Dynamic-Covalent Hydrogel with NIR-Triggered Drug Delivery for Localized Chemo-Photothermal Combination Therapy
Near-infrared (NIR) light-responsive, injectable hydrogels are among the most promising drug delivery systems for localized anticancer therapy owing to its minimally invasive administration and remote-controlled manner. However, most currently reported NIR-responsive hydrogels were usually generated...
Saved in:
Published in | Biomacromolecules Vol. 21; no. 2; pp. 556 - 565 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Near-infrared (NIR) light-responsive, injectable hydrogels are among the most promising drug delivery systems for localized anticancer therapy owing to its minimally invasive administration and remote-controlled manner. However, most currently reported NIR-responsive hydrogels were usually generated through physical mixing of thermosensitive polymers and photothermal conversion agents. In this study, a novel type of dynamic-covalent hydrogel (GelPV-DOX-DBNP) with NIR light-triggered drug release behavior was rationally designed for chemo-photothermal combination treatment of tumors. Concretely, this NIR-responsive hydrogel was formed by specific benzoxaborole-carbohydrate interactions between benzoxaborole (BOB)-modified hyaluronic acid (BOB-HA) and fructose-based glycopolymer (PolyFru), where photosensitizer perylene diimide zwitterionic polymer (PDS), reductant ascorbic acid (Vc), anticancer drug doxorubicin (DOX) as well as photothermal nanoparticles (DB-NPs) were encapsulated, simultaneously. Upon 660 nm light irradiation, both PDS and Vc within the designed hydrogel can convert oxygen into hydrogen peroxide, which could make hydrogel be degraded through the breakage of dynamic covalent bonds based on benzoxaborole-carbohydrate interactions, leading to NIR light-activatable release of DOX and DB-NPs from GelPV-DOX-DBNP. Furthermore, the released DB-NPs can convert 915 nm light irradiation into heat, enabling the application of GelPV-DOX-DBNP as a NIR-responsive drug delivery platform for both chemotherapy and photothermal therapy (PTT). In vivo results prove that GelPV-DOX-DBNP exhibited a markedly enhanced chemo-photothermal synergistic therapy for 4T1 tumor model mice, compared to chemotherapy alone or PTT. This work presents a new strategy to construct NIR light-responsive hydrogel as one alternative drug delivery system for anticancer applications. |
---|---|
AbstractList | Near-infrared (NIR) light-responsive, injectable hydrogels are among the most promising drug delivery systems for localized anticancer therapy owing to its minimally invasive administration and remote-controlled manner. However, most currently reported NIR-responsive hydrogels were usually generated through physical mixing of thermosensitive polymers and photothermal conversion agents. In this study, a novel type of dynamic-covalent hydrogel (GelPV-DOX-DBNP) with NIR light-triggered drug release behavior was rationally designed for chemo-photothermal combination treatment of tumors. Concretely, this NIR-responsive hydrogel was formed by specific benzoxaborole-carbohydrate interactions between benzoxaborole (BOB)-modified hyaluronic acid (BOB-HA) and fructose-based glycopolymer (PolyFru), where photosensitizer perylene diimide zwitterionic polymer (PDS), reductant ascorbic acid (Vc), anticancer drug doxorubicin (DOX) as well as photothermal nanoparticles (DB-NPs) were encapsulated, simultaneously. Upon 660 nm light irradiation, both PDS and Vc within the designed hydrogel can convert oxygen into hydrogen peroxide, which could make hydrogel be degraded through the breakage of dynamic covalent bonds based on benzoxaborole-carbohydrate interactions, leading to NIR light-activatable release of DOX and DB-NPs from GelPV-DOX-DBNP. Furthermore, the released DB-NPs can convert 915 nm light irradiation into heat, enabling the application of GelPV-DOX-DBNP as a NIR-responsive drug delivery platform for both chemotherapy and photothermal therapy (PTT). In vivo results prove that GelPV-DOX-DBNP exhibited a markedly enhanced chemo-photothermal synergistic therapy for 4T1 tumor model mice, compared to chemotherapy alone or PTT. This work presents a new strategy to construct NIR light-responsive hydrogel as one alternative drug delivery system for anticancer applications. Near-infrared (NIR) light-responsive, injectable hydrogels are among the most promising drug delivery systems for localized anticancer therapy owing to its minimally invasive administration and remote-controlled manner. However, most currently reported NIR-responsive hydrogels were usually generated through physical mixing of thermosensitive polymers and photothermal conversion agents. In this study, a novel type of dynamic-covalent hydrogel (GelPV-DOX-DBNP) with NIR light-triggered drug release behavior was rationally designed for chemo-photothermal combination treatment of tumors. Concretely, this NIR-responsive hydrogel was formed by specific benzoxaborole-carbohydrate interactions between benzoxaborole (BOB)-modified hyaluronic acid (BOB-HA) and fructose-based glycopolymer (PolyFru), where photosensitizer perylene diimide zwitterionic polymer (PDS), reductant ascorbic acid (Vc), anticancer drug doxorubicin (DOX) as well as photothermal nanoparticles (DB-NPs) were encapsulated, simultaneously. Upon 660 nm light irradiation, both PDS and Vc within the designed hydrogel can convert oxygen into hydrogen peroxide, which could make hydrogel be degraded through the breakage of dynamic covalent bonds based on benzoxaborole-carbohydrate interactions, leading to NIR light-activatable release of DOX and DB-NPs from GelPV-DOX-DBNP. Furthermore, the released DB-NPs can convert 915 nm light irradiation into heat, enabling the application of GelPV-DOX-DBNP as a NIR-responsive drug delivery platform for both chemotherapy and photothermal therapy (PTT). In vivo results prove that GelPV-DOX-DBNP exhibited a markedly enhanced chemo-photothermal synergistic therapy for 4T1 tumor model mice, compared to chemotherapy alone or PTT. This work presents a new strategy to construct NIR light-responsive hydrogel as one alternative drug delivery system for anticancer applications.Near-infrared (NIR) light-responsive, injectable hydrogels are among the most promising drug delivery systems for localized anticancer therapy owing to its minimally invasive administration and remote-controlled manner. However, most currently reported NIR-responsive hydrogels were usually generated through physical mixing of thermosensitive polymers and photothermal conversion agents. In this study, a novel type of dynamic-covalent hydrogel (GelPV-DOX-DBNP) with NIR light-triggered drug release behavior was rationally designed for chemo-photothermal combination treatment of tumors. Concretely, this NIR-responsive hydrogel was formed by specific benzoxaborole-carbohydrate interactions between benzoxaborole (BOB)-modified hyaluronic acid (BOB-HA) and fructose-based glycopolymer (PolyFru), where photosensitizer perylene diimide zwitterionic polymer (PDS), reductant ascorbic acid (Vc), anticancer drug doxorubicin (DOX) as well as photothermal nanoparticles (DB-NPs) were encapsulated, simultaneously. Upon 660 nm light irradiation, both PDS and Vc within the designed hydrogel can convert oxygen into hydrogen peroxide, which could make hydrogel be degraded through the breakage of dynamic covalent bonds based on benzoxaborole-carbohydrate interactions, leading to NIR light-activatable release of DOX and DB-NPs from GelPV-DOX-DBNP. Furthermore, the released DB-NPs can convert 915 nm light irradiation into heat, enabling the application of GelPV-DOX-DBNP as a NIR-responsive drug delivery platform for both chemotherapy and photothermal therapy (PTT). In vivo results prove that GelPV-DOX-DBNP exhibited a markedly enhanced chemo-photothermal synergistic therapy for 4T1 tumor model mice, compared to chemotherapy alone or PTT. This work presents a new strategy to construct NIR light-responsive hydrogel as one alternative drug delivery system for anticancer applications. |
Author | Liu, Zhijia Huang, Ting Wang, Gaina Sun, Pengfei Fan, Quli Wang, Xiaoxiao Chen, Guosong |
AuthorAffiliation | Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) Nanjing University of Posts & Telecommunications School of Materials Science and Engineering, GD Research Center for Functional Biomaterials Engineering and Technology Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science |
AuthorAffiliation_xml | – name: Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) – name: School of Materials Science and Engineering, GD Research Center for Functional Biomaterials Engineering and Technology – name: Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) – name: Nanjing University of Posts & Telecommunications – name: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science |
Author_xml | – sequence: 1 givenname: Pengfei orcidid: 0000-0001-7412-5154 surname: Sun fullname: Sun, Pengfei organization: Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) – sequence: 2 givenname: Ting surname: Huang fullname: Huang, Ting organization: Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) – sequence: 3 givenname: Xiaoxiao surname: Wang fullname: Wang, Xiaoxiao organization: Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) – sequence: 4 givenname: Gaina surname: Wang fullname: Wang, Gaina organization: Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) – sequence: 5 givenname: Zhijia orcidid: 0000-0002-8438-6961 surname: Liu fullname: Liu, Zhijia email: liuzhj9@mail.sysu.edu.cn organization: Nanjing University of Posts & Telecommunications – sequence: 6 givenname: Guosong orcidid: 0000-0001-7089-911X surname: Chen fullname: Chen, Guosong organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science – sequence: 7 givenname: Quli orcidid: 0000-0002-9387-0165 surname: Fan fullname: Fan, Quli email: iamqlfan@njupt.edu.cn organization: Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31804804$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctu2zAQRYkgRV7tD3RRaNmNXD5EUVoWcvMAjLYo3DUxooc2A0l0SSmF8vVhYmfTRVBggBnM3DOLey_J6eAHJOQjowtGOfsCJi5a53swi7qljNf0hFwwycu8KCk_fZllrlStzslljPeU0loU8oycC1bRItUF8ct5gN6ZvPEP0OEwZrfzJvgtdtlfN-6y73e_8nVw2y0G3GTLMG2zJXbuAcOcWR-ylTfQucd0a3bY-_znzo9-3GHoocsa37dugNH5IVunHezn9-SdhS7ih2O_Ir-vv62b23z14-au-brKQSg55oahFZWhFEBiIYxqxUayAqrUwJZAK4vSghCVRGEEY1YCU9JaaRnIthRX5PPh7z74PxPGUfcuGuw6GNBPUXNRVUoyVv-PlHPFaamqJP10lE5tjxu9D66HMOtXP5OgOghM8DEGtNq48cWAMYDrNKP6OTqdotOH6PQxuoTyf9DX729CiwP0fLv3UxiSqW8BT4s0sDU |
CitedBy_id | crossref_primary_10_1002_app_56110 crossref_primary_10_1039_D1TB01752G crossref_primary_10_3390_polym13193263 crossref_primary_10_1016_j_molstruc_2021_132057 crossref_primary_10_1039_D2BM00397J crossref_primary_10_1016_j_mtsust_2023_100323 crossref_primary_10_1021_acsbiomaterials_4c00314 crossref_primary_10_1016_j_ijpharm_2020_119435 crossref_primary_10_3390_gels8090577 crossref_primary_10_1007_s13206_024_00180_0 crossref_primary_10_1557_s43578_023_01233_0 crossref_primary_10_1002_adhm_202302394 crossref_primary_10_1021_acsnano_2c12448 crossref_primary_10_1021_acsbiomaterials_0c00585 crossref_primary_10_1021_acsmaterialslett_1c00558 crossref_primary_10_1016_j_msec_2022_112641 crossref_primary_10_1007_s10404_024_02726_y crossref_primary_10_1039_D4PY01042F crossref_primary_10_3390_gels8110741 crossref_primary_10_1016_j_biomaterials_2021_121319 crossref_primary_10_3390_pharmaceutics15030913 crossref_primary_10_1039_D2TB00923D crossref_primary_10_1016_j_jddst_2025_106682 crossref_primary_10_1002_macp_202300338 crossref_primary_10_1039_D3MA00129F crossref_primary_10_1021_acsami_0c18841 crossref_primary_10_1002_adtp_202300128 crossref_primary_10_1360_SSC_2023_0154 crossref_primary_10_1016_j_nantod_2022_101738 crossref_primary_10_1039_D3PY00117B crossref_primary_10_1002_adtp_202000117 crossref_primary_10_1186_s40001_025_02310_2 crossref_primary_10_1039_D1CC02246F crossref_primary_10_1002_adhm_202001341 crossref_primary_10_1016_j_matdes_2022_111086 crossref_primary_10_1016_j_ijbiomac_2020_11_068 crossref_primary_10_1039_D4MA00122B crossref_primary_10_1016_j_nano_2022_102618 crossref_primary_10_1016_j_jcis_2022_03_040 crossref_primary_10_1016_j_eurpolymj_2020_110094 crossref_primary_10_1039_D0DT03031G crossref_primary_10_3390_polym16050584 crossref_primary_10_1186_s12951_024_02891_w crossref_primary_10_1007_s40005_024_00678_7 crossref_primary_10_1016_j_est_2023_106618 crossref_primary_10_1016_j_jddst_2024_106394 crossref_primary_10_1021_acsbiomaterials_2c00873 crossref_primary_10_1021_acs_biomac_1c01359 crossref_primary_10_1186_s11671_022_03668_6 crossref_primary_10_1016_j_bej_2022_108529 crossref_primary_10_1002_adma_202312530 crossref_primary_10_1007_s10853_022_06907_4 crossref_primary_10_1021_acsami_3c11288 crossref_primary_10_1016_j_actbio_2024_04_011 crossref_primary_10_1016_j_eurpolymj_2020_110147 crossref_primary_10_1021_acsabm_0c01576 crossref_primary_10_1039_D0SC01721C crossref_primary_10_1016_j_msec_2021_112623 crossref_primary_10_1002_macp_202400461 crossref_primary_10_1021_acsami_0c06360 crossref_primary_10_1016_j_molliq_2024_124239 crossref_primary_10_3390_gels9010024 crossref_primary_10_1002_adhm_202404842 crossref_primary_10_3390_foods13060856 crossref_primary_10_1021_acs_biomac_3c00021 crossref_primary_10_1002_adfm_202003196 crossref_primary_10_3389_fbioe_2022_1075670 crossref_primary_10_1016_j_cej_2022_134569 crossref_primary_10_1007_s00289_024_05618_x crossref_primary_10_1039_D3BM00845B crossref_primary_10_1016_j_colsurfb_2021_112025 crossref_primary_10_1039_D4BM01288G crossref_primary_10_1002_adhm_202201158 crossref_primary_10_1021_acsami_3c17017 crossref_primary_10_1016_j_jddst_2023_104447 |
Cites_doi | 10.1039/c3nr00627a 10.1021/acs.biomac.7b01029 10.1021/acsnano.7b08499 10.1002/adfm.201705137 10.1002/adfm.201704107 10.1021/mz3004192 10.1002/mabi.201600299 10.1002/adhm.201600723 10.1021/jp506478p 10.11777/j.issn1000-3304.2017.16311 10.1021/mz400076p 10.1038/natrevmats.2016.71 10.1039/C4CC04735D 10.1039/C8TB00845K 10.1021/acsnano.6b05318 10.1021/acs.biomac.6b00754 10.1021/acs.macromol.8b01014 10.1021/acsnano.8b02235 10.1021/acs.biomac.7b01702 10.1016/j.biomaterials.2018.02.023 10.1016/j.biomaterials.2016.10.044 10.1021/acsbiomaterials.8b01147 10.1016/j.carbpol.2015.06.013 10.1021/acsami.7b02307 10.1021/acsnano.8b04066 10.1021/acs.biomac.7b01679 10.1021/acs.macromol.6b01581 10.1002/adma.201605357 10.1002/adma.201706665 10.1021/bm4005639 10.1002/anie.201503640 10.1021/acs.nanolett.7b04759 10.1021/acs.chemmater.7b02313 10.1002/adfm.201707371 10.1021/acsnano.8b04544 10.1021/mp500468d 10.1021/acs.biomac.8b00293 10.1073/pnas.1714421115 10.1021/ja211728x 10.1038/s41467-018-06630-2 10.1021/acsami.7b19258 10.1021/acsami.6b08292 10.1002/adma.201705564 10.1021/ja507626y 10.1002/adma.201502669 10.1007/s11426-017-9130-5 10.1002/adfm.201605795 10.1002/adfm.201801000 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.biomac.9b01290 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1526-4602 |
EndPage | 565 |
ExternalDocumentID | 31804804 10_1021_acs_biomac_9b01290 b561429706 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 02 23N 53G 55A 5GY 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ F5P GNL IH9 JG JG~ P2P RNS ROL RSW TN5 UI2 VF5 VG9 W1F X XKZ --- -~X 4.4 5VS AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK ZCA ~02 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a375t-c1ef38c00aa5e43c7b3d514a83d5af6a08fe5fa3385e3c311f5a175ff5f1a5b63 |
IEDL.DBID | ACS |
ISSN | 1525-7797 1526-4602 |
IngestDate | Fri Jul 11 10:32:33 EDT 2025 Fri Jul 11 04:31:54 EDT 2025 Thu Jan 02 22:56:33 EST 2025 Thu Apr 24 23:05:41 EDT 2025 Tue Jul 01 04:08:01 EDT 2025 Thu Aug 27 22:10:36 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a375t-c1ef38c00aa5e43c7b3d514a83d5af6a08fe5fa3385e3c311f5a175ff5f1a5b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8438-6961 0000-0001-7089-911X 0000-0001-7412-5154 0000-0002-9387-0165 |
PMID | 31804804 |
PQID | 2322720678 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2388751196 proquest_miscellaneous_2322720678 pubmed_primary_31804804 crossref_citationtrail_10_1021_acs_biomac_9b01290 crossref_primary_10_1021_acs_biomac_9b01290 acs_journals_10_1021_acs_biomac_9b01290 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-10 |
PublicationDateYYYYMMDD | 2020-02-10 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biomacromolecules |
PublicationTitleAlternate | Biomacromolecules |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref11/cit11 doi: 10.1039/c3nr00627a – ident: ref36/cit36 doi: 10.1021/acs.biomac.7b01029 – ident: ref2/cit2 doi: 10.1021/acsnano.7b08499 – ident: ref21/cit21 doi: 10.1002/adfm.201705137 – ident: ref37/cit37 doi: 10.1002/adfm.201704107 – ident: ref38/cit38 doi: 10.1021/mz3004192 – ident: ref20/cit20 doi: 10.1002/mabi.201600299 – ident: ref25/cit25 doi: 10.1002/adhm.201600723 – ident: ref43/cit43 doi: 10.1021/jp506478p – ident: ref18/cit18 doi: 10.11777/j.issn1000-3304.2017.16311 – ident: ref33/cit33 doi: 10.1021/mz400076p – ident: ref15/cit15 doi: 10.1038/natrevmats.2016.71 – ident: ref41/cit41 doi: 10.1039/C4CC04735D – ident: ref47/cit47 doi: 10.1039/C8TB00845K – ident: ref16/cit16 doi: 10.1021/acsnano.6b05318 – ident: ref48/cit48 doi: 10.1021/acs.biomac.6b00754 – ident: ref22/cit22 doi: 10.1021/acs.macromol.8b01014 – ident: ref4/cit4 doi: 10.1021/acsnano.8b02235 – ident: ref9/cit9 doi: 10.1021/acs.biomac.7b01702 – ident: ref13/cit13 doi: 10.1016/j.biomaterials.2018.02.023 – ident: ref26/cit26 doi: 10.1016/j.biomaterials.2016.10.044 – ident: ref32/cit32 doi: 10.1021/acsbiomaterials.8b01147 – ident: ref17/cit17 doi: 10.1016/j.carbpol.2015.06.013 – ident: ref30/cit30 doi: 10.1021/acsami.7b02307 – ident: ref44/cit44 doi: 10.1021/acsnano.8b04066 – ident: ref42/cit42 doi: 10.1021/acs.biomac.7b01679 – ident: ref46/cit46 doi: 10.1021/acs.macromol.6b01581 – ident: ref45/cit45 doi: 10.1002/adma.201605357 – ident: ref1/cit1 doi: 10.1002/adma.201706665 – ident: ref31/cit31 doi: 10.1021/bm4005639 – ident: ref6/cit6 doi: 10.1002/anie.201503640 – ident: ref12/cit12 doi: 10.1021/acs.nanolett.7b04759 – ident: ref8/cit8 doi: 10.1021/acs.chemmater.7b02313 – ident: ref23/cit23 doi: 10.1002/adfm.201707371 – ident: ref19/cit19 doi: 10.1021/acsnano.8b04544 – ident: ref10/cit10 doi: 10.1021/mp500468d – ident: ref34/cit34 doi: 10.1021/acs.biomac.8b00293 – ident: ref35/cit35 doi: 10.1073/pnas.1714421115 – ident: ref39/cit39 doi: 10.1021/ja211728x – ident: ref3/cit3 doi: 10.1038/s41467-018-06630-2 – ident: ref14/cit14 doi: 10.1021/acsami.7b19258 – ident: ref27/cit27 doi: 10.1021/acsami.6b08292 – ident: ref29/cit29 doi: 10.1002/adma.201705564 – ident: ref28/cit28 doi: 10.1021/ja507626y – ident: ref7/cit7 doi: 10.1002/adma.201502669 – ident: ref40/cit40 doi: 10.1007/s11426-017-9130-5 – ident: ref5/cit5 doi: 10.1002/adfm.201605795 – ident: ref24/cit24 doi: 10.1002/adfm.201801000 |
SSID | ssj0009345 |
Score | 2.5657315 |
Snippet | Near-infrared (NIR) light-responsive, injectable hydrogels are among the most promising drug delivery systems for localized anticancer therapy owing to its... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 556 |
SubjectTerms | animal disease models Animals Antibiotics, Antineoplastic - administration & dosage Antibiotics, Antineoplastic - pharmacokinetics ascorbic acid Ascorbic Acid - administration & dosage Ascorbic Acid - chemistry cancer therapy chemical bonding doxorubicin Doxorubicin - administration & dosage Doxorubicin - pharmacokinetics drug delivery systems Drug Delivery Systems - methods Drug Liberation drug therapy encapsulation heat Humans hyaluronic acid Hyaluronic Acid - chemistry hydrogels Hydrogels - administration & dosage Hydrogels - chemistry hydrogen peroxide Imides - chemistry irradiation Light mice Mice, Inbred BALB C nanoparticles Nanoparticles - administration & dosage Nanoparticles - chemistry near-infrared spectroscopy neoplasms oxygen Perylene - analogs & derivatives Perylene - chemistry photosensitizing agents Photosensitizing Agents - chemistry Photothermal Therapy - methods photothermotherapy polymers Polymers - chemistry Rats, Sprague-Dawley thermosensitivity Tissue Distribution Xenograft Model Antitumor Assays zwitterions |
Title | Dynamic-Covalent Hydrogel with NIR-Triggered Drug Delivery for Localized Chemo-Photothermal Combination Therapy |
URI | http://dx.doi.org/10.1021/acs.biomac.9b01290 https://www.ncbi.nlm.nih.gov/pubmed/31804804 https://www.proquest.com/docview/2322720678 https://www.proquest.com/docview/2388751196 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8BexgvG_vuYJMnTdoDuMRxnKaPqB0qaKBpKxJv0dmxu2ldM7XpA_z13CUpE9qoeIqU2I58_rjf-Xz3A_jYxyIkiIVMLJKBontWYpHEEtGqzCaqyGrqhLPzdHSRnF6ayw04uMeDH6tDdIsuh6JT831bH5tswqM4pVXMQGjw_W-KXV1TEjOhD2HGfq8Nkfl_G6yM3OKuMroHYdaa5vgpnK3idZoLJr-6y8p23fW_6Rsf1IkdeNJCTnHUzJFnsOFnz-HxYMX09gLKYUNLLwclzTvSQmJ0VczLiZ8KPqYV5yff5Jis-AnzeorhfDkRQz_lCx1XgjCv-ML68Oc1feNGS_n1R1nVgV2_6be04ZDxXY-_GDcpDF7CxfHn8WAkWyIGibpnKumUDzpzUYRofKJdz-qCgBZm9MCQYpQFbwKStWu8dlqpYJBgSQgmKDQ21a9ga1bO_BsQUSAbJVgdeWsSgnLWkTjYNam9JtOp34FPJKu8XUiLvPaRxyrnl40A81aAHVCrsctdm8-caTWma-vs39b502TzWFv6w2pK5DQi7EnBmS-Xi5xgKPuvSdGvK0P7N3tp0w68bubT7T9pI-VY_uTtg3u7C9sxW_pMRRPtwVY1X_p3BIcq-75eBTdinQcn |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BeBgvfDPK-DASEg_IW1zHbfo4tUwddBWCTNpbdE7sDlEa1KQP21-_OyftBIIKniI5ib9y9v3Ol7sfwNsBFj5GLGRskQwU3bcSi7grEa1KbKyKJFAnnE5747P447k5b-O4ORaGOlFRTVVw4t9kF1CHXMYR6dTKwIbTk9twh9BIl8X6aPj1JtOuDszEzOtD0HHQbyNl_lwH66S8-lUn_QVoBoVzfB_STVfDfybfD1a1Pcivfsvi-J9jeQD3WgAqjhqJeQi33OIR7A7XvG-PoRw1JPVyWJIUkk4S48tiWc7cXPChrZiefJEp2fQzZvkUo-VqJkZuzr93XApCwGLC2vHbFd3jSkv5-aKsQ5jXD2qWth8yxYM0iLRJaPAEzo4_pMOxbGkZJOq-qWWunNdJHkWIxsU671tdEOzChC7oexgl3hmPZPsap3OtlDdIIMV74xUa29NPYWdRLtwzEJEni8VbHTlrYgJ2NqfpYEeldpoMqUEH3tFcZe2yqrLgMe-qjAubCczaCeyAWn_CLG-zmzPJxnzrO-837_xscntsffrNWjIy-iLsV8GFK1dVRqCUvdmk9rc9Q7s5-2x7HdhrxGrTJm2rHNkfP__n0b6G3XF6OskmJ9NP-3C3y2cATFITvYCderlyLwko1fZVWBjXD0EPiA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BkGAvjK9BYYCRkHhA3uI6btPHqaXqYFQTdFLfonNid2ilmZr0YfvruXPSIhBUiKdI-bAd--z7nc93P4C3Pcx9jJjL2CIZKLprJeZxWyJaldhY5UmgTvg87ozO449TM222LjgWhhpRUkllcOLzrL7KfZNhQB3xfY5Kp5p6Nuyg3IY77Ldj0T7uf_2ZbVcHdmLm9iH42Os20TJ_LoP1Ulb-qpf-AjaD0hnuwXTT3HDW5PJwVdnD7Oa3TI7_8T8P4H4DRMVxLTkP4ZZbPIJ7_TX_22MoBjVZvewXJI2km8ToOl8WMzcXvHkrxidf5IRs-xmzfYrBcjUTAzfnYx7XgpCwOGUt-e2GnnGhhTy7KKoQ7vWdqqVliEzyIBViUic2eALnww-T_kg29AwSdddUMlPO6ySLIkTjYp11rc4JfmFCF_QdjBLvjEeygY3TmVbKGySw4r3xCo3t6H3YWRQL9wxE5Mly8VZHzpqYAJ7NqDvYYamdJoOq14J31FdpM73KNHjO2yrlm3UHpk0HtkCthzHNmiznTLYx3_rN-803V3WOj61vv1lLR0ojwv4VXLhiVaYETtmrTep_2zu0qrPvttOCp7Vobeqk5ZUj_OPn__y3r-Hu2WCYnp6MP72A3TZvBTBXTXQAO9Vy5V4SXqrsqzA3fgDGVRIL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic-Covalent+Hydrogel+with+NIR-Triggered+Drug+Delivery+for+Localized+Chemo-Photothermal+Combination+Therapy&rft.jtitle=Biomacromolecules&rft.au=Sun%2C+Pengfei&rft.au=Huang%2C+Ting&rft.au=Wang%2C+Xiaoxiao&rft.au=Wang%2C+Gaina&rft.date=2020-02-10&rft.pub=American+Chemical+Society&rft.issn=1525-7797&rft.eissn=1526-4602&rft.volume=21&rft.issue=2&rft.spage=556&rft.epage=565&rft_id=info:doi/10.1021%2Facs.biomac.9b01290&rft.externalDocID=b561429706 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon |