Modelling the near-wellbore rock fracture tortuosity: Role of casing-cement-rock well system, perforation and in-situ stress

Near-wellbore rock fracture is a key subject in subsurface energy extraction. Casing perforation completion is perhaps the most used type of well design mainly in comparison to the open hole completion. However, the effects of the combined casing-cementing-rock structure on pressure transmission in...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of rock mechanics and mining sciences (Oxford, England : 1997) Vol. 157; p. 105182
Main Authors Xi, Xun, Yang, Shangtong, Shipton, Zoe, Cai, Meifeng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Near-wellbore rock fracture is a key subject in subsurface energy extraction. Casing perforation completion is perhaps the most used type of well design mainly in comparison to the open hole completion. However, the effects of the combined casing-cementing-rock structure on pressure transmission in fracturing the rock have not been sufficiently addressed, but is key to understanding some important phenomena in hydraulic fracturing, such as fracture tortuosity. Here we develop a combined analytical-numerical model to investigate the rock fracture mechanism near the wellbore with realistic consideration of the boundary condition imposed by the complete well system. Different well configurations can lead to variation in the pressure applied on the rock formation and hence affect the fracture propagation near the wellbore. Our results show, as the pressure transmission through the well structure is enhanced, the fracture propagates more closely to the perforation orientation with a smaller deflection angle and the breakdown pressure is increased. The near-well tortuosity of the crack can be reduced by decreasing the thickness of casing and cement sheath, reducing Young's modulus of casing and increasing Young's modulus of cement up to around 15 GPa, based on the realistic range of values of the well parameters. The effects of in-situ stress condition and perforation angle and length on the near-well cracking are also investigated. The developed model can be used to aid decision making in terms of improved understanding of hydraulic fracturing technology and well design optimization.
AbstractList Near-wellbore rock fracture is a key subject in subsurface energy extraction. Casing perforation completion is perhaps the most used type of well design mainly in comparison to the open hole completion. However, the effects of the combined casing-cementing-rock structure on pressure transmission in fracturing the rock have not been sufficiently addressed, but is key to understanding some important phenomena in hydraulic fracturing, such as fracture tortuosity. Here we develop a combined analytical-numerical model to investigate the rock fracture mechanism near the wellbore with realistic consideration of the boundary condition imposed by the complete well system. Different well configurations can lead to variation in the pressure applied on the rock formation and hence affect the fracture propagation near the wellbore. Our results show, as the pressure transmission through the well structure is enhanced, the fracture propagates more closely to the perforation orientation with a smaller deflection angle and the breakdown pressure is increased. The near-well tortuosity of the crack can be reduced by decreasing the thickness of casing and cement sheath, reducing Young's modulus of casing and increasing Young's modulus of cement up to around 15 GPa, based on the realistic range of values of the well parameters. The effects of in-situ stress condition and perforation angle and length on the near-well cracking are also investigated. The developed model can be used to aid decision making in terms of improved understanding of hydraulic fracturing technology and well design optimization.
ArticleNumber 105182
Author Xi, Xun
Shipton, Zoe
Cai, Meifeng
Yang, Shangtong
Author_xml – sequence: 1
  givenname: Xun
  orcidid: 0000-0002-8667-1950
  surname: Xi
  fullname: Xi, Xun
  organization: School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
– sequence: 2
  givenname: Shangtong
  orcidid: 0000-0001-9977-5954
  surname: Yang
  fullname: Yang, Shangtong
  email: shangtong.yang@strath.ac.uk
  organization: Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK
– sequence: 3
  givenname: Zoe
  orcidid: 0000-0002-2268-7750
  surname: Shipton
  fullname: Shipton, Zoe
  organization: Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK
– sequence: 4
  givenname: Meifeng
  surname: Cai
  fullname: Cai, Meifeng
  organization: School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
BookMark eNqFkM9KAzEQxoMoqNU38JAHMDXJJrtbD4KI_0ARRM8hm8xq6m4iSaoUfHjT1pMHPc3Mx_w-Zr59tO2DB4SOGJ0yyuqT-dTN4zimKaecF0mylm-hPdY2FRFSyO3SV7UkrKazXbSf0pxSWvO62UNf98HCMDj_gvMrYA86ks8idCECjsG84T5qkxdlyiHmRUguL0_xYxgAhx4bnQpKDIzgM1nvr2iclinDeIzfIfYh6uyCx9pb7DwpBguccoSUDtBOr4cEhz91gp6vLp8ubsjdw_Xtxfkd0VUjM5lVgtoWbKOl4NZ0Rsi2E5xT3QrLatsZNrOt6Gip0HOp66rpNatBaKk73VcTdLrxNTGkFKFXxuX1UTlqNyhG1SpHNVebHNUqR7XJscDiF_we3ajj8j_sbINBeezDQVTJOPAGrItgsrLB_W3wDbUYlNY
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e26342
crossref_primary_10_1016_j_tafmec_2022_103641
crossref_primary_10_1007_s00603_024_04183_z
crossref_primary_10_3390_pr11072028
crossref_primary_10_1021_acsomega_3c01835
Cites_doi 10.1007/BF00047063
10.1016/j.engfracmech.2018.04.029
10.1016/j.petrol.2018.05.016
10.1016/j.jrmge.2013.12.007
10.1007/s00603-016-1057-2
10.1007/s40789-020-00327-y
10.1016/j.engfracmech.2017.10.013
10.1146/annurev-fluid-010814-014736
10.1016/j.ijrmms.2003.08.002
10.1007/s11440-018-0645-6
10.1016/j.tafmec.2019.102274
10.1016/j.ijrmms.2019.01.001
10.1016/j.enggeo.2017.04.010
10.1016/j.petrol.2009.11.021
10.1016/j.petrol.2018.03.068
10.1016/j.jngse.2018.04.015
10.1002/suco.201600020
10.1016/j.compgeo.2015.12.013
10.1016/j.ijrmms.2021.104766
10.3390/en12071232
10.1007/BF02483281
10.1061/(ASCE)0899-1561(2008)20:3(245)
10.1016/j.earscirev.2021.103580
10.1007/s40789-020-00300-9
10.1016/j.ijrmms.2009.01.001
10.1007/s00603-014-0608-7
10.1016/S0920-4105(00)00056-5
10.1016/j.jngse.2018.02.020
10.3390/en12112044
10.1016/j.ijrmms.2018.10.001
10.1016/j.compgeo.2016.07.009
10.1016/j.ijrmms.2011.06.005
10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
10.1016/j.compgeo.2017.10.008
10.1016/0008-8846(76)90007-7
10.1016/j.petrol.2015.08.010
10.1016/j.fuel.2018.09.005
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ijrmms.2022.105182
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4545
ExternalDocumentID 10_1016_j_ijrmms_2022_105182
S1365160922001484
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-a375t-9340d8ed7a542dcbc458b4220a84d16dbc19d84b0c19ef25a637fa16e4a5abaf3
IEDL.DBID .~1
ISSN 1365-1609
IngestDate Thu Apr 24 23:02:32 EDT 2025
Tue Jul 01 01:54:09 EDT 2025
Fri Feb 23 02:40:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Well design
Near-wellbore
Modelling
Rock fracture
Hydraulic fracturing
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a375t-9340d8ed7a542dcbc458b4220a84d16dbc19d84b0c19ef25a637fa16e4a5abaf3
ORCID 0000-0002-2268-7750
0000-0001-9977-5954
0000-0002-8667-1950
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1365160922001484
ParticipantIDs crossref_citationtrail_10_1016_j_ijrmms_2022_105182
crossref_primary_10_1016_j_ijrmms_2022_105182
elsevier_sciencedirect_doi_10_1016_j_ijrmms_2022_105182
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle International journal of rock mechanics and mining sciences (Oxford, England : 1997)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yew, Schmidt, Li (bib16) 1989
Zhu, Deng, Jin, Hu, Luo (bib6) 2014; 48
Gordeliy, Abbas, Prioul (bib25) 2016
Chen, Barboza, Sun (bib29) 2021
He, Zhu, Li, Li, Zhang (bib20) 2021
Yang, Lian, Liang, Nguyen, Bordas (bib47) 2019; 115
Guo, Luo, Lu, Lai, Ren (bib49) 2017; 186
Feng, Gray (bib19) 2018; 14
Alam, Borre, Fabricius (bib28) 2010; 70
Lisjak, Grasselli (bib42) 2014; 6
Guner, Ozturk, Erkayaoglu (bib52) 2017; 18
Vasconcelos, Lourenco, Costa (bib44) 2008; 20
Dong, Tang (bib11) 2019; 103
Li, Xiao, Hao, Dong, Hua, Li (bib31) 2019; 12
Weng (bib24) 1993
Hossain, Rahman, Rahman (bib14) 2000; 27
Nguyen, Lian, Rabczuk, Bordas (bib48) 2017; 225
Zhuang, Zang (bib2) 2021; 216
Cherny, Chirkov, Lapin (bib18) 2009; 46
Zhang, Jeffrey, Bunger, Thiercelin (bib10) 2011; 48
Guanhua, Kai, Shang, Qian (bib1) 2019; 236
Yan, Jiao, Zheng (bib39) 2018; 96
Terzaghi (bib27) 1943
Haddad, Sepehrnoori (bib38) 2016; 49
Bazant, Le (bib35) 2017
Wang (bib23) 2015; 135
Hillerborg, Modeer, Petersson (bib37) 1976; 6
Ji, Zhuang, Wu, Hofmann, Zang, Zimmermann (bib4) 2021
(bib51) 2018
Belytschko, Black (bib32) 1999; 45
Xie, Cao, Liu, Dong (bib33) 2016; 74
Barr, Lee, de Place Hansen (bib46) 2003; 36
Xiang, Zhou, Yuan, Ji, Chang (bib21) 2019
Wu (bib3) 2018
Goodier, Timoshenko (bib26) 1969
Xi, Yang, McDermott, Shipton, Fraser-Harris, Edlmann (bib30) 2021
Detournay (bib50) 2016; 48
Lisjak, Kaifosh, He, Tatone, Mahabadi, Grasselli (bib41) 2017; 81
Yew, Weng (bib15) 2015
Ju, Wang, Chen, Gao, Wang (bib40) 2018; 54
Cruz, Roehl, Vargas (bib34) 2018; 112
Li, Li, Zhang, Yang, Liu (bib43) 2020; 7
Abass, Brumley, Venditto (bib12) 1994
Dong, Tang, Ranjith, Lang (bib17) 2018; 196
Kong, Ranjith, Li (bib5) 2021; 144
Liu, Gao, Taleghani (bib7) 2018; 168
Haimson, Cornet (bib13) 2003; 40
Bažant, Kazemi (bib45) 1990; 44
Wang, Yang, Wu, Hu, Faisal (bib36) 2020; 7
Feng, Gray (bib9) 2018; 53
Nath, Kimanzi, Mokhtari, Salehi (bib8) 2018; 166
Li, Dong, Hua, Yang, Li (bib22) 2019; 12
Vasconcelos (10.1016/j.ijrmms.2022.105182_bib44) 2008; 20
Li (10.1016/j.ijrmms.2022.105182_bib31) 2019; 12
He (10.1016/j.ijrmms.2022.105182_bib20) 2021
Feng (10.1016/j.ijrmms.2022.105182_bib19) 2018; 14
Yan (10.1016/j.ijrmms.2022.105182_bib39) 2018; 96
(10.1016/j.ijrmms.2022.105182_bib51) 2018
Weng (10.1016/j.ijrmms.2022.105182_bib24) 1993
Goodier (10.1016/j.ijrmms.2022.105182_bib26) 1969
Wu (10.1016/j.ijrmms.2022.105182_bib3) 2018
Alam (10.1016/j.ijrmms.2022.105182_bib28) 2010; 70
Zhuang (10.1016/j.ijrmms.2022.105182_bib2) 2021; 216
Lisjak (10.1016/j.ijrmms.2022.105182_bib41) 2017; 81
Dong (10.1016/j.ijrmms.2022.105182_bib11) 2019; 103
Terzaghi (10.1016/j.ijrmms.2022.105182_bib27) 1943
Barr (10.1016/j.ijrmms.2022.105182_bib46) 2003; 36
Gordeliy (10.1016/j.ijrmms.2022.105182_bib25) 2016
Chen (10.1016/j.ijrmms.2022.105182_bib29) 2021
Guo (10.1016/j.ijrmms.2022.105182_bib49) 2017; 186
Xiang (10.1016/j.ijrmms.2022.105182_bib21) 2019
Ju (10.1016/j.ijrmms.2022.105182_bib40) 2018; 54
Xie (10.1016/j.ijrmms.2022.105182_bib33) 2016; 74
Belytschko (10.1016/j.ijrmms.2022.105182_bib32) 1999; 45
Yew (10.1016/j.ijrmms.2022.105182_bib16) 1989
Nguyen (10.1016/j.ijrmms.2022.105182_bib48) 2017; 225
Cruz (10.1016/j.ijrmms.2022.105182_bib34) 2018; 112
Wang (10.1016/j.ijrmms.2022.105182_bib23) 2015; 135
Guanhua (10.1016/j.ijrmms.2022.105182_bib1) 2019; 236
Ji (10.1016/j.ijrmms.2022.105182_bib4) 2021
Zhu (10.1016/j.ijrmms.2022.105182_bib6) 2014; 48
Feng (10.1016/j.ijrmms.2022.105182_bib9) 2018; 53
Haimson (10.1016/j.ijrmms.2022.105182_bib13) 2003; 40
Liu (10.1016/j.ijrmms.2022.105182_bib7) 2018; 168
Nath (10.1016/j.ijrmms.2022.105182_bib8) 2018; 166
Abass (10.1016/j.ijrmms.2022.105182_bib12) 1994
Hossain (10.1016/j.ijrmms.2022.105182_bib14) 2000; 27
Guner (10.1016/j.ijrmms.2022.105182_bib52) 2017; 18
Detournay (10.1016/j.ijrmms.2022.105182_bib50) 2016; 48
Yang (10.1016/j.ijrmms.2022.105182_bib47) 2019; 115
Bažant (10.1016/j.ijrmms.2022.105182_bib45) 1990; 44
Lisjak (10.1016/j.ijrmms.2022.105182_bib42) 2014; 6
Li (10.1016/j.ijrmms.2022.105182_bib43) 2020; 7
Kong (10.1016/j.ijrmms.2022.105182_bib5) 2021; 144
Zhang (10.1016/j.ijrmms.2022.105182_bib10) 2011; 48
Yew (10.1016/j.ijrmms.2022.105182_bib15) 2015
Xi (10.1016/j.ijrmms.2022.105182_bib30) 2021
Wang (10.1016/j.ijrmms.2022.105182_bib36) 2020; 7
Dong (10.1016/j.ijrmms.2022.105182_bib17) 2018; 196
Haddad (10.1016/j.ijrmms.2022.105182_bib38) 2016; 49
Cherny (10.1016/j.ijrmms.2022.105182_bib18) 2009; 46
Li (10.1016/j.ijrmms.2022.105182_bib22) 2019; 12
Hillerborg (10.1016/j.ijrmms.2022.105182_bib37) 1976; 6
Bazant (10.1016/j.ijrmms.2022.105182_bib35) 2017
References_xml – volume: 40
  start-page: 1011
  year: 2003
  end-page: 1020
  ident: bib13
  article-title: ISRM Suggested Methods for rock stress estimation—Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)
  publication-title: Int J Rock Mech Min Sci
– year: 2021
  ident: bib29
  article-title: A Review of Hydraulic Fracturing Simulation
– year: 2018
  ident: bib3
  article-title: Hydraulic Fracture Modeling
– volume: 18
  start-page: 84
  year: 2017
  end-page: 91
  ident: bib52
  article-title: Investigation of the elastic material properties of Class G cement
  publication-title: Struct Concr
– volume: 186
  start-page: 195
  year: 2017
  end-page: 207
  ident: bib49
  article-title: Numerical investigation of hydraulic fracture propagation in a layered reservoir using the cohesive zone method
  publication-title: Eng Fract Mech
– volume: 81
  start-page: 1
  year: 2017
  end-page: 18
  ident: bib41
  article-title: A 2D, fully-coupled, hydro-mechanical, FDEM formulation for modelling fracturing processes in discontinuous, porous rock masses
  publication-title: Comput Geotech
– volume: 20
  start-page: 245
  year: 2008
  end-page: 254
  ident: bib44
  article-title: Mode I fracture surface of granite: measurements and correlations with mechanical properties
  publication-title: J Mater Civ Eng
– year: 1989
  ident: bib16
  article-title: On Fracture Design of Deviated Wells
– volume: 46
  start-page: 992
  year: 2009
  end-page: 1000
  ident: bib18
  article-title: Two-dimensional modeling of the near-wellbore fracture tortuosity effect
  publication-title: Int J Rock Mech Min Sci
– volume: 7
  start-page: 208
  year: 2020
  end-page: 215
  ident: bib43
  article-title: Formation mechanism and height calculation of the caved zone and water-conducting fracture zone in solid backfill mining
  publication-title: Int J Coal Sci Technol
– volume: 14
  start-page: 377
  year: 2018
  end-page: 402
  ident: bib19
  article-title: XFEM-based cohesive zone approach for modeling near-wellbore hydraulic fracture complexity
  publication-title: Acta Geotechnica
– year: 2021
  ident: bib30
  article-title: Modelling Rock Fracture Induced by Hydraulic Pulses
– volume: 49
  start-page: 4731
  year: 2016
  end-page: 4748
  ident: bib38
  article-title: XFEM-based CZM for the simulation of 3D multiple-cluster hydraulic fracturing in quasi-brittle shale formations
  publication-title: Rock Mech Rock Eng
– volume: 12
  year: 2019
  ident: bib22
  article-title: Numerical simulation on deflecting hydraulic fracture with refracturing using extended finite element method
  publication-title: Energies
– start-page: 1
  year: 2019
  end-page: 17
  ident: bib21
  article-title: Pore pressure cohesive zone modelling of complex hydraulic fracture propagation in a permeable medium
  publication-title: Eur J Environ Civil Eng
– volume: 45
  start-page: 601
  year: 1999
  end-page: 620
  ident: bib32
  article-title: Elastic crack growth in finite elements with minimal remeshing
  publication-title: Int J Numer Methods Eng
– volume: 70
  start-page: 282
  year: 2010
  end-page: 297
  ident: bib28
  article-title: Biot's coefficient as an indicator of strength and porosity reduction: calcareous sediments from Kerguelen Plateau
  publication-title: J Petrol Sci Eng
– year: 1993
  ident: bib24
  article-title: Fracture Initiation and Propagation from Deviated Wellbores
– volume: 44
  start-page: 111
  year: 1990
  end-page: 131
  ident: bib45
  article-title: Determination of fracture energy, process zone longth and brittleness number from size effect, with application to rock and conerete
  publication-title: Int J Fracture
– volume: 103
  year: 2019
  ident: bib11
  article-title: Numerical study of near-wellbore hydraulic fracture propagation
  publication-title: Theor Appl Fract Mech
– volume: 48
  start-page: 984
  year: 2011
  end-page: 995
  ident: bib10
  article-title: Initiation and growth of a hydraulic fracture from a circular wellbore
  publication-title: Int J Rock Mech Min Sci
– volume: 36
  start-page: 609
  year: 2003
  end-page: 620
  ident: bib46
  article-title: Round-robin analysis of the RILEM TC 162-TDF beam-bending test: Part 1—test method evaluation
  publication-title: Mater Struct
– volume: 54
  start-page: 266
  year: 2018
  end-page: 282
  ident: bib40
  article-title: Adaptive finite element-discrete element method for numerical analysis of the multistage hydrofracturing of horizontal wells in tight reservoirs considering pre-existing fractures, hydromechanical coupling, and leak-off effects
  publication-title: J Nat Gas Sci Eng
– year: 2021
  ident: bib20
  article-title: Simulating Hydraulic Fracture Re-orientation in Heterogeneous Rocks with an Improved Discrete Element Method
– volume: 115
  start-page: 145
  year: 2019
  end-page: 156
  ident: bib47
  article-title: Model I cohesive zone models of different rank coals
  publication-title: Int J Rock Mech Min Sci
– volume: 225
  start-page: 68
  year: 2017
  end-page: 82
  ident: bib48
  article-title: Modelling hydraulic fractures in porous media using flow cohesive interface elements
  publication-title: Eng Geol
– volume: 48
  start-page: 585
  year: 2014
  end-page: 601
  ident: bib6
  article-title: Hydraulic fracture initiation and propagation from wellbore with oriented perforation
  publication-title: Rock Mech Rock Eng
– year: 2018
  ident: bib51
  article-title: ABAQUS user documentation
– volume: 135
  start-page: 127
  year: 2015
  end-page: 140
  ident: bib23
  article-title: Numerical modeling of non-planar hydraulic fracture propagation in brittle and ductile rocks using XFEM with cohesive zone method
  publication-title: J Petrol Sci Eng
– start-page: 69
  year: 2015
  end-page: 88
  ident: bib15
  article-title: Deviated Wellbores, Mechanics of Hydraulic Fracturing
– volume: 196
  start-page: 28
  year: 2018
  end-page: 42
  ident: bib17
  article-title: A theoretical model for hydraulic fracturing through a single radial perforation emanating from a borehole
  publication-title: Eng Fract Mech
– volume: 112
  start-page: 385
  year: 2018
  end-page: 397
  ident: bib34
  article-title: An XFEM element to model intersections between hydraulic and natural fractures in porous rocks
  publication-title: Int J Rock Mech Min Sci
– volume: 236
  start-page: 190
  year: 2019
  end-page: 200
  ident: bib1
  article-title: Gas desorption characteristics effected by the pulsating hydraulic fracturing in coal
  publication-title: Fuel
– volume: 74
  start-page: 1
  year: 2016
  end-page: 14
  ident: bib33
  article-title: Influence of crack surface friction on crack initiation and propagation: a numerical investigation based on extended finite element method
  publication-title: Comput Geotech
– year: 2017
  ident: bib35
  article-title: Probabilistic Mechanics of Quasibrittle Structures: Strength, Lifetime, and Size Effect
– volume: 6
  start-page: 773
  year: 1976
  end-page: 781
  ident: bib37
  article-title: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements
  publication-title: Cement Concr Res
– volume: 6
  start-page: 301
  year: 2014
  end-page: 314
  ident: bib42
  article-title: A review of discrete modeling techniques for fracturing processes in discontinuous rock masses
  publication-title: J Rock Mech Geotech Eng
– year: 2021
  ident: bib4
  article-title: Cyclic Water Injection Potentially Mitigates Seismic Risks by Promoting Slow and Stable Slip of a Natural Fracture in Granite, Rock Mechanics and Rock Engineering
– volume: 27
  start-page: 129
  year: 2000
  end-page: 149
  ident: bib14
  article-title: Hydraulic fracture initiation and propagation: roles of wellbore trajectory, perforation and stress regimes
  publication-title: J Petrol Sci Eng
– year: 1994
  ident: bib12
  article-title: Oriented Perforations - A Rock Mechanics View
– volume: 96
  start-page: 73
  year: 2018
  end-page: 89
  ident: bib39
  article-title: A fully coupled three-dimensional hydro-mechanical finite discrete element approach with real porous seepage for simulating 3D hydraulic fracturing
  publication-title: Comput Geotech
– volume: 166
  start-page: 482
  year: 2018
  end-page: 489
  ident: bib8
  article-title: A novel method to investigate cement-casing bonding using digital image correlation
  publication-title: J Petrol Sci Eng
– year: 1943
  ident: bib27
  article-title: Theoretical Soil Mechanics
– year: 1969
  ident: bib26
  article-title: Theory of Elasticity
– year: 2016
  ident: bib25
  article-title: Modeling of near-wellbore fracture reorientation using a fluid-coupled 2D XFEM algorithm
  publication-title: 50th U.S. Rock Mechanics/Geomechanics Symposium
– volume: 168
  start-page: 370
  year: 2018
  end-page: 379
  ident: bib7
  article-title: Analysis on integrity of cement sheath in the vertical section of wells during hydraulic fracturing
  publication-title: J Petrol Sci Eng
– volume: 216
  year: 2021
  ident: bib2
  article-title: Laboratory hydraulic fracturing experiments on crystalline rock for geothermal purposes
  publication-title: Earth Sci Rev
– volume: 144
  year: 2021
  ident: bib5
  article-title: Fluid-driven micro-cracking behaviour of crystalline rock using a coupled hydro-grain-based discrete element method
  publication-title: Int J Rock Mech Min Sci
– volume: 53
  start-page: 83
  year: 2018
  end-page: 93
  ident: bib9
  article-title: Modeling of curving hydraulic fracture propagation from a wellbore in a poroelastic medium
  publication-title: J Nat Gas Sci Eng
– volume: 12
  year: 2019
  ident: bib31
  article-title: Comparison of different hydraulic fracturing scenarios in horizontal wells using XFEM based on the cohesive zone method
  publication-title: Energies
– volume: 48
  start-page: 311
  year: 2016
  end-page: 339
  ident: bib50
  article-title: Mechanics of hydraulic fractures
  publication-title: Annu Rev Fluid Mech
– volume: 7
  start-page: 704
  year: 2020
  end-page: 713
  ident: bib36
  article-title: Analysis of fracture mechanism for surrounding rock hole based on water-filled blasting
  publication-title: Int J Coal Sci Technol
– volume: 44
  start-page: 111
  issue: 2
  year: 1990
  ident: 10.1016/j.ijrmms.2022.105182_bib45
  article-title: Determination of fracture energy, process zone longth and brittleness number from size effect, with application to rock and conerete
  publication-title: Int J Fracture
  doi: 10.1007/BF00047063
– volume: 196
  start-page: 28
  year: 2018
  ident: 10.1016/j.ijrmms.2022.105182_bib17
  article-title: A theoretical model for hydraulic fracturing through a single radial perforation emanating from a borehole
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2018.04.029
– volume: 168
  start-page: 370
  year: 2018
  ident: 10.1016/j.ijrmms.2022.105182_bib7
  article-title: Analysis on integrity of cement sheath in the vertical section of wells during hydraulic fracturing
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2018.05.016
– volume: 6
  start-page: 301
  issue: 4
  year: 2014
  ident: 10.1016/j.ijrmms.2022.105182_bib42
  article-title: A review of discrete modeling techniques for fracturing processes in discontinuous rock masses
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2013.12.007
– start-page: 1
  year: 2019
  ident: 10.1016/j.ijrmms.2022.105182_bib21
  article-title: Pore pressure cohesive zone modelling of complex hydraulic fracture propagation in a permeable medium
  publication-title: Eur J Environ Civil Eng
– volume: 49
  start-page: 4731
  issue: 12
  year: 2016
  ident: 10.1016/j.ijrmms.2022.105182_bib38
  article-title: XFEM-based CZM for the simulation of 3D multiple-cluster hydraulic fracturing in quasi-brittle shale formations
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-016-1057-2
– year: 2018
  ident: 10.1016/j.ijrmms.2022.105182_bib3
– volume: 7
  start-page: 704
  issue: 4
  year: 2020
  ident: 10.1016/j.ijrmms.2022.105182_bib36
  article-title: Analysis of fracture mechanism for surrounding rock hole based on water-filled blasting
  publication-title: Int J Coal Sci Technol
  doi: 10.1007/s40789-020-00327-y
– volume: 186
  start-page: 195
  year: 2017
  ident: 10.1016/j.ijrmms.2022.105182_bib49
  article-title: Numerical investigation of hydraulic fracture propagation in a layered reservoir using the cohesive zone method
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2017.10.013
– year: 1943
  ident: 10.1016/j.ijrmms.2022.105182_bib27
– volume: 48
  start-page: 311
  issue: 1
  year: 2016
  ident: 10.1016/j.ijrmms.2022.105182_bib50
  article-title: Mechanics of hydraulic fractures
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-010814-014736
– volume: 40
  start-page: 1011
  issue: 7-8
  year: 2003
  ident: 10.1016/j.ijrmms.2022.105182_bib13
  article-title: ISRM Suggested Methods for rock stress estimation—Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2003.08.002
– year: 2018
  ident: 10.1016/j.ijrmms.2022.105182_bib51
– volume: 14
  start-page: 377
  issue: 2
  year: 2018
  ident: 10.1016/j.ijrmms.2022.105182_bib19
  article-title: XFEM-based cohesive zone approach for modeling near-wellbore hydraulic fracture complexity
  publication-title: Acta Geotechnica
  doi: 10.1007/s11440-018-0645-6
– year: 2017
  ident: 10.1016/j.ijrmms.2022.105182_bib35
– year: 2021
  ident: 10.1016/j.ijrmms.2022.105182_bib29
– volume: 103
  year: 2019
  ident: 10.1016/j.ijrmms.2022.105182_bib11
  article-title: Numerical study of near-wellbore hydraulic fracture propagation
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/j.tafmec.2019.102274
– year: 2021
  ident: 10.1016/j.ijrmms.2022.105182_bib4
– volume: 115
  start-page: 145
  year: 2019
  ident: 10.1016/j.ijrmms.2022.105182_bib47
  article-title: Model I cohesive zone models of different rank coals
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2019.01.001
– year: 1969
  ident: 10.1016/j.ijrmms.2022.105182_bib26
– volume: 225
  start-page: 68
  year: 2017
  ident: 10.1016/j.ijrmms.2022.105182_bib48
  article-title: Modelling hydraulic fractures in porous media using flow cohesive interface elements
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2017.04.010
– year: 1993
  ident: 10.1016/j.ijrmms.2022.105182_bib24
– volume: 70
  start-page: 282
  issue: 3
  year: 2010
  ident: 10.1016/j.ijrmms.2022.105182_bib28
  article-title: Biot's coefficient as an indicator of strength and porosity reduction: calcareous sediments from Kerguelen Plateau
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2009.11.021
– volume: 166
  start-page: 482
  year: 2018
  ident: 10.1016/j.ijrmms.2022.105182_bib8
  article-title: A novel method to investigate cement-casing bonding using digital image correlation
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2018.03.068
– volume: 54
  start-page: 266
  year: 2018
  ident: 10.1016/j.ijrmms.2022.105182_bib40
  article-title: Adaptive finite element-discrete element method for numerical analysis of the multistage hydrofracturing of horizontal wells in tight reservoirs considering pre-existing fractures, hydromechanical coupling, and leak-off effects
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2018.04.015
– volume: 18
  start-page: 84
  issue: 1
  year: 2017
  ident: 10.1016/j.ijrmms.2022.105182_bib52
  article-title: Investigation of the elastic material properties of Class G cement
  publication-title: Struct Concr
  doi: 10.1002/suco.201600020
– volume: 74
  start-page: 1
  year: 2016
  ident: 10.1016/j.ijrmms.2022.105182_bib33
  article-title: Influence of crack surface friction on crack initiation and propagation: a numerical investigation based on extended finite element method
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2015.12.013
– volume: 144
  year: 2021
  ident: 10.1016/j.ijrmms.2022.105182_bib5
  article-title: Fluid-driven micro-cracking behaviour of crystalline rock using a coupled hydro-grain-based discrete element method
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2021.104766
– year: 2021
  ident: 10.1016/j.ijrmms.2022.105182_bib20
– volume: 12
  issue: 7
  year: 2019
  ident: 10.1016/j.ijrmms.2022.105182_bib31
  article-title: Comparison of different hydraulic fracturing scenarios in horizontal wells using XFEM based on the cohesive zone method
  publication-title: Energies
  doi: 10.3390/en12071232
– volume: 36
  start-page: 609
  issue: 9
  year: 2003
  ident: 10.1016/j.ijrmms.2022.105182_bib46
  article-title: Round-robin analysis of the RILEM TC 162-TDF beam-bending test: Part 1—test method evaluation
  publication-title: Mater Struct
  doi: 10.1007/BF02483281
– volume: 20
  start-page: 245
  issue: 3
  year: 2008
  ident: 10.1016/j.ijrmms.2022.105182_bib44
  article-title: Mode I fracture surface of granite: measurements and correlations with mechanical properties
  publication-title: J Mater Civ Eng
  doi: 10.1061/(ASCE)0899-1561(2008)20:3(245)
– volume: 216
  year: 2021
  ident: 10.1016/j.ijrmms.2022.105182_bib2
  article-title: Laboratory hydraulic fracturing experiments on crystalline rock for geothermal purposes
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2021.103580
– start-page: 69
  year: 2015
  ident: 10.1016/j.ijrmms.2022.105182_bib15
– volume: 7
  start-page: 208
  issue: 1
  year: 2020
  ident: 10.1016/j.ijrmms.2022.105182_bib43
  article-title: Formation mechanism and height calculation of the caved zone and water-conducting fracture zone in solid backfill mining
  publication-title: Int J Coal Sci Technol
  doi: 10.1007/s40789-020-00300-9
– volume: 46
  start-page: 992
  issue: 6
  year: 2009
  ident: 10.1016/j.ijrmms.2022.105182_bib18
  article-title: Two-dimensional modeling of the near-wellbore fracture tortuosity effect
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2009.01.001
– volume: 48
  start-page: 585
  issue: 2
  year: 2014
  ident: 10.1016/j.ijrmms.2022.105182_bib6
  article-title: Hydraulic fracture initiation and propagation from wellbore with oriented perforation
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-014-0608-7
– year: 1994
  ident: 10.1016/j.ijrmms.2022.105182_bib12
– volume: 27
  start-page: 129
  issue: 3-4
  year: 2000
  ident: 10.1016/j.ijrmms.2022.105182_bib14
  article-title: Hydraulic fracture initiation and propagation: roles of wellbore trajectory, perforation and stress regimes
  publication-title: J Petrol Sci Eng
  doi: 10.1016/S0920-4105(00)00056-5
– volume: 53
  start-page: 83
  year: 2018
  ident: 10.1016/j.ijrmms.2022.105182_bib9
  article-title: Modeling of curving hydraulic fracture propagation from a wellbore in a poroelastic medium
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2018.02.020
– volume: 12
  issue: 11
  year: 2019
  ident: 10.1016/j.ijrmms.2022.105182_bib22
  article-title: Numerical simulation on deflecting hydraulic fracture with refracturing using extended finite element method
  publication-title: Energies
  doi: 10.3390/en12112044
– volume: 112
  start-page: 385
  year: 2018
  ident: 10.1016/j.ijrmms.2022.105182_bib34
  article-title: An XFEM element to model intersections between hydraulic and natural fractures in porous rocks
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2018.10.001
– year: 2016
  ident: 10.1016/j.ijrmms.2022.105182_bib25
  article-title: Modeling of near-wellbore fracture reorientation using a fluid-coupled 2D XFEM algorithm
– volume: 81
  start-page: 1
  year: 2017
  ident: 10.1016/j.ijrmms.2022.105182_bib41
  article-title: A 2D, fully-coupled, hydro-mechanical, FDEM formulation for modelling fracturing processes in discontinuous, porous rock masses
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2016.07.009
– volume: 48
  start-page: 984
  issue: 6
  year: 2011
  ident: 10.1016/j.ijrmms.2022.105182_bib10
  article-title: Initiation and growth of a hydraulic fracture from a circular wellbore
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2011.06.005
– volume: 45
  start-page: 601
  issue: 5
  year: 1999
  ident: 10.1016/j.ijrmms.2022.105182_bib32
  article-title: Elastic crack growth in finite elements with minimal remeshing
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
– year: 2021
  ident: 10.1016/j.ijrmms.2022.105182_bib30
– volume: 96
  start-page: 73
  year: 2018
  ident: 10.1016/j.ijrmms.2022.105182_bib39
  article-title: A fully coupled three-dimensional hydro-mechanical finite discrete element approach with real porous seepage for simulating 3D hydraulic fracturing
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2017.10.008
– volume: 6
  start-page: 773
  issue: 6
  year: 1976
  ident: 10.1016/j.ijrmms.2022.105182_bib37
  article-title: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements
  publication-title: Cement Concr Res
  doi: 10.1016/0008-8846(76)90007-7
– volume: 135
  start-page: 127
  year: 2015
  ident: 10.1016/j.ijrmms.2022.105182_bib23
  article-title: Numerical modeling of non-planar hydraulic fracture propagation in brittle and ductile rocks using XFEM with cohesive zone method
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2015.08.010
– volume: 236
  start-page: 190
  year: 2019
  ident: 10.1016/j.ijrmms.2022.105182_bib1
  article-title: Gas desorption characteristics effected by the pulsating hydraulic fracturing in coal
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.09.005
– year: 1989
  ident: 10.1016/j.ijrmms.2022.105182_bib16
SSID ssj0006267
Score 2.4215224
Snippet Near-wellbore rock fracture is a key subject in subsurface energy extraction. Casing perforation completion is perhaps the most used type of well design mainly...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105182
SubjectTerms Hydraulic fracturing
Modelling
Near-wellbore
Rock fracture
Well design
Title Modelling the near-wellbore rock fracture tortuosity: Role of casing-cement-rock well system, perforation and in-situ stress
URI https://dx.doi.org/10.1016/j.ijrmms.2022.105182
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DX_RB_MT5MfLgo3FtmrSpb2M4puIe1MHeStIksLl1Y6wPgvi3m-uHThAFn0pKrpTL9e56_O53CF0wC4l5FBFplSDMhtZ9czwkIfVVzARVnEOj8MMg7A_Z3YiPGqhb98IArLLy_aVPL7x1daddabO9GI_bTwDQ8kMvpgALYgI4QRmLwMqv3r9gHi5hj-reK9hdt88VGK_xZDmbAWk3pTDw1hf05_C0FnJ6u2inyhVxp3ydPdQw2T7aXmMQPEBvMMusoNXGLpPDmbNbAuU4d7IGu9j0gi20QeVu5X6uVzlAtF6v8eN8avDc4lRCqYCkRY2QFPtBGpf8zpd4UYDfi8PDMtN4nBH3gByXHSaHaNi7ee72STVQgcgg4isSB8zTwuhIckZ1qlLGhWJOf1Iw7YdapX6sBVOeuxpLuQyDyEo_NExyqaQNjtBGNs_MMcLGmJhKm8aedm5AMKkC5jIBFWhj45h7TRTUekzSim0chl5MkxpWNklK7Seg_aTUfhORT6lFybbxx_6oPqLkm9UkLiD8Knnyb8lTtAWrEmd2hjZWy9ycu8RkpVqF5bXQZuf2vj_4AIan5XI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5096AexCe-zcGjYds0aVNvIsqujz34AG8laRLYdbe7yO5B8Meb6UMURMFTaZspZWY6Mw3ffANwwh0W5klCldOSchc7_82JmMYs1CmXTAuBjcJ3_bj7xK-fxfMCXDS9MAirrGN_FdPLaF1f6dTa7EwHg84DArTCOEgZwoK45IvQRnYq0YL2ee-m2_8MyL5mT5r2KxRoOuhKmNdg-DoeI283YzjzNpTs5wz1JetcrcFqXS6S8-qN1mHBFhuw8oVEcBPecZxZyaxNfDFHCu-6FHfkvHEt8enphTjshJr7M_9_PZsjSuvtjNxPRpZMHMkV7hbQvNwmpOV6lCYVxfMpmZb499J-RBWGDArqHzAnVZPJFjxdXT5edGk9U4GqKBEzmkY8MNKaRAnOTK5zLqTmXoVKchPGRudhaiTXgT9ax4SKo8SpMLZcCaWVi7ahVUwKuwPEWpsy5fI0MD4SSK50xH0xoCNjXZqKYBeiRo9ZXhOO49yLUdYgy4ZZpf0MtZ9V2t8F-ik1rQg3_lifNCbKvjlO5nPCr5J7_5Y8hqXu491tdtvr3-zDMt6pYGcH0Jq9zu2hr1Nm-qj2ww9iNOgj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+the+near-wellbore+rock+fracture+tortuosity%3A+Role+of+casing-cement-rock+well+system%2C+perforation+and+in-situ+stress&rft.jtitle=International+journal+of+rock+mechanics+and+mining+sciences+%28Oxford%2C+England+%3A+1997%29&rft.au=Xi%2C+Xun&rft.au=Yang%2C+Shangtong&rft.au=Shipton%2C+Zoe&rft.au=Cai%2C+Meifeng&rft.date=2022-09-01&rft.issn=1365-1609&rft.volume=157&rft.spage=105182&rft_id=info:doi/10.1016%2Fj.ijrmms.2022.105182&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijrmms_2022_105182
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-1609&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-1609&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-1609&client=summon