Screening and Identification of Metacaspase Inhibitors: Evaluation of Inhibition Mechanism and Trypanocidal Activity

A common strategy to identify new antiparasitic agents is the targeting of proteases, due to their essential contributions to parasite growth and development. Metacaspases (MCAs) are cysteine proteases present in fungi, protozoa, and plants. These enzymes, which are associated with crucial cellular...

Full description

Saved in:
Bibliographic Details
Published inAntimicrobial agents and chemotherapy Vol. 65; no. 3
Main Authors Pérez, Brian, Bouvier, León A, Cazzulo, Juan José, Agüero, Fernán, Salas-Sarduy, Emir, Alvarez, Vanina E
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 17.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A common strategy to identify new antiparasitic agents is the targeting of proteases, due to their essential contributions to parasite growth and development. Metacaspases (MCAs) are cysteine proteases present in fungi, protozoa, and plants. These enzymes, which are associated with crucial cellular events in trypanosomes, are absent in the human host, thus arising as attractive drug targets. To find new MCA inhibitors with trypanocidal activity, we adapted a continuous fluorescence enzymatic assay to a medium-throughput format and carried out screening of different compound collections, followed by the construction of dose-response curves for the most promising hits. We used MCA5 from ( MCA5) as a model for the identification of inhibitors from the GlaxoSmithKline HAT and CHAGAS chemical boxes. We also assessed a third collection of nine compounds from the Maybridge database that had been identified by virtual screening as potential inhibitors of the cysteine peptidase falcipain-2 (clan CA) from Compound HTS01959 (from the Maybridge collection) was the most potent inhibitor, with a 50% inhibitory concentration (IC ) of 14.39 µM; it also inhibited other MCAs from and ( MCA2, 4.14 µM; MCA3, 5.04 µM; MCA5, 151 µM). HTS01959 behaved as a reversible, slow-binding, and noncompetitive inhibitor of MCA2, with a mechanism of action that included redox components. Importantly, HTS01959 displayed trypanocidal activity against bloodstream forms of and trypomastigote forms of , without cytotoxic effects on Vero cells. Thus, HTS01959 is a promising starting point to develop more specific and potent chemical structures to target MCAs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Pérez B, Bouvier LA, Cazzulo JJ, Agüero F, Salas-Sarduy E, Alvarez VE. 2021. Screening and identification of metacaspase inhibitors: evaluation of inhibition mechanism and trypanocidal activity. Antimicrob Agents Chemother 65:e01330-20. https://doi.org/10.1128/AAC.01330-20.
ISSN:0066-4804
1098-6596
DOI:10.1128/AAC.01330-20