Preparation of Poly(ethylene glycol) Protected Nanoparticles with Variable Bioconjugate Ligand Density

Maleimide-functional poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles (NPs) were prepared via the Flash NanoPrecipitation technique. Subsequent reaction with a model ligand, bovine serum albumin (BSA), was conducted using thiol-maleimide conjugation. Reaction of up to 22% of NP surface mal...

Full description

Saved in:
Bibliographic Details
Published inBiomacromolecules Vol. 9; no. 10; pp. 2705 - 2711
Main Authors Gindy, Marian E, Ji, Shengxiang, Hoye, Thomas R, Panagiotopoulos, Athanassios Z, Prud’homme, Robert K
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.10.2008
Subjects
Online AccessGet full text
ISSN1525-7797
1526-4602
1526-4602
DOI10.1021/bm8002013

Cover

Loading…
Abstract Maleimide-functional poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles (NPs) were prepared via the Flash NanoPrecipitation technique. Subsequent reaction with a model ligand, bovine serum albumin (BSA), was conducted using thiol-maleimide conjugation. Reaction of up to 22% of NP surface maleimide-PEG tethers was obtained, with the percent conversion being essentially independent of the ratio of maleimide-PEG to methyl-PEG over the range 30−100%, respectively. At the highest surface coverage, BSA is calculated to essentially cover the NP surface area. Reaction parameters (reaction order and docking constant) describing the extent of ligand conjugation were determined. The reaction order is applicable to the conjugation of ligands presenting free thiol functionalities, while the value of the docking constant is ligand-dependent and accounts for physical and dynamic properties of the ligand−PEG interaction. Jointly, the particle formation process, using block copolymer-directed kinetically controlled assembly and surface functionalization represent a versatile new platform for the preparation of bioconjugated NPs with accurate control of ligand density and minimal processing steps.
AbstractList Maleimide-functional poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles (NPs) were prepared via the Flash NanoPrecipitation technique. Subsequent reaction with a model ligand, bovine serum albumin (BSA), was conducted using thiol-maleimide conjugation. Reaction of up to 22% of NP surface maleimide-PEG tethers was obtained, with the percent conversion being essentially independent of the ratio of maleimide-PEG to methyl-PEG over the range 30−100%, respectively. At the highest surface coverage, BSA is calculated to essentially cover the NP surface area. Reaction parameters (reaction order and docking constant) describing the extent of ligand conjugation were determined. The reaction order is applicable to the conjugation of ligands presenting free thiol functionalities, while the value of the docking constant is ligand-dependent and accounts for physical and dynamic properties of the ligand−PEG interaction. Jointly, the particle formation process, using block copolymer-directed kinetically controlled assembly and surface functionalization represent a versatile new platform for the preparation of bioconjugated NPs with accurate control of ligand density and minimal processing steps.
Maleimide-functional poly(ethylene glycol)-b-poly(epsilon-caprolactone) nanoparticles (NPs) were prepared via the Flash NanoPrecipitation technique. Subsequent reaction with a model ligand, bovine serum albumin (BSA), was conducted using thiol-maleimide conjugation. Reaction of up to 22% of NP surface maleimide-PEG tethers was obtained, with the percent conversion being essentially independent of the ratio of maleimide-PEG to methyl-PEG over the range 30-100%, respectively. At the highest surface coverage, BSA is calculated to essentially cover the NP surface area. Reaction parameters (reaction order and docking constant) describing the extent of ligand conjugation were determined. The reaction order is applicable to the conjugation of ligands presenting free thiol functionalities, while the value of the docking constant is ligand-dependent and accounts for physical and dynamic properties of the ligand-PEG interaction. Jointly, the particle formation process, using block copolymer-directed kinetically controlled assembly and surface functionalization represent a versatile new platform for the preparation of bioconjugated NPs with accurate control of ligand density and minimal processing steps.
Maleimide-functional poly(ethylene glycol)-b-poly(epsilon-caprolactone) nanoparticles (NPs) were prepared via the Flash NanoPrecipitation technique. Subsequent reaction with a model ligand, bovine serum albumin (BSA), was conducted using thiol-maleimide conjugation. Reaction of up to 22% of NP surface maleimide-PEG tethers was obtained, with the percent conversion being essentially independent of the ratio of maleimide-PEG to methyl-PEG over the range 30-100%, respectively. At the highest surface coverage, BSA is calculated to essentially cover the NP surface area. Reaction parameters (reaction order and docking constant) describing the extent of ligand conjugation were determined. The reaction order is applicable to the conjugation of ligands presenting free thiol functionalities, while the value of the docking constant is ligand-dependent and accounts for physical and dynamic properties of the ligand-PEG interaction. Jointly, the particle formation process, using block copolymer-directed kinetically controlled assembly and surface functionalization represent a versatile new platform for the preparation of bioconjugated NPs with accurate control of ligand density and minimal processing steps.Maleimide-functional poly(ethylene glycol)-b-poly(epsilon-caprolactone) nanoparticles (NPs) were prepared via the Flash NanoPrecipitation technique. Subsequent reaction with a model ligand, bovine serum albumin (BSA), was conducted using thiol-maleimide conjugation. Reaction of up to 22% of NP surface maleimide-PEG tethers was obtained, with the percent conversion being essentially independent of the ratio of maleimide-PEG to methyl-PEG over the range 30-100%, respectively. At the highest surface coverage, BSA is calculated to essentially cover the NP surface area. Reaction parameters (reaction order and docking constant) describing the extent of ligand conjugation were determined. The reaction order is applicable to the conjugation of ligands presenting free thiol functionalities, while the value of the docking constant is ligand-dependent and accounts for physical and dynamic properties of the ligand-PEG interaction. Jointly, the particle formation process, using block copolymer-directed kinetically controlled assembly and surface functionalization represent a versatile new platform for the preparation of bioconjugated NPs with accurate control of ligand density and minimal processing steps.
Maleimide-functional poly(ethylene glycol)-b-poly(*e-caprolactone) nanoparticles (NPs) were prepared via the Flash NanoPrecipitation technique. Subsequent reaction with a model ligand, bovine serum albumin (BSA), was conducted using thiol-maleimide conjugation. Reaction of up to 22% of NP surface maleimide-PEG tethers was obtained, with the percent conversion being essentially independent of the ratio of maleimide-PEG to methyl-PEG over the range 30-100%, respectively. At the highest surface coverage, BSA is calculated to essentially cover the NP surface area. Reaction parameters (reaction order and docking constant) describing the extent of ligand conjugation were determined. The reaction order is applicable to the conjugation of ligands presenting free thiol functionalities, while the value of the docking constant is ligand-dependent and accounts for physical and dynamic properties of the ligand-PEG interaction. Jointly, the particle formation process, using block copolymer-directed kinetically controlled assembly and surface functionalization represent a versatile new platform for the preparation of bioconjugated NPs with accurate control of ligand density and minimal processing steps.
Author Panagiotopoulos, Athanassios Z
Ji, Shengxiang
Gindy, Marian E
Prud’homme, Robert K
Hoye, Thomas R
Author_xml – sequence: 1
  givenname: Marian E
  surname: Gindy
  fullname: Gindy, Marian E
– sequence: 2
  givenname: Shengxiang
  surname: Ji
  fullname: Ji, Shengxiang
– sequence: 3
  givenname: Thomas R
  surname: Hoye
  fullname: Hoye, Thomas R
– sequence: 4
  givenname: Athanassios Z
  surname: Panagiotopoulos
  fullname: Panagiotopoulos, Athanassios Z
– sequence: 5
  givenname: Robert K
  surname: Prud’homme
  fullname: Prud’homme, Robert K
  email: prudhomm@princeton.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20780541$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18759476$$D View this record in MEDLINE/PubMed
BookMark eNp90cluFDEQBmALBZEFDrwA8oUlhyZ2e-s-QlilEcwBuLaqvUw88tiD7Rbqt6dJhjmgiJPr8FWV9dc5OokpWoSeUvKakpZejbuOkJZQ9gCdUdHKhkvSntzWolGqV6fovJQtIaRnXDxCp7RToudKniG3znYPGapPESeH1ynMr2y9mYONFm_CrFO4xOucqtXVGvwFYlp89TrYgn_5eoN_QPYwBovf-qRT3E4bqBav_Aaiwe9sLL7Oj9FDB6HYJ4f3An3_8P7b9adm9fXj5-s3qwaYErWRjjAwrWHUcUNH66izoJyhneGd1B2nRgo2di2RtuXKGMkkaMFIOxpgTrEL9PJu7j6nn5Mtddj5om0IEG2ayqAEF7zrerHIF_-Vspe873qywGcHOI07a4Z99jvI8_A3wwU8PwAoGoLLELUvR9cS1RHB6eKu7pzOqZRs3aB9vQ2-ZvBhoGT4c83heM2l4_KfjuPye-zhF6DLsE1TjkvO97jfSqyqnw
CitedBy_id crossref_primary_10_1016_j_jtice_2014_09_024
crossref_primary_10_1016_j_progpolymsci_2016_04_004
crossref_primary_10_3390_polym13122022
crossref_primary_10_1021_acsanm_9b02541
crossref_primary_10_1021_jacs_4c17178
crossref_primary_10_1016_j_biomaterials_2013_02_019
crossref_primary_10_1016_j_jiec_2016_09_043
crossref_primary_10_1016_j_jconrel_2012_04_009
crossref_primary_10_1021_acsomega_9b02883
crossref_primary_10_1021_cm902478a
crossref_primary_10_1039_C6TB00886K
crossref_primary_10_1016_j_jconrel_2013_02_004
crossref_primary_10_1021_bm400619v
crossref_primary_10_1002_adfm_200801583
crossref_primary_10_1002_cmdc_201600372
crossref_primary_10_1021_am5091462
crossref_primary_10_1016_j_jconrel_2015_10_006
crossref_primary_10_1007_s11095_008_9802_1
crossref_primary_10_1021_cm2028367
crossref_primary_10_1021_acs_jmedchem_9b00892
crossref_primary_10_1016_j_polymer_2015_10_048
crossref_primary_10_1021_mp400441d
crossref_primary_10_1002_smll_201000279
crossref_primary_10_1039_c3bm00189j
crossref_primary_10_1016_j_carbpol_2017_02_058
crossref_primary_10_1021_ma900185x
crossref_primary_10_1016_j_cis_2014_11_004
crossref_primary_10_1021_jo4014436
crossref_primary_10_1002_admi_201801814
crossref_primary_10_1016_j_colsurfa_2010_02_016
crossref_primary_10_1002_adhm_201900823
crossref_primary_10_1016_j_imbio_2018_07_012
crossref_primary_10_1021_mp900245h
crossref_primary_10_1016_j_nano_2012_05_015
crossref_primary_10_1039_B9PY00216B
crossref_primary_10_1039_C0SC00435A
crossref_primary_10_1002_adma_201103348
crossref_primary_10_1586_ecp_09_4
crossref_primary_10_1039_D0RA00408A
crossref_primary_10_1021_acs_langmuir_6b01299
crossref_primary_10_1039_C8NR04916E
crossref_primary_10_1021_mp400337f
crossref_primary_10_1039_C5OB02133B
crossref_primary_10_1039_C5PY00168D
crossref_primary_10_1021_acs_langmuir_5b00213
crossref_primary_10_1002_jps_22342
crossref_primary_10_1002_macp_200900025
crossref_primary_10_1039_C7TB02633A
crossref_primary_10_1039_D4TB00514G
crossref_primary_10_1088_2053_1591_ab6774
crossref_primary_10_1039_D2CE00059H
crossref_primary_10_1021_acs_bioconjchem_1c00285
crossref_primary_10_1517_17425240902932908
crossref_primary_10_1016_j_nantod_2016_04_006
crossref_primary_10_1039_c2ra01168a
crossref_primary_10_1364_OE_17_000080
crossref_primary_10_1021_acs_iecr_5b00501
crossref_primary_10_1021_acs_nanolett_5b00151
crossref_primary_10_1021_acsami_5b01804
crossref_primary_10_1002_smll_201601425
crossref_primary_10_1016_j_jconrel_2015_09_001
crossref_primary_10_1002_marc_201700737
crossref_primary_10_1021_acs_langmuir_8b02423
crossref_primary_10_1021_nn406285x
crossref_primary_10_1016_j_jconrel_2014_10_021
crossref_primary_10_1021_nl200271d
crossref_primary_10_1039_C2CS35265F
crossref_primary_10_1016_j_cej_2011_12_044
crossref_primary_10_1016_j_addr_2013_09_012
crossref_primary_10_1038_srep05840
crossref_primary_10_1002_adfm_201002516
crossref_primary_10_1016_j_nano_2017_11_007
crossref_primary_10_1021_acs_nanolett_7b04674
crossref_primary_10_1021_acs_bioconjchem_5b00070
crossref_primary_10_1021_ma400894t
crossref_primary_10_1002_admt_202101748
crossref_primary_10_1021_mp500188g
crossref_primary_10_1007_s13346_024_01768_7
crossref_primary_10_1039_C0PY00350F
crossref_primary_10_1039_C5CC04399A
crossref_primary_10_1021_mp3000748
crossref_primary_10_1186_s40199_015_0107_8
crossref_primary_10_1002_jps_22090
crossref_primary_10_1155_2015_198175
crossref_primary_10_1016_j_biomaterials_2011_04_053
crossref_primary_10_1021_bm500832q
crossref_primary_10_1007_s10719_018_9830_y
crossref_primary_10_1016_j_ijpharm_2009_07_033
crossref_primary_10_1021_acs_biomac_3c00858
crossref_primary_10_1016_j_yexcr_2014_06_018
crossref_primary_10_1016_j_eurpolymj_2017_06_032
Cites_doi 10.1016/S0169-409X(02)00226-0
10.1002/jps.2600840420
10.1023/A:1008418325819
10.1016/0168-3659(92)90199-2
10.1016/S0168-3659(99)00248-5
10.1016/S0005-2736(99)00033-4
10.1071/CH03115
10.1016/0003-9861(59)90090-6
10.1016/S0006-3495(03)74808-5
10.1016/S0927-7765(99)00058-2
10.1002/(SICI)1099-1581(199911)10:11<647::AID-PAT918>3.0.CO;2-Y
10.1016/j.bbamem.2005.02.007
10.1021/la702902b
10.1021/ma992138b
10.1016/S0168-3659(99)00200-X
10.1016/0005-2736(95)00085-H
10.1021/la051685p
10.1016/j.ejpb.2004.04.006
10.1002/jps.20098
10.1038/nrc1958
10.1016/0014-5793(89)81689-8
10.1021/bc990037c
10.1016/j.jconrel.2005.03.027
10.1021/la049695y
10.1021/bc000101m
10.1021/bc050350g
10.1021/bc060401p
10.1021/bc0256289
10.1016/S0168-3659(00)00339-4
10.1016/S0169-409X(00)00124-1
10.1016/j.addr.2004.02.014
10.1002/jps.10533
10.1007/s00018-004-4153-5
10.1016/j.ces.2007.10.020
10.1002/jps.20728
10.1002/bit.20854
10.1016/S0378-5173(02)00542-2
10.1016/j.addr.2006.09.009
10.1038/nnano.2007.387
10.1016/j.ijpharm.2005.10.010
10.1093/protein/gzg093
10.1016/S0021-9258(19)34184-5
ContentType Journal Article
Copyright Copyright © 2008 American Chemical Society
2008 INIST-CNRS
Copyright_xml – notice: Copyright © 2008 American Chemical Society
– notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
DOI 10.1021/bm8002013
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Applied Sciences
DocumentTitleAlternate Polyethylene Glycol Protected Nanoparticles
EISSN 1526-4602
EndPage 2711
ExternalDocumentID 18759476
20780541
10_1021_bm8002013
a921914191
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
02
23N
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AFFNX
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
P2P
RNS
ROL
RSW
TN5
UI2
VF5
VG9
W1F
X
XKZ
---
-~X
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
ZCA
~02
IHE
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-a375t-6f03ad2d31f4d1bef1fea7fd18d486c841d653b8206e247dd636ac5302bda3f73
IEDL.DBID ACS
ISSN 1525-7797
1526-4602
IngestDate Fri Jul 11 06:39:02 EDT 2025
Fri Jul 11 15:35:29 EDT 2025
Thu Apr 03 07:02:01 EDT 2025
Mon Jul 21 09:15:40 EDT 2025
Tue Jul 01 01:12:00 EDT 2025
Thu Apr 24 23:08:36 EDT 2025
Thu Aug 27 13:43:12 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Surface reaction
End group
Chemical precipitation
Nanoparticle
Control release polymer
Drug carrier
Serum albumin
Ethylene oxide copolymer
Experimental study
Protein
Chemical coupling
Particle size distribution
Chemical modification
Caprolactone copolymer
Diblock copolymer
Manufacturing
Chemical reactivity
Aliphatic copolymer
Amphiphilic polymer
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a375t-6f03ad2d31f4d1bef1fea7fd18d486c841d653b8206e247dd636ac5302bda3f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18759476
PQID 69649890
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_754548895
proquest_miscellaneous_69649890
pubmed_primary_18759476
pascalfrancis_primary_20780541
crossref_citationtrail_10_1021_bm8002013
crossref_primary_10_1021_bm8002013
acs_journals_10_1021_bm8002013
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-10-01
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Biomacromolecules
PublicationTitleAlternate Biomacromolecules
PublicationYear 2008
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Johnson B. K. (ref31/cit31) 2003; 56
Peer D. (ref47/cit47) 2007; 2
Allen C. (ref3/cit3) 1999; 16
Wendorf J. (ref38/cit38) 2006; 95
Mercadal M. (ref24/cit24) 1999; 1418
Brannon-Peppas L. (ref14/cit14) 2004; 56
Liu Y. (ref36/cit36) 2008; 63
Johnson B. K. (ref30/cit30) 2003; 91
Janatova J. (ref40/cit40) 1968; 243
Langer R. (ref12/cit12) 1998; 392
Yang K. (ref43/cit43) 2003; 16
Liu J. B. (ref7/cit7) 2004; 93
Bazile D. (ref9/cit9) 1995; 84
Nobs L. (ref25/cit25) 2003; 250
Warnecke A. (ref21/cit21) 2003; 14
Longo G. (ref44/cit44) 2005; 21
Kataoka K. (ref1/cit1) 2001; 47
Maeda H. (ref11/cit11) 2000; 65
Torchilin V. P. (ref13/cit13) 2004; 61
Nobs L. (ref18/cit18) 2004; 93
Fleiner M. (ref22/cit22) 2001; 12
Ellman G. L. (ref39/cit39) 1959; 82
Allen T. M. (ref23/cit23) 1995; 1237
Lu W. (ref33/cit33) 2005; 107
Allen C. (ref5/cit5) 2000; 63
Torchilin V. P. (ref46/cit46) 2006; 58
Bae Y. (ref28/cit28) 2007; 18
Otsuka H. (ref2/cit2) 2003; 55
Gindy M. E. (ref32/cit32) 2008; 24
Kabanov A. V. (ref15/cit15) 1992; 22
Allemann E. (ref27/cit27) 1993; 39
Bohren G. F. (ref37/cit37) 1983
Owens D. E. (ref8/cit8) 2006; 307
ref35/cit35
Dib I. (ref20/cit20) 2006; 94
Laginha K. (ref45/cit45) 2005; 1711
Kabanov A. V. (ref16/cit16) 1989; 258
Duncan R. (ref10/cit10) 1998; 9
Vinogradov S. (ref17/cit17) 1999; 10
Duncan R. (ref29/cit29) 2006; 6
Shibasaki Y. (ref34/cit34) 2000; 33
Brownsey G. J. (ref41/cit41) 2003; 85
Vangeyte P. (ref42/cit42) 2004; 20
Kim J. H. (ref6/cit6) 1999; 10
Soppimath K. S. (ref4/cit4) 2001; 70
Zeng F. Q. (ref19/cit19) 2006; 17
Nobs L. (ref26/cit26) 2004; 58
References_xml – volume: 55
  start-page: 403
  year: 2003
  ident: ref2/cit2
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/S0169-409X(02)00226-0
– volume: 84
  start-page: 493
  year: 1995
  ident: ref9/cit9
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.2600840420
– volume: 9
  start-page: 39
  year: 1998
  ident: ref10/cit10
  publication-title: Ann. Oncol.
  doi: 10.1023/A:1008418325819
– volume: 22
  start-page: 141
  year: 1992
  ident: ref15/cit15
  publication-title: J. Controlled Release
  doi: 10.1016/0168-3659(92)90199-2
– volume: 65
  start-page: 271
  year: 2000
  ident: ref11/cit11
  publication-title: J. Controlled Release
  doi: 10.1016/S0168-3659(99)00248-5
– volume: 1418
  start-page: 232
  year: 1999
  ident: ref24/cit24
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0005-2736(99)00033-4
– volume: 91
  start-page: 118302−1
  year: 2003
  ident: ref30/cit30
  publication-title: Phys. Rev. Lett.
– volume: 56
  start-page: 1021
  year: 2003
  ident: ref31/cit31
  publication-title: Aust. J. Chem.
  doi: 10.1071/CH03115
– volume: 82
  start-page: 70
  year: 1959
  ident: ref39/cit39
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(59)90090-6
– volume: 85
  start-page: 3943
  year: 2003
  ident: ref41/cit41
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(03)74808-5
– volume: 16
  start-page: 3
  year: 1999
  ident: ref3/cit3
  publication-title: Colloids Surf., B
  doi: 10.1016/S0927-7765(99)00058-2
– volume: 10
  start-page: 647
  year: 1999
  ident: ref6/cit6
  publication-title: Polym. Adv. Tech.
  doi: 10.1002/(SICI)1099-1581(199911)10:11<647::AID-PAT918>3.0.CO;2-Y
– volume: 1711
  start-page: 25
  year: 2005
  ident: ref45/cit45
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2005.02.007
– volume: 24
  start-page: 83
  year: 2008
  ident: ref32/cit32
  publication-title: Langmuir
  doi: 10.1021/la702902b
– volume: 33
  start-page: 4316
  year: 2000
  ident: ref34/cit34
  publication-title: Macromolecules
  doi: 10.1021/ma992138b
– volume: 63
  start-page: 275
  year: 2000
  ident: ref5/cit5
  publication-title: J. Controlled Release
  doi: 10.1016/S0168-3659(99)00200-X
– volume: 1237
  start-page: 99
  year: 1995
  ident: ref23/cit23
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(95)00085-H
– volume: 21
  start-page: 11342
  year: 2005
  ident: ref44/cit44
  publication-title: Langmuir
  doi: 10.1021/la051685p
– volume: 58
  start-page: 483
  year: 2004
  ident: ref26/cit26
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2004.04.006
– ident: ref35/cit35
– volume-title: Absorption and Scattering of Light by Small Particles
  year: 1983
  ident: ref37/cit37
– volume: 93
  start-page: 1980
  year: 2004
  ident: ref18/cit18
  publication-title: Pharm. Sci.
  doi: 10.1002/jps.20098
– volume: 6
  start-page: 688
  year: 2006
  ident: ref29/cit29
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1958
– volume: 258
  start-page: 343
  year: 1989
  ident: ref16/cit16
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(89)81689-8
– volume: 10
  start-page: 851
  year: 1999
  ident: ref17/cit17
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc990037c
– volume: 107
  start-page: 428
  year: 2005
  ident: ref33/cit33
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2005.03.027
– volume: 20
  start-page: 8442
  year: 2004
  ident: ref42/cit42
  publication-title: Langmuir
  doi: 10.1021/la049695y
– volume: 12
  start-page: 470
  year: 2001
  ident: ref22/cit22
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc000101m
– volume: 17
  start-page: 399
  year: 2006
  ident: ref19/cit19
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc050350g
– volume: 39
  start-page: 173
  year: 1993
  ident: ref27/cit27
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 18
  start-page: 1131
  year: 2007
  ident: ref28/cit28
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc060401p
– volume: 14
  start-page: 377
  year: 2003
  ident: ref21/cit21
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc0256289
– volume: 70
  start-page: 1
  year: 2001
  ident: ref4/cit4
  publication-title: J. Controlled Release
  doi: 10.1016/S0168-3659(00)00339-4
– volume: 47
  start-page: 113
  year: 2001
  ident: ref1/cit1
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/S0169-409X(00)00124-1
– volume: 56
  start-page: 1649
  year: 2004
  ident: ref14/cit14
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2004.02.014
– volume: 93
  start-page: 132
  year: 2004
  ident: ref7/cit7
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.10533
– volume: 61
  start-page: 2549
  year: 2004
  ident: ref13/cit13
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-004-4153-5
– volume: 63
  start-page: 2829
  year: 2008
  ident: ref36/cit36
  publication-title: Chem. Eng. Res.
  doi: 10.1016/j.ces.2007.10.020
– volume: 95
  start-page: 2738
  year: 2006
  ident: ref38/cit38
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.20728
– volume: 94
  start-page: 645
  year: 2006
  ident: ref20/cit20
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20854
– volume: 392
  start-page: 5
  year: 1998
  ident: ref12/cit12
  publication-title: Nature
– volume: 250
  start-page: 327
  year: 2003
  ident: ref25/cit25
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(02)00542-2
– volume: 58
  start-page: 1532
  year: 2006
  ident: ref46/cit46
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2006.09.009
– volume: 2
  start-page: 751
  year: 2007
  ident: ref47/cit47
  publication-title: Nature Nanotechnol.
  doi: 10.1038/nnano.2007.387
– volume: 307
  start-page: 93
  year: 2006
  ident: ref8/cit8
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2005.10.010
– volume: 16
  start-page: 761
  year: 2003
  ident: ref43/cit43
  publication-title: Protein Eng.
  doi: 10.1093/protein/gzg093
– volume: 243
  start-page: 3612
  year: 1968
  ident: ref40/cit40
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)34184-5
SSID ssj0009345
Score 2.2824771
Snippet Maleimide-functional poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles (NPs) were prepared via the Flash NanoPrecipitation technique. Subsequent...
Maleimide-functional poly(ethylene glycol)-b-poly(epsilon-caprolactone) nanoparticles (NPs) were prepared via the Flash NanoPrecipitation technique. Subsequent...
Maleimide-functional poly(ethylene glycol)-b-poly(*e-caprolactone) nanoparticles (NPs) were prepared via the Flash NanoPrecipitation technique. Subsequent...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2705
SubjectTerms Animals
Applied sciences
Biological and medical sciences
Cattle
Exact sciences and technology
Forms of application and semi-finished materials
General pharmacology
Ligands
Light
Maleimides - chemistry
Medical sciences
Miscellaneous
Molecular Conformation
Nanoparticles - chemistry
Nanotechnology - methods
Particle Size
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
Polyethylene Glycols - chemistry
Polymer industry, paints, wood
Polymers - chemistry
Scattering, Radiation
Serum Albumin, Bovine - chemistry
Sulfhydryl Compounds - chemistry
Surface Properties
Technology of polymers
Title Preparation of Poly(ethylene glycol) Protected Nanoparticles with Variable Bioconjugate Ligand Density
URI http://dx.doi.org/10.1021/bm8002013
https://www.ncbi.nlm.nih.gov/pubmed/18759476
https://www.proquest.com/docview/69649890
https://www.proquest.com/docview/754548895
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB4heihS1Rd9pI-tVTjAIRA_1t4c26UIVW21ElBxi5zYRrTbBLHZw_bXdyaPpagsvU8i2zP2fOPH9wFs-0R50tGOnQu0dWNlbJO0iJM8SIsrZprkVCh-_aaPTtXns-HZGmytOMEXfD__1WAaUqa9JzROXsI_4-NrZl3ZKBGTjg9CxdT09EF_f0qpp5jdSD0PLu0MRyG08hWr8WWTZw4fwUH_Wqe9XvJzb17ne8Xvf8kb7-rCY3jY4Uz2oQ2MJ7Dmy6dwf9zLu21CmFz5lve7KlkV2KSaLnY8ug3TkGfn0wVGyC6btDQO3jFchrG-7q7RMdq-Zd-xzqaXV-zjRYVl9Y85bcmxLxfntnTsgG7G14tncHr46WR8FHeiC7GVZljHOiTSOuEkD8rx3AcevDXB8ZFTI12MFHd6KHOiffdCGee01LYg7aHcWRmMfA7rZVX6l8AcgjXppBdS4r-0scKSiKHx2vnCFDKCAXol6ybNLGvOwwXPlsMVwU7vsKzoKMtJOWN6m-n7pelly9Nxm9HghteXliIhaQfFI3jXh0GG7qCzE1v6aj7LdKpVOkqTCNgKC4NYFFfDdBjBizaArhuCRWGqjH71vw6_hg3R8-3yN7BeX839WwQ9dT5ogv4PiND6WQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6hcigS4v0Ij62FOJRD2jj22ptjWagW2FYr0aLeIie2q9JtUjXZw_Lrmcljl6JWcJ9Etmfs-caP7wN47yLpSEc7tNbT1o0RoYmSPIwyLwyumEmUUaF4cKgmx_LryfCko8mhtzDYiAr_VDWH-Gt2Ab6bXTTQhgRq7yIIiSma98bf1wS7ohEkJjkfRIyJ7lmE_vyUMlBeXctA9y9NhYPhWxWL22Fmk272H7a6RU1Dm1sm5zuLOtvJf_3F4fh_PXkEDzrUyfbaMHkMd1zxBDbHvdjbU_CzK9eygJcFKz2blfPltkMnYlJy7HS-xHj5wGYtqYOzDBdlrLa7S3WMNnPZD6y66R0W-3hWYpH9c0EbdGx6dmoKyz7RPfl6-QyO9z8fjSdhJ8EQGqGHdah8JIyNreBeWp45z70z2ls-snKk8pHkVg1FRiTwLpbaWiWUyUmJKLNGeC2ew0ZRFu4lMIvQTVjhYiHwX0qb2JCkoXbKulznIoABjlbaTaEqbU7HY56uhiuA7d5vad4RmJOOxvwm03cr08uWteMmo8E1568s44iEHiQPYKuPhhTdQScppnDlokpVomQySqIA2C0WGpEpro3JMIAXbRytG4IlYiK1evWvDm_B5uToYJpOvxx-ew334p6Jl7-Bjfpq4d4iHKqzQTMPfgP_BwLJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6hIgESorwJha2FOJRD2jj22ptj2bIqUMpKUNRb5MR2VViSVZM9bH99Z_LYUtQK7pPIj7HnG4_9fQBvXSQd6WiH1no6ujEiNFGSh1HmhcEdM4kyShS_HKr9I_npeHjcJYr0FgYbUeGfqqaIT6t6bn3HMMB3st8NvCGR2ttUriOP3h1_uyTZFY0oMUn6IGpMdM8k9OenFIXy6koUuj83FQ6Ib5UsboaaTciZrMPXVWObmya_thd1tp2f_8Xj-P-9eQgPOvTJdlt3eQS3XPEY7o570bcn4KdnrmUDLwtWejYtZ8sth5OJwcmxk9kS_eYdm7bkDs4y3Jwx6-4u1zE61GU_MPum91js_WmJyfbPBR3UsYPTE1NYtkf35evlUziafPg-3g87KYbQCD2sQ-UjYWxsBffS8sx57p3R3vKRlSOVjyS3aigyIoN3sdTWKqFMTopEmTXCa_EM1oqycC-AWYRwwgoXC4H_UtrEhqQNtVPW5ToXAQxwxNJuKVVpUyWPeboargC2-rlL847InPQ0ZteZvlmZzlv2juuMBlccYGUZRyT4IHkAm71HpDgdVFExhSsXVaoSJZNREgXAbrDQiFBxj0yGATxvfemyIZgqJlKrl__q8Cbcme5N0oOPh5834F7cE_LyV7BWny3ca0RFdTZolsIFb68FTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+poly%28ethylene+glycol%29+protected+nanoparticles+with+variable+bioconjugate+ligand+density&rft.jtitle=Biomacromolecules&rft.au=Gindy%2C+Marian+E&rft.au=Ji%2C+Shengxiang&rft.au=Hoye%2C+Thomas+R&rft.au=Panagiotopoulos%2C+Athanassios+Z&rft.date=2008-10-01&rft.issn=1526-4602&rft.eissn=1526-4602&rft.volume=9&rft.issue=10&rft.spage=2705&rft_id=info:doi/10.1021%2Fbm8002013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon