Dynamic-Covalent Hydrogel with NIR-Triggered Drug Delivery for Localized Chemo-Photothermal Combination Therapy

Near-infrared (NIR) light-responsive, injectable hydrogels are among the most promising drug delivery systems for localized anticancer therapy owing to its minimally invasive administration and remote-controlled manner. However, most currently reported NIR-responsive hydrogels were usually generated...

Full description

Saved in:
Bibliographic Details
Published inBiomacromolecules Vol. 21; no. 2; pp. 556 - 565
Main Authors Sun, Pengfei, Huang, Ting, Wang, Xiaoxiao, Wang, Gaina, Liu, Zhijia, Chen, Guosong, Fan, Quli
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Near-infrared (NIR) light-responsive, injectable hydrogels are among the most promising drug delivery systems for localized anticancer therapy owing to its minimally invasive administration and remote-controlled manner. However, most currently reported NIR-responsive hydrogels were usually generated through physical mixing of thermosensitive polymers and photothermal conversion agents. In this study, a novel type of dynamic-covalent hydrogel (GelPV-DOX-DBNP) with NIR light-triggered drug release behavior was rationally designed for chemo-photothermal combination treatment of tumors. Concretely, this NIR-responsive hydrogel was formed by specific benzoxaborole-carbohydrate interactions between benzoxaborole (BOB)-modified hyaluronic acid (BOB-HA) and fructose-based glycopolymer (PolyFru), where photosensitizer perylene diimide zwitterionic polymer (PDS), reductant ascorbic acid (Vc), anticancer drug doxorubicin (DOX) as well as photothermal nanoparticles (DB-NPs) were encapsulated, simultaneously. Upon 660 nm light irradiation, both PDS and Vc within the designed hydrogel can convert oxygen into hydrogen peroxide, which could make hydrogel be degraded through the breakage of dynamic covalent bonds based on benzoxaborole-carbohydrate interactions, leading to NIR light-activatable release of DOX and DB-NPs from GelPV-DOX-DBNP. Furthermore, the released DB-NPs can convert 915 nm light irradiation into heat, enabling the application of GelPV-DOX-DBNP as a NIR-responsive drug delivery platform for both chemotherapy and photothermal therapy (PTT). In vivo results prove that GelPV-DOX-DBNP exhibited a markedly enhanced chemo-photothermal synergistic therapy for 4T1 tumor model mice, compared to chemotherapy alone or PTT. This work presents a new strategy to construct NIR light-responsive hydrogel as one alternative drug delivery system for anticancer applications.
AbstractList Near-infrared (NIR) light-responsive, injectable hydrogels are among the most promising drug delivery systems for localized anticancer therapy owing to its minimally invasive administration and remote-controlled manner. However, most currently reported NIR-responsive hydrogels were usually generated through physical mixing of thermosensitive polymers and photothermal conversion agents. In this study, a novel type of dynamic-covalent hydrogel (GelPV-DOX-DBNP) with NIR light-triggered drug release behavior was rationally designed for chemo-photothermal combination treatment of tumors. Concretely, this NIR-responsive hydrogel was formed by specific benzoxaborole-carbohydrate interactions between benzoxaborole (BOB)-modified hyaluronic acid (BOB-HA) and fructose-based glycopolymer (PolyFru), where photosensitizer perylene diimide zwitterionic polymer (PDS), reductant ascorbic acid (Vc), anticancer drug doxorubicin (DOX) as well as photothermal nanoparticles (DB-NPs) were encapsulated, simultaneously. Upon 660 nm light irradiation, both PDS and Vc within the designed hydrogel can convert oxygen into hydrogen peroxide, which could make hydrogel be degraded through the breakage of dynamic covalent bonds based on benzoxaborole-carbohydrate interactions, leading to NIR light-activatable release of DOX and DB-NPs from GelPV-DOX-DBNP. Furthermore, the released DB-NPs can convert 915 nm light irradiation into heat, enabling the application of GelPV-DOX-DBNP as a NIR-responsive drug delivery platform for both chemotherapy and photothermal therapy (PTT). In vivo results prove that GelPV-DOX-DBNP exhibited a markedly enhanced chemo-photothermal synergistic therapy for 4T1 tumor model mice, compared to chemotherapy alone or PTT. This work presents a new strategy to construct NIR light-responsive hydrogel as one alternative drug delivery system for anticancer applications.
Near-infrared (NIR) light-responsive, injectable hydrogels are among the most promising drug delivery systems for localized anticancer therapy owing to its minimally invasive administration and remote-controlled manner. However, most currently reported NIR-responsive hydrogels were usually generated through physical mixing of thermosensitive polymers and photothermal conversion agents. In this study, a novel type of dynamic-covalent hydrogel (GelPV-DOX-DBNP) with NIR light-triggered drug release behavior was rationally designed for chemo-photothermal combination treatment of tumors. Concretely, this NIR-responsive hydrogel was formed by specific benzoxaborole-carbohydrate interactions between benzoxaborole (BOB)-modified hyaluronic acid (BOB-HA) and fructose-based glycopolymer (PolyFru), where photosensitizer perylene diimide zwitterionic polymer (PDS), reductant ascorbic acid (Vc), anticancer drug doxorubicin (DOX) as well as photothermal nanoparticles (DB-NPs) were encapsulated, simultaneously. Upon 660 nm light irradiation, both PDS and Vc within the designed hydrogel can convert oxygen into hydrogen peroxide, which could make hydrogel be degraded through the breakage of dynamic covalent bonds based on benzoxaborole-carbohydrate interactions, leading to NIR light-activatable release of DOX and DB-NPs from GelPV-DOX-DBNP. Furthermore, the released DB-NPs can convert 915 nm light irradiation into heat, enabling the application of GelPV-DOX-DBNP as a NIR-responsive drug delivery platform for both chemotherapy and photothermal therapy (PTT). In vivo results prove that GelPV-DOX-DBNP exhibited a markedly enhanced chemo-photothermal synergistic therapy for 4T1 tumor model mice, compared to chemotherapy alone or PTT. This work presents a new strategy to construct NIR light-responsive hydrogel as one alternative drug delivery system for anticancer applications.Near-infrared (NIR) light-responsive, injectable hydrogels are among the most promising drug delivery systems for localized anticancer therapy owing to its minimally invasive administration and remote-controlled manner. However, most currently reported NIR-responsive hydrogels were usually generated through physical mixing of thermosensitive polymers and photothermal conversion agents. In this study, a novel type of dynamic-covalent hydrogel (GelPV-DOX-DBNP) with NIR light-triggered drug release behavior was rationally designed for chemo-photothermal combination treatment of tumors. Concretely, this NIR-responsive hydrogel was formed by specific benzoxaborole-carbohydrate interactions between benzoxaborole (BOB)-modified hyaluronic acid (BOB-HA) and fructose-based glycopolymer (PolyFru), where photosensitizer perylene diimide zwitterionic polymer (PDS), reductant ascorbic acid (Vc), anticancer drug doxorubicin (DOX) as well as photothermal nanoparticles (DB-NPs) were encapsulated, simultaneously. Upon 660 nm light irradiation, both PDS and Vc within the designed hydrogel can convert oxygen into hydrogen peroxide, which could make hydrogel be degraded through the breakage of dynamic covalent bonds based on benzoxaborole-carbohydrate interactions, leading to NIR light-activatable release of DOX and DB-NPs from GelPV-DOX-DBNP. Furthermore, the released DB-NPs can convert 915 nm light irradiation into heat, enabling the application of GelPV-DOX-DBNP as a NIR-responsive drug delivery platform for both chemotherapy and photothermal therapy (PTT). In vivo results prove that GelPV-DOX-DBNP exhibited a markedly enhanced chemo-photothermal synergistic therapy for 4T1 tumor model mice, compared to chemotherapy alone or PTT. This work presents a new strategy to construct NIR light-responsive hydrogel as one alternative drug delivery system for anticancer applications.
Author Liu, Zhijia
Huang, Ting
Wang, Gaina
Sun, Pengfei
Fan, Quli
Wang, Xiaoxiao
Chen, Guosong
AuthorAffiliation Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM)
Nanjing University of Posts & Telecommunications
School of Materials Science and Engineering, GD Research Center for Functional Biomaterials Engineering and Technology
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science
AuthorAffiliation_xml – name: Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM)
– name: School of Materials Science and Engineering, GD Research Center for Functional Biomaterials Engineering and Technology
– name: Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
– name: Nanjing University of Posts & Telecommunications
– name: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science
Author_xml – sequence: 1
  givenname: Pengfei
  orcidid: 0000-0001-7412-5154
  surname: Sun
  fullname: Sun, Pengfei
  organization: Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
– sequence: 2
  givenname: Ting
  surname: Huang
  fullname: Huang, Ting
  organization: Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
– sequence: 3
  givenname: Xiaoxiao
  surname: Wang
  fullname: Wang, Xiaoxiao
  organization: Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
– sequence: 4
  givenname: Gaina
  surname: Wang
  fullname: Wang, Gaina
  organization: Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
– sequence: 5
  givenname: Zhijia
  orcidid: 0000-0002-8438-6961
  surname: Liu
  fullname: Liu, Zhijia
  email: liuzhj9@mail.sysu.edu.cn
  organization: Nanjing University of Posts & Telecommunications
– sequence: 6
  givenname: Guosong
  orcidid: 0000-0001-7089-911X
  surname: Chen
  fullname: Chen, Guosong
  organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science
– sequence: 7
  givenname: Quli
  orcidid: 0000-0002-9387-0165
  surname: Fan
  fullname: Fan, Quli
  email: iamqlfan@njupt.edu.cn
  organization: Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31804804$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu2zAQRYkgRV7tD3RRaNmNXD5EUVoWcvMAjLYo3DUxooc2A0l0SSmF8vVhYmfTRVBggBnM3DOLey_J6eAHJOQjowtGOfsCJi5a53swi7qljNf0hFwwycu8KCk_fZllrlStzslljPeU0loU8oycC1bRItUF8ct5gN6ZvPEP0OEwZrfzJvgtdtlfN-6y73e_8nVw2y0G3GTLMG2zJXbuAcOcWR-ylTfQucd0a3bY-_znzo9-3GHoocsa37dugNH5IVunHezn9-SdhS7ih2O_Ir-vv62b23z14-au-brKQSg55oahFZWhFEBiIYxqxUayAqrUwJZAK4vSghCVRGEEY1YCU9JaaRnIthRX5PPh7z74PxPGUfcuGuw6GNBPUXNRVUoyVv-PlHPFaamqJP10lE5tjxu9D66HMOtXP5OgOghM8DEGtNq48cWAMYDrNKP6OTqdotOH6PQxuoTyf9DX729CiwP0fLv3UxiSqW8BT4s0sDU
CitedBy_id crossref_primary_10_1002_app_56110
crossref_primary_10_1039_D1TB01752G
crossref_primary_10_3390_polym13193263
crossref_primary_10_1016_j_molstruc_2021_132057
crossref_primary_10_1039_D2BM00397J
crossref_primary_10_1016_j_mtsust_2023_100323
crossref_primary_10_1021_acsbiomaterials_4c00314
crossref_primary_10_1016_j_ijpharm_2020_119435
crossref_primary_10_3390_gels8090577
crossref_primary_10_1007_s13206_024_00180_0
crossref_primary_10_1557_s43578_023_01233_0
crossref_primary_10_1002_adhm_202302394
crossref_primary_10_1021_acsnano_2c12448
crossref_primary_10_1021_acsbiomaterials_0c00585
crossref_primary_10_1021_acsmaterialslett_1c00558
crossref_primary_10_1016_j_msec_2022_112641
crossref_primary_10_1007_s10404_024_02726_y
crossref_primary_10_1039_D4PY01042F
crossref_primary_10_3390_gels8110741
crossref_primary_10_1016_j_biomaterials_2021_121319
crossref_primary_10_3390_pharmaceutics15030913
crossref_primary_10_1039_D2TB00923D
crossref_primary_10_1016_j_jddst_2025_106682
crossref_primary_10_1002_macp_202300338
crossref_primary_10_1039_D3MA00129F
crossref_primary_10_1021_acsami_0c18841
crossref_primary_10_1002_adtp_202300128
crossref_primary_10_1360_SSC_2023_0154
crossref_primary_10_1016_j_nantod_2022_101738
crossref_primary_10_1039_D3PY00117B
crossref_primary_10_1002_adtp_202000117
crossref_primary_10_1186_s40001_025_02310_2
crossref_primary_10_1039_D1CC02246F
crossref_primary_10_1002_adhm_202001341
crossref_primary_10_1016_j_matdes_2022_111086
crossref_primary_10_1016_j_ijbiomac_2020_11_068
crossref_primary_10_1039_D4MA00122B
crossref_primary_10_1016_j_nano_2022_102618
crossref_primary_10_1016_j_jcis_2022_03_040
crossref_primary_10_1016_j_eurpolymj_2020_110094
crossref_primary_10_1039_D0DT03031G
crossref_primary_10_3390_polym16050584
crossref_primary_10_1186_s12951_024_02891_w
crossref_primary_10_1007_s40005_024_00678_7
crossref_primary_10_1016_j_est_2023_106618
crossref_primary_10_1016_j_jddst_2024_106394
crossref_primary_10_1021_acsbiomaterials_2c00873
crossref_primary_10_1021_acs_biomac_1c01359
crossref_primary_10_1186_s11671_022_03668_6
crossref_primary_10_1016_j_bej_2022_108529
crossref_primary_10_1002_adma_202312530
crossref_primary_10_1007_s10853_022_06907_4
crossref_primary_10_1021_acsami_3c11288
crossref_primary_10_1016_j_actbio_2024_04_011
crossref_primary_10_1016_j_eurpolymj_2020_110147
crossref_primary_10_1021_acsabm_0c01576
crossref_primary_10_1039_D0SC01721C
crossref_primary_10_1016_j_msec_2021_112623
crossref_primary_10_1002_macp_202400461
crossref_primary_10_1021_acsami_0c06360
crossref_primary_10_1016_j_molliq_2024_124239
crossref_primary_10_3390_gels9010024
crossref_primary_10_1002_adhm_202404842
crossref_primary_10_3390_foods13060856
crossref_primary_10_1021_acs_biomac_3c00021
crossref_primary_10_1002_adfm_202003196
crossref_primary_10_3389_fbioe_2022_1075670
crossref_primary_10_1016_j_cej_2022_134569
crossref_primary_10_1007_s00289_024_05618_x
crossref_primary_10_1039_D3BM00845B
crossref_primary_10_1016_j_colsurfb_2021_112025
crossref_primary_10_1039_D4BM01288G
crossref_primary_10_1002_adhm_202201158
crossref_primary_10_1021_acsami_3c17017
crossref_primary_10_1016_j_jddst_2023_104447
Cites_doi 10.1039/c3nr00627a
10.1021/acs.biomac.7b01029
10.1021/acsnano.7b08499
10.1002/adfm.201705137
10.1002/adfm.201704107
10.1021/mz3004192
10.1002/mabi.201600299
10.1002/adhm.201600723
10.1021/jp506478p
10.11777/j.issn1000-3304.2017.16311
10.1021/mz400076p
10.1038/natrevmats.2016.71
10.1039/C4CC04735D
10.1039/C8TB00845K
10.1021/acsnano.6b05318
10.1021/acs.biomac.6b00754
10.1021/acs.macromol.8b01014
10.1021/acsnano.8b02235
10.1021/acs.biomac.7b01702
10.1016/j.biomaterials.2018.02.023
10.1016/j.biomaterials.2016.10.044
10.1021/acsbiomaterials.8b01147
10.1016/j.carbpol.2015.06.013
10.1021/acsami.7b02307
10.1021/acsnano.8b04066
10.1021/acs.biomac.7b01679
10.1021/acs.macromol.6b01581
10.1002/adma.201605357
10.1002/adma.201706665
10.1021/bm4005639
10.1002/anie.201503640
10.1021/acs.nanolett.7b04759
10.1021/acs.chemmater.7b02313
10.1002/adfm.201707371
10.1021/acsnano.8b04544
10.1021/mp500468d
10.1021/acs.biomac.8b00293
10.1073/pnas.1714421115
10.1021/ja211728x
10.1038/s41467-018-06630-2
10.1021/acsami.7b19258
10.1021/acsami.6b08292
10.1002/adma.201705564
10.1021/ja507626y
10.1002/adma.201502669
10.1007/s11426-017-9130-5
10.1002/adfm.201605795
10.1002/adfm.201801000
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acs.biomac.9b01290
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1526-4602
EndPage 565
ExternalDocumentID 31804804
10_1021_acs_biomac_9b01290
b561429706
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
02
23N
53G
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
RSW
TN5
UI2
VF5
VG9
W1F
X
XKZ
---
-~X
4.4
5VS
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a375t-c1ef38c00aa5e43c7b3d514a83d5af6a08fe5fa3385e3c311f5a175ff5f1a5b63
IEDL.DBID ACS
ISSN 1525-7797
1526-4602
IngestDate Fri Jul 11 10:32:33 EDT 2025
Fri Jul 11 04:31:54 EDT 2025
Thu Jan 02 22:56:33 EST 2025
Thu Apr 24 23:05:41 EDT 2025
Tue Jul 01 04:08:01 EDT 2025
Thu Aug 27 22:10:36 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a375t-c1ef38c00aa5e43c7b3d514a83d5af6a08fe5fa3385e3c311f5a175ff5f1a5b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8438-6961
0000-0001-7089-911X
0000-0001-7412-5154
0000-0002-9387-0165
PMID 31804804
PQID 2322720678
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2388751196
proquest_miscellaneous_2322720678
pubmed_primary_31804804
crossref_citationtrail_10_1021_acs_biomac_9b01290
crossref_primary_10_1021_acs_biomac_9b01290
acs_journals_10_1021_acs_biomac_9b01290
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-10
PublicationDateYYYYMMDD 2020-02-10
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biomacromolecules
PublicationTitleAlternate Biomacromolecules
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref11/cit11
  doi: 10.1039/c3nr00627a
– ident: ref36/cit36
  doi: 10.1021/acs.biomac.7b01029
– ident: ref2/cit2
  doi: 10.1021/acsnano.7b08499
– ident: ref21/cit21
  doi: 10.1002/adfm.201705137
– ident: ref37/cit37
  doi: 10.1002/adfm.201704107
– ident: ref38/cit38
  doi: 10.1021/mz3004192
– ident: ref20/cit20
  doi: 10.1002/mabi.201600299
– ident: ref25/cit25
  doi: 10.1002/adhm.201600723
– ident: ref43/cit43
  doi: 10.1021/jp506478p
– ident: ref18/cit18
  doi: 10.11777/j.issn1000-3304.2017.16311
– ident: ref33/cit33
  doi: 10.1021/mz400076p
– ident: ref15/cit15
  doi: 10.1038/natrevmats.2016.71
– ident: ref41/cit41
  doi: 10.1039/C4CC04735D
– ident: ref47/cit47
  doi: 10.1039/C8TB00845K
– ident: ref16/cit16
  doi: 10.1021/acsnano.6b05318
– ident: ref48/cit48
  doi: 10.1021/acs.biomac.6b00754
– ident: ref22/cit22
  doi: 10.1021/acs.macromol.8b01014
– ident: ref4/cit4
  doi: 10.1021/acsnano.8b02235
– ident: ref9/cit9
  doi: 10.1021/acs.biomac.7b01702
– ident: ref13/cit13
  doi: 10.1016/j.biomaterials.2018.02.023
– ident: ref26/cit26
  doi: 10.1016/j.biomaterials.2016.10.044
– ident: ref32/cit32
  doi: 10.1021/acsbiomaterials.8b01147
– ident: ref17/cit17
  doi: 10.1016/j.carbpol.2015.06.013
– ident: ref30/cit30
  doi: 10.1021/acsami.7b02307
– ident: ref44/cit44
  doi: 10.1021/acsnano.8b04066
– ident: ref42/cit42
  doi: 10.1021/acs.biomac.7b01679
– ident: ref46/cit46
  doi: 10.1021/acs.macromol.6b01581
– ident: ref45/cit45
  doi: 10.1002/adma.201605357
– ident: ref1/cit1
  doi: 10.1002/adma.201706665
– ident: ref31/cit31
  doi: 10.1021/bm4005639
– ident: ref6/cit6
  doi: 10.1002/anie.201503640
– ident: ref12/cit12
  doi: 10.1021/acs.nanolett.7b04759
– ident: ref8/cit8
  doi: 10.1021/acs.chemmater.7b02313
– ident: ref23/cit23
  doi: 10.1002/adfm.201707371
– ident: ref19/cit19
  doi: 10.1021/acsnano.8b04544
– ident: ref10/cit10
  doi: 10.1021/mp500468d
– ident: ref34/cit34
  doi: 10.1021/acs.biomac.8b00293
– ident: ref35/cit35
  doi: 10.1073/pnas.1714421115
– ident: ref39/cit39
  doi: 10.1021/ja211728x
– ident: ref3/cit3
  doi: 10.1038/s41467-018-06630-2
– ident: ref14/cit14
  doi: 10.1021/acsami.7b19258
– ident: ref27/cit27
  doi: 10.1021/acsami.6b08292
– ident: ref29/cit29
  doi: 10.1002/adma.201705564
– ident: ref28/cit28
  doi: 10.1021/ja507626y
– ident: ref7/cit7
  doi: 10.1002/adma.201502669
– ident: ref40/cit40
  doi: 10.1007/s11426-017-9130-5
– ident: ref5/cit5
  doi: 10.1002/adfm.201605795
– ident: ref24/cit24
  doi: 10.1002/adfm.201801000
SSID ssj0009345
Score 2.5657315
Snippet Near-infrared (NIR) light-responsive, injectable hydrogels are among the most promising drug delivery systems for localized anticancer therapy owing to its...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 556
SubjectTerms animal disease models
Animals
Antibiotics, Antineoplastic - administration & dosage
Antibiotics, Antineoplastic - pharmacokinetics
ascorbic acid
Ascorbic Acid - administration & dosage
Ascorbic Acid - chemistry
cancer therapy
chemical bonding
doxorubicin
Doxorubicin - administration & dosage
Doxorubicin - pharmacokinetics
drug delivery systems
Drug Delivery Systems - methods
Drug Liberation
drug therapy
encapsulation
heat
Humans
hyaluronic acid
Hyaluronic Acid - chemistry
hydrogels
Hydrogels - administration & dosage
Hydrogels - chemistry
hydrogen peroxide
Imides - chemistry
irradiation
Light
mice
Mice, Inbred BALB C
nanoparticles
Nanoparticles - administration & dosage
Nanoparticles - chemistry
near-infrared spectroscopy
neoplasms
oxygen
Perylene - analogs & derivatives
Perylene - chemistry
photosensitizing agents
Photosensitizing Agents - chemistry
Photothermal Therapy - methods
photothermotherapy
polymers
Polymers - chemistry
Rats, Sprague-Dawley
thermosensitivity
Tissue Distribution
Xenograft Model Antitumor Assays
zwitterions
Title Dynamic-Covalent Hydrogel with NIR-Triggered Drug Delivery for Localized Chemo-Photothermal Combination Therapy
URI http://dx.doi.org/10.1021/acs.biomac.9b01290
https://www.ncbi.nlm.nih.gov/pubmed/31804804
https://www.proquest.com/docview/2322720678
https://www.proquest.com/docview/2388751196
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8BexgvG_vuYJMnTdoDuMRxnKaPqB0qaKBpKxJv0dmxu2ldM7XpA_z13CUpE9qoeIqU2I58_rjf-Xz3A_jYxyIkiIVMLJKBontWYpHEEtGqzCaqyGrqhLPzdHSRnF6ayw04uMeDH6tDdIsuh6JT831bH5tswqM4pVXMQGjw_W-KXV1TEjOhD2HGfq8Nkfl_G6yM3OKuMroHYdaa5vgpnK3idZoLJr-6y8p23fW_6Rsf1IkdeNJCTnHUzJFnsOFnz-HxYMX09gLKYUNLLwclzTvSQmJ0VczLiZ8KPqYV5yff5Jis-AnzeorhfDkRQz_lCx1XgjCv-ML68Oc1feNGS_n1R1nVgV2_6be04ZDxXY-_GDcpDF7CxfHn8WAkWyIGibpnKumUDzpzUYRofKJdz-qCgBZm9MCQYpQFbwKStWu8dlqpYJBgSQgmKDQ21a9ga1bO_BsQUSAbJVgdeWsSgnLWkTjYNam9JtOp34FPJKu8XUiLvPaRxyrnl40A81aAHVCrsctdm8-caTWma-vs39b502TzWFv6w2pK5DQi7EnBmS-Xi5xgKPuvSdGvK0P7N3tp0w68bubT7T9pI-VY_uTtg3u7C9sxW_pMRRPtwVY1X_p3BIcq-75eBTdinQcn
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BeBgvfDPK-DASEg_IW1zHbfo4tUwddBWCTNpbdE7sDlEa1KQP21-_OyftBIIKniI5ib9y9v3Ol7sfwNsBFj5GLGRskQwU3bcSi7grEa1KbKyKJFAnnE5747P447k5b-O4ORaGOlFRTVVw4t9kF1CHXMYR6dTKwIbTk9twh9BIl8X6aPj1JtOuDszEzOtD0HHQbyNl_lwH66S8-lUn_QVoBoVzfB_STVfDfybfD1a1Pcivfsvi-J9jeQD3WgAqjhqJeQi33OIR7A7XvG-PoRw1JPVyWJIUkk4S48tiWc7cXPChrZiefJEp2fQzZvkUo-VqJkZuzr93XApCwGLC2vHbFd3jSkv5-aKsQ5jXD2qWth8yxYM0iLRJaPAEzo4_pMOxbGkZJOq-qWWunNdJHkWIxsU671tdEOzChC7oexgl3hmPZPsap3OtlDdIIMV74xUa29NPYWdRLtwzEJEni8VbHTlrYgJ2NqfpYEeldpoMqUEH3tFcZe2yqrLgMe-qjAubCczaCeyAWn_CLG-zmzPJxnzrO-837_xscntsffrNWjIy-iLsV8GFK1dVRqCUvdmk9rc9Q7s5-2x7HdhrxGrTJm2rHNkfP__n0b6G3XF6OskmJ9NP-3C3y2cATFITvYCderlyLwko1fZVWBjXD0EPiA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BkGAvjK9BYYCRkHhA3uI6btPHqaXqYFQTdFLfonNid2ilmZr0YfvruXPSIhBUiKdI-bAd--z7nc93P4C3Pcx9jJjL2CIZKLprJeZxWyJaldhY5UmgTvg87ozO449TM222LjgWhhpRUkllcOLzrL7KfZNhQB3xfY5Kp5p6Nuyg3IY77Ldj0T7uf_2ZbVcHdmLm9iH42Os20TJ_LoP1Ulb-qpf-AjaD0hnuwXTT3HDW5PJwVdnD7Oa3TI7_8T8P4H4DRMVxLTkP4ZZbPIJ7_TX_22MoBjVZvewXJI2km8ToOl8WMzcXvHkrxidf5IRs-xmzfYrBcjUTAzfnYx7XgpCwOGUt-e2GnnGhhTy7KKoQ7vWdqqVliEzyIBViUic2eALnww-T_kg29AwSdddUMlPO6ySLIkTjYp11rc4JfmFCF_QdjBLvjEeygY3TmVbKGySw4r3xCo3t6H3YWRQL9wxE5Mly8VZHzpqYAJ7NqDvYYamdJoOq14J31FdpM73KNHjO2yrlm3UHpk0HtkCthzHNmiznTLYx3_rN-803V3WOj61vv1lLR0ojwv4VXLhiVaYETtmrTep_2zu0qrPvttOCp7Vobeqk5ZUj_OPn__y3r-Hu2WCYnp6MP72A3TZvBTBXTXQAO9Vy5V4SXqrsqzA3fgDGVRIL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic-Covalent+Hydrogel+with+NIR-Triggered+Drug+Delivery+for+Localized+Chemo-Photothermal+Combination+Therapy&rft.jtitle=Biomacromolecules&rft.au=Sun%2C+Pengfei&rft.au=Huang%2C+Ting&rft.au=Wang%2C+Xiaoxiao&rft.au=Wang%2C+Gaina&rft.date=2020-02-10&rft.pub=American+Chemical+Society&rft.issn=1525-7797&rft.eissn=1526-4602&rft.volume=21&rft.issue=2&rft.spage=556&rft.epage=565&rft_id=info:doi/10.1021%2Facs.biomac.9b01290&rft.externalDocID=b561429706
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon