Modelling the near-wellbore rock fracture tortuosity: Role of casing-cement-rock well system, perforation and in-situ stress
Near-wellbore rock fracture is a key subject in subsurface energy extraction. Casing perforation completion is perhaps the most used type of well design mainly in comparison to the open hole completion. However, the effects of the combined casing-cementing-rock structure on pressure transmission in...
Saved in:
Published in | International journal of rock mechanics and mining sciences (Oxford, England : 1997) Vol. 157; p. 105182 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Near-wellbore rock fracture is a key subject in subsurface energy extraction. Casing perforation completion is perhaps the most used type of well design mainly in comparison to the open hole completion. However, the effects of the combined casing-cementing-rock structure on pressure transmission in fracturing the rock have not been sufficiently addressed, but is key to understanding some important phenomena in hydraulic fracturing, such as fracture tortuosity. Here we develop a combined analytical-numerical model to investigate the rock fracture mechanism near the wellbore with realistic consideration of the boundary condition imposed by the complete well system. Different well configurations can lead to variation in the pressure applied on the rock formation and hence affect the fracture propagation near the wellbore. Our results show, as the pressure transmission through the well structure is enhanced, the fracture propagates more closely to the perforation orientation with a smaller deflection angle and the breakdown pressure is increased. The near-well tortuosity of the crack can be reduced by decreasing the thickness of casing and cement sheath, reducing Young's modulus of casing and increasing Young's modulus of cement up to around 15 GPa, based on the realistic range of values of the well parameters. The effects of in-situ stress condition and perforation angle and length on the near-well cracking are also investigated. The developed model can be used to aid decision making in terms of improved understanding of hydraulic fracturing technology and well design optimization. |
---|---|
AbstractList | Near-wellbore rock fracture is a key subject in subsurface energy extraction. Casing perforation completion is perhaps the most used type of well design mainly in comparison to the open hole completion. However, the effects of the combined casing-cementing-rock structure on pressure transmission in fracturing the rock have not been sufficiently addressed, but is key to understanding some important phenomena in hydraulic fracturing, such as fracture tortuosity. Here we develop a combined analytical-numerical model to investigate the rock fracture mechanism near the wellbore with realistic consideration of the boundary condition imposed by the complete well system. Different well configurations can lead to variation in the pressure applied on the rock formation and hence affect the fracture propagation near the wellbore. Our results show, as the pressure transmission through the well structure is enhanced, the fracture propagates more closely to the perforation orientation with a smaller deflection angle and the breakdown pressure is increased. The near-well tortuosity of the crack can be reduced by decreasing the thickness of casing and cement sheath, reducing Young's modulus of casing and increasing Young's modulus of cement up to around 15 GPa, based on the realistic range of values of the well parameters. The effects of in-situ stress condition and perforation angle and length on the near-well cracking are also investigated. The developed model can be used to aid decision making in terms of improved understanding of hydraulic fracturing technology and well design optimization. |
ArticleNumber | 105182 |
Author | Xi, Xun Shipton, Zoe Cai, Meifeng Yang, Shangtong |
Author_xml | – sequence: 1 givenname: Xun orcidid: 0000-0002-8667-1950 surname: Xi fullname: Xi, Xun organization: School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China – sequence: 2 givenname: Shangtong orcidid: 0000-0001-9977-5954 surname: Yang fullname: Yang, Shangtong email: shangtong.yang@strath.ac.uk organization: Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK – sequence: 3 givenname: Zoe orcidid: 0000-0002-2268-7750 surname: Shipton fullname: Shipton, Zoe organization: Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK – sequence: 4 givenname: Meifeng surname: Cai fullname: Cai, Meifeng organization: School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China |
BookMark | eNqFkM9KAzEQxoMoqNU38JAHMDXJJrtbD4KI_0ARRM8hm8xq6m4iSaoUfHjT1pMHPc3Mx_w-Zr59tO2DB4SOGJ0yyuqT-dTN4zimKaecF0mylm-hPdY2FRFSyO3SV7UkrKazXbSf0pxSWvO62UNf98HCMDj_gvMrYA86ks8idCECjsG84T5qkxdlyiHmRUguL0_xYxgAhx4bnQpKDIzgM1nvr2iclinDeIzfIfYh6uyCx9pb7DwpBguccoSUDtBOr4cEhz91gp6vLp8ubsjdw_Xtxfkd0VUjM5lVgtoWbKOl4NZ0Rsi2E5xT3QrLatsZNrOt6Gip0HOp66rpNatBaKk73VcTdLrxNTGkFKFXxuX1UTlqNyhG1SpHNVebHNUqR7XJscDiF_we3ajj8j_sbINBeezDQVTJOPAGrItgsrLB_W3wDbUYlNY |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e26342 crossref_primary_10_1016_j_tafmec_2022_103641 crossref_primary_10_1007_s00603_024_04183_z crossref_primary_10_3390_pr11072028 crossref_primary_10_1021_acsomega_3c01835 |
Cites_doi | 10.1007/BF00047063 10.1016/j.engfracmech.2018.04.029 10.1016/j.petrol.2018.05.016 10.1016/j.jrmge.2013.12.007 10.1007/s00603-016-1057-2 10.1007/s40789-020-00327-y 10.1016/j.engfracmech.2017.10.013 10.1146/annurev-fluid-010814-014736 10.1016/j.ijrmms.2003.08.002 10.1007/s11440-018-0645-6 10.1016/j.tafmec.2019.102274 10.1016/j.ijrmms.2019.01.001 10.1016/j.enggeo.2017.04.010 10.1016/j.petrol.2009.11.021 10.1016/j.petrol.2018.03.068 10.1016/j.jngse.2018.04.015 10.1002/suco.201600020 10.1016/j.compgeo.2015.12.013 10.1016/j.ijrmms.2021.104766 10.3390/en12071232 10.1007/BF02483281 10.1061/(ASCE)0899-1561(2008)20:3(245) 10.1016/j.earscirev.2021.103580 10.1007/s40789-020-00300-9 10.1016/j.ijrmms.2009.01.001 10.1007/s00603-014-0608-7 10.1016/S0920-4105(00)00056-5 10.1016/j.jngse.2018.02.020 10.3390/en12112044 10.1016/j.ijrmms.2018.10.001 10.1016/j.compgeo.2016.07.009 10.1016/j.ijrmms.2011.06.005 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S 10.1016/j.compgeo.2017.10.008 10.1016/0008-8846(76)90007-7 10.1016/j.petrol.2015.08.010 10.1016/j.fuel.2018.09.005 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.ijrmms.2022.105182 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4545 |
ExternalDocumentID | 10_1016_j_ijrmms_2022_105182 S1365160922001484 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ACSBN ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSE SST SSZ T5K ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-a375t-9340d8ed7a542dcbc458b4220a84d16dbc19d84b0c19ef25a637fa16e4a5abaf3 |
IEDL.DBID | .~1 |
ISSN | 1365-1609 |
IngestDate | Thu Apr 24 23:02:32 EDT 2025 Tue Jul 01 01:54:09 EDT 2025 Fri Feb 23 02:40:53 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Well design Near-wellbore Modelling Rock fracture Hydraulic fracturing |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a375t-9340d8ed7a542dcbc458b4220a84d16dbc19d84b0c19ef25a637fa16e4a5abaf3 |
ORCID | 0000-0002-2268-7750 0000-0001-9977-5954 0000-0002-8667-1950 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1365160922001484 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ijrmms_2022_105182 crossref_primary_10_1016_j_ijrmms_2022_105182 elsevier_sciencedirect_doi_10_1016_j_ijrmms_2022_105182 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationTitle | International journal of rock mechanics and mining sciences (Oxford, England : 1997) |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yew, Schmidt, Li (bib16) 1989 Zhu, Deng, Jin, Hu, Luo (bib6) 2014; 48 Gordeliy, Abbas, Prioul (bib25) 2016 Chen, Barboza, Sun (bib29) 2021 He, Zhu, Li, Li, Zhang (bib20) 2021 Yang, Lian, Liang, Nguyen, Bordas (bib47) 2019; 115 Guo, Luo, Lu, Lai, Ren (bib49) 2017; 186 Feng, Gray (bib19) 2018; 14 Alam, Borre, Fabricius (bib28) 2010; 70 Lisjak, Grasselli (bib42) 2014; 6 Guner, Ozturk, Erkayaoglu (bib52) 2017; 18 Vasconcelos, Lourenco, Costa (bib44) 2008; 20 Dong, Tang (bib11) 2019; 103 Li, Xiao, Hao, Dong, Hua, Li (bib31) 2019; 12 Weng (bib24) 1993 Hossain, Rahman, Rahman (bib14) 2000; 27 Nguyen, Lian, Rabczuk, Bordas (bib48) 2017; 225 Zhuang, Zang (bib2) 2021; 216 Cherny, Chirkov, Lapin (bib18) 2009; 46 Zhang, Jeffrey, Bunger, Thiercelin (bib10) 2011; 48 Guanhua, Kai, Shang, Qian (bib1) 2019; 236 Yan, Jiao, Zheng (bib39) 2018; 96 Terzaghi (bib27) 1943 Haddad, Sepehrnoori (bib38) 2016; 49 Bazant, Le (bib35) 2017 Wang (bib23) 2015; 135 Hillerborg, Modeer, Petersson (bib37) 1976; 6 Ji, Zhuang, Wu, Hofmann, Zang, Zimmermann (bib4) 2021 (bib51) 2018 Belytschko, Black (bib32) 1999; 45 Xie, Cao, Liu, Dong (bib33) 2016; 74 Barr, Lee, de Place Hansen (bib46) 2003; 36 Xiang, Zhou, Yuan, Ji, Chang (bib21) 2019 Wu (bib3) 2018 Goodier, Timoshenko (bib26) 1969 Xi, Yang, McDermott, Shipton, Fraser-Harris, Edlmann (bib30) 2021 Detournay (bib50) 2016; 48 Lisjak, Kaifosh, He, Tatone, Mahabadi, Grasselli (bib41) 2017; 81 Yew, Weng (bib15) 2015 Ju, Wang, Chen, Gao, Wang (bib40) 2018; 54 Cruz, Roehl, Vargas (bib34) 2018; 112 Li, Li, Zhang, Yang, Liu (bib43) 2020; 7 Abass, Brumley, Venditto (bib12) 1994 Dong, Tang, Ranjith, Lang (bib17) 2018; 196 Kong, Ranjith, Li (bib5) 2021; 144 Liu, Gao, Taleghani (bib7) 2018; 168 Haimson, Cornet (bib13) 2003; 40 Bažant, Kazemi (bib45) 1990; 44 Wang, Yang, Wu, Hu, Faisal (bib36) 2020; 7 Feng, Gray (bib9) 2018; 53 Nath, Kimanzi, Mokhtari, Salehi (bib8) 2018; 166 Li, Dong, Hua, Yang, Li (bib22) 2019; 12 Vasconcelos (10.1016/j.ijrmms.2022.105182_bib44) 2008; 20 Li (10.1016/j.ijrmms.2022.105182_bib31) 2019; 12 He (10.1016/j.ijrmms.2022.105182_bib20) 2021 Feng (10.1016/j.ijrmms.2022.105182_bib19) 2018; 14 Yan (10.1016/j.ijrmms.2022.105182_bib39) 2018; 96 (10.1016/j.ijrmms.2022.105182_bib51) 2018 Weng (10.1016/j.ijrmms.2022.105182_bib24) 1993 Goodier (10.1016/j.ijrmms.2022.105182_bib26) 1969 Wu (10.1016/j.ijrmms.2022.105182_bib3) 2018 Alam (10.1016/j.ijrmms.2022.105182_bib28) 2010; 70 Zhuang (10.1016/j.ijrmms.2022.105182_bib2) 2021; 216 Lisjak (10.1016/j.ijrmms.2022.105182_bib41) 2017; 81 Dong (10.1016/j.ijrmms.2022.105182_bib11) 2019; 103 Terzaghi (10.1016/j.ijrmms.2022.105182_bib27) 1943 Barr (10.1016/j.ijrmms.2022.105182_bib46) 2003; 36 Gordeliy (10.1016/j.ijrmms.2022.105182_bib25) 2016 Chen (10.1016/j.ijrmms.2022.105182_bib29) 2021 Guo (10.1016/j.ijrmms.2022.105182_bib49) 2017; 186 Xiang (10.1016/j.ijrmms.2022.105182_bib21) 2019 Ju (10.1016/j.ijrmms.2022.105182_bib40) 2018; 54 Xie (10.1016/j.ijrmms.2022.105182_bib33) 2016; 74 Belytschko (10.1016/j.ijrmms.2022.105182_bib32) 1999; 45 Yew (10.1016/j.ijrmms.2022.105182_bib16) 1989 Nguyen (10.1016/j.ijrmms.2022.105182_bib48) 2017; 225 Cruz (10.1016/j.ijrmms.2022.105182_bib34) 2018; 112 Wang (10.1016/j.ijrmms.2022.105182_bib23) 2015; 135 Guanhua (10.1016/j.ijrmms.2022.105182_bib1) 2019; 236 Ji (10.1016/j.ijrmms.2022.105182_bib4) 2021 Zhu (10.1016/j.ijrmms.2022.105182_bib6) 2014; 48 Feng (10.1016/j.ijrmms.2022.105182_bib9) 2018; 53 Haimson (10.1016/j.ijrmms.2022.105182_bib13) 2003; 40 Liu (10.1016/j.ijrmms.2022.105182_bib7) 2018; 168 Nath (10.1016/j.ijrmms.2022.105182_bib8) 2018; 166 Abass (10.1016/j.ijrmms.2022.105182_bib12) 1994 Hossain (10.1016/j.ijrmms.2022.105182_bib14) 2000; 27 Guner (10.1016/j.ijrmms.2022.105182_bib52) 2017; 18 Detournay (10.1016/j.ijrmms.2022.105182_bib50) 2016; 48 Yang (10.1016/j.ijrmms.2022.105182_bib47) 2019; 115 Bažant (10.1016/j.ijrmms.2022.105182_bib45) 1990; 44 Lisjak (10.1016/j.ijrmms.2022.105182_bib42) 2014; 6 Li (10.1016/j.ijrmms.2022.105182_bib43) 2020; 7 Kong (10.1016/j.ijrmms.2022.105182_bib5) 2021; 144 Zhang (10.1016/j.ijrmms.2022.105182_bib10) 2011; 48 Yew (10.1016/j.ijrmms.2022.105182_bib15) 2015 Xi (10.1016/j.ijrmms.2022.105182_bib30) 2021 Wang (10.1016/j.ijrmms.2022.105182_bib36) 2020; 7 Dong (10.1016/j.ijrmms.2022.105182_bib17) 2018; 196 Haddad (10.1016/j.ijrmms.2022.105182_bib38) 2016; 49 Cherny (10.1016/j.ijrmms.2022.105182_bib18) 2009; 46 Li (10.1016/j.ijrmms.2022.105182_bib22) 2019; 12 Hillerborg (10.1016/j.ijrmms.2022.105182_bib37) 1976; 6 Bazant (10.1016/j.ijrmms.2022.105182_bib35) 2017 |
References_xml | – volume: 40 start-page: 1011 year: 2003 end-page: 1020 ident: bib13 article-title: ISRM Suggested Methods for rock stress estimation—Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF) publication-title: Int J Rock Mech Min Sci – year: 2021 ident: bib29 article-title: A Review of Hydraulic Fracturing Simulation – year: 2018 ident: bib3 article-title: Hydraulic Fracture Modeling – volume: 18 start-page: 84 year: 2017 end-page: 91 ident: bib52 article-title: Investigation of the elastic material properties of Class G cement publication-title: Struct Concr – volume: 186 start-page: 195 year: 2017 end-page: 207 ident: bib49 article-title: Numerical investigation of hydraulic fracture propagation in a layered reservoir using the cohesive zone method publication-title: Eng Fract Mech – volume: 81 start-page: 1 year: 2017 end-page: 18 ident: bib41 article-title: A 2D, fully-coupled, hydro-mechanical, FDEM formulation for modelling fracturing processes in discontinuous, porous rock masses publication-title: Comput Geotech – volume: 20 start-page: 245 year: 2008 end-page: 254 ident: bib44 article-title: Mode I fracture surface of granite: measurements and correlations with mechanical properties publication-title: J Mater Civ Eng – year: 1989 ident: bib16 article-title: On Fracture Design of Deviated Wells – volume: 46 start-page: 992 year: 2009 end-page: 1000 ident: bib18 article-title: Two-dimensional modeling of the near-wellbore fracture tortuosity effect publication-title: Int J Rock Mech Min Sci – volume: 7 start-page: 208 year: 2020 end-page: 215 ident: bib43 article-title: Formation mechanism and height calculation of the caved zone and water-conducting fracture zone in solid backfill mining publication-title: Int J Coal Sci Technol – volume: 14 start-page: 377 year: 2018 end-page: 402 ident: bib19 article-title: XFEM-based cohesive zone approach for modeling near-wellbore hydraulic fracture complexity publication-title: Acta Geotechnica – year: 2021 ident: bib30 article-title: Modelling Rock Fracture Induced by Hydraulic Pulses – volume: 49 start-page: 4731 year: 2016 end-page: 4748 ident: bib38 article-title: XFEM-based CZM for the simulation of 3D multiple-cluster hydraulic fracturing in quasi-brittle shale formations publication-title: Rock Mech Rock Eng – volume: 12 year: 2019 ident: bib22 article-title: Numerical simulation on deflecting hydraulic fracture with refracturing using extended finite element method publication-title: Energies – start-page: 1 year: 2019 end-page: 17 ident: bib21 article-title: Pore pressure cohesive zone modelling of complex hydraulic fracture propagation in a permeable medium publication-title: Eur J Environ Civil Eng – volume: 45 start-page: 601 year: 1999 end-page: 620 ident: bib32 article-title: Elastic crack growth in finite elements with minimal remeshing publication-title: Int J Numer Methods Eng – volume: 70 start-page: 282 year: 2010 end-page: 297 ident: bib28 article-title: Biot's coefficient as an indicator of strength and porosity reduction: calcareous sediments from Kerguelen Plateau publication-title: J Petrol Sci Eng – year: 1993 ident: bib24 article-title: Fracture Initiation and Propagation from Deviated Wellbores – volume: 44 start-page: 111 year: 1990 end-page: 131 ident: bib45 article-title: Determination of fracture energy, process zone longth and brittleness number from size effect, with application to rock and conerete publication-title: Int J Fracture – volume: 103 year: 2019 ident: bib11 article-title: Numerical study of near-wellbore hydraulic fracture propagation publication-title: Theor Appl Fract Mech – volume: 48 start-page: 984 year: 2011 end-page: 995 ident: bib10 article-title: Initiation and growth of a hydraulic fracture from a circular wellbore publication-title: Int J Rock Mech Min Sci – volume: 36 start-page: 609 year: 2003 end-page: 620 ident: bib46 article-title: Round-robin analysis of the RILEM TC 162-TDF beam-bending test: Part 1—test method evaluation publication-title: Mater Struct – volume: 54 start-page: 266 year: 2018 end-page: 282 ident: bib40 article-title: Adaptive finite element-discrete element method for numerical analysis of the multistage hydrofracturing of horizontal wells in tight reservoirs considering pre-existing fractures, hydromechanical coupling, and leak-off effects publication-title: J Nat Gas Sci Eng – year: 2021 ident: bib20 article-title: Simulating Hydraulic Fracture Re-orientation in Heterogeneous Rocks with an Improved Discrete Element Method – volume: 115 start-page: 145 year: 2019 end-page: 156 ident: bib47 article-title: Model I cohesive zone models of different rank coals publication-title: Int J Rock Mech Min Sci – volume: 225 start-page: 68 year: 2017 end-page: 82 ident: bib48 article-title: Modelling hydraulic fractures in porous media using flow cohesive interface elements publication-title: Eng Geol – volume: 48 start-page: 585 year: 2014 end-page: 601 ident: bib6 article-title: Hydraulic fracture initiation and propagation from wellbore with oriented perforation publication-title: Rock Mech Rock Eng – year: 2018 ident: bib51 article-title: ABAQUS user documentation – volume: 135 start-page: 127 year: 2015 end-page: 140 ident: bib23 article-title: Numerical modeling of non-planar hydraulic fracture propagation in brittle and ductile rocks using XFEM with cohesive zone method publication-title: J Petrol Sci Eng – start-page: 69 year: 2015 end-page: 88 ident: bib15 article-title: Deviated Wellbores, Mechanics of Hydraulic Fracturing – volume: 196 start-page: 28 year: 2018 end-page: 42 ident: bib17 article-title: A theoretical model for hydraulic fracturing through a single radial perforation emanating from a borehole publication-title: Eng Fract Mech – volume: 112 start-page: 385 year: 2018 end-page: 397 ident: bib34 article-title: An XFEM element to model intersections between hydraulic and natural fractures in porous rocks publication-title: Int J Rock Mech Min Sci – volume: 236 start-page: 190 year: 2019 end-page: 200 ident: bib1 article-title: Gas desorption characteristics effected by the pulsating hydraulic fracturing in coal publication-title: Fuel – volume: 74 start-page: 1 year: 2016 end-page: 14 ident: bib33 article-title: Influence of crack surface friction on crack initiation and propagation: a numerical investigation based on extended finite element method publication-title: Comput Geotech – year: 2017 ident: bib35 article-title: Probabilistic Mechanics of Quasibrittle Structures: Strength, Lifetime, and Size Effect – volume: 6 start-page: 773 year: 1976 end-page: 781 ident: bib37 article-title: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements publication-title: Cement Concr Res – volume: 6 start-page: 301 year: 2014 end-page: 314 ident: bib42 article-title: A review of discrete modeling techniques for fracturing processes in discontinuous rock masses publication-title: J Rock Mech Geotech Eng – year: 2021 ident: bib4 article-title: Cyclic Water Injection Potentially Mitigates Seismic Risks by Promoting Slow and Stable Slip of a Natural Fracture in Granite, Rock Mechanics and Rock Engineering – volume: 27 start-page: 129 year: 2000 end-page: 149 ident: bib14 article-title: Hydraulic fracture initiation and propagation: roles of wellbore trajectory, perforation and stress regimes publication-title: J Petrol Sci Eng – year: 1994 ident: bib12 article-title: Oriented Perforations - A Rock Mechanics View – volume: 96 start-page: 73 year: 2018 end-page: 89 ident: bib39 article-title: A fully coupled three-dimensional hydro-mechanical finite discrete element approach with real porous seepage for simulating 3D hydraulic fracturing publication-title: Comput Geotech – volume: 166 start-page: 482 year: 2018 end-page: 489 ident: bib8 article-title: A novel method to investigate cement-casing bonding using digital image correlation publication-title: J Petrol Sci Eng – year: 1943 ident: bib27 article-title: Theoretical Soil Mechanics – year: 1969 ident: bib26 article-title: Theory of Elasticity – year: 2016 ident: bib25 article-title: Modeling of near-wellbore fracture reorientation using a fluid-coupled 2D XFEM algorithm publication-title: 50th U.S. Rock Mechanics/Geomechanics Symposium – volume: 168 start-page: 370 year: 2018 end-page: 379 ident: bib7 article-title: Analysis on integrity of cement sheath in the vertical section of wells during hydraulic fracturing publication-title: J Petrol Sci Eng – volume: 216 year: 2021 ident: bib2 article-title: Laboratory hydraulic fracturing experiments on crystalline rock for geothermal purposes publication-title: Earth Sci Rev – volume: 144 year: 2021 ident: bib5 article-title: Fluid-driven micro-cracking behaviour of crystalline rock using a coupled hydro-grain-based discrete element method publication-title: Int J Rock Mech Min Sci – volume: 53 start-page: 83 year: 2018 end-page: 93 ident: bib9 article-title: Modeling of curving hydraulic fracture propagation from a wellbore in a poroelastic medium publication-title: J Nat Gas Sci Eng – volume: 12 year: 2019 ident: bib31 article-title: Comparison of different hydraulic fracturing scenarios in horizontal wells using XFEM based on the cohesive zone method publication-title: Energies – volume: 48 start-page: 311 year: 2016 end-page: 339 ident: bib50 article-title: Mechanics of hydraulic fractures publication-title: Annu Rev Fluid Mech – volume: 7 start-page: 704 year: 2020 end-page: 713 ident: bib36 article-title: Analysis of fracture mechanism for surrounding rock hole based on water-filled blasting publication-title: Int J Coal Sci Technol – volume: 44 start-page: 111 issue: 2 year: 1990 ident: 10.1016/j.ijrmms.2022.105182_bib45 article-title: Determination of fracture energy, process zone longth and brittleness number from size effect, with application to rock and conerete publication-title: Int J Fracture doi: 10.1007/BF00047063 – volume: 196 start-page: 28 year: 2018 ident: 10.1016/j.ijrmms.2022.105182_bib17 article-title: A theoretical model for hydraulic fracturing through a single radial perforation emanating from a borehole publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2018.04.029 – volume: 168 start-page: 370 year: 2018 ident: 10.1016/j.ijrmms.2022.105182_bib7 article-title: Analysis on integrity of cement sheath in the vertical section of wells during hydraulic fracturing publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2018.05.016 – volume: 6 start-page: 301 issue: 4 year: 2014 ident: 10.1016/j.ijrmms.2022.105182_bib42 article-title: A review of discrete modeling techniques for fracturing processes in discontinuous rock masses publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2013.12.007 – start-page: 1 year: 2019 ident: 10.1016/j.ijrmms.2022.105182_bib21 article-title: Pore pressure cohesive zone modelling of complex hydraulic fracture propagation in a permeable medium publication-title: Eur J Environ Civil Eng – volume: 49 start-page: 4731 issue: 12 year: 2016 ident: 10.1016/j.ijrmms.2022.105182_bib38 article-title: XFEM-based CZM for the simulation of 3D multiple-cluster hydraulic fracturing in quasi-brittle shale formations publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-016-1057-2 – year: 2018 ident: 10.1016/j.ijrmms.2022.105182_bib3 – volume: 7 start-page: 704 issue: 4 year: 2020 ident: 10.1016/j.ijrmms.2022.105182_bib36 article-title: Analysis of fracture mechanism for surrounding rock hole based on water-filled blasting publication-title: Int J Coal Sci Technol doi: 10.1007/s40789-020-00327-y – volume: 186 start-page: 195 year: 2017 ident: 10.1016/j.ijrmms.2022.105182_bib49 article-title: Numerical investigation of hydraulic fracture propagation in a layered reservoir using the cohesive zone method publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2017.10.013 – year: 1943 ident: 10.1016/j.ijrmms.2022.105182_bib27 – volume: 48 start-page: 311 issue: 1 year: 2016 ident: 10.1016/j.ijrmms.2022.105182_bib50 article-title: Mechanics of hydraulic fractures publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-010814-014736 – volume: 40 start-page: 1011 issue: 7-8 year: 2003 ident: 10.1016/j.ijrmms.2022.105182_bib13 article-title: ISRM Suggested Methods for rock stress estimation—Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF) publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2003.08.002 – year: 2018 ident: 10.1016/j.ijrmms.2022.105182_bib51 – volume: 14 start-page: 377 issue: 2 year: 2018 ident: 10.1016/j.ijrmms.2022.105182_bib19 article-title: XFEM-based cohesive zone approach for modeling near-wellbore hydraulic fracture complexity publication-title: Acta Geotechnica doi: 10.1007/s11440-018-0645-6 – year: 2017 ident: 10.1016/j.ijrmms.2022.105182_bib35 – year: 2021 ident: 10.1016/j.ijrmms.2022.105182_bib29 – volume: 103 year: 2019 ident: 10.1016/j.ijrmms.2022.105182_bib11 article-title: Numerical study of near-wellbore hydraulic fracture propagation publication-title: Theor Appl Fract Mech doi: 10.1016/j.tafmec.2019.102274 – year: 2021 ident: 10.1016/j.ijrmms.2022.105182_bib4 – volume: 115 start-page: 145 year: 2019 ident: 10.1016/j.ijrmms.2022.105182_bib47 article-title: Model I cohesive zone models of different rank coals publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2019.01.001 – year: 1969 ident: 10.1016/j.ijrmms.2022.105182_bib26 – volume: 225 start-page: 68 year: 2017 ident: 10.1016/j.ijrmms.2022.105182_bib48 article-title: Modelling hydraulic fractures in porous media using flow cohesive interface elements publication-title: Eng Geol doi: 10.1016/j.enggeo.2017.04.010 – year: 1993 ident: 10.1016/j.ijrmms.2022.105182_bib24 – volume: 70 start-page: 282 issue: 3 year: 2010 ident: 10.1016/j.ijrmms.2022.105182_bib28 article-title: Biot's coefficient as an indicator of strength and porosity reduction: calcareous sediments from Kerguelen Plateau publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2009.11.021 – volume: 166 start-page: 482 year: 2018 ident: 10.1016/j.ijrmms.2022.105182_bib8 article-title: A novel method to investigate cement-casing bonding using digital image correlation publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2018.03.068 – volume: 54 start-page: 266 year: 2018 ident: 10.1016/j.ijrmms.2022.105182_bib40 article-title: Adaptive finite element-discrete element method for numerical analysis of the multistage hydrofracturing of horizontal wells in tight reservoirs considering pre-existing fractures, hydromechanical coupling, and leak-off effects publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2018.04.015 – volume: 18 start-page: 84 issue: 1 year: 2017 ident: 10.1016/j.ijrmms.2022.105182_bib52 article-title: Investigation of the elastic material properties of Class G cement publication-title: Struct Concr doi: 10.1002/suco.201600020 – volume: 74 start-page: 1 year: 2016 ident: 10.1016/j.ijrmms.2022.105182_bib33 article-title: Influence of crack surface friction on crack initiation and propagation: a numerical investigation based on extended finite element method publication-title: Comput Geotech doi: 10.1016/j.compgeo.2015.12.013 – volume: 144 year: 2021 ident: 10.1016/j.ijrmms.2022.105182_bib5 article-title: Fluid-driven micro-cracking behaviour of crystalline rock using a coupled hydro-grain-based discrete element method publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2021.104766 – year: 2021 ident: 10.1016/j.ijrmms.2022.105182_bib20 – volume: 12 issue: 7 year: 2019 ident: 10.1016/j.ijrmms.2022.105182_bib31 article-title: Comparison of different hydraulic fracturing scenarios in horizontal wells using XFEM based on the cohesive zone method publication-title: Energies doi: 10.3390/en12071232 – volume: 36 start-page: 609 issue: 9 year: 2003 ident: 10.1016/j.ijrmms.2022.105182_bib46 article-title: Round-robin analysis of the RILEM TC 162-TDF beam-bending test: Part 1—test method evaluation publication-title: Mater Struct doi: 10.1007/BF02483281 – volume: 20 start-page: 245 issue: 3 year: 2008 ident: 10.1016/j.ijrmms.2022.105182_bib44 article-title: Mode I fracture surface of granite: measurements and correlations with mechanical properties publication-title: J Mater Civ Eng doi: 10.1061/(ASCE)0899-1561(2008)20:3(245) – volume: 216 year: 2021 ident: 10.1016/j.ijrmms.2022.105182_bib2 article-title: Laboratory hydraulic fracturing experiments on crystalline rock for geothermal purposes publication-title: Earth Sci Rev doi: 10.1016/j.earscirev.2021.103580 – start-page: 69 year: 2015 ident: 10.1016/j.ijrmms.2022.105182_bib15 – volume: 7 start-page: 208 issue: 1 year: 2020 ident: 10.1016/j.ijrmms.2022.105182_bib43 article-title: Formation mechanism and height calculation of the caved zone and water-conducting fracture zone in solid backfill mining publication-title: Int J Coal Sci Technol doi: 10.1007/s40789-020-00300-9 – volume: 46 start-page: 992 issue: 6 year: 2009 ident: 10.1016/j.ijrmms.2022.105182_bib18 article-title: Two-dimensional modeling of the near-wellbore fracture tortuosity effect publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2009.01.001 – volume: 48 start-page: 585 issue: 2 year: 2014 ident: 10.1016/j.ijrmms.2022.105182_bib6 article-title: Hydraulic fracture initiation and propagation from wellbore with oriented perforation publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-014-0608-7 – year: 1994 ident: 10.1016/j.ijrmms.2022.105182_bib12 – volume: 27 start-page: 129 issue: 3-4 year: 2000 ident: 10.1016/j.ijrmms.2022.105182_bib14 article-title: Hydraulic fracture initiation and propagation: roles of wellbore trajectory, perforation and stress regimes publication-title: J Petrol Sci Eng doi: 10.1016/S0920-4105(00)00056-5 – volume: 53 start-page: 83 year: 2018 ident: 10.1016/j.ijrmms.2022.105182_bib9 article-title: Modeling of curving hydraulic fracture propagation from a wellbore in a poroelastic medium publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2018.02.020 – volume: 12 issue: 11 year: 2019 ident: 10.1016/j.ijrmms.2022.105182_bib22 article-title: Numerical simulation on deflecting hydraulic fracture with refracturing using extended finite element method publication-title: Energies doi: 10.3390/en12112044 – volume: 112 start-page: 385 year: 2018 ident: 10.1016/j.ijrmms.2022.105182_bib34 article-title: An XFEM element to model intersections between hydraulic and natural fractures in porous rocks publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2018.10.001 – year: 2016 ident: 10.1016/j.ijrmms.2022.105182_bib25 article-title: Modeling of near-wellbore fracture reorientation using a fluid-coupled 2D XFEM algorithm – volume: 81 start-page: 1 year: 2017 ident: 10.1016/j.ijrmms.2022.105182_bib41 article-title: A 2D, fully-coupled, hydro-mechanical, FDEM formulation for modelling fracturing processes in discontinuous, porous rock masses publication-title: Comput Geotech doi: 10.1016/j.compgeo.2016.07.009 – volume: 48 start-page: 984 issue: 6 year: 2011 ident: 10.1016/j.ijrmms.2022.105182_bib10 article-title: Initiation and growth of a hydraulic fracture from a circular wellbore publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2011.06.005 – volume: 45 start-page: 601 issue: 5 year: 1999 ident: 10.1016/j.ijrmms.2022.105182_bib32 article-title: Elastic crack growth in finite elements with minimal remeshing publication-title: Int J Numer Methods Eng doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S – year: 2021 ident: 10.1016/j.ijrmms.2022.105182_bib30 – volume: 96 start-page: 73 year: 2018 ident: 10.1016/j.ijrmms.2022.105182_bib39 article-title: A fully coupled three-dimensional hydro-mechanical finite discrete element approach with real porous seepage for simulating 3D hydraulic fracturing publication-title: Comput Geotech doi: 10.1016/j.compgeo.2017.10.008 – volume: 6 start-page: 773 issue: 6 year: 1976 ident: 10.1016/j.ijrmms.2022.105182_bib37 article-title: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements publication-title: Cement Concr Res doi: 10.1016/0008-8846(76)90007-7 – volume: 135 start-page: 127 year: 2015 ident: 10.1016/j.ijrmms.2022.105182_bib23 article-title: Numerical modeling of non-planar hydraulic fracture propagation in brittle and ductile rocks using XFEM with cohesive zone method publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2015.08.010 – volume: 236 start-page: 190 year: 2019 ident: 10.1016/j.ijrmms.2022.105182_bib1 article-title: Gas desorption characteristics effected by the pulsating hydraulic fracturing in coal publication-title: Fuel doi: 10.1016/j.fuel.2018.09.005 – year: 1989 ident: 10.1016/j.ijrmms.2022.105182_bib16 |
SSID | ssj0006267 |
Score | 2.4215224 |
Snippet | Near-wellbore rock fracture is a key subject in subsurface energy extraction. Casing perforation completion is perhaps the most used type of well design mainly... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105182 |
SubjectTerms | Hydraulic fracturing Modelling Near-wellbore Rock fracture Well design |
Title | Modelling the near-wellbore rock fracture tortuosity: Role of casing-cement-rock well system, perforation and in-situ stress |
URI | https://dx.doi.org/10.1016/j.ijrmms.2022.105182 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DX_RB_MT5MfLgo3FtmrSpb2M4puIe1MHeStIksLl1Y6wPgvi3m-uHThAFn0pKrpTL9e56_O53CF0wC4l5FBFplSDMhtZ9czwkIfVVzARVnEOj8MMg7A_Z3YiPGqhb98IArLLy_aVPL7x1daddabO9GI_bTwDQ8kMvpgALYgI4QRmLwMqv3r9gHi5hj-reK9hdt88VGK_xZDmbAWk3pTDw1hf05_C0FnJ6u2inyhVxp3ydPdQw2T7aXmMQPEBvMMusoNXGLpPDmbNbAuU4d7IGu9j0gi20QeVu5X6uVzlAtF6v8eN8avDc4lRCqYCkRY2QFPtBGpf8zpd4UYDfi8PDMtN4nBH3gByXHSaHaNi7ee72STVQgcgg4isSB8zTwuhIckZ1qlLGhWJOf1Iw7YdapX6sBVOeuxpLuQyDyEo_NExyqaQNjtBGNs_MMcLGmJhKm8aedm5AMKkC5jIBFWhj45h7TRTUekzSim0chl5MkxpWNklK7Seg_aTUfhORT6lFybbxx_6oPqLkm9UkLiD8Knnyb8lTtAWrEmd2hjZWy9ycu8RkpVqF5bXQZuf2vj_4AIan5XI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5096AexCe-zcGjYds0aVNvIsqujz34AG8laRLYdbe7yO5B8Meb6UMURMFTaZspZWY6Mw3ffANwwh0W5klCldOSchc7_82JmMYs1CmXTAuBjcJ3_bj7xK-fxfMCXDS9MAirrGN_FdPLaF1f6dTa7EwHg84DArTCOEgZwoK45IvQRnYq0YL2ee-m2_8MyL5mT5r2KxRoOuhKmNdg-DoeI283YzjzNpTs5wz1JetcrcFqXS6S8-qN1mHBFhuw8oVEcBPecZxZyaxNfDFHCu-6FHfkvHEt8enphTjshJr7M_9_PZsjSuvtjNxPRpZMHMkV7hbQvNwmpOV6lCYVxfMpmZb499J-RBWGDArqHzAnVZPJFjxdXT5edGk9U4GqKBEzmkY8MNKaRAnOTK5zLqTmXoVKchPGRudhaiTXgT9ax4SKo8SpMLZcCaWVi7ahVUwKuwPEWpsy5fI0MD4SSK50xH0xoCNjXZqKYBeiRo9ZXhOO49yLUdYgy4ZZpf0MtZ9V2t8F-ik1rQg3_lifNCbKvjlO5nPCr5J7_5Y8hqXu491tdtvr3-zDMt6pYGcH0Jq9zu2hr1Nm-qj2ww9iNOgj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+the+near-wellbore+rock+fracture+tortuosity%3A+Role+of+casing-cement-rock+well+system%2C+perforation+and+in-situ+stress&rft.jtitle=International+journal+of+rock+mechanics+and+mining+sciences+%28Oxford%2C+England+%3A+1997%29&rft.au=Xi%2C+Xun&rft.au=Yang%2C+Shangtong&rft.au=Shipton%2C+Zoe&rft.au=Cai%2C+Meifeng&rft.date=2022-09-01&rft.issn=1365-1609&rft.volume=157&rft.spage=105182&rft_id=info:doi/10.1016%2Fj.ijrmms.2022.105182&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijrmms_2022_105182 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-1609&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-1609&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-1609&client=summon |