Electrospun Piezoelectric Scaffold with External Mechanical Stimulation for Promoting Regeneration of Peripheral Nerve Injury

Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk fibroin/poly­(vinylidene fluoride-co-hexafluoropropylene)/Ti3C2T x (SF/PVDF-HFP/MXene) composite scaffold with piezoelectricity was developed b...

Full description

Saved in:
Bibliographic Details
Published inBiomacromolecules Vol. 24; no. 7; pp. 3268 - 3282
Main Authors Zhang, Haiqiang, Lan, Dongwei, Wu, Baiqing, Chen, Xiang, Li, Xia, Li, Zhi, Dai, Fangyin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk fibroin/poly­(vinylidene fluoride-co-hexafluoropropylene)/Ti3C2T x (SF/PVDF-HFP/MXene) composite scaffold with piezoelectricity was developed by electrospinning technology. MXene was loaded to the scaffold to enhance the piezoelectric properties (Output voltage reaches up to 100 mV), mechanical properties, and antibacterial activity. Cell experiments demonstrated piezoelectric stimulation under external ultrasonication for promoting the growth and proliferation of Schwann cells (SCs) cultured on this electrospun scaffold. Further in vivo study with rat sciatic nerve injury model revealed that the SF/PVDF-HFP/MXene nerve conduit could induce the proliferation of SCs, enhance the elongation of axon, and promote axonal myelination. Under the piezoelectric effect of this nerve scaffold, the rats with regenerative nerve exhibited a favorable recovery effect of motor and sensory function, indicating a safe and feasible method of using this SF/PVDF-HFP/MXene piezoelectric scaffold for ES provision in vivo.
AbstractList Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk fibroin/poly­(vinylidene fluoride-co-hexafluoropropylene)/Ti3C2T x (SF/PVDF-HFP/MXene) composite scaffold with piezoelectricity was developed by electrospinning technology. MXene was loaded to the scaffold to enhance the piezoelectric properties (Output voltage reaches up to 100 mV), mechanical properties, and antibacterial activity. Cell experiments demonstrated piezoelectric stimulation under external ultrasonication for promoting the growth and proliferation of Schwann cells (SCs) cultured on this electrospun scaffold. Further in vivo study with rat sciatic nerve injury model revealed that the SF/PVDF-HFP/MXene nerve conduit could induce the proliferation of SCs, enhance the elongation of axon, and promote axonal myelination. Under the piezoelectric effect of this nerve scaffold, the rats with regenerative nerve exhibited a favorable recovery effect of motor and sensory function, indicating a safe and feasible method of using this SF/PVDF-HFP/MXene piezoelectric scaffold for ES provision in vivo.
Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk fibroin/poly­(vinylidene fluoride-co-hexafluoropropylene)/Ti₃C₂Tₓ (SF/PVDF-HFP/MXene) composite scaffold with piezoelectricity was developed by electrospinning technology. MXene was loaded to the scaffold to enhance the piezoelectric properties (Output voltage reaches up to 100 mV), mechanical properties, and antibacterial activity. Cell experiments demonstrated piezoelectric stimulation under external ultrasonication for promoting the growth and proliferation of Schwann cells (SCs) cultured on this electrospun scaffold. Further in vivo study with rat sciatic nerve injury model revealed that the SF/PVDF-HFP/MXene nerve conduit could induce the proliferation of SCs, enhance the elongation of axon, and promote axonal myelination. Under the piezoelectric effect of this nerve scaffold, the rats with regenerative nerve exhibited a favorable recovery effect of motor and sensory function, indicating a safe and feasible method of using this SF/PVDF-HFP/MXene piezoelectric scaffold for ES provision in vivo.
Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk fibroin/poly(vinylidene fluoride-co-hexafluoropropylene)/Ti3C2Tx (SF/PVDF-HFP/MXene) composite scaffold with piezoelectricity was developed by electrospinning technology. MXene was loaded to the scaffold to enhance the piezoelectric properties (Output voltage reaches up to 100 mV), mechanical properties, and antibacterial activity. Cell experiments demonstrated piezoelectric stimulation under external ultrasonication for promoting the growth and proliferation of Schwann cells (SCs) cultured on this electrospun scaffold. Further in vivo study with rat sciatic nerve injury model revealed that the SF/PVDF-HFP/MXene nerve conduit could induce the proliferation of SCs, enhance the elongation of axon, and promote axonal myelination. Under the piezoelectric effect of this nerve scaffold, the rats with regenerative nerve exhibited a favorable recovery effect of motor and sensory function, indicating a safe and feasible method of using this SF/PVDF-HFP/MXene piezoelectric scaffold for ES provision in vivo.Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk fibroin/poly(vinylidene fluoride-co-hexafluoropropylene)/Ti3C2Tx (SF/PVDF-HFP/MXene) composite scaffold with piezoelectricity was developed by electrospinning technology. MXene was loaded to the scaffold to enhance the piezoelectric properties (Output voltage reaches up to 100 mV), mechanical properties, and antibacterial activity. Cell experiments demonstrated piezoelectric stimulation under external ultrasonication for promoting the growth and proliferation of Schwann cells (SCs) cultured on this electrospun scaffold. Further in vivo study with rat sciatic nerve injury model revealed that the SF/PVDF-HFP/MXene nerve conduit could induce the proliferation of SCs, enhance the elongation of axon, and promote axonal myelination. Under the piezoelectric effect of this nerve scaffold, the rats with regenerative nerve exhibited a favorable recovery effect of motor and sensory function, indicating a safe and feasible method of using this SF/PVDF-HFP/MXene piezoelectric scaffold for ES provision in vivo.
Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk fibroin/poly(vinylidene fluoride- -hexafluoropropylene)/Ti C T (SF/PVDF-HFP/MXene) composite scaffold with piezoelectricity was developed by electrospinning technology. MXene was loaded to the scaffold to enhance the piezoelectric properties (Output voltage reaches up to 100 mV), mechanical properties, and antibacterial activity. Cell experiments demonstrated piezoelectric stimulation under external ultrasonication for promoting the growth and proliferation of Schwann cells (SCs) cultured on this electrospun scaffold. Further study with rat sciatic nerve injury model revealed that the SF/PVDF-HFP/MXene nerve conduit could induce the proliferation of SCs, enhance the elongation of axon, and promote axonal myelination. Under the piezoelectric effect of this nerve scaffold, the rats with regenerative nerve exhibited a favorable recovery effect of motor and sensory function, indicating a safe and feasible method of using this SF/PVDF-HFP/MXene piezoelectric scaffold for ES provision .
Author Zhang, Haiqiang
Dai, Fangyin
Lan, Dongwei
Li, Zhi
Wu, Baiqing
Li, Xia
Chen, Xiang
AuthorAffiliation Southwest University
Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences
State Key Laboratory of Silkworm Genome Biology
Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs
AuthorAffiliation_xml – name: State Key Laboratory of Silkworm Genome Biology
– name: Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences
– name: Southwest University
– name: Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs
Author_xml – sequence: 1
  givenname: Haiqiang
  surname: Zhang
  fullname: Zhang, Haiqiang
  organization: Southwest University
– sequence: 2
  givenname: Dongwei
  surname: Lan
  fullname: Lan, Dongwei
  organization: Southwest University
– sequence: 3
  givenname: Baiqing
  surname: Wu
  fullname: Wu, Baiqing
  organization: Southwest University
– sequence: 4
  givenname: Xiang
  surname: Chen
  fullname: Chen, Xiang
  organization: Southwest University
– sequence: 5
  givenname: Xia
  surname: Li
  fullname: Li, Xia
  organization: Southwest University
– sequence: 6
  givenname: Zhi
  surname: Li
  fullname: Li, Zhi
  email: tclizhi@swu.edu.cn
  organization: Southwest University
– sequence: 7
  givenname: Fangyin
  orcidid: 0000-0002-0215-2177
  surname: Dai
  fullname: Dai, Fangyin
  email: fydai@swu.edu.cn
  organization: Southwest University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37329512$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi3Uin7AH-CAfOSywR_r9e4RVQEqFRpROK8cZ9w48trB9gKt1P-Okw0cemjlg0czz2PJ856hIx88IPSGkhkljL5XOs2WNgxKz7gmhFP6Ap1SwZqqbgg72teikrKTJ-gspQ0hpOO1eIlOuOSsE5Sdooe5A51jSNvR44WF-wD7htX4Ritjglvh3zav8fxPhuiVw19Ar5W3upQ32Q6jU9kGj02IeBHDELL1t_gb3IKHOI2CwQuIdrsuDYe_QvwF-NJvxnj3Ch0b5RK8Ptzn6MfH-feLz9XV9afLiw9XleJS5GqpKSNKc2qoYg0YTjQH3tWrriZGtlItFWl0-ajiq5YJAl2rW9qxDqA4puPn6N307jaGnyOk3A82aXBOeQhj6jmpy6FSiGdR1jLJGi5aVtC3B3RcDrDqt9EOKt71_7ZbADYBuiw4RTD_EUr6XYR9ibCfIuwPERapfSRpm_eLzFFZ97Q6m9TdbBPGXV7pKeEvwXa1pg
CitedBy_id crossref_primary_10_1109_JSEN_2024_3503715
crossref_primary_10_1021_acsnano_4c16136
crossref_primary_10_1002_adma_202401264
crossref_primary_10_1002_adma_202406192
crossref_primary_10_1002_wnan_1965
crossref_primary_10_3389_fbioe_2023_1308761
crossref_primary_10_1016_j_biomaterials_2025_123083
crossref_primary_10_1016_j_nantod_2024_102228
crossref_primary_10_1016_j_seppur_2025_132636
crossref_primary_10_1088_2752_5724_ad5f48
crossref_primary_10_1021_acsami_4c12245
crossref_primary_10_1016_j_mtbio_2024_101415
crossref_primary_10_1002_pat_70112
crossref_primary_10_1016_j_bioactmat_2024_09_003
crossref_primary_10_1016_j_colsurfb_2024_113967
crossref_primary_10_1002_smsc_202300255
crossref_primary_10_1002_admt_202401160
crossref_primary_10_1021_acs_biomac_4c00659
crossref_primary_10_3390_molecules29122902
crossref_primary_10_1016_j_biomaterials_2024_122528
crossref_primary_10_1039_D4NR03233K
crossref_primary_10_1016_j_biomaterials_2024_122683
crossref_primary_10_1016_j_bbadis_2025_167804
crossref_primary_10_1021_acs_langmuir_4c00545
crossref_primary_10_1016_j_apmt_2024_102270
crossref_primary_10_1016_j_ijbiomac_2024_135101
crossref_primary_10_1016_j_mtbio_2024_101064
crossref_primary_10_3390_medicina60091384
crossref_primary_10_1016_j_mtbio_2024_100950
crossref_primary_10_1002_adfm_202313055
crossref_primary_10_1088_1748_605X_ad4079
Cites_doi 10.1007/s10409-022-09036-x
10.1523/JNEUROSCI.2661-13.2014
10.3389/fnmol.2016.00117
10.1021/acsbiomaterials.1c00304
10.1039/D1TB00782C
10.1016/j.biomaterials.2020.120164
10.1007/s10856-013-4917-2
10.1016/j.bbrc.2014.12.121
10.3390/polym13111738
10.3389/fbioe.2021.840421
10.1002/glia.23200
10.1080/09205063.2019.1697170
10.1016/j.compscitech.2020.108600
10.3390/polym9100479
10.1016/j.cej.2020.124116
10.1016/j.ijbiomac.2020.12.031
10.1016/j.lfs.2014.12.005
10.1021/acssuschemeng.8b03823
10.1016/j.ijbiomac.2021.09.009
10.1016/j.biomaterials.2018.07.015
10.1016/j.msec.2020.111858
10.1016/j.actbio.2018.11.032
10.1371/journal.pone.0139820
10.1039/C9BM01446B
10.1016/j.sna.2021.112880
10.1021/acsnano.0c03570
10.1016/j.nano.2017.03.018
10.1016/j.bioactmat.2021.01.008
10.1038/s41598-019-56281-6
10.1016/j.compositesa.2019.03.031
10.1016/j.nanoen.2022.107322
10.1016/j.pneurobio.2018.07.002
10.1002/aelm.201600255
10.1016/j.jcis.2019.10.003
10.1002/adfm.202203430
10.1016/j.bioactmat.2021.03.020
10.1039/D1TB00686J
10.1016/j.matlet.2021.129493
10.3389/fneur.2021.768267
10.1002/adhm.202100806
10.1371/journal.pone.0039526
10.1073/pnas.96.9.4942
10.3892/etm.2016.3525
10.1016/j.colsurfa.2019.124282
10.1093/rb/rbac038
10.3390/ijms22094746
10.1016/j.biomaterials.2007.08.045
10.3389/fnins.2022.810676
10.3389/fbioe.2022.850650
10.1002/jbm.a.32718
10.3390/polym13020174
10.1016/j.polymer.2015.05.037
10.1016/j.jcis.2018.02.036
10.1002/term.383
10.1021/acsnano.6b00181
10.1016/j.nanoen.2022.107707
10.1016/j.actbio.2020.02.003
10.1016/j.nanoen.2022.107690
10.1002/adma.202106317
10.1016/j.ultsonch.2022.106208
10.1039/C8RA06274A
10.1002/advs.201700499
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acs.biomac.3c00311
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1526-4602
EndPage 3282
ExternalDocumentID 37329512
10_1021_acs_biomac_3c00311
b426377689
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
23N
4.4
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABPTK
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED~
F5P
FDB
GGK
GNL
IH9
JG~
P2P
RNS
ROL
TN5
UI2
VF5
VG9
W1F
XKZ
ZCA
~02
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a375t-bc120ac31f1a26ef30c3e394d940f787aba06c779a3d8250e98c81929ee31ff93
IEDL.DBID ACS
ISSN 1525-7797
1526-4602
IngestDate Thu Jul 10 17:33:10 EDT 2025
Thu Jul 10 22:45:10 EDT 2025
Thu Apr 03 07:01:51 EDT 2025
Tue Jul 01 04:08:21 EDT 2025
Thu Apr 24 23:06:55 EDT 2025
Wed Jul 12 03:10:44 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a375t-bc120ac31f1a26ef30c3e394d940f787aba06c779a3d8250e98c81929ee31ff93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0215-2177
PMID 37329512
PQID 2827263582
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_3040401755
proquest_miscellaneous_2827263582
pubmed_primary_37329512
crossref_primary_10_1021_acs_biomac_3c00311
crossref_citationtrail_10_1021_acs_biomac_3c00311
acs_journals_10_1021_acs_biomac_3c00311
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-10
PublicationDateYYYYMMDD 2023-07-10
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biomacromolecules
PublicationTitleAlternate Biomacromolecules
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref29/cit29
  doi: 10.1007/s10409-022-09036-x
– ident: ref50/cit50
  doi: 10.1523/JNEUROSCI.2661-13.2014
– ident: ref33/cit33
  doi: 10.3389/fnmol.2016.00117
– ident: ref39/cit39
  doi: 10.1021/acsbiomaterials.1c00304
– ident: ref6/cit6
  doi: 10.1039/D1TB00782C
– ident: ref14/cit14
  doi: 10.1016/j.biomaterials.2020.120164
– ident: ref48/cit48
  doi: 10.1007/s10856-013-4917-2
– ident: ref60/cit60
  doi: 10.1016/j.bbrc.2014.12.121
– ident: ref35/cit35
  doi: 10.3390/polym13111738
– ident: ref38/cit38
  doi: 10.3389/fbioe.2021.840421
– ident: ref62/cit62
  doi: 10.1002/glia.23200
– ident: ref4/cit4
  doi: 10.1080/09205063.2019.1697170
– ident: ref24/cit24
  doi: 10.1016/j.compscitech.2020.108600
– ident: ref18/cit18
  doi: 10.3390/polym9100479
– ident: ref42/cit42
  doi: 10.1016/j.cej.2020.124116
– ident: ref34/cit34
  doi: 10.1016/j.ijbiomac.2020.12.031
– ident: ref1/cit1
  doi: 10.1016/j.lfs.2014.12.005
– ident: ref41/cit41
  doi: 10.1021/acssuschemeng.8b03823
– ident: ref45/cit45
  doi: 10.1016/j.ijbiomac.2021.09.009
– ident: ref44/cit44
  doi: 10.1016/j.biomaterials.2018.07.015
– ident: ref2/cit2
  doi: 10.1016/j.msec.2020.111858
– ident: ref9/cit9
  doi: 10.1016/j.actbio.2018.11.032
– ident: ref51/cit51
  doi: 10.1371/journal.pone.0139820
– ident: ref54/cit54
  doi: 10.1039/C9BM01446B
– ident: ref25/cit25
  doi: 10.1016/j.sna.2021.112880
– ident: ref49/cit49
  doi: 10.1021/acsnano.0c03570
– ident: ref10/cit10
  doi: 10.1016/j.nano.2017.03.018
– ident: ref43/cit43
  doi: 10.1016/j.bioactmat.2021.01.008
– ident: ref27/cit27
  doi: 10.1038/s41598-019-56281-6
– ident: ref26/cit26
  doi: 10.1016/j.compositesa.2019.03.031
– ident: ref55/cit55
  doi: 10.1016/j.nanoen.2022.107322
– ident: ref61/cit61
  doi: 10.1016/j.pneurobio.2018.07.002
– ident: ref19/cit19
  doi: 10.1002/aelm.201600255
– ident: ref32/cit32
  doi: 10.1016/j.jcis.2019.10.003
– ident: ref22/cit22
  doi: 10.1002/adfm.202203430
– ident: ref53/cit53
  doi: 10.1016/j.bioactmat.2021.03.020
– ident: ref7/cit7
  doi: 10.1039/D1TB00686J
– ident: ref28/cit28
  doi: 10.1016/j.matlet.2021.129493
– ident: ref5/cit5
  doi: 10.3389/fneur.2021.768267
– ident: ref15/cit15
  doi: 10.1002/adhm.202100806
– ident: ref11/cit11
  doi: 10.1371/journal.pone.0039526
– ident: ref12/cit12
  doi: 10.1073/pnas.96.9.4942
– ident: ref52/cit52
  doi: 10.3892/etm.2016.3525
– ident: ref21/cit21
  doi: 10.1016/j.colsurfa.2019.124282
– ident: ref56/cit56
  doi: 10.1093/rb/rbac038
– ident: ref46/cit46
  doi: 10.3390/ijms22094746
– ident: ref3/cit3
  doi: 10.1016/j.biomaterials.2007.08.045
– ident: ref13/cit13
  doi: 10.3389/fnins.2022.810676
– ident: ref23/cit23
  doi: 10.3389/fbioe.2022.850650
– ident: ref17/cit17
  doi: 10.1002/jbm.a.32718
– ident: ref30/cit30
  doi: 10.3390/polym13020174
– ident: ref37/cit37
  doi: 10.1016/j.polymer.2015.05.037
– ident: ref58/cit58
  doi: 10.1016/j.jcis.2018.02.036
– ident: ref8/cit8
  doi: 10.1002/term.383
– ident: ref20/cit20
  doi: 10.1021/acsnano.6b00181
– ident: ref57/cit57
  doi: 10.1016/j.nanoen.2022.107707
– ident: ref59/cit59
  doi: 10.1016/j.actbio.2020.02.003
– ident: ref16/cit16
  doi: 10.1016/j.nanoen.2022.107690
– ident: ref31/cit31
  doi: 10.1002/adma.202106317
– ident: ref36/cit36
  doi: 10.1016/j.ultsonch.2022.106208
– ident: ref40/cit40
  doi: 10.1039/C8RA06274A
– ident: ref47/cit47
  doi: 10.1002/advs.201700499
SSID ssj0009345
Score 2.564276
Snippet Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3268
SubjectTerms Animals
antibacterial properties
axons
electric potential difference
electrical treatment
myelination
Nerve Regeneration
nerve tissue
Peripheral Nerve Injuries - therapy
Rats
Rats, Sprague-Dawley
Sciatic Nerve - physiology
silk
Tissue Scaffolds
ultrasonic treatment
Title Electrospun Piezoelectric Scaffold with External Mechanical Stimulation for Promoting Regeneration of Peripheral Nerve Injury
URI http://dx.doi.org/10.1021/acs.biomac.3c00311
https://www.ncbi.nlm.nih.gov/pubmed/37329512
https://www.proquest.com/docview/2827263582
https://www.proquest.com/docview/3040401755
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6iB734fqwvIggetGuT9HmUZUWFlcVV8FaSNJHVtRXbvQj-d2fariK64rVNUpKZNDOZme8j5DDQfiBTkTpWSuGA_W8cJaPYkUK6SvEgCqskmt51cHHnXd379zPkZEoEn7NTqYs2lqLD8EKjDoKvM4eDoD6fdQZfELuioiRGQh-wGeOwKZH5fQw8jHTx_TCaYmFWJ835EulN6nXqBJOn9rhUbf32E77xX5NYJouNyUnPah1ZITMmWyXznQnT2xp579ZcOMXLOKP9oXnLa3KcoaYDLa3NRynF-1rabSCjac9gwTDKlw7K4XNDAUbBAKb9Or8ve6A35qHCtK5e5Zb2QdkrEIMRvcY8S3qZPYJE18ndefe2c-E0tAwgwNAvHaUZd6UWzDLJA2OFq4URsZfGnmth_0sl3UCDBKRIwf90TRxphF2LjYE-NhYbZDbLM7NFKI89bZVrbGg9z7JI-aHkTCvPRL612rbIEaxc0myrIqki5pwl-LBezqRZzhZhE0kmukE3R5KN0Z99jj_7vNTYHn-2PpgoSALywbiKzEw-LhLwWkPE9In49DYCfpbgyoa-3yKbtXZ9flOEgoOhy7f_PdsdsoC093jHzNxdMlu-js0eGEel2q_2xAdD-Q2V
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEBYlOaSXNn27zUOFQg5l05W0z2MwDs7DxsQO5LZIWim4dXdDd30J9L93Ris7tCQhvWpXzxlJ30iabwj5kug4kaUoAyulCAD_m0DJLA-kkKFSPMlS94hmNE6Gl9HpVXzl_bjRFwYa0UBJjbvEv2MXYN8wDT3SoRahURXB5NkENMJRrY_60zumXeEiE2NcH4COeeo9Ze4vA_ck3fy9Jz0ANN2Gc_ySzNZNde9MfhwuW3Wob_9hcfzPvmyTFx6A0qNOY16RZ6Z6Tbb6q7hvb8jvQRcZp7lZVnQyN7d1FypnrulUS2vrRUnx9JYOPIE0HRl0H0Zp02k7_-kDglGAw3TSvfarrumFuXYM1-5TbekEVN9RGizoGF9d0pPqO8j3Lbk8Hsz6w8AHaQBxpnEbKM14KLVglkmeGCtCLYzIozKPQgurgVQyTDQIQooSrNHQ5JlGErbcGMhjc_GObFR1ZT4QyvNIWxUam9oosixTcSo50yoyWWyttj1yACNX-EnWFO7-nLMCE7vhLPxw9ghbCbTQnuscQ24sHs3zdZ3npmP6ePTvzys9KUA-eMsiK1MvmwJs2BQZfjL-8D8Clk4wbNM47pH3nZKt6xSp4AB7-ccn93afbA1no_Pi_GR89ok85wDD8PSZhTtko_21NLsAm1q156bJH4VPFfY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIQ1eBhsfK2PDSEg8oIzYzufj1LXagFUVZVLfItuxp0JJKpK-TOJ_353jFg2xadqrE3_enX323f2OkPeJjhNZijKwUooA9H8TKJnlgRQyVIonWeqcaM5HyelF9HkaT_3TBcbCwCAaaKlxRnyU6kVpPcIA-4TlGJUOPQmN7AjXnkdot0PWPu5P_qLtCpedGHP7gPqYpz5a5v9t4Lmkm5vn0i3Kpjt0hk_JdD1c52vy82jZqiN99Q-S4wPm84xse0WUHnecs0M2TLVLHvdX-d-ekz-DLkNOs1hWdDwzV3WXMmem6URLa-t5SfEVlw48kDQ9NxhGjFSnk3b2yycGo6AW03Hn9Vdd0m_m0iFdu0-1pWMQAQdtMKcj9L6kZ9UPoPMLcjEcfO-fBj5ZA5A1jdtAacZDqQWzTPLEWBFqYUQelXkUWtgVpJJhooEYUpRwKw1NnmkEY8uNgTo2Fy_JZlVXZo9QnkfaqtDY1EaRZZmKU8mZVpHJYmu17ZEPsHKFF7amcHZ0zgos7Jaz8MvZI2xF1EJ7zHNMvTG_s87HdZ1Fh_hx59_vVrxSAH3Q2iIrUy-bAu6yKSL9ZPz2fwRsoXDBTeO4R151jLbuU6SCg_rLX997tm_J1vhkWHw9G33ZJ084aGP4CM3CN2Sz_b00B6A9terQSco1W54YeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrospun+Piezoelectric+Scaffold+with+External+Mechanical+Stimulation+for+Promoting+Regeneration+of+Peripheral+Nerve+Injury&rft.jtitle=Biomacromolecules&rft.au=Zhang%2C+Haiqiang&rft.au=Lan%2C+Dongwei&rft.au=Wu%2C+Baiqing&rft.au=Chen%2C+Xiang&rft.date=2023-07-10&rft.pub=American+Chemical+Society&rft.issn=1525-7797&rft.eissn=1526-4602&rft.volume=24&rft.issue=7&rft.spage=3268&rft.epage=3282&rft_id=info:doi/10.1021%2Facs.biomac.3c00311&rft.externalDocID=b426377689
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon