacrylamide proline temperature zwitterions |
Title | Zwitterionic Hydrogel with High Transparency, Ultrastretchability, and Remarkable Freezing Resistance for Wearable Strain Sensors |
URI | http://dx.doi.org/10.1021/acs.biomac.0c01724 https://www.ncbi.nlm.nih.gov/pubmed/33586969 https://www.proquest.com/docview/2489601458 https://www.proquest.com/docview/2524289972 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED4BexgvjG0wOmDypEl7GCmNHTv2I6pWVZPgga4a2kvkOA6aKClKUk3wtn_OXZIyTYOKlzxYdqI727nv7PvuAD6lkcqlyERgUm0CtFA60Gg4A5HxyItYR7IhCp-eqfE0-nYhL9bg6IkbfB4eW1f1iYqOrx848liidXjBlY7J1ToZTv6m2BVNSWIq6IOY0cQdRebxd5AxctW_xugJhNlYmtErOF3yddoAk6v-ok777u7_9I3PEmIbtjrIyU7aNfIa1nzxBl4Ol5Xe3sKfn79_EamHjmYdG99m5fzSzxgd0TKKA2FtBnSijbnbIzad1aUljglOeJvlGxttkbFzf23LK-JisVHp_R1aRWyrCKHi0mIIj9kP3FhNh0lTm4JN0Iuel9UOTEdfvw_HQVeaIbAilnXgXD5wMfdk7rzRGp26UHlhVZbn6G7nQjjEw9LmIZpGleGvw-O0KO54hAgh42IXNop54feAGSOlVjZLFUIz67X1-Bg4NzDc-tSGPfiM2ku6rVUlza05DxNqbFWadCrtQbiczcR1Gc5JmNnKMV8exty0-T1W9v64XCQJzhHdrdjCzxdVgnKhLxhGUq_oIxEPaWIq9-Bdu8IevikEKsEo8_7Z0u7DJqf4GoqH0wewUZcLf4gAqU4_NPviHvlXDM4 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-CcRiXMT5XGMNISBwgo7Fj1z5OFVWBbQfaiolL5DgOQispSlKh7cZ_zntO2okJKrjkYPnr-SPv92z_3gN4kSWqkCIXkcm0iVBD6Uij4oxEzhMvBjqRgSh8cqrGs-T9mTzreNzEhcFO1FhTHS7xr7wLxG8ojRjp2ErfkeGS3IRbiEY4WVxHw8mVp10RIhNTXB-EjmbQMWX-XAfpJFf_rpP-AjSDwhndgem6q-GdyfnhsskO3eU1L47_Kcsu7HQAlB21K-Yu3PDlPdgeruK-3Yefn398JYoPHdQ6Nr7Iq8UXP2d0YMvoVQhr_aETicxdvGazeVNZYpzg9Lc-vzHRljn76L_Z6pyYWWxUeX-JOhLTasKruNAYgmX2CbdZyDAJkSrYBG3qRVU_gNno7XQ4jrpADZEVA9lEzhV9N-CelJ83WqOJFysvrMqLAo3vQgiH6FjaIkZFqXL8kXicHcUdTxAv5Fw8hK1yUfo9YMZIqZXNM4VAzXptPX76zvUNtz6zcQ9e4uil3Uar03CHzuOUEtshTbsh7UG8mtTUdf7OSZj5xjKv1mW-t94-NuZ-vlorKc4R3bTY0i-WdYpyoWUYJ1JvyCMRHWniLffgUbvQ1m0KgYNglHn8z9I-g-3x9OQ4PX53-uEJ3Ob08oZeyul92GqqpX-K0KnJDsJW-QU2ZxUv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BkIAXvj8KGxgJiQfIaOLYtR-njqp8TYhSUe0lcmxnmlbSKUmFtjf-8905aREIKsRLHix_-5z7ne3fHcDzPJWF4I5HOlc6Qg2lIoWKM-IuST0fqFQEovDHAzmepu9mYtYdXRAXBjtRY011uMSnXX3qis7DQPya0omVji31LRkv6WW4Qvd2ZHXtDSc_ve3yEJ2YYvsgfNSDji3z5zpIL9n6V730F7AZlM7oJszW3Q1vTU52l02-a89_8-T4H-O5BTc6IMr2Wsm5DZd8eQeuDVfx3-7Cj8Pvx0T1oQNby8Znrloc-Tmjg1tGr0NY6xedyGT27BWbzpvKEPMExaD1_Y2JpnTss_9mqhNiaLFR5f056kpMqwm3osAxBM3sK263kGESIlawCdrWi6q-B9PRmy_DcdQFbIgMH4gmsrbo20HiSQl6rRSaerH03EhXFGiEF5xbRMnCFDEqTOnwh-JxhWRikxRxg0v4fdgqF6V_CExrIZQ0LpcI2IxXxuOnb21fJ8bnJu7BC5y9rNtwdRbu0pM4o8R2SrNuSnsQrxY2s53fcxrMfGOZl-syp63Xj425n63kJcM1ohsXU_rFss5wXGghxqlQG_IIREmK-Ms9eNAK27pNznEStNSP_nm0T-Hqp_1R9uHtwfvHcD2hBzj0YE5tw1ZTLf0OIqgmfxJ2ywUPXhey |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zwitterionic+Hydrogel+with+High+Transparency%2C+Ultrastretchability%2C+and+Remarkable+Freezing+Resistance+for+Wearable+Strain+Sensors&rft.jtitle=Biomacromolecules&rft.au=Jiao%2C+Qin&rft.au=Cao%2C+Lilong&rft.au=Zhao%2C+Zhijie&rft.au=Zhang%2C+Hong&rft.date=2021-03-08&rft.issn=1526-4602&rft.eissn=1526-4602&rft.volume=22&rft.issue=3&rft.spage=1220&rft_id=info:doi/10.1021%2Facs.biomac.0c01724&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon |