Electrospun Piezoelectric Scaffold with External Mechanical Stimulation for Promoting Regeneration of Peripheral Nerve Injury
Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk fibroin/poly(vinylidene fluoride-co-hexafluoropropylene)/Ti3C2T x (SF/PVDF-HFP/MXene) composite scaffold with piezoelectricity was developed b...
Saved in:
Published in | Biomacromolecules Vol. 24; no. 7; pp. 3268 - 3282 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk fibroin/poly(vinylidene fluoride-co-hexafluoropropylene)/Ti3C2T x (SF/PVDF-HFP/MXene) composite scaffold with piezoelectricity was developed by electrospinning technology. MXene was loaded to the scaffold to enhance the piezoelectric properties (Output voltage reaches up to 100 mV), mechanical properties, and antibacterial activity. Cell experiments demonstrated piezoelectric stimulation under external ultrasonication for promoting the growth and proliferation of Schwann cells (SCs) cultured on this electrospun scaffold. Further in vivo study with rat sciatic nerve injury model revealed that the SF/PVDF-HFP/MXene nerve conduit could induce the proliferation of SCs, enhance the elongation of axon, and promote axonal myelination. Under the piezoelectric effect of this nerve scaffold, the rats with regenerative nerve exhibited a favorable recovery effect of motor and sensory function, indicating a safe and feasible method of using this SF/PVDF-HFP/MXene piezoelectric scaffold for ES provision in vivo. |
---|---|
AbstractList | Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk fibroin/poly(vinylidene fluoride-co-hexafluoropropylene)/Ti3C2T x (SF/PVDF-HFP/MXene) composite scaffold with piezoelectricity was developed by electrospinning technology. MXene was loaded to the scaffold to enhance the piezoelectric properties (Output voltage reaches up to 100 mV), mechanical properties, and antibacterial activity. Cell experiments demonstrated piezoelectric stimulation under external ultrasonication for promoting the growth and proliferation of Schwann cells (SCs) cultured on this electrospun scaffold. Further in vivo study with rat sciatic nerve injury model revealed that the SF/PVDF-HFP/MXene nerve conduit could induce the proliferation of SCs, enhance the elongation of axon, and promote axonal myelination. Under the piezoelectric effect of this nerve scaffold, the rats with regenerative nerve exhibited a favorable recovery effect of motor and sensory function, indicating a safe and feasible method of using this SF/PVDF-HFP/MXene piezoelectric scaffold for ES provision in vivo. Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk fibroin/poly(vinylidene fluoride-co-hexafluoropropylene)/Ti₃C₂Tₓ (SF/PVDF-HFP/MXene) composite scaffold with piezoelectricity was developed by electrospinning technology. MXene was loaded to the scaffold to enhance the piezoelectric properties (Output voltage reaches up to 100 mV), mechanical properties, and antibacterial activity. Cell experiments demonstrated piezoelectric stimulation under external ultrasonication for promoting the growth and proliferation of Schwann cells (SCs) cultured on this electrospun scaffold. Further in vivo study with rat sciatic nerve injury model revealed that the SF/PVDF-HFP/MXene nerve conduit could induce the proliferation of SCs, enhance the elongation of axon, and promote axonal myelination. Under the piezoelectric effect of this nerve scaffold, the rats with regenerative nerve exhibited a favorable recovery effect of motor and sensory function, indicating a safe and feasible method of using this SF/PVDF-HFP/MXene piezoelectric scaffold for ES provision in vivo. Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk fibroin/poly(vinylidene fluoride-co-hexafluoropropylene)/Ti3C2Tx (SF/PVDF-HFP/MXene) composite scaffold with piezoelectricity was developed by electrospinning technology. MXene was loaded to the scaffold to enhance the piezoelectric properties (Output voltage reaches up to 100 mV), mechanical properties, and antibacterial activity. Cell experiments demonstrated piezoelectric stimulation under external ultrasonication for promoting the growth and proliferation of Schwann cells (SCs) cultured on this electrospun scaffold. Further in vivo study with rat sciatic nerve injury model revealed that the SF/PVDF-HFP/MXene nerve conduit could induce the proliferation of SCs, enhance the elongation of axon, and promote axonal myelination. Under the piezoelectric effect of this nerve scaffold, the rats with regenerative nerve exhibited a favorable recovery effect of motor and sensory function, indicating a safe and feasible method of using this SF/PVDF-HFP/MXene piezoelectric scaffold for ES provision in vivo.Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk fibroin/poly(vinylidene fluoride-co-hexafluoropropylene)/Ti3C2Tx (SF/PVDF-HFP/MXene) composite scaffold with piezoelectricity was developed by electrospinning technology. MXene was loaded to the scaffold to enhance the piezoelectric properties (Output voltage reaches up to 100 mV), mechanical properties, and antibacterial activity. Cell experiments demonstrated piezoelectric stimulation under external ultrasonication for promoting the growth and proliferation of Schwann cells (SCs) cultured on this electrospun scaffold. Further in vivo study with rat sciatic nerve injury model revealed that the SF/PVDF-HFP/MXene nerve conduit could induce the proliferation of SCs, enhance the elongation of axon, and promote axonal myelination. Under the piezoelectric effect of this nerve scaffold, the rats with regenerative nerve exhibited a favorable recovery effect of motor and sensory function, indicating a safe and feasible method of using this SF/PVDF-HFP/MXene piezoelectric scaffold for ES provision in vivo. Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk fibroin/poly(vinylidene fluoride- -hexafluoropropylene)/Ti C T (SF/PVDF-HFP/MXene) composite scaffold with piezoelectricity was developed by electrospinning technology. MXene was loaded to the scaffold to enhance the piezoelectric properties (Output voltage reaches up to 100 mV), mechanical properties, and antibacterial activity. Cell experiments demonstrated piezoelectric stimulation under external ultrasonication for promoting the growth and proliferation of Schwann cells (SCs) cultured on this electrospun scaffold. Further study with rat sciatic nerve injury model revealed that the SF/PVDF-HFP/MXene nerve conduit could induce the proliferation of SCs, enhance the elongation of axon, and promote axonal myelination. Under the piezoelectric effect of this nerve scaffold, the rats with regenerative nerve exhibited a favorable recovery effect of motor and sensory function, indicating a safe and feasible method of using this SF/PVDF-HFP/MXene piezoelectric scaffold for ES provision . |
Author | Zhang, Haiqiang Dai, Fangyin Lan, Dongwei Li, Zhi Wu, Baiqing Li, Xia Chen, Xiang |
AuthorAffiliation | Southwest University Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences State Key Laboratory of Silkworm Genome Biology Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs |
AuthorAffiliation_xml | – name: State Key Laboratory of Silkworm Genome Biology – name: Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences – name: Southwest University – name: Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs |
Author_xml | – sequence: 1 givenname: Haiqiang surname: Zhang fullname: Zhang, Haiqiang organization: Southwest University – sequence: 2 givenname: Dongwei surname: Lan fullname: Lan, Dongwei organization: Southwest University – sequence: 3 givenname: Baiqing surname: Wu fullname: Wu, Baiqing organization: Southwest University – sequence: 4 givenname: Xiang surname: Chen fullname: Chen, Xiang organization: Southwest University – sequence: 5 givenname: Xia surname: Li fullname: Li, Xia organization: Southwest University – sequence: 6 givenname: Zhi surname: Li fullname: Li, Zhi email: tclizhi@swu.edu.cn organization: Southwest University – sequence: 7 givenname: Fangyin orcidid: 0000-0002-0215-2177 surname: Dai fullname: Dai, Fangyin email: fydai@swu.edu.cn organization: Southwest University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37329512$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi3Uin7AH-CAfOSywR_r9e4RVQEqFRpROK8cZ9w48trB9gKt1P-Okw0cemjlg0czz2PJ856hIx88IPSGkhkljL5XOs2WNgxKz7gmhFP6Ap1SwZqqbgg72teikrKTJ-gspQ0hpOO1eIlOuOSsE5Sdooe5A51jSNvR44WF-wD7htX4Ritjglvh3zav8fxPhuiVw19Ar5W3upQ32Q6jU9kGj02IeBHDELL1t_gb3IKHOI2CwQuIdrsuDYe_QvwF-NJvxnj3Ch0b5RK8Ptzn6MfH-feLz9XV9afLiw9XleJS5GqpKSNKc2qoYg0YTjQH3tWrriZGtlItFWl0-ajiq5YJAl2rW9qxDqA4puPn6N307jaGnyOk3A82aXBOeQhj6jmpy6FSiGdR1jLJGi5aVtC3B3RcDrDqt9EOKt71_7ZbADYBuiw4RTD_EUr6XYR9ibCfIuwPERapfSRpm_eLzFFZ97Q6m9TdbBPGXV7pKeEvwXa1pg |
CitedBy_id | crossref_primary_10_1109_JSEN_2024_3503715 crossref_primary_10_1021_acsnano_4c16136 crossref_primary_10_1002_adma_202401264 crossref_primary_10_1002_adma_202406192 crossref_primary_10_1002_wnan_1965 crossref_primary_10_3389_fbioe_2023_1308761 crossref_primary_10_1016_j_biomaterials_2025_123083 crossref_primary_10_1016_j_nantod_2024_102228 crossref_primary_10_1016_j_seppur_2025_132636 crossref_primary_10_1088_2752_5724_ad5f48 crossref_primary_10_1021_acsami_4c12245 crossref_primary_10_1016_j_mtbio_2024_101415 crossref_primary_10_1002_pat_70112 crossref_primary_10_1016_j_bioactmat_2024_09_003 crossref_primary_10_1016_j_colsurfb_2024_113967 crossref_primary_10_1002_smsc_202300255 crossref_primary_10_1002_admt_202401160 crossref_primary_10_1021_acs_biomac_4c00659 crossref_primary_10_3390_molecules29122902 crossref_primary_10_1016_j_biomaterials_2024_122528 crossref_primary_10_1039_D4NR03233K crossref_primary_10_1016_j_biomaterials_2024_122683 crossref_primary_10_1016_j_bbadis_2025_167804 crossref_primary_10_1021_acs_langmuir_4c00545 crossref_primary_10_1016_j_apmt_2024_102270 crossref_primary_10_1016_j_ijbiomac_2024_135101 crossref_primary_10_1016_j_mtbio_2024_101064 crossref_primary_10_3390_medicina60091384 crossref_primary_10_1016_j_mtbio_2024_100950 crossref_primary_10_1002_adfm_202313055 crossref_primary_10_1088_1748_605X_ad4079 |
Cites_doi | 10.1007/s10409-022-09036-x 10.1523/JNEUROSCI.2661-13.2014 10.3389/fnmol.2016.00117 10.1021/acsbiomaterials.1c00304 10.1039/D1TB00782C 10.1016/j.biomaterials.2020.120164 10.1007/s10856-013-4917-2 10.1016/j.bbrc.2014.12.121 10.3390/polym13111738 10.3389/fbioe.2021.840421 10.1002/glia.23200 10.1080/09205063.2019.1697170 10.1016/j.compscitech.2020.108600 10.3390/polym9100479 10.1016/j.cej.2020.124116 10.1016/j.ijbiomac.2020.12.031 10.1016/j.lfs.2014.12.005 10.1021/acssuschemeng.8b03823 10.1016/j.ijbiomac.2021.09.009 10.1016/j.biomaterials.2018.07.015 10.1016/j.msec.2020.111858 10.1016/j.actbio.2018.11.032 10.1371/journal.pone.0139820 10.1039/C9BM01446B 10.1016/j.sna.2021.112880 10.1021/acsnano.0c03570 10.1016/j.nano.2017.03.018 10.1016/j.bioactmat.2021.01.008 10.1038/s41598-019-56281-6 10.1016/j.compositesa.2019.03.031 10.1016/j.nanoen.2022.107322 10.1016/j.pneurobio.2018.07.002 10.1002/aelm.201600255 10.1016/j.jcis.2019.10.003 10.1002/adfm.202203430 10.1016/j.bioactmat.2021.03.020 10.1039/D1TB00686J 10.1016/j.matlet.2021.129493 10.3389/fneur.2021.768267 10.1002/adhm.202100806 10.1371/journal.pone.0039526 10.1073/pnas.96.9.4942 10.3892/etm.2016.3525 10.1016/j.colsurfa.2019.124282 10.1093/rb/rbac038 10.3390/ijms22094746 10.1016/j.biomaterials.2007.08.045 10.3389/fnins.2022.810676 10.3389/fbioe.2022.850650 10.1002/jbm.a.32718 10.3390/polym13020174 10.1016/j.polymer.2015.05.037 10.1016/j.jcis.2018.02.036 10.1002/term.383 10.1021/acsnano.6b00181 10.1016/j.nanoen.2022.107707 10.1016/j.actbio.2020.02.003 10.1016/j.nanoen.2022.107690 10.1002/adma.202106317 10.1016/j.ultsonch.2022.106208 10.1039/C8RA06274A 10.1002/advs.201700499 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.biomac.3c00311 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1526-4602 |
EndPage | 3282 |
ExternalDocumentID | 37329512 10_1021_acs_biomac_3c00311 b426377689 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 23N 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABPTK ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED~ F5P FDB GGK GNL IH9 JG~ P2P RNS ROL TN5 UI2 VF5 VG9 W1F XKZ ZCA ~02 53G AAHBH AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a375t-bc120ac31f1a26ef30c3e394d940f787aba06c779a3d8250e98c81929ee31ff93 |
IEDL.DBID | ACS |
ISSN | 1525-7797 1526-4602 |
IngestDate | Thu Jul 10 17:33:10 EDT 2025 Thu Jul 10 22:45:10 EDT 2025 Thu Apr 03 07:01:51 EDT 2025 Tue Jul 01 04:08:21 EDT 2025 Thu Apr 24 23:06:55 EDT 2025 Wed Jul 12 03:10:44 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a375t-bc120ac31f1a26ef30c3e394d940f787aba06c779a3d8250e98c81929ee31ff93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0215-2177 |
PMID | 37329512 |
PQID | 2827263582 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_3040401755 proquest_miscellaneous_2827263582 pubmed_primary_37329512 crossref_primary_10_1021_acs_biomac_3c00311 crossref_citationtrail_10_1021_acs_biomac_3c00311 acs_journals_10_1021_acs_biomac_3c00311 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-10 |
PublicationDateYYYYMMDD | 2023-07-10 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biomacromolecules |
PublicationTitleAlternate | Biomacromolecules |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref29/cit29 doi: 10.1007/s10409-022-09036-x – ident: ref50/cit50 doi: 10.1523/JNEUROSCI.2661-13.2014 – ident: ref33/cit33 doi: 10.3389/fnmol.2016.00117 – ident: ref39/cit39 doi: 10.1021/acsbiomaterials.1c00304 – ident: ref6/cit6 doi: 10.1039/D1TB00782C – ident: ref14/cit14 doi: 10.1016/j.biomaterials.2020.120164 – ident: ref48/cit48 doi: 10.1007/s10856-013-4917-2 – ident: ref60/cit60 doi: 10.1016/j.bbrc.2014.12.121 – ident: ref35/cit35 doi: 10.3390/polym13111738 – ident: ref38/cit38 doi: 10.3389/fbioe.2021.840421 – ident: ref62/cit62 doi: 10.1002/glia.23200 – ident: ref4/cit4 doi: 10.1080/09205063.2019.1697170 – ident: ref24/cit24 doi: 10.1016/j.compscitech.2020.108600 – ident: ref18/cit18 doi: 10.3390/polym9100479 – ident: ref42/cit42 doi: 10.1016/j.cej.2020.124116 – ident: ref34/cit34 doi: 10.1016/j.ijbiomac.2020.12.031 – ident: ref1/cit1 doi: 10.1016/j.lfs.2014.12.005 – ident: ref41/cit41 doi: 10.1021/acssuschemeng.8b03823 – ident: ref45/cit45 doi: 10.1016/j.ijbiomac.2021.09.009 – ident: ref44/cit44 doi: 10.1016/j.biomaterials.2018.07.015 – ident: ref2/cit2 doi: 10.1016/j.msec.2020.111858 – ident: ref9/cit9 doi: 10.1016/j.actbio.2018.11.032 – ident: ref51/cit51 doi: 10.1371/journal.pone.0139820 – ident: ref54/cit54 doi: 10.1039/C9BM01446B – ident: ref25/cit25 doi: 10.1016/j.sna.2021.112880 – ident: ref49/cit49 doi: 10.1021/acsnano.0c03570 – ident: ref10/cit10 doi: 10.1016/j.nano.2017.03.018 – ident: ref43/cit43 doi: 10.1016/j.bioactmat.2021.01.008 – ident: ref27/cit27 doi: 10.1038/s41598-019-56281-6 – ident: ref26/cit26 doi: 10.1016/j.compositesa.2019.03.031 – ident: ref55/cit55 doi: 10.1016/j.nanoen.2022.107322 – ident: ref61/cit61 doi: 10.1016/j.pneurobio.2018.07.002 – ident: ref19/cit19 doi: 10.1002/aelm.201600255 – ident: ref32/cit32 doi: 10.1016/j.jcis.2019.10.003 – ident: ref22/cit22 doi: 10.1002/adfm.202203430 – ident: ref53/cit53 doi: 10.1016/j.bioactmat.2021.03.020 – ident: ref7/cit7 doi: 10.1039/D1TB00686J – ident: ref28/cit28 doi: 10.1016/j.matlet.2021.129493 – ident: ref5/cit5 doi: 10.3389/fneur.2021.768267 – ident: ref15/cit15 doi: 10.1002/adhm.202100806 – ident: ref11/cit11 doi: 10.1371/journal.pone.0039526 – ident: ref12/cit12 doi: 10.1073/pnas.96.9.4942 – ident: ref52/cit52 doi: 10.3892/etm.2016.3525 – ident: ref21/cit21 doi: 10.1016/j.colsurfa.2019.124282 – ident: ref56/cit56 doi: 10.1093/rb/rbac038 – ident: ref46/cit46 doi: 10.3390/ijms22094746 – ident: ref3/cit3 doi: 10.1016/j.biomaterials.2007.08.045 – ident: ref13/cit13 doi: 10.3389/fnins.2022.810676 – ident: ref23/cit23 doi: 10.3389/fbioe.2022.850650 – ident: ref17/cit17 doi: 10.1002/jbm.a.32718 – ident: ref30/cit30 doi: 10.3390/polym13020174 – ident: ref37/cit37 doi: 10.1016/j.polymer.2015.05.037 – ident: ref58/cit58 doi: 10.1016/j.jcis.2018.02.036 – ident: ref8/cit8 doi: 10.1002/term.383 – ident: ref20/cit20 doi: 10.1021/acsnano.6b00181 – ident: ref57/cit57 doi: 10.1016/j.nanoen.2022.107707 – ident: ref59/cit59 doi: 10.1016/j.actbio.2020.02.003 – ident: ref16/cit16 doi: 10.1016/j.nanoen.2022.107690 – ident: ref31/cit31 doi: 10.1002/adma.202106317 – ident: ref36/cit36 doi: 10.1016/j.ultsonch.2022.106208 – ident: ref40/cit40 doi: 10.1039/C8RA06274A – ident: ref47/cit47 doi: 10.1002/advs.201700499 |
SSID | ssj0009345 |
Score | 2.564276 |
Snippet | Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3268 |
SubjectTerms | Animals antibacterial properties axons electric potential difference electrical treatment myelination Nerve Regeneration nerve tissue Peripheral Nerve Injuries - therapy Rats Rats, Sprague-Dawley Sciatic Nerve - physiology silk Tissue Scaffolds ultrasonic treatment |
Title | Electrospun Piezoelectric Scaffold with External Mechanical Stimulation for Promoting Regeneration of Peripheral Nerve Injury |
URI | http://dx.doi.org/10.1021/acs.biomac.3c00311 https://www.ncbi.nlm.nih.gov/pubmed/37329512 https://www.proquest.com/docview/2827263582 https://www.proquest.com/docview/3040401755 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6iB734fqwvIggetGuT9HmUZUWFlcVV8FaSNJHVtRXbvQj-d2fariK64rVNUpKZNDOZme8j5DDQfiBTkTpWSuGA_W8cJaPYkUK6SvEgCqskmt51cHHnXd379zPkZEoEn7NTqYs2lqLD8EKjDoKvM4eDoD6fdQZfELuioiRGQh-wGeOwKZH5fQw8jHTx_TCaYmFWJ835EulN6nXqBJOn9rhUbf32E77xX5NYJouNyUnPah1ZITMmWyXznQnT2xp579ZcOMXLOKP9oXnLa3KcoaYDLa3NRynF-1rabSCjac9gwTDKlw7K4XNDAUbBAKb9Or8ve6A35qHCtK5e5Zb2QdkrEIMRvcY8S3qZPYJE18ndefe2c-E0tAwgwNAvHaUZd6UWzDLJA2OFq4URsZfGnmth_0sl3UCDBKRIwf90TRxphF2LjYE-NhYbZDbLM7NFKI89bZVrbGg9z7JI-aHkTCvPRL612rbIEaxc0myrIqki5pwl-LBezqRZzhZhE0kmukE3R5KN0Z99jj_7vNTYHn-2PpgoSALywbiKzEw-LhLwWkPE9In49DYCfpbgyoa-3yKbtXZ9flOEgoOhy7f_PdsdsoC093jHzNxdMlu-js0eGEel2q_2xAdD-Q2V |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEBYlOaSXNn27zUOFQg5l05W0z2MwDs7DxsQO5LZIWim4dXdDd30J9L93Ris7tCQhvWpXzxlJ30iabwj5kug4kaUoAyulCAD_m0DJLA-kkKFSPMlS94hmNE6Gl9HpVXzl_bjRFwYa0UBJjbvEv2MXYN8wDT3SoRahURXB5NkENMJRrY_60zumXeEiE2NcH4COeeo9Ze4vA_ck3fy9Jz0ANN2Gc_ySzNZNde9MfhwuW3Wob_9hcfzPvmyTFx6A0qNOY16RZ6Z6Tbb6q7hvb8jvQRcZp7lZVnQyN7d1FypnrulUS2vrRUnx9JYOPIE0HRl0H0Zp02k7_-kDglGAw3TSvfarrumFuXYM1-5TbekEVN9RGizoGF9d0pPqO8j3Lbk8Hsz6w8AHaQBxpnEbKM14KLVglkmeGCtCLYzIozKPQgurgVQyTDQIQooSrNHQ5JlGErbcGMhjc_GObFR1ZT4QyvNIWxUam9oosixTcSo50yoyWWyttj1yACNX-EnWFO7-nLMCE7vhLPxw9ghbCbTQnuscQ24sHs3zdZ3npmP6ePTvzys9KUA-eMsiK1MvmwJs2BQZfjL-8D8Clk4wbNM47pH3nZKt6xSp4AB7-ccn93afbA1no_Pi_GR89ok85wDD8PSZhTtko_21NLsAm1q156bJH4VPFfY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIQ1eBhsfK2PDSEg8oIzYzufj1LXagFUVZVLfItuxp0JJKpK-TOJ_353jFg2xadqrE3_enX323f2OkPeJjhNZijKwUooA9H8TKJnlgRQyVIonWeqcaM5HyelF9HkaT_3TBcbCwCAaaKlxRnyU6kVpPcIA-4TlGJUOPQmN7AjXnkdot0PWPu5P_qLtCpedGHP7gPqYpz5a5v9t4Lmkm5vn0i3Kpjt0hk_JdD1c52vy82jZqiN99Q-S4wPm84xse0WUHnecs0M2TLVLHvdX-d-ekz-DLkNOs1hWdDwzV3WXMmem6URLa-t5SfEVlw48kDQ9NxhGjFSnk3b2yycGo6AW03Hn9Vdd0m_m0iFdu0-1pWMQAQdtMKcj9L6kZ9UPoPMLcjEcfO-fBj5ZA5A1jdtAacZDqQWzTPLEWBFqYUQelXkUWtgVpJJhooEYUpRwKw1NnmkEY8uNgTo2Fy_JZlVXZo9QnkfaqtDY1EaRZZmKU8mZVpHJYmu17ZEPsHKFF7amcHZ0zgos7Jaz8MvZI2xF1EJ7zHNMvTG_s87HdZ1Fh_hx59_vVrxSAH3Q2iIrUy-bAu6yKSL9ZPz2fwRsoXDBTeO4R151jLbuU6SCg_rLX997tm_J1vhkWHw9G33ZJ084aGP4CM3CN2Sz_b00B6A9terQSco1W54YeQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrospun+Piezoelectric+Scaffold+with+External+Mechanical+Stimulation+for+Promoting+Regeneration+of+Peripheral+Nerve+Injury&rft.jtitle=Biomacromolecules&rft.au=Zhang%2C+Haiqiang&rft.au=Lan%2C+Dongwei&rft.au=Wu%2C+Baiqing&rft.au=Chen%2C+Xiang&rft.date=2023-07-10&rft.pub=American+Chemical+Society&rft.issn=1525-7797&rft.eissn=1526-4602&rft.volume=24&rft.issue=7&rft.spage=3268&rft.epage=3282&rft_id=info:doi/10.1021%2Facs.biomac.3c00311&rft.externalDocID=b426377689 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon |